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Calculation of the dielectric function in a local representation
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A formula for the dielectric tensor in real-space coordinates is derived. Expanding this formula in a plane-
wave basis yields the well-known Adler-Wiser formula@S.L. Adler, Phys. Rev.126, 413 ~1962!; N. Wiser,
Phys. Rev.129, 62 ~1963!#, which is appropriate for bulk systems. For systems with broken symmetry like the
semi-infinite crystal this approach is not possible and an alternative can be found in localized functions.
Therefore, we investigate the expansion of the dielectric function in a linear combination of atomiclike orbitals
basis set and compare the results with the usual plane-wave approach. We found very good agreement for the
microscopic dielectric function of diamond and GaAs but deviations in the description of local-field effects.

DOI: 10.1103/PhysRevB.66.085111 PACS number~s!: 71.15.Ap, 71.45.Gm, 78.20.Bh
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I. INTRODUCTION

Recent developments in electronic structure calculati
show an increasing interest in optical properties. The reas
are manifold. Advances in theoretical understanding as w
as computer power make the treatment of more sophistic
approximations to the many body problem feasible. It sho
up that inclusion of local-field, self-energy, and exciton
effects1,2 leads to considerably closer agreement with the
periment in comparison with plain random phase approxim
tion ~RPA!, which was the standard method for many yea
On the other side, experimental techniques that allow m
direct access to the dielectric function~DF! such as electron
energy loss spectroscopy, ellipsometry, and reflection an
ropy spectroscopy~RAS! have been developed.

But not only for a direct comparison between theory a
experiment the DF is of importance. It serves as an input
subsequent calculations like the evaluation of quasipart
and excitonic effects or photoemission spectra. Most ca
lations are done within the pseudopotential plane-w
framework because of the nice analytic properties of pl
waves. If core orbitals or narrow band systems are con
ered this is not possible, and the wave functions are
panded~at least partly! in localized functions. Still, in mos
approaches the DF is expressed in Fourier space w
makes it necessary to switch from one basis set to ano
For systems with broken symmetry a plane-wave approac
not possible.

Therefore, we investigate the expansion of the DF i
localized functions. As has been pointed out by Aryasetiaw
and Gunnarson,3 the DF should be expanded into a ‘‘produ
basis,’’ which leads to very large matrix dimensions.
avoid this unfavorable scaling we use an ordinary lin
combination of atomic orbitals~LCAO! basis and compare
our results with a usual plane-wave calculation.

Localized-basis functions are well-known for there ef
ciency in electronic-structure calculations. As has be
shown by several authors, see, for example, Refs. 4–6,
can perform state of the artab initio calculations for the
electronic structure and optical spectra with the LCAO ba
Of course, the minimal set has to be extended for a pro
description of the conduction bands. Still, matrix dimensio
are considerably smaller compared with a plane-wave exp
0163-1829/2002/66~8!/085111~8!/$20.00 66 0851
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sion. We have implemented an all-electron full-potent
LCAO program, based on density functional theory~DFT! in
the local density approximation~LDA !. It is described in
greater detail in the following section.

In order to calculate the dielectric tensoreJ(q,v) in this
LCAO basis we first develop a general formula in real-spa
coordinates. We then show how to transform to a localiz
orbital basis using the random phase approximation to
polarization. The LCAO representation of the inverse DF
easily accessible. Transformation to Fourier space, which
to be done only forG5G850, yields the macroscopic DF
The basic outline of our derivation is given in Sec III.

As an application of our method, we investigate the op
cal properties of diamond and GaAs. Because diamond
first-row element pseudopotential calculations need a v
number of plane waves~energy cutoffs of 42 to 50 Rydber
are necessary7,8! whereas we found less than 50 localiz
orbitals per atom to be sufficient for a converged bandstr
ture. Results are presented in Secs. IV and V.

II. BAND STRUCTURE METHOD

One of the main problems of any electronic-structure p
gram is the evaluation of matrix elements, especially for
Hamiltonian. In a plane-wave basis the integration is ea
done with the help of fast Fourier transformation but one h
to rely on the pseudopotential approximation. All-electr
methods such as LCAO, the augmented-plane-wave~APW!,
and linear muffin-tin orbital~LMTO! method often expand
charge density and potential into auxiliary functions~spheri-
cal harmonics, plane waves, or others! to ease the calculation
of the integrals. If the full potential is taken into account, i.
no muffin-tin or atomic-sphere approximations are used,
convergence properties and the implementation are cons
ably more complicated. A way to avoid all these problems
the direct evaluation of the integrals in real space, wh
traces back to Ellis.9 We adopt this method because of i
simplicity and flexibility. As integration points, we choos
good lattice points~see, e.g., Ref. 10 and references there!,
but other techniques like product Gauss-type rules11 are also
possible. Near nuclei the density of integration points is
creased to account for the singular behavior of the poten
and the fluctuations of the wavefunction. Basis functio
©2002 The American Physical Society11-1
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w ik(r), potentialV(r), and charge density are tabulated
the integration pointsrp . Thus, the elements of the overla
matrix Si j (k) and Hamilton matrixHi j (k) are

Si j ~k!5E w ik* ~r!w j k~r!d3r ~1!

'(
p

vpw ik* ~rp!w j k~rp!, ~2!

Hi j ~k!5E w ik* ~r!S 2
1

2
n1V~r! Dw j k~r!d3r ~3!

'(
p

vpw ik* ~rp!S 2
1

2
n1V~rp! Dw j k~rp!

~4!

with vp being the integration weights. The number of go
lattice points varies with the system under consideration.
aluminum, e.g., less than 400 points are needed to get
converged valence-band energies, while for high lying c
duction states it takes several thousand points. The prec
of this Diophantine-type integration method is not as high
product Gauss-type rules, but one gets already with a
hundred points a good approximation to the final result.
pecially at degenerated bands one observes a splitting, w
is due to the integration error. With increasing number
good lattice points this effect only slowly vanishes. Nond
generated bands, instead, converge rather fast. In genera
believe that the error in band energies introduced by the
merical integration scheme is of the order of 0.1 eV. For
DF this is surely smaller than errors coming from oth
sources, like the local density approximation itself ork-point
sampling.

The choice of basis functions is another important qu
tion. Because of the numerical integration we are not
stricted to a special kind and tried numerical atomiclike
bitals as well as plane waves and mixed basis sets. To ge
of deep lying core states the basis can be orthogonalize
Bloch sums of atomic core orbitals. We are interested
optical properties. Therefore, a proper description of cond
tion bands is needed. By comparison of LCAO and mixe
basis calculations it shows up that plane waves are not
essary. The quality of the LCAO basis can be improved
two ways: first, increasing the angular momentum, and, s
ondly, taking more orbitals for a given angular momentu
channel. For open structures, additional functions can be
cated in the interstitial thereby reducing the angular mom
tum expansion. Thus, basis-set convergence is achieved
controlled manner with a modest number of basis functi
per atom.

The radial functionsRAt,nl(r ) for a given angular momen
tum l are calculated by solving the Schro¨dinger equation for
the potential

V~r !5VC~r !1Vxc@%~r !#2
Z

r
1Vconf~r !1

l ~ l 11!

2r 2
. ~5!
08511
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Z denotes the atomic number,Vxc the exchange-correlation
potential, andVC the Coulomb potential. The latter conta
the radial-density%(r ).

Vconf~r !5S r

r 0
D 4

~6!

is a confinement term12 which damps the orbitals rapidly to
zero for r .r 0. This additional potential leaves the physic
properties of the orbitals, like the number of nodes and
behavior forr→0 and r→`, unchanged. The Hamiltonia
of the crystal is not affected by the artificial potentialVconf.
The parameterr 0, which depends on the angular momentu
l, is chosen to be

r 05S xlRnn

2 D 3/2

, ~7!

with Rnn being the distance to the nearest neighbor.xl is
roughly one. The exact value is not important as long
there are enough basis functions. We foundx0 in the range 1
to 1.2 andxl51 for l .0 to be a good choice for a wid
variety of substances. The off-site orbitals are determine
the same way butVC , Vxc , andZ are all zero.

From the atomic orbitalsuAt,nlm(r)5RAt,nl(r )Ylm( r̂)
(Ylm denote spherical harmonics! Bloch sums are formed
and tabulated on the integration points for each Blo
vectork:

w ik~r!5
1

AN
(
R

eik•Rui~r2R2si !. ~8!

The superindexi stands for positionsi and kindAt of the
atom and the quantum numbersnlm. The normalization con-
stantN gives the number of unit cells in the crystal.

The Kohn-Sham equations are iterated to self-consiste
with an acceleration scheme due to Anderson,13 which is
mathematically equivalent to Broyden’s method.14 Integra-
tion over the Brillouin zone is done with special points f
insulators or good lattice points for metals when morek
points are required. The exchange-correlation potential is
to Ceperley and Alder15 as parametrized by Perdew an
Zunger.16

III. DIELECTRIC FUNCTION

A test charge% i placed into a crystal will lead to a poten
tial Vi and an electric inductionD. In Fourier space, with
each momentum vector composed of a reciprocal lattice v
tor G and a vectorq confined to the 1 Brillouin zone, the
relation is

D~G1q,v!52 i ~G1q!Vi~G1q,v!. ~9!

A similar equation holds for the electric fieldE and the total
potentialV5Vs1Vi , Vs being the potential of the induce
screening charge%s :

E~G1q,v!52 i ~G1q!V~G1q,v!. ~10!

In linear response theory the dielectric tensoreJ is defined by
1-2
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CALCULATION OF THE DIELECTRIC FUNCTION IN A . . . PHYSICAL REVIEW B66, 085111 ~2002!
D~G1q,v!5 (
G8q8

eJGG8~q,q8,v!E~G81q8,v!. ~11!

By our definitionsD andE are longitudinal, i.e., parallel to
q. Therefore, the DF refers to the longitudinal-longitudin
one.

Insertion of Eqs.~9! and ~10!, and some reordering o
terms leads to the following equation:

4p
G1q

uG1qu2
%s~G1q,v!5 (

G8q8
V~G81q8,v!@dGG8dqq81

J

2 eJGG8~q,q8,v!#~G81q8!.

By taking the functional derivative with respect to the pote
tial V, we introduce the polarization17

PGG8~q,q8,v!5
d%s~G1q,v!

dV~G81q8,v!
. ~12!

Then the equation can be solved for the dielectric ten
yielding

eJGG8~q,q8,v!5dGG8dqq81
J

24p
~G1q! ^ ~G81q8!

uG1qu2uG81q8u2
PGG8~q,q8,v!.

~13!

To geteJ in an arbitrary basis it is advantageous to transfo
Eq. ~13! into real space by the usual formula

eJ~r,r8,v!5
1

V (
qq8

(
GG8

ei (G1q)•reJGG8~q,q8,v!e2 i (G81q8)•r8.

~14!

V5NVUC denotes the crystal volume andVUC the volume
of the unit cell. With the help of

(
G

G1q

uG1qu2
ei (G1q)•(r2r1)5

VUC

4p i (
R

eiq•R
“ r

1

ur2r12Ru
~15!

we get

eJ~r,r8,v!5d~r2r8!1J2
1

4pE d3r 1E d3r 2P~r1 ,r2 ,v!

3“ r

1

ur2r1u
^“ r8

1

ur82r2u
. ~16!

Because this expression follows from pure classical con
erations it is independent of the microscopic theory for
polarization. Taking the matrix elements between basis fu
tions w iq yields the desired result

eJ i j ~q,v!5Si j ~q!1J2
1

4pE d3r 1E d3r 2P~r1 ,r2 ,v!Fiq* ~r1!

^ Fj q~r2! ~17!
08511
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with the ‘‘orbital field’’ F defined by

Fiq~r!52“E d3r 8
w iq~r8!

ur82ru
. ~18!

We have used the diagonality ofeJ in q andq8, which holds
for any periodic lattice. The evaluation of the orbital field f
a localized-basis set is done by a transformation to sum
tions over the reciprocal and direct lattice. These calculati
are described in the Appendix.

To be concrete, we specialize on the random phase
proximation to the~time-ordered! polarization17

Pt~r,r8,t,t8!52 iG~r,r8,t,t8!G~r8,r,t8,t !. ~19!

G is the one-particle Greens function, which is approxima
by the resolvent of the LDA Hamiltonian. By introducing th
eigenfunctionscnk and eigenvaluesEnk of the Hamiltonian
and switching to the retarded polarization one arrives at

P~r,r8,v!5(
nk

(
n8k8

cnk~r!cnk* ~r8!cn8k8~r8!cn8k8
* ~r!

3
f nk2 f n8k8

Enk2En8k82v2 ih
. ~20!

f nk denotes the Fermi distribution function andh a small
positive value. With the definition of theM matrices

Mn8n
iq

~k8,k!5E d3rcn8k8
* ~r!cnk~r!Fiq* ~r!, ~21!

we get

eJ i j ~q,v!5Si j ~q!1J2
1

4p (
nk

(
n8k8

3
~ f nk2 f n8k8!Mn8n

iq
~k8,k! ^ @Mn8n

j q
~k8,k!#*

Enk2En8k82v2 ih
.

~22!

Now the question arises, which basis functions should
used for the expansion of the dielectric function. Followi
the arguments given by Aryasetiawan and Gunnarson,3,18 the
Hilbert space spanned bye21 is given by all products of two
wave functions, i.e., the set$cnkcn8k8%. If the wave functions
are expanded in plane waves, the product basis con
again of ordinary plane waves and the last equation lead
the well-known Adler-Wiser formula.19,20Almost all calcula-
tions are along this line, which is appropriate for syste
with three-dimensional periodicity. To our knowledge, the
are only two approaches which expand the DF into ot
basis functions than plane waves. About 30 years ago Ha
and Sham21 used tight-binding functions to calculate th
macroscopic DF of diamond. In 1994 Aryasetiawan a
Gunnarson3 expandede21 in a LMTO basis. The computa
tional work was reduced by the atomic-sphere approxima
~ASA! and by omitting roughly 3/4 of the product bas
functions. Still, they found 70 to 100 functions per atom
be necessary.
1-3
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In our calculations, we expand the wave functions in
linear combination of atomiclike orbitals. Thus, the meth
of Hanke and Sham should be well suited. But in their wo
the number of product functions is given byNnn3Nao

2 with
Nnn being the number of nearest neighbors entering
Bloch sums andNao being the number of atomic orbitals
The resulting number is acceptable only in the tight-bind
limit, but explodes for anab initio LCAO program. The
method of Aryasetiawan and Gunnarson needs much les
still a large number of functions per atom and relies on
atomic-sphere approximation. The generalization to over
ping orbitals seems to be difficult.

In order to keep the number of functions low, we do n
expand the DF into products of basis functions but an o
nary LCAO basis. Of course, this is worse than the pro
product basis if the basis set is incomplete. But it might b
good approximation and converge to the true result with
creasing number of functions. To investigate this behav
we calculate the microscopic DFemicro(q,v) as well as the
macroscopic DFemacro(v) with the usual Adler-Wiser for-
mula and our LCAO approach for different sets of localiz
functions.

Becauseemicro(q,v) andemacro(v) require the DF in Fou-
rier representation~denoted by subscriptF, we use double
underscore for matrices!

emicro~q,v!5@eF~q,v!#G5G850 , ~23!

emacro~v!5 lim
q→0

1

@eF
21~q,v!#G5G850

, ~24!

the scalar LCAO-DFe=5q̂• eJ= •q̂ is transformed to Fourie
space

eF~q,v!5SFL~q!S21~q!e~q,v!S21~q!@SFL~q!#1

~25!

eF
21~q,v!5SFL~q!@e~q,v!#21@SFL~q!#1. ~26!

The S= matrices present in Eq.~25! cancel out in Eq.~26!.
The overlap integral SGi

FL(q) between plane wave
(1/AV)ei (G1q)•r and basis functionw iq(r) reduces to a one
dimensional integral, which is done numerically. Of cour
only the head elements (G5G850) of eF= andeF

21
=

need to
be calculated.

By deriving the last two equations, the decomposition
unity, which reads in LCAO representation

1̂5(
i j k

u ik&Si j
21~k!^ j ku ~27!

@with ^ru ik&5w ik(r) being LCAO functions#, was used
twice. Because of the incompleteness of the LCAO ba
emicro(q,v) andemacro(v) are too small. This is corrected b
a factor

F~q!5@SFL~q!S21~q!@SFL~q!#1#G5G850
22 , ~28!
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which should be one, ideally, and is some measure of
unitarity of the transformation from LCAO to Fourier repre
sentation.

In the following we show results for the semiconducto
diamond and GaAs. The integrals appearing in Eq.~21! as
well as the matrix elementŝcnkuexp@i(G1q)•r#ucn8k8& for
the plane-wave DF are done by tabulating the wavefuncti
and the orbital field~or the plane wave! in the unit cell and
using the numerical integration scheme introduced in
preceding section. Therefore, the computational costs of b
approaches are the same. Because the orbital field doe
depend on thek vector its calculation does not enhance t
numerical effort noticeable.

IV. APPLICATION TO DIAMOND

Diamond has the electronic configuration 1s22s22p2. Be-
cause of the covalent binding throughsp3 hybrid orbitals
one expects local-field effects in the DF. The lattice const
was chosen to be 6.75aBohr.

The electronic-structure calculations were performed w
two specialk points for sampling the irreducible wedge o
the Brillouin zone and 26 614 integration points in the u
cell. Such a large number is necessary for a precise calc
tion of the factorF(q). The eigenvalues of the Kohn-Sha
Hamiltonian are already converged with 7975 integrat
points ~less than 0.04 eV deviation in the valence band!.
The band structure compares well with other results.22–24As
usual in DFT-LDA calculations for semiconductors, the fu
damental band gap is underestimated. We find a mini
band gap of 3.98 eV while the experiment gives 5.48 eV.
point G the calculated band gap is 5.49 eV and the exp
mental one is 7.3 eV~some measured energies are collec
in Ref. 23!. This shows that the underestimation of the co
duction bands in LDA depends on thek point, so, a rigid
scissor-operator shift is not a good approximation for t
wide-gap semiconductor.

Dielectric function of diamond. We have calculated the
DF in LCAO representation and transformed to Four
space according to Eq.~25! and Eq.~26! for a small wave
vectorq5(0.0001,0,0)(2p/a). The correction factorF(q) is
shown in Fig. 1 against the number of LCAO basis fun
tions. Remember that the parameterr 0 ~Sec. II! is not opti-
mized ~e.g., by minimizing the total energy as in Refs. 2
and 25!. Therefore, small basis sets such as single-z ~mini-
mal basis! and even polarized double-z (1s 2sp3spd) do
not give satisfactory bandstructures and large values for
factor F(q). Even triple-z and further polarization up to
1s 2sp3spd4spd f yield '3% deviation from 1. With the
help of off-site functions much smaller values are reach
with a comparable number of basis functions. 46 functio
per atom, divided into atomic orbitals 1s 2sp3spd4spd f
and off-site functions 4spd f, yield a correction factor of
F(q)51.0012.

In Fig. 2 the DF of diamond evaluated according to t
Adler-Wiser formula is shown. We have calculated the
electric matrixeGG8(q,v) in Fourier space for 65 reciproca
lattice vectorsG, G8. Test calculations with a higher numbe
show that this number ofG vectors is sufficient for describ
1-4
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CALCULATION OF THE DIELECTRIC FUNCTION IN A . . . PHYSICAL REVIEW B66, 085111 ~2002!
ing local-field effects~LFE’s!. The solid curve shows the
macroscopic DF~i.e., with LFE! according to Eq.~24!. The
dashed curve shows the microscopic DF~i.e., without LFE!
according to Eq.~23!. The wave vector isq5(0.0001,0,0)

FIG. 1. The figure displays the quality of the transformati
from LCAO space to Fourier space for different LCAO sets
diamond. The ordinate shows (F21)3100%, whereasF is unity
for a complete basis set. The labels indicate the constituting o
als. For example 1s•••3d13spd means that 14 spinless orbita
(1s•••3d51s, 2sp, and 3spd) are located at diamond atoms an
nine functions ofs, p, andd type are placed in the interstitial~de-
noted by13spd). The wave vector isq5(0.0001,0,0)(2p/a).

FIG. 2. Dielectric function of diamond forq5(0.0001,0,0)
3(2p/a). Full ~broken! curve denotes macroscopic~microscopic!
DF calculated in plane-wave representation.
08511
3(2p/a) and the broadening parameter amounts toh
50.27 eV. The Brillouin zone was sampled with 1154k
vectors. Wave functions are expanded into 92 LCAO fun
tions and tabulated at 26 614 real-space integration poin

The inclusion of LFE has no great influence on the DF
such a small wave vector. The main peak is slightly shifted
higher energies and in general the curve is somew
damped. The effect increases with higherq as shown in Ref.
8. Experimentally, the main peak is located at 11.6 eV~Ref.
26! while we see it at 11.08 eV without LFE and at 11.15 e
with LFE. This good agreement is surprising at first sig
because the band gap in our calculations comes out to be
to 1.8 eV too small. As has been shown by rece
investigations,2 this is due to the cancellation of two many
body effects. First, the calculation of quasiparticle energ
corrects the band gap and therefore shifts the DF to hig
energies. If additionally excitonic effects are considered t
shift is to some amount reversed. The same argument h
for the static dielectric constante05emacro(v50). In our
calculation we founde055.58. This is 1.8% lower than the
experimental value ofe055.68.26 If the LDA band gap is
corrected, either by a rigid scissor-operator shift of the c
duction bands or by proper evaluation of the quasipart
energies, the static dielectric constant is underestima
by 16%.2

Calculating the DF in LCAO representation, i.e., alo
the way outlined in Sec. III, leads to results very close to
previous. Especially if LFE are neglected the curves are
distinguishable. The evaluation of the macroscopic DF
cording to Eqs.~24! and ~26! is more difficult. The conver-
gence with increasing number of basis functions to the pla
wave result is slow, as can be seen in Fig. 3. Here we sh
the dielectric constante0 for different LCAO sets. It should
be noted that the difference between LCAO and plane-w
results concerns the expansion of the DF only. In both ca

it-

FIG. 3. Dielectric constant of diamond forq5(0.0001,0,0)
3(2p/a) against the number of LCAO functions.
1-5
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lations wave functions are expanded in the same LCAO b
set. Without LFE, LCAO results~open circles! and plane-
wave results~crosses! are the same. Inclusion of LFE lead
to deviations between LCAO results~squares! and plane-
wave values~triangles!. Nevertheless, the difference d
creases with increasing number of LCAO functions. We w
not able to include more functions because a higher num
of integration points is ruled out by limited computation
capacity.

V. APPLICATION TO GaAs

GaAs is a covalently bound III-V semiconductor, whic
crystallizes in zincblende structure. As for diamond, off-s
functions located in the interstitial greatly enhance the qu
ity of the atomic-orbital basis. In order to eliminate effec
from core orthogonalization, we performed all-electron c
culations with the atomic orbitals 1s to 4f and off-site func-
tions ofs, p, andd character, yielding 39 functions per atom
The factor F(q) defined in Sec. III has a value of 1.00
indicating a good quality of the basis set. The calcula
band gap of 1.35 eV is too small by 0.17 eV compared w
experiment27 due to the local density approximation. Notic
that the theoretical band gap in our LCAO calculation
larger than in pseudopotential plane-wave calculations
was observed also by earlier LCAO calculation, see, for
ample, Ref. 28.

The DF is calculated with 6007k points in the Brillouin
zone and a broadening ofh50.16 eV. Real-space integra
tion is done with 7957 good lattice points in the unit cell. F
a better comparison of the DF with experiment, we shif
the conduction bands by 0.6 eV to higher values. This s
does not restore the experimental band gap but the pos
of the main peak in Imemacro(v). In Fig. 4 the imaginary par

FIG. 4. Imaginary part of the DF of GaAs forq5(0.0001,0,0)
3(2p/a).
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of the DF is shown. The curves labeled ‘‘PW macro’’ an
‘‘PW micro’’ are calculated with the Adler-Wiser formula
i.e., in plane-wave representation, with and without LFE,
spectively. The dielectric matrix was evaluated for 65 rec
rocal lattice vectors which are enough for describing LF
The curves labeled ‘‘LCAO macro’’ and ‘‘LCAO micro’’ are
calculated with the LCAO representation ofe with and with-
out LFE. The microscopic DF calculated in LCAO and P
representation coincide, whereas the macroscopic LCAO
differs from the PW-DF. Obviously, the LCAO-DF lies i
between the microscopic DF and the macroscopic PW-
which shows that not all LFE could be caught because of
too small basis set. Anyway, the deviations of all curves fr
experiment29 show that there are other sources of err
which are much larger. As in the case of diamond, excito
effects are responsible for the shift of spectral weight fro
higher energies to lower energies, which brings the theor
cal curve very close to the measured DF.30 The inclusion of
LFE becomes important for higher energies than we con
ered. In the far UV regime, that means if excitations fro
semicore states set in, LFE show drastic influence on opt
spectra.31

VI. CONCLUSIONS

We have introduced a formula which allows the evalu
tion of the dielectric tensor in an arbitrary basis. For the c
of a LCAO basis, we developed an efficient scheme to c
culate the matrix elements with the help of the Ewald su
mation technique. This approach opens the possibility to
culate the DF for systems which do not have the f
periodicity and therefore cannot be described in Fourier r
resentation.

To account for the incompleteness of the transformat
from the LCAO set to a plane-wave basis, we defined
factorF(q). With optimization of this factor the microscopi
DF of diamond and GaAs are in very good agreement w
plane-wave results, even for small basis sets. The ma
scopic DF is not such well reproduced. This is not a serio
drawback of the proposed method. Although much inter
has been drawn on LFE in the past, comparison with exp
ment and more advanced calculations including excitonic
fects, show that LFE do not improve the DF significantly
the low energy region for small wave vectorsq.

APPENDIX: THE ORBITAL FIELD

In this section we describe the calculation of the orbi
fields

Fiq~r!52“E d3r 8
w iq~r8!

ur82ru
~A1!

for LCAO basis functions given by Eq.~8!. uAt,nlm(r)
5Ylm( r̂)RAt,nl(r ) is a solution of the atomic Schro¨dinger
equation composed of a radial functionRAt,nl(r ) and a
spherical harmonicYlm( r̂). The lumped indexi denotes kind
and positionsi of the atom and quantum numbersnlm. With
the multipole expansion
1-6
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1

ur82ru
5 (

l 8m8

4p

2l 811

r ,
l 8

r .
l 811

Yl 8m8~ r̂!Yl 8m8
* ~ r̂8!, ~A2!

r .5max~r ,r 8!, r ,5min~r ,r 8! ~A3!

the angular part of the integral~A1! can be done. Because o
the orthogonality of spherical harmonics the summation o
the angular momental 8m8 cancels. There remains a su
over lattice vectorsR

Fiq~r!52“(
R

eiq•RYlm~ t̂!R̃At,nl~ t ! ~A4!

with the abbreviationt5r2R2si and the transformed radia
functions

R̃At,nl~ t !5
4p

2l 11 F t2 l 21E
0

t

r l 12RAt,nl~r !dr

1t lE
t

`

r 12 lRAt,nl~r !drG . ~A5!

Because ofR̃At,nl(t) ——→
t→`

cAt,nlt
2 l 21, with a constant

cAt,nl , the lattice sum can be decomposed into two parts

Fiq~r!52“(
R

eiq•RYlm~ t̂!F R̃At,nl~ t !2
cAt,nl

t l 11 G
2“(

R
eiq•RYlm~ t̂!

cAt,nl

t l 11
. ~A6!

The first sum converges already rapidly while the second
can be further analytically treated. We therefore introduc
differential operatorD̂ lm with the property

Ylm~ t̂!
1

t l 11
5D̂ lm

1

t
. ~A7!

We are using real-valued linear combinations of spher
harmonics. The first fewYlm and the corresponding opera
tors D̂ lm are given by
W.

08511
r

e
a

l

Ys~ r̂!5A 1

4p
D̂s5A 1

4p
,

Ypx~ r̂!5A 3

4p

x

r
D̂px52A 3

4p
]x ,

Ypy~ r̂!5A 3

4p

y

r
D̂py52A 3

4p
]y ,

Ypz~ r̂!5A 3

4p

z

r
D̂pz52A 3

4p
]z .

So, the spherical harmonic is replaced byD̂ lm , which can be
taken out of the sum. Then, one arrives essentially at
simple task to calculate

S~r!5(
R

eiq•R
1

ur2Ru
. ~A8!

This can be done by the Ewald summation technique:32

S~r!5
4p

Vuc
(
G

ei (G1q)•r

uG1qu2
e2uG1qu2/4a2

1(
R

eiq•R
erfc~aur2Ru!

ur2Ru
. ~A9!

erfc(x) is the complementary error function, which goes fa
to zero forx→`. The real parametera controls the conver-
gence of the sums over reciprocal lattice vectorsG and direct
lattice vectorsR. They both converge exponentially. The fi
nal result for the orbital field is obtained by taking the d
rivatives implied byD̂ lm and“, which leads to somewha
unpleasant long formulas. The caset→0 has to be treated
carefully, for example, by Taylor expansion. As can be se
in the last equation, the orbital field cannot be calculated
q50. But owing to the Ewald technique,q can be very small
without affecting the convergence properties. We have p
grammed the resulting equations forl up to 3. The summa-
tion turns out to be numerically stable and very fast.
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