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Calculation of the dielectric function in a local representation
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A formula for the dielectric tensor in real-space coordinates is derived. Expanding this formula in a plane-
wave basis yields the well-known Adler-Wiser formyla.L. Adler, Phys. Revl126 413 (1962; N. Wiser,
Phys. Rev129, 62(1963], which is appropriate for bulk systems. For systems with broken symmetry like the
semi-infinite crystal this approach is not possible and an alternative can be found in localized functions.
Therefore, we investigate the expansion of the dielectric function in a linear combination of atomiclike orbitals
basis set and compare the results with the usual plane-wave approach. We found very good agreement for the
microscopic dielectric function of diamond and GaAs but deviations in the description of local-field effects.
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[. INTRODUCTION sion. We have implemented an all-electron full-potential
LCAO program, based on density functional thed@FT) in
Recent developments in electronic structure calculationghe local density approximatiofLDA). It is described in
show an increasing interest in optical properties. The reasorgeater detail in the following section.
are manifold. Advances in theoretical understanding as well In order to calculate the dielectric tens&(d, ) in this
as computer power make the treatment of more sophisticatdeCAO basis we first develop a general formula in real-space
approximations to the many body problem feasible. It showsgoordinates. We then show how to transform to a localized-
up that inclusion of local-field, self-energy, and excitonic Orbital basis using the random phase approximation to the
effects-? leads to considerably closer agreement with the expPolarization. The LCAO representation of the inverse DF is
periment in comparison with plain random phase approximaeasny accessible. Transformation to Fourier space, which has
tion (RPA), which was the standard method for many years!to be done only folG=G’=0, yields the macroscopic DF.
On the other side, experimental techniques that allow mordhe basic outline of our derivation is given in Sec lIl.
direct access to the dielectric functiBF) such as electron As an application of our method, we investigate the opti-
energy loss spectroscopy, ellipsometry, and reflection aniso€al properties of diamond and GaAs. Because diamond is a
ropy spectroscopyRAS) have been developed. first-row element pseudopotential calculations need a vast
But not only for a direct comparison between theory andnumber of plane wave@nergy cutoffs of 42 to 50 Rydberg
experiment the DF is of importance. It serves as an input foRfe€ necessafy) whereas we found less than 50 localized
subsequent calculations like the evaluation of quasiparticl@rbitals per atom to be sufficient for a converged bandstruc-
and excitonic effects or photoemission spectra. Most calcuture. Results are presented in Secs. IV and V.
lations are done within the pseudopotential plane-wave
framework because of the nice analytic properties of plane
waves. If core orbitals or narrow band systems are consid-
ered this is not possible, and the wave functions are ex- One of the main problems of any electronic-structure pro-
panded(at least partly in localized functions. Still, in most gram is the evaluation of matrix elements, especially for the
approaches the DF is expressed in Fourier space whicHamiltonian. In a plane-wave basis the integration is easily
makes it necessary to switch from one basis set to anotheione with the help of fast Fourier transformation but one has
For systems with broken symmetry a plane-wave approach i® rely on the pseudopotential approximation. All-electron
not possible. methods such as LCAO, the augmented-plane-waw\),
Therefore, we investigate the expansion of the DF intoand linear muffin-tin orbita(LMTO) method often expand
localized functions. As has been pointed out by Aryasetiawaicharge density and potential into auxiliary functiqspheri-
and Gunnarsohthe DF should be expanded into a “product cal harmonics, plane waves, or otheisease the calculation
basis,” which leads to very large matrix dimensions. Toof the integrals. If the full potential is taken into account, i.e.,
avoid this unfavorable scaling we use an ordinary lineamo muffin-tin or atomic-sphere approximations are used, the
combination of atomic orbitalLCAQO) basis and compare convergence properties and the implementation are consider-
our results with a usual plane-wave calculation. ably more complicated. A way to avoid all these problems is
Localized-basis functions are well-known for there effi- the direct evaluation of the integrals in real space, which
ciency in electronic-structure calculations. As has beeriraces back to Elli§.We adopt this method because of its
shown by several authors, see, for example, Refs. 4—6, or@mplicity and flexibility. As integration points, we choose
can perform state of the agb initio calculations for the good lattice pointgsee, e.g., Ref. 10 and references therein
electronic structure and optical spectra with the LCAO basisbut other techniques like product Gauss-type fdlase also
Of course, the minimal set has to be extended for a propgpossible. Near nuclei the density of integration points is in-
description of the conduction bands. Still, matrix dimensionscreased to account for the singular behavior of the potential
are considerably smaller compared with a plane-wave exparand the fluctuations of the wavefunction. Basis functions

II. BAND STRUCTURE METHOD
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¢ik(r), potential V(r), and charge density are tabulated onZ denotes the atomic numbeY,. the exchange-correlation
the integration points,. Thus, the elements of the overlap potential, andV the Coulomb potential. The latter contain
matrix S;;(k) and Hamilton matrixH;; (k) are the radial-densityo(r).
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r_) (6)
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is a confinement terfh which damps the orbitals rapidly to
_ * zero forr>r,. This additional potential leaves the physical
N% ©p¢ik(Tp) @ik(Tp): @ properties of the orbitals, like the number of nodes and the
behavior forr—0 andr—-oc, unchanged. The Hamiltonian
1 of the crystal is not affected by the artificial potentiél, .
Hij(k)=f (pi*k(l’)( - §A+V(r)) <pjk(r)d3r 3 The parameter,, which depends on the angular momentum
I, is chosen to be

)
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“@ with R,, being the distance to the nearest neighbris

with w, being the integration weights. The number of goodroughly one. The exact value is not important as long as
lattice points varies with the system under consideration. Fothere are enough basis functions. We fougdn the range 1
aluminum, e.g., less than 400 points are needed to get wellp 1.2 andx;=1 for I>0 to be a good choice for a wide
converged valence-band energies, while for high lying convariety of substances. The off-site orbitals are determined in
duction states it takes several thousand points. The precisidhe same way bw/c, V.., andZ are all zero.
of this Diophantine-type integration method is not as high as From the atomic orbitalsuagnm(r)= RAt,m(r)Y.m(F)
product Gauss-type rules, but one gets already with a fewyY,,, denote spherical harmonjc8loch sums are formed
hundred points a good approximation to the final result. Esand tabulated on the integration points for each Bloch
pecially at degenerated bands one observes a splitting, whiclectork:
is due to the integration error. With increasing number of
good lattice points this effect only slowly vanishes. Nonde- 1 "
generated bands, instead, converge rather fast. In general, we Pik(r = N % e“Rui(r-R-s). ()
believe that the error in band energies introduced by the nu-
merical integration scheme is of the order of 0.1 eV. For theThe superindex stands for positiors, and kind At of the
DF this is surely smaller than errors coming from otheratom and the quantum numberkm. The normalization con-
sources, like the local density approximation itselkeuoint  stantN gives the number of unit cells in the crystal.
sampling. The Kohn-Sham equations are iterated to self-consistency
The choice of basis functions is another important queswith an acceleration scheme due to AnderSbmhich is
tion. Because of the numerical integration we are not remathematically equivalent to Broyden's methiddntegra-
stricted to a special kind and tried numerical atomiclike or-tion over the Brillouin zone is done with special points for
bitals as well as plane waves and mixed basis sets. To get riflsulators or good lattice points for metals when mére
of deep lying core states the basis can be orthogonalized fsoints are required. The exchange-correlation potential is due
Bloch sums of atomic core orbitals. We are interested ino Ceperley and Aldér as parametrized by Perdew and
optical properties. Therefore, a proper description of conduczunger®
tion bands is needed. By comparison of LCAO and mixed-
basis calculations it shows up that plane waves are not nec- IIl. DIELECTRIC FUNCTION
essary. The quality of the LCAO basis can be improved in
two ways: first, increasing the angular momentum, and, sec- A test chargep; placed into a crystal will lead to a poten-
ondly, taking more orbitals for a given angular momentumtial V; and an electric inductiol. In Fourier space, with
channel. For open structures, additional functions can be lggach momentum vector composed of a reciprocal lattice vec-
cated in the interstitial thereby reducing the angular momentor G and a vector confined to the 1 Brillouin zone, the
tum expansion. Thus, basis-set convergence is achieved inr@lation is
controlled manner with a modest number of basis functions )
per atom. D(G+q,w)=—i(G+q)Vi(G+q,w). 9
The radial function®a, (1) for a given angular momen- A similar equation holds for the electric fiel and the total
tum | are calculated by solving the Schlinger equation for  hotentialv=V +V;, V. being the potential of the induced
the potential screening charges:

z [(1+1) E(G+q,w)=—-i(G+qV(G+qw). (10
V(r)=Ve(r)+Vide(r)]=—+Veonfr) + o2 )

In linear response theory the dielectric tengas defined by
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with the “orbital field” @ defined by
D(G+qw)=2 €a (a0, ,wEG +q ). (1)
G'q
By our definitionsD andE are longitudinal, i.e., parallel to Dig(r)= _VJ dr’
g. Therefore, the DF refers to the longitudinal-longitudinal
one. We have used the diagonality &fin g andq’, which holds
Insertion of Egs.(9) and (10), and some reordering of for any periodic lattice. The evaluation of the orbital field for
terms leads to the following equation: a localized-basis set is done by a transformation to summa-
tions over the reciprocal and direct lattice. These calculations
G+ - are described in the Appendix.
Gt |ZQS(G+ Q)= 2 V(G'+q",w)[ deer gq 1 To be concrete, we specialize on the random phase ap-
q Ga proximation to the(time-orderedl polarizatiort’

‘Piq(r,)

. (18
=

4

~€ee (0.0, 0)](GT+d). P(r I L) =—iG(rr tLt)G(r rnt' ). (19
By taking the functional derivative with respect to the poten-

tial V, we introduce the polarizatioh G is the one-particle Greens function, which is approximated

by the resolvent of the LDA Hamiltonian. By introducing the

504(G+0,) eigenfunctionsy/,,, and eigenvalueg&,, of the Hamiltonian

=== 27 (12) and switching to the retarded polarization one arrives at
SV(G'+q',w)

Then the equation can be solved for the dielectric tensor, P(r,r',w)=>, >, DY) P (1) (1)
yielding "'

Pse (0,9, @)

< ’ bad f _f It
€6e(0,9",0) = 6ge gy 1 X ok (20)
, , Enk_En’k’_w_”?
(G+o)®(G'+q') ) o .
— 4 o > Pee(0.0",0). f. denotes the Fermi distribution function anga small
|G+d*|G" +q'| positive value. With the definition of thil matrices
(13
To get€ in an arbitrary basis it is advantageous to transform My a(K' k)= f A (N aNP(r), (21
Eqg. (13) into real space by the usual formula
we get
1 i el ’ ’
rr o)== > > eCrIrg. (q,q,0)e G+ . .1
P €i(aw)=Sj(@l-,-2
(14) T nk pry
QO =NQc denotes the crystal volume afiti ;- the volume (foe—Frre )M (K K)@[MY (K’ k)]*
of the unit cell. With the help of X deL L .
Enk_ Enrkr_w_l n
G+qzei(e+q)-(r—r1): QU_C S gitRy, 1 (22
G |G+ 4m R r=ri—R| Now the question arises, which basis functions should be
(15 used for the expansion of the dielectric function. Following
we get the arguments given by Aryasetiawan and Gunna?sbihe
Hilbert space spanned ky ! is given by all products of two
- 1 wave functions, i.e., the sét/, ¥,/ }. If the wave functions
< ’ — ’ 3 3 ’ ’ nk%n
err,o)=o(r=r )l_ﬂf d rlJ’ d°roP(ry,rz,0) are expanded in plane waves, the product basis consists
again of ordinary plane waves and the last equation leads to
1 1 the well-known Adler-Wiser formuld®?°Almost all calcula-
XV’|r—r1| ®Vy e (16)  tions are along this line, which is appropriate for systems
2

with three-dimensional periodicity. To our knowledge, there
Because this expression follows from pure classical considare only two approaches which expand the DF into other
erations it is independent of the microscopic theory for thebasis functions than plane waves. About 30 years ago Hanke
polarization. Taking the matrix elements between basis funcand Sharft used tight-binding functions to calculate the
tions ¢;4 yields the desired result macroscopic DF of diamond. In 1994 Aryasetiawan and
. Gunnarson expandede* in a LMTO basis. The computa-
- - * tional work was reduced by the atomic-sphere approximation
Eii(q’“’)zsﬂ(q)l_ﬂf d3rlf droP(ry,r2,0) @f(ry) (ASA) and by omitting roughly 3/4 of the product basis
functions. Still, they found 70 to 100 functions per atom to
®Pjy(r2) (17 be necessary.

085111-3



S. BRODERSEN, D. LUKAS, AND W. SCHATTKE PHYSICAL REVIEW B6, 085111 (2002

In our calculations, we expand the wave functions in awhich should be one, ideally, and is some measure of the
linear combination of atomiclike orbitals. Thus, the methodunitarity of the transformation from LCAO to Fourier repre-
of Hanke and Sham should be well suited. But in their worksentation.
the number of product functions is given biy,x N2, with In the following we show results for the semiconductors
N, being the number of nearest neighbors entering théliamond and GaAs. The integrals appearing in &) as
Bloch sums andN,, being the number of atomic orbitals. well as the matrix elementa/,|exdi(G+aq)-r]|¢, ) for
The resulting number is acceptable only in the tight-bindingthe plane-wave DF are done by tabulating the wavefunctions
limit, but explodes for amab initio LCAO program. The and the orbital fieldor the plane wavein the unit cell and
method of Aryasetiawan and Gunnarson needs much less busing the numerical integration scheme introduced in the
still a large number of functions per atom and relies on thepreceding section. Therefore, the computational costs of both
atomic-sphere approximation. The generalization to overlapapproaches are the same. Because the orbital field does not
ping orbitals seems to be difficult. depend on thé vector its calculation does not enhance the

In order to keep the number of functions low, we do notnumerical effort noticeable.
expand the DF into products of basis functions but an ordi-
nary LCAO.ba}sis. Of course, this is worse than thg proper IV. APPLICATION TO DIAMOND
product basis if the basis set is incomplete. But it might be a
good approximation and converge to the true result with in- Diamond has the electronic configuratios?2s?2p?. Be-
creasing number of functions. To investigate this behaviocause of the covalent binding througip® hybrid orbitals
we calculate the microscopic D&ico(0, @) as well as the one expects local-field effects in the DF. The lattice constant
macroscopic DFepd @) with the usual Adler-Wiser for- was chosen to be 6.7,
mula and our LCAO approach for different sets of localized The electronic-structure calculations were performed with
functions. two specialk points for sampling the irreducible wedge of

Becauses nico(0, @) and emacerd @) require the DF in Fou- the Brillouin zone and 26 614 integration points in the unit
rier representatioidenoted by subscrigE, we use double cell. Such a large number is necessary for a precise calcula-

underscore for matriceés tion of the factorF(q). The eigenvalues of the Kohn-Sham
Hamiltonian are already converged with 7975 integration
€micro( 0 @) =[ €x(q, ) o=’ =0 (23)  points (less than 0.04 eV deviation in the valence bands

= The band structure compares well with other resifité*As
1 usual in DFT-LDA calculations for semiconductors, the fun-
€macrd @) = lim —— , (24)  damental band gap is underestimated. We find a minimal
a-ol € (Q,@)]e=c'=0 band gap of 3.98 eV while the experiment gives 5.48 eV. At
o pointI' the calculated band gap is 5.49 eV and the experi-
the scalar LCAO-DFe=q: €-q is transformed to Fourier mental one is 7.3 eW¥some measured energies are collected

space in Ref. 23. This shows that the underestimation of the con-
duction bands in LDA depends on tlkepoint, so, a rigid
er(q,0)=S"(9)S (q)e(q,w)S H[STH(g)]" scissor-operator shift is not a good approximation for this

= (25)  wide-gap semiconductor.
Dielectric function of diamondWe have calculated the

e H(q,0)=S"(q)[e(q,0)] ST (). (26) DF in LCAO representation and transformed to Fourier

— = = = space according to Eq25) and Eq.(26) for a small wave
The S matrices present in Eq25) cancel out in Eq(26).  vectorq=(0.0001,0,0)(z/a). The correction factoF (q) is
The ~ overlap integral SEH(q) between plane wave Shown in Fig. 1 against the number of LCAO basis func-
(1/0)e (9T and basis functionp;o(r) reduces to a one- tions. Remember.that. the parametgr(Sec. ) is not opti-
dimensional integral, which is done numericall)l/. of course,(;nr:(zje;j éeﬁ-{e rtg‘orp;n?r:]zallrllgb:;?s tgg:‘ls i:iaggsazir?g(;?;?. 22
ggli;hceu;fs; elementsE=G'=0) Of€=F and€=F need to mal pasi$ apd even polarized double{1s2sp3spd do

By derivingi the last two equations, the decomposition Ofnot give satisfactory bandstructures and large values for the

. ) . . factor F(q). Even triple¢ and further polarization up to
unity, which reads in LCAQ representation 15 2sp3spdaspdfyield ~3% deviation from 1. With the

help of off-site functions much smaller values are reached

1=> lik)S;; Yk (k| (270  with a comparable number of basis functions. 46 functions
ik per atom, divided into atomic orbitalssPsp3spd4spdf

and off-site functions dpdf, yield a correction factor of
F(g)=1.0012.
In Fig. 2 the DF of diamond evaluated according to the
ler-Wiser formula is shown. We have calculated the di-
electric matrixeg (9, w) in Fourier space for 65 reciprocal
lattice vectorsG, G'. Test calculations with a higher number
show that this number db vectors is sufficient for describ-

[with (r|ik)=¢;(r) being LCAO functiong was used
twice. Because of the incompleteness of the LCAO basi
€micro( 0, @) and e @) are too small. This is corrected by

a factor Ad

F@=[S"@s @IS @]l e 0 (29
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Deviation from unity in percent
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FIG. 1. The figure displays the quality of the transformation
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FIG. 3. Dielectric constant of diamond fay=(0.0001,0,0)

from LCAO space to Fourier space for different LCAO sets for x(27/a) against the number of LCAO functions.
diamond. The ordinate show$ 1)X 100%, wherea$ is unity

for a complete basis set. The labels indicate the constituting orbit
als. For example 4 - -3d+3spd means that 14 spinless orbitals
(1s---3d=1s, 2sp, and Fpd are located at diamond atoms and

nine functions ofs, p, andd type are placed in the interstitiédle-
noted by+3spd). The wave vector ig)=(0.0001,0,0)(2r/a).

ing local-field effects(LFE’s). The solid curve shows the

macroscopic DFi.e., with LFE) according to Eq(24). The
dashed curve shows the microscopic DE., without LFB

according to Eq(23). The wave vector igj=(0.0001,0,0)
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FIG. 2. Dielectric function of diamond fog=(0.0001,0,0)

X(2m/a). Full (broken curve denotes macroscopimicroscopig
DF calculated in plane-wave representation.

X(2m/a) and the broadening parameter amounts 7o
=0.27 eV. The Brillouin zone was sampled with 11k4
vectors. Wave functions are expanded into 92 LCAO func-
tions and tabulated at 26 614 real-space integration points.

The inclusion of LFE has no great influence on the DF for
such a small wave vector. The main peak is slightly shifted to
higher energies and in general the curve is somewhat
damped. The effect increases with higlgeas shown in Ref.

8. Experimentally, the main peak is located at 11.6(B¥¢f.

26) while we see it at 11.08 eV without LFE and at 11.15 eV
with LFE. This good agreement is surprising at first sight,
because the band gap in our calculations comes out to be 1.5
to 1.8 eV too small. As has been shown by recent
investigationg, this is due to the cancellation of two many-
body effects. First, the calculation of quasiparticle energies
corrects the band gap and therefore shifts the DF to higher
energies. If additionally excitonic effects are considered this
shift is to some amount reversed. The same argument holds
for the static dielectric constandy= € d @=0). In our
calculation we founds;=5.58. This is 1.8% lower than the
experimental value of,=5.682° If the LDA band gap is
corrected, either by a rigid scissor-operator shift of the con-
duction bands or by proper evaluation of the quasiparticle
energies, the static dielectric constant is underestimated
by 16%?

Calculating the DF in LCAO representation, i.e., along
the way outlined in Sec. lll, leads to results very close to the
previous. Especially if LFE are neglected the curves are in-
distinguishable. The evaluation of the macroscopic DF ac-
cording to Egs(24) and (26) is more difficult. The conver-
gence with increasing number of basis functions to the plane-
wave result is slow, as can be seen in Fig. 3. Here we show
the dielectric constang, for different LCAO sets. It should
be noted that the difference between LCAO and plane-wave
results concerns the expansion of the DF only. In both calcu-
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O e e . e e e s sy e of the DF is shown. The curves labeled “PW macro” and
“PW micro” are calculated with the Adler-Wiser formula,
i.e., in plane-wave representation, with and without LFE, re-

[N} .
25 in LCAO micro spectively. The dielectric matrix was evaluated for 65 recip-
7R PW micro rocal lattice vectors which are enough for describing LFE.
A LCAQO macro The curves labeled “LCAO macro” and “LCAO micro” are
20 sy T PW macro calculated with the LCAO representationefvith and with-

out LFE. The microscopic DF calculated in LCAO and PW
representation coincide, whereas the macroscopic LCAO-DF
differs from the PW-DF. Obviously, the LCAO-DF lies in
between the microscopic DF and the macroscopic PW-DF,
which shows that not all LFE could be caught because of the
too small basis set. Anyway, the deviations of all curves from
experiment’ show that there are other sources of error,
which are much larger. As in the case of diamond, excitonic
effects are responsible for the shift of spectral weight from
higher energies to lower energies, which brings the theoreti-
‘ cal curve very close to the measured 8/ he inclusion of
P P I B RN RPN B LFE becomes important for higher energies than we consid-
2 3 4 5 6 7 8 ered. In the far UV regime, that means if excitations from
o (V) semicore states set in, LFE show drastic influence on optical
spectra!

—_
<

Im([e(w)]
O
T | LI I LI | L I LI I L

FIG. 4. Imaginary part of the DF of GaAs fay=(0.0001,0,0)
X(2mla). VI. CONCLUSIONS

lations wave functions are expanded in the same LCAO basis We have introduced a formula which allows the evalua-
set. Without LFE, LCAO resultgopen circles and plane-  tion of the dielectric tensor in an arbitrary basis. For the case
wave resultscrossesare the same. Inclusion of LFE leads ©f @ LCAQ basis, we developed an efficient scheme to cal-
creases with increasing number of LCAO functions. We werefulate the DF for systems which do not have the full

not able to include more functions because a higher numbdieriodicity and therefore cannot be described in Fourier rep-

of integration points is ruled out by limited computational "esentation. _ _
capacity. To account for the incompleteness of the transformation

from the LCAO set to a plane-wave basis, we defined a

factor F(q). With optimization of this factor the microscopic
V. APPLICATION TO GaAs DF of diamond and GaAs are in very good agreement with
plane-wave results, even for small basis sets. The macro-
scopic DF is not such well reproduced. This is not a serious
drawback of the proposed method. Although much interest
has been drawn on LFE in the past, comparison with experi-
ment and more advanced calculations including excitonic ef-
fects, show that LFE do not improve the DF significantly in
the low energy region for small wave vectars

GaAs is a covalently bound 11I-V semiconductor, which
crystallizes in zincblende structure. As for diamond, off-site
functions located in the interstitial greatly enhance the qual
ity of the atomic-orbital basis. In order to eliminate effects
from core orthogonalization, we performed all-electron cal-
culations with the atomic orbitalsslto 4f and off-site func-
tions of s, p, andd character, yielding 39 functions per atom.
The factorF(q) defined in Sec. Ill has a value of 1.002
indicating a good quality of the basis set. The calculated APPENDIX: THE ORBITAL FIELD
band gap of 1.35 eV is too small by 0.17 eV compared with

. 7 X L X In this section we describe the calculation of the orbital
experimerit’ due to the local density approximation. Notice ¢ |

that the theoretical band gap in our LCAO calculation is elds

larger than in pseudopotential plane-wave calculations, as ()

was observed also by earlier LCAO calculation, see, for ex- (1) = _Vf dsr,qo.q_ (A1)
ample, Ref. 28. r' —rl

cone . ramk o 36 Reatpece o o LCAD basis Ancions ghen by Eq. usur()
tion is done with 7957 good lattice points in the unit cell. For = Yim(f)Ragni(r) is @ solution of the atomic Schdmger
a better comparison of the DF with experiment, we shiftegequation composed of a radial functidRy;,(r) and a
the conduction bands by 0.6 eV to higher values. This shifspherical harmonid'|,(r). The lumped index denotes kind
does not restore the experimental band gap but the positicend positions of the atom and quantum numberkm. With

of the main peak in I, d @). In Fig. 4 the imaginary part the multipole expansion
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CALCULATION OF THE DIELECTRIC FUNCTION INA . ..

K

1 47 T ,
2 g e e OV (), (A2)
m
~=maxr,r’'), ro=min(r,r’) (A3)

the angular part of the integréA1) can be done. Because of

the orthogonality of spherical harmonics the summation over

the angular moment&’m’ cancels. There remains a sum
over lattice vectorf

Dig(r) ==V 2 @Y HRan(D)  (A4)
with the abbreviatiori=r— R—s and the transformed radial
functions

Ragni(t) =

t
2|+1 t=!- Jr'”RAt,m(r)dr

+t'fwr1-'RAt,n,(r)dr}. (A5)
t

t—o

Because of~RAm|(t) —_ cALmt"‘l, with a constant
Catni» the lattice sum can be decomposed into two parts

(1) ==V &R (D) Ragmi(t) - ﬁT
—VZ Ry, (D) f‘:'. (A6)
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‘ZGERY ! D=1/ !
s(r)_ E s Ea
- [3x . /3
pr(r): EF Dpx: - E&x-
- 3y . 3
Yoy (N=V7-7 Poy== V7%
3z . 3
pz(r) _7TF Dpz: - E(gz
So, the spherical harmonic is replacediby, , which can be

taken out of the sum. Then, one arrives essentially at the
simple task to calculate

S(r):; eiq-R|r_R|. (A8)

This can be done by the Ewald summation technitfue:

A ei(G-%—q)~r

S(r)= e7|G+C]|2/4oz2
) Oy ‘G |G+q|2
- _erf r-R
+2 eIQ-RM (A9)
R |I'—R|

erfc(x) is the complementary error function, which goes fast
to zero forx—o. The real parametar controls the conver-
gence of the sums over reciprocal lattice vecterand direct

The first sum converges already rapidly while the second ongttice vectorsR. They both converge exponentially. The fi-
can be further analytically treated. We therefore introduce aal result for the orbital field is obtained by taking the de-

differential operatoD,,, with the property
1 1

Yin(® 57 =Dim¢ (A7)

rivatives implied byD,,, and V, which leads to somewhat
unpleasant long formulas. The case 0 has to be treated
carefully, for example, by Taylor expansion. As can be seen
in the last equation, the orbital field cannot be calculated for
g=0. But owing to the Ewald techniqug,can be very small

We are using real-valued linear combinations of sphericalyithout affecting the convergence properties. We have pro-

harmonics. The first few,,, and the corresponding opera-
tors D, are given by

grammed the resulting equations foup to 3. The summa-
tion turns out to be numerically stable and very fast.
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