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Abstract

Time reversal symmetry is a fundamental property of many quantum mechani-
cal systems. The relation between statistical physics and time reversal is subtle
and not all statistical theories conserve this particular symmetry. In this thesis it
is shown analytically that the governing equations of the nonequilibrium Green
functions formalism as well as many common approximations (Hartree–Fock,
second Born and T-matrix approximations of the selfenergy) are time reversal
invariant. These results are then checked numerically in small, one-dimensional
Hubbard clusters. The stability of time reversal invariance is analysed by per-
turbing the system slightly during time reversal.



Zusammenfassung

Zeitumkehrsymmetrie ist eine fundamentale Eigenschaft vieler quantenmechani-
scher Systeme. Der Zusammenhang zwischen statistischer Physik und Zeitum-
kehr ist schwierig, und nicht alle statistischen Theorien erhalten Zeitumkehrsym-
metrie. In dieser Arbeit wird analytisch gezeigt, dass die Gleichungen der Nicht-
gleichgewichtsgreenfunktionstheorie vollständig invariant bezüglich Zeitumkehr
sind, ebenso wie viele der häufig verwendeten Näherungen (die Hartree–Fock-
Näherung, die zweite Born’sche Näherung und die T-Matrix-Näherung der
Selbstenergie). Die theoretischen Ergebnisse werden anschließend numerisch
auf ein einfaches Fallbeispiel kleiner, eindimensionaler Hubbardcluster ange-
wandt. Die Stabilität der Zeitumkehrinvarianz wird untersucht, indem das Sys-
tem während der Umkehr leicht gestört wird.
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1 Introduction

Time reversal symmetry (or T-symmetry) has for a long time been thought to
be one of the fundamental symmetries of the universe[1, 2, 3]. It is known today
that there are instances when time reversal symmetry is broken (for example
the electroweak decay of the kaon K+[1, 2, 4]) and that the fundamental
symmetry is CPT-symmetry (charge, parity and time reversal): For any
physically allowed process, the CPT-reversed process must also be possible,
i.e., the process where matter has been replaced by antimatter, where all
vectors have been replaced by their mirror images, and where time has been
replaced by its negative[1, 3]. However, in most cases, CP- and T-symmetry
are conserved independently of one another.
T-symmetry, besides being a fundamental property of many (though not
all) quantum mechanical systems, is also useful from the point of view of
numerical testing[5, 6, 7]. Letting a system propagate in time according to
some algorithm and then letting it propagate backwards in time according to
the same algorithm yields a predictable result—the initial state—with which
to compare the outcome. Of course, this only works if the equations on which
the algorithm is based are themselves symmetric with respect to time reversal.
The purpose of this thesis is to analyse the T-symmetry properties of the Green
functions formalism.
The theory of nonequilibrium Green functions is a statistical description of
quantum many-particle systems which has gained much importance over the
last two decades, mainly due to the ever increasing computing power[8, 9, 10].
It allows the ab initio calculation of systems of arbitrary dimension and con-
siderable size[11]. Amongst its applications are photoionization processes[12],
the dynamics of few-electron systems[13, 14] and the dynamics of strongly
correlated fermionic and bosonic systems in traps or optical lattices [15].
Since not all statistical theories are time reversal invariant (one well-known
counterexample being the Boltzmann theory of classical statistical mechanics[8])
it is worth considering whether the Green functions formalism is.

In sections 2.1 and 2.2 the Green functions formalism as well as some
aspects of second quantization that are necessary for its understanding are
introduced.

In section 2.3 the terminology and concepts of time reversal symmetry,
in particular in quantum mechanics, are introduced and then applied to the
equations of motion of nonequilibrium Green functions theory: the Martin–
Schwinger hierarchy and the Kadanoff–Baym equations (which formally close
the first hierarchy equations by introduction of the selfenergy). It is shown
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that these exact equations are time reversal invariant, as well as all the
approximations to the selfenergy which have been considered in this thesis: the
Hartree–Fock, second Born and T-matrix selfenergies. A sufficient condition
for the time reversibility of the selfenergy is derived. Finally, it is shown that
reversing time in the Kadanoff–Baym equations (as well as in exact quantum
mechanics) is formally equivalent to changing the sign of the Hamiltonian.

In section 3 the Hubbard model is briefly introduced. The Hubbard
model is an idealized solid-state model that describes electrons in a fixed
solid state lattice, taking into account the quantum mechanical motion of the
electrons in terms of tunnelling from site to site, and short-ranged repulsive
(Coulomb) interaction between the electrons[16].

In section 4 these theoretical results are applied to and tested numeri-
cally in a small model system, a one-dimensional, four-site Hubbard chain.
Additionally, the stability of this system with respect to perturbations to the
Hamiltonian during time reversal is tested.
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2 Theory

In the first part of this section, all tools that are needed for understanding
the theoretical concepts necessary for this thesis are introduced. These are,
to begin with, the basic principles of second quantization and nonequilibrium
Green functions theory. Nonequilibrium Green functions provide an exact de-
scription of many-particle systems. Their dynamics is described by a hierarchy
of coupled integro-differential equations. In practice, the first-order hierarchy
equations are formally closed by intoduction of a quantity called the selfenergy
Σ. This quantity, as well as several methods of its approximation, are presented.
Furthermore, the concept of time reversal symmetry as it applies to this thesis
is discussed.
In the second part of this section it is shown that the exact equations of the
Green functions theory as well as all the approximations that have been con-
sidered in this thesis are time reversal symmetric. A sufficient criterion for the
numerical reversibility of the selfenergy approximations is derived, considering
only the functional relation between the selfenergy and the single-particle Green
function. Finally it is shown that in Green functions theory, reversing time is
formally equivalent to reversing the sign of the Hamiltonian, similar to the case
of the Schrödinger equation.

2.1 Second Quantization

Second quantization is a description of quantum mechanical systems in which
the state of a system is represented by occupation numbers of the underlying
single-particle orbitals. Once the orbitals are known, the occupation numbers
contain the entire information of the state of the system. That state can be
written as

|ψ〉 := |n1, n2 ...〉 , (2.1)

where ni is the occupation number of the i-th orbital. It is therefore possible
for any operator acting on that system to be expressed as a combination of two
operators: The creation operator ĉ†i that increases the occupation number of the
i-th orbital by one, and the annihilation operator ĉi that reduces that number
by one in the following way:

ĉ†i |n1, n2 ..., ni, ...〉 = (±1)α
√
ni + 1 |n1, n2 ..., ni+1, ...〉

{
1 for bosons

δni,0 for fermions
,

(2.2)
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ĉi|n1, n2 ..., ni, ...〉 = (±1)α
√
ni |n1, n2 ..., ni−1, ...〉

{
1− δni,0 for bosons

δni,1 for fermions
,

(2.3)

where α =
∑i−1
j=1 nj .

This yields the commutation (anticommutation) relations for bosons (fermions),[
ĉi, ĉ

†
j

]
−(+)

= δij and (2.4)

[
ĉi, ĉj

]
−(+)

=
[
ĉ†i , ĉ

†
j

]
−(+)

= 0 . (2.5)

From these relations follows one of the main advantages of this formulation,
which is the fact that it inherently contains the symmetry and antisymmetry of
the bosonic and fermionic wave functions.
The representation of single and multiple particle operators as a combination
of creation and annihilation operators follows directly from their matrix repre-
sentations. Let b̂1 be a single-particle operator. Its representation in second
quantization is then:

B̂1 =

M∑
i,j=1

〈i| b̂1 |j〉︸ ︷︷ ︸
bij

ĉ†i ĉj , (2.6)

where M is the number of single particle orbitals and can be infinity. Similarly,
a two-particle operator b̂2 can be expressed as

B̂2 =
1

2!

M∑
i,j,k,l=1

〈i j| b̂2 |k l〉︸ ︷︷ ︸
bijkl

ĉ†i ĉ
†
j ĉl ĉk , (2.7)

and so forth for n-particle operators.
The Hamilton operator, consisting of the single-particle operators T̂ and V̂ and
the two-particle operator Ŵ can thus be written as

Ĥ(t) =
∑
ij

h
(0)
ij ĉ
†
i ĉj +

1

2

∑
ijkl

wijklĉ
†
i ĉ
†
j ĉlĉk (2.8)

where Ĥ(0) = T̂ + V̂ and h
(0)
ij = 〈i|Ĥ(0)|j〉 .

The dynamics of the system can then be described by considering the Heisenberg
creation and annihilation operators

ĉ
(†)
H (t) = Û†(tt0)ĉ(†)Û(tt0) , (2.9)

where

Û(t1, t2) = T exp

(
− i

~

∫ t1

t2

dt̄ Ĥ(t̄)

)
(2.10)

is the time propagation operator and T is the time-ordering operator. Their
equation of motion is given by the Heisenberg equation

i~∂tĉ(†)H (t) = −Û†
[
Ĥ, ĉ(†)

]
Û(tt0) . (2.11)
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t0 tz1

z2 C

Figure 2.1: Illustration of the two real-time branches of the Keldysh contour.
z1 on the causal branch C− is earlier on the contour than z2 on the anticausal
branch C+, although the physical time corresponding to z1 is later than the
physical time corresponding to z2. (Figure taken from Ref. [17].)

Using the commutation relations (2.4) and (2.5), this becomes

i~∂tĉiH(t) =
∑
l

h
(0)
il ĉlH(t) +

∑
lmn

wimlnĉ
†
mH(t)ĉnH(t)︸ ︷︷ ︸

veffil (t)

ĉlH(t) (2.12)

and its adjoint.

2.2 Nonequilibrium Green Functions

The Green functions formalism is used for the statistical treatment of quan-
tum mechanical many-particle systems. The nonequilibrium Green function is
defined as the ensemble average of a time-ordered product of creation and an-
nihilation operators. Its dynamics is described by its equations of motion and
it can be used to calculate most statistical properties of the system. This ap-
proach is not inherently less complex than other approaches, but it does make
it possible to find approximations by reducing the formalism to the calculation
of the one-particle Green function G(1).

2.2.1 The Keldysh Contour C
Let ÂH be a single-particle Heisenberg operator in second quantization:

ÂH = Û(t0, t)ÂSÛ(t, t0) =
∑
ij

ajiÛ(t0, t)ĉ
†
j ĉiÛ(t, t0)

=
∑
ij

ajiÛ(t0, t)ĉ
†
jÛ(t, t0)Û(t0, t)ĉiÛ(t, t0) =

∑
ij

ajiĉ
†
jHĉiH , (2.13)

The ensemble average of ÂH is given by〈
ÂH

〉
=
∑
ji

aji

〈
ĉ†jHĉiH

〉
. (2.14)
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The Heisenberg operators can be expressed in terms of their Schrödinger equiv-
alents as

ĉ†jH(t)ĉiH(t) = Û(t0, t)ĉ
†
jSĉiSÛ(t, t0)

= T̄
{

exp

(
− i

~

∫ t0

t

dt̄ Ĥ(t̄)

)}
ĉ†jSĉiST

{
exp

(
− i

~

∫ t

t0

dt̄ Ĥ(t̄)

)}
, (2.15)

where T and T̄ are the causal and anti-causal time-ordering operators. It is
possible to identify the time propagation operators in Eq. (2.15) with a single
time propagation operator on a time contour called the Keldysh contour, con-
sisting of a causal and an anticausal branch, as illustrated in Fig. 2.1, if the
operators in Eq. (2.15) are time-ordered on the contour.〈

ĉ†jHĉiH

〉
=

1

Z0
Tr

{
exp(βµN̂S)TC

[
exp

(
− i

~

∫
C

dz̄ĤS(z̄)

)
ĉ†jS(z)ĉiS(z)

]}
.

(2.16)

2.2.2 The n-Particle Correlator and its Equations of Mo-
tion

In second quantization, the matrix elements Ĝ
(n)
i1...inj1...jn

of the n-particle cor-

relator Ĝ(n) can be written as

Ĝ
(n)
i1...inj1...jn

(z1...zn; z′1...z
′
n) =

(
− i

~

)n
T̂C
{
ĉi1(z1)...ĉin(zn)ĉ†jn(z′n)...ĉ†j1(z′1)

}
.

(2.17)
Its equations of motion can be derived from the equations of motion of the field
operators ĉ and ĉ† (eq. (2.12)) and are given by[

i~∂zk − h(0)(zk)
]

Ĝ(n)(z1...zn; z′1...z
′
n) =

± i~
∫
C

dz̄ W (zkz̄)Ĝ
(n+1)(z1...znz̄; z

′
1...z

′
nz̄

+)

+

n∑
p=1

(±1)k+pδC(zkz
′
p)Ĝ

(n−1)(z1...ZZzk...zn; z′1...SSz
′
p...z

′
n) (2.18)

and

Ĝ(n)(z1...zn; z′1...z
′
n)
[
−i~
←−
∂ z′k − h

(0)(z′k)
]

=

± i~
∫
C

dz̄ Ĝ(n+1)(z1...znz̄
−; z′1...z

′
nz̄)W (z̄z′k)

+

n∑
p=1

(±1)k+pδC(zpz
′
k)Ĝ(n−1)(z1...ZZzp...zn; z′1...SSz

′
k...z

′
n) , (2.19)

where W (z1, z2) = δC(z1, z2)w(z1) and w is the interaction operator introduced

in eq. (2.8). The arrow in
←−
∂ z′k means that the differential operator is acting to

the left, i.e., on Ĝ(n)(z1...zn; z′1...z
′
n) .

With Ĝ(0) = 1 , these equations are well defined.
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2.2.3 Nonequilibrium Green Functions, the Martin–
Schwinger Hierarchy and the Kadanoff–Baym Equa-
tions

The n-particle Green function is defined as the ensemble average of the n-particle
correlator:

G(n) =
〈

Ĝ(n)
〉
, (2.20)

therefore

G
(n)
i1..in;j1..jn

(z1...zn; z′1...z
′
n) =

(
− i

~

)n 〈
T̂C ĉi1(z1)...ĉin(zn)ĉ†jn(z′n)...ĉ†j1(z′1)

〉
.

(2.21)
Its equations of motion are formally identical to the equations of motion of the
correlator [

i~∂zk − h(0)(zk)
]

G(n)(z1...zn; z′1...z
′
n) =

± i~
∫
C

dz̄ W (zkz̄)G
(n+1)(z1...znz̄; z

′
1...z

′
nz̄

+)

+

n∑
p=1

(±1)k+pδC(zkz
′
p)G

(n−1)(z1...ZZzk...zn; z′1...SSz
′
p...z

′
n) (2.22)

and

G(n)(z1...zn; z′1...z
′
n)
[
−i~
←−
∂ z′k − h

(0)(z′k)
]

=

± i~
∫
C

dz̄G(n+1)(z1...znz̄
−; z′1...z

′
nz̄)W (z̄z′k)

+

n∑
p=1

(±1)k+pδC(zpz
′
k)G(n−1)(z1...ZZzp...zn; z′1...SSz

′
k...z

′
n) . (2.23)

This hierarchy of equations is called the Martin–Schwinger hierarchy.
These equations for G(1) are not closed, since they depend on the two-particle
Green function G(2). The equations of motion for G(2) depend on G(1) and
G(3), and so forth; the equations for the n-particle Green function depend on
the equations for the (n − 1)- and the (n + 1)-particle Green functions. The
first two hierarchy equations can be formally closed by the introduction of the
selfenergy Σ, which is taken to be a functional of the single particle Green
function by the identification:

± i~
∫
C

dz̄ W (zz̄)G(2)(zz̄z′z̄+) =

∫
C

dz̄Σ(zz̄)G(1)(z̄z′) (2.24)

± i~
∫
C

dz̄G(2)(zz̄−z′z̄)W (z̄z′) =

∫
C

dz̄G(1)(zz̄)Σ(z̄z′) . (2.25)

The resulting equations are:

[i~∂z − h(z)] G(1)(zz′) = δC(zz
′)1 +

∫
C

dz̄Σ(zz̄)G(1)(z̄z′) , (2.26)

and its adjoint,

[−i~∂z′ − h(z)] G(1)(zz′) = δC(zz
′)1 +

∫
C

dz̄G(1)(zz̄)Σ(z̄z′) . (2.27)

They are known as the Kadanoff–Baym equations.
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2.2.4 Approximations to the Selfenergy Σ

There are several well known methods for approximating the selfenergy, only
a few of which are treated explicitly in this thesis. These are, in increasing
order of complexity, the Hartree–Fock selfenergy ΣHF, the second Born selfen-
ergy ΣSOA and the T-matrix selfenergy ΣTPP. ’SOA’ stands for ’second order
approximation’, since the second Born approximation is exact in second order.
The ’PP’ in ’TPP’ stands for ’particle-particle channel’. The approximation is
named that way because only diagrams describing particle-particle (and hole-
hole) interaction are taken into consideration, other interactions are neglected,
such as particle-hole interactions.
ΣHF is defined as

ΣHF(zz′) = ±i~δC(zz′)
∫
C

dz̄ W (zz̄)G(1)(z̄z̄+) + i~G(1)(zz′)W (z+z′) . (2.28)

The matrix multiplication are defined such that[
WG(1)

]
ij

=
∑
k,l

wikjlGlk (2.29)

and [
G(1)W

]
ij

=
∑
k,l

Glkwiklj . (2.30)

The Hartree-Fock approximation stems from approximating the two-particle
Green function as an (anti-)symmetrized product of single-particle Green func-
tions in the following way:

G
(2),HF
ijkl (z1z2, z

′
1z
′
2) = G

(1)
ik (z1z

′
1)G

(1)
jl (z2z

′
2)±G(1)

il (z1z
′
2)G

(1)
jk (z2z

′
1) . (2.31)

The Hartree–Fock approximation describes mean-field and exchange processes
and neglects all other correlation effects, which is only appropriate for small
interaction strengths.
Amongst the more complex approximations that describe more correlation ef-
fects and that are applicable for greater interaction strengths, there are the
second Born and T-matrix selfenergies. The second Born selfenergy ΣSOA is
defined as:

ΣSOA(zz′) =

(i~)
2
∫
C

∫
C

dz̄d¯̄zG(1)(zz̄)W (z+ ¯̄z)G(1)(z̄ ¯̄z)G(1)(¯̄zz′)W (z̄+z′)

± (i~)
2
∫
C

∫
C

dz̄d¯̄zG(1)(zz′)W (z+z̄)W (z′ ¯̄z)G(1)(¯̄zz̄)G(1)(z̄ ¯̄z+) . (2.32)

The TPP selfenergy is defined as follows:

ΣTPP = i~T (zz′)G(1)(z′z) , (2.33)

where T is described by the following equation of motion (the Lippmann–
Schwinger equation):

T (zz′) = ±i~W (z)GH(zz′)W±(z) + i~
∫
C

dz̄ W (z)GH(zz̄)T (z̄z′) , (2.34)

W±ijkl(z) = Wijkl(z)±Wijlk(z) and GH
ijkl(zz

′) = G
(1)
ik (zz′)G

(1)
jl (zz′) .
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Figure 2.2: Correlation-induced damping in SOA and TPP simulations com-
pared to the results of exact diagonalization. The figure shows the density
evolution on the first of four sites in a one-dimensional Hubbard chain that ini-
tially contained one spin-up and one spin-down electron in each of the first two
sites. The interaction strength U = 1.

2.2.5 The Generalized Kadanoff–Baym Ansatz

The approximations treated in the previous section, particularly the second
Born (SOA) and T-matrix (TPP) selfenergies, are very useful for numerical
applications. They do, however, have several disadvantages. First of all they are
numerically expensive, the computing time of both SOA and TPP simulations
scales cubically with the number of timesteps[17]. But there is also another
problem: Some systems, in particular small, strongly interacting clusters, tend
towards damped states that do not arise in the exact calculations[5]. This can
be seen in Fig. 2.2, for example. One solution to both of these problems is to use
a further approximation called the generalized Kadanoff–Baym ansatz (GKBA)
that reduces the propagation to the time-diagonal part of the Green functions,
becoming, in turn, much faster[13]. Figure 2.3 shows how the damping observed
in Fig. 2.2 disappears in GKBA simulations.

To understand the GKBA in some more detail1 it is necessary to introduce
the real-time components of the (single-particle) Green function. There exist
four different ways of ordering two real time arguments t1 < t2 on the Keldysh
contour, i.e., assigning them different z1, z2 corresponding to the same physical
times:

• z1 and z2 could both be on the causal branch C−, which leads to the causal
component Gc

1This is still only a very brief introduction, for more detail and the full derivation, see for
instance Ref. [13].
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Figure 2.3: Correlation-induced damping in GKBA+SOA and GKBA+TPP
simulations compared to the results of exact diagonalization. The figure shows
the density evolution on the first of four sites in a one-dimensional Hubbard
chain that initially contained one spin-up and one spin-down electron in each of
the first two sites. The interaction strength U = 1.

∞C

c
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z1 z2

<

>

Figure 2.4: Illustration of the real-time components of the single-particle Green
function. They stem from the fact that there are four different ways of ordering
two real time arguments on the Keldysh contour. Figure taken from Ref. [17]

11



• z1 and z2 could both be on the anticausal branch C+, which leads to the
anticausal component Ga

• z1 could be on the causal branch and z2 on the anticausal branch, which
leads to the lesser component G<

• and vice versa, which leads to the greater component G>.

This is illustrated in Fig. 2.4. The components can be defined element-wise as

Gc
ij(t1t2) = − i

~

〈
T
[
ĉi(t1)ĉ†j(t2)

]
−

〉
, (2.35)

Ga
ij(t1t2) = − i

~

〈
T̄
[
ĉi(t1)ĉ†j(t2)

]
−

〉
, (2.36)

G<ij(t1t2) = +
i

~

〈
ĉ†j(t2)ĉi(t1)

〉
, (2.37)

G>ij(t1t2) = +
i

~

〈
ĉi(t1)ĉ†j(t2)

〉
. (2.38)

It is useful, however, to define two further quantities, the retarded and advanced
Green functions GR and GA and to use them instead of Ga and Gc. They are
defined as

GR(t1t2) = Gc(t1t2)−G<(t1t2) = G>(t1t2)−Ga(t1t2) , (2.39)

GA(t1t2) = Gc(t1t2)−G>(t1t2) = G<(t1t2)−Ga(t1t2) . (2.40)

The equations of motion are then given by[
i~∂t − h(0)(t)

]
G≷(tt′) =

∫ ∞
t0

dt̄
{

ΣR(tt̄)G≷(t̄t′) + Σ≷(tt̄)GA(t̄t′)
}
,

(2.41)

G≷(tt′)
[
−i~
←−
∂ t′ − h(0)(t′)

]
=

∫ ∞
t0

dt̄
{

GR(tt̄)Σ≷(t̄t′) + G≷(tt̄)ΣA(t̄t′)
}
,

(2.42)[
i~∂t − h(0)(t)

]
GR/A(tt′) = δ(tt′) +

∫ ∞
t0

dt̄ΣR/A(tt̄) GR/A(t̄t′) , (2.43)

GR/A(tt′)
[
−i~
←−
∂ t′ − h(0)(t′)

]
= δ(tt′) +

∫ ∞
t0

dt̄GR/A(tt̄)ΣR/A(t̄t′) . (2.44)

From these equations can be derived that

G≷(t1t2) = ±
[
GR(t1t2)n≷(t2)− n≷(t1)GA(t1t2)

]
+

∫ t1

t2

dt̄1

∫ t2

t0

dt̄2 GR(t1t̄1)ΣR(t̄1t̄2)G≷(t̄2t2)

+

∫ t1

t2

dt̄1

∫ t2

t0

dt̄2 GR(t1t̄1)Σ≷(t̄1t̄2)GA(t̄2t2)

+

∫ t1

t2

dt̄1

∫ t2

t0

dt̄2 G≷(t1t̄1)ΣA(t̄1t̄2)GA(t̄2t2)

+

∫ t1

t2

dt̄1

∫ t2

t0

dt̄2 GR(t1t̄1)Σ≷(t̄1t̄2)GA(t̄2t2) , (2.45)
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where
n> = n− 1, n< = n , (2.46)

and where n is the density and

n≷(t) = −i~G≷(tt) . (2.47)

The generalized Kadanoff–Baym ansatz consists of neglecting the integral terms
in Eq. (2.45)[18], yielding

G≷(t1t2) ≈ ±
[
GR(t1t2)n≷(t2)− n≷(t1)GA(t1t2)

]
, (2.48)

and finding suitable approximations for the propagators GR and GA.

2.2.6 The Calculation of some Statistical Properties from
the Green Functions

In later sections, some statistical properties are analysed. It is therefore impor-
tant to know how they are derived from the (single-particle) Green function. The
quantities in question are the density n, the kinetic energy Ekin, the Hartree–
Fock energy EHF, the correlation energy Ecorr and the entanglement entropy S.
It is

nij = ±iG<ij(tt
+) (2.49)

Ekin(t) = Re
[
Tr
(
h(0)n(t)

)]
, (2.50)

EHF(t) =
1

2
Re
[
Tr
(
ΣHF(t)n(t)

)]
, (2.51)

Ecorr(t) =
1

2
Im
[
Tr
(
I(1),<(t, t)

)]
, (2.52)

where I(1),<(t, t) is the time-diagonal collision integral

I(1),<(t, t) =

∫ ∞
t0

dt̄
{

ΣR(tt̄)G<(t̄t) + Σ<(tt̄)GA(t̄t)
}
. (2.53)

Furthermore, it is

S(t) =
∑
i

−2

(
1

2
ni(t)− n(2)

ii (t)

)
log2

(
ni(t)

2
− n(2)

ii (t)

)
− n(2)

ii (t)log2n
(2)
ii (t)−

(
1− ni(t) + n

(2)
ii (t)

)
log2

(
1− ni(t) + n

(2)
ii (t)

)
, (2.54)

where

n
(2)
ii =

1

2U(t)

(
Re
[
ΣHF
i (t)ni(t)

]
+ Im

[
I

(1),<
ii (t, t)

])
is the double occupation of site i.
Both the correlation energy and the entanglement entropy are measures of the
correlation of the system.
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2.3 Time Reversal Invariance

2.3.1 Time Reversal Invariance of Classical Systems

Time-reversal invariance in classical Hamiltonian systems is defined as
follows[19]: If (q(t),p(t)) is a solution to the Hamilton equations

q̇i = +
∂H

∂pi
,

ṗi = −∂H
∂qi

,

then there exists another solution (q′(t′),p′(t′)) with t′ = −t and q′ =
q′(q),p′ = p′(p). This defines a whole range of invariances depending on the
nature of the relation between q and q′, and that between p and p′. The most
intuitive and best-known of these invariances is the one that maps

q→ q′ = q ,

p→ p′ = −p .

This particular symmetry (referred to as conventional time reversal) is broken in
the presence of a magnetic field, for instance. This does not, however, mean that
such a system is not time reversal invariant, although not every Hamiltonian
system is.
For quantum mechanical systems, similar things hold true, as shall be seen in
the next section.

2.3.2 Time Reversal Invariance of Quantum Systems

The Schrödinger equation is called symmetric with regard to time reversal if
for any solution |ψ(t)〉 there is another solution |ψ′(t′)〉 with t′ = −t and if
there is a unique relation between |ψ〉 and |ψ′〉 such that |ψ′〉 = T̂ |ψ〉 for some
operator T̂ [19]. It can be shown that T̂ must not only be a linear operator,
but an antiunitary one. Thus, it can be expressed as the product of complex
conjugation and some unitary operator Û . The quantum mechanical equivalent
to classical conventional time reversal is given by Û = 1, so that |ψ〉 → |ψ〉∗.
The time-dependent Schrödinger equation reads:

i~∂t|ψ〉 = Ĥ|ψ〉 . (2.55)

Applying T̂ from both sides yiels:

T̂ i~∂t|ψ〉 = T̂ Ĥ|ψ〉
⇔ −i~∂t︸ ︷︷ ︸

i~∂(−t)

T̂ |ψ〉 = T̂ ĤT̂−1T̂ |ψ〉 , (2.56)

which means that T̂ |ψ〉 solves the time reversed Schrödinger equation

i~∂(−t)|ψ′〉 = Ĥ|ψ′〉 (2.57)

if (and only if) Ĥ = T̂ ĤT̂−1.
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2.3.3 Time Reversal Invariance of the Heisenberg Equa-
tion

The Heisenberg equation is equivalent to the Schrödinger equation. It is there-
fore straightforward that it should have the same reversibilty properties:

i~∂tÂH =
[
ÂH, Ĥ

]
(2.58)

⇔ T̂ i~∂tÂHT̂
−1 = T̂

(
ÂHĤ − ĤÂH

)
T̂−1

⇔ −i~∂tT̂ ÂHT̂
−1 = T̂ ÂHT̂

−1T̂ ĤT̂−1 − T̂ ĤT̂−1T̂ ÂHT̂
−1 , (2.59)

which is equivalent to

i~∂−tT̂ ÂHT̂
−1 =

[
T̂ ÂHT̂

−1, Ĥ
]

(2.60)

if and only if Ĥ = T̂ ĤT̂−1. This means that if a Heisenberg operator ÂH(t)
solves the Heisenberg equation, then T̂ ÂHT̂

−1 solves the time-reversed Heisen-
berg equation.

2.3.4 Time Reversal Invariance of the Equations of Mo-
tion of Field Operators in Second Quantization

The equation of motion of the annihilation operator in an arbitrary basis
reads[15]:

i~∂tĉi(t) =
∑
k

[
tik + vik(t)

]
ĉk(t) +

∑
jkl

wijklĉ
†
j(t)ĉl(t)ĉk(t) . (2.61)

For the purpose of analysing time reversal symmetry, it is convenient to consider
that Eq. (2.61) is derived from and equivalent to the Heisenberg equation for
ĉ(t):

i~∂tĉi(t) =
[
ĉi, Ĥ

]
(2.62)

and, as such, possesses the same symmetry properties that Ĥ does. The same
obviously holds for the creation operator ĉ†j .
Furthermore, it can be shown that reversing time can be expressed by reversing
the sign of the effective Hamiltonian in Eq. (2.61) by applying T̂ from the left
and T̂−1 from the right on both sides of the equation:

−i~∂t
[
T̂ ĉT̂−1

]
i

=
∑
k

(tik + vik)
[
T̂ ĉT̂−1

]
k

+
∑
jkl

wijkl

[
T̂ ĉ†T̂−1

]
j

[
T̂ ĉT̂−1

]
l

[
T̂ ĉT̂−1

]
k
,

assuming that not only Ĥ = T̂ ĤT̂−1 but that also t̂ + v̂ = T̂ (t̂ + v̂)T̂−1 and
ŵ = T̂ ŵT̂−1.
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2.3.5 Time Reversal Invariance of the Martin–Schwinger
Hierarchy

The analysis of time reversal symmetry in the Green functions formalism turns
out to be rather more difficult than the previous considerations. There are,
again, two questions of interest. First, whether reversing time in the equations is
equivalent to reversing the Hamiltonian. Second, whether there exists a solution
to the reversed equation and how it is related to the nonreversed solution.

Equivalence of reversing time and reversing the sign of the Hamilto-
nian

One of the first things to consider is how the δ-distribution transforms under
time reversal. Since the δ-distribution is even with respect to its argument, i.e.,
δ(t) = δ(−t), one could presume that it does not change at all. This cannot be
true, as the following consideration shows:∫

C
dz δ(z) = 1

z→−z−−−−→ 1 =

∫
C

d(−z) δ̃(z) ,

δ
z→−z−−−−→ δ̃ = −δ . (2.63)

This means that the δ-distribution with respect to contour time arguments
changes its sign under time reversal, similar to differential and integral operators.
Considering now the first hierarchy equation and substituting z → −z, z′ → −z′
yields:[
− i~∂z − h(z)

]
G(1)(z, z′) = −δC(z′ − z)1± i~

∫
C

dz̄ w(z+, z̄)G(2)(zz̄, z′z̄+) ,

(2.64)

since w(z+, z̄) = δC(z
+, z̄)w(z+) . This is equivalent to changing the sign of the

Hamiltonian: z(z′) → −z(−z′) ⇔ Ĥ → −Ĥ . The same holds true for the
second equation, as well as the higher-order hierarchy equations.

Existence of a solution to the reversed equation

The question remains whether these reversed equations have a solution and
what, if any, the relation between this solution and the solution of the original,
non-reversed equations is. It turns out to be easier to start by considering the
n-particle correlators and their hierarchy of equations. Applying T̂ from the left
and T̂−1 from the right side of both sides of Eq. (2.22), as before, yields:[

−i~∂zk − h(0)(zk)
]
T̂ Ĝ(n)T̂−1(z1...zn; z′1...z

′
n) =

∓ i~
∫
C

dz̄ W (zkz̄)T̂ Ĝ(n+1)T̂−1(z1...znz̄; z
′
1...z

′
nz̄

+)

+

n∑
p=1

(±1)k+pδC(zkz
′
p)T̂ Ĝ(n−1)T̂−1(z1...ZZzk...zn; z′1...SSz

′
p...z

′
n) , (2.65)

where T̂ ˆG(n)T̂−1(z1...zn; z′1...z
′
n) = T̂

(
ˆG(n)(z1...zn; z′1...z

′
n)
)
T̂−1 . This is not

equivalent to substituting z(′) → −z(′) , therefore T̂ Ĝ(n)T̂−1 does not solve the
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reversed equation. However, Ĝ(n) can be interpreted as a functional of creation

and annihilation operators, Ĝ(n) = Ĝ(n)
[
T̂ ĉT̂−1, T̂ ĉ†T̂−1

]
, and it is

[
T̂ Ĝ(n)T̂−1

]
i1...inj1...jn

(z1...zn; z′1...z
′
n) = (−1)n

(
− i

~

)n
T̂C
{[
T̂ ĉT̂−1

]
i1

(z1)...
[
T̂ ĉT̂−1

]
in

(zn)
[
T̂ ĉ†T̂−1

]
jn

(z′n)...
[
T̂ ĉ†T̂−1

]
j1

(z′1)

}
.

(2.66)

Therefore
T̂ Ĝ(n)

[
ĉ, ĉ†

]
T̂−1 = (−1)nĜ(n)

[
T̂ ĉT̂−1, T̂ ĉ†T̂−1

]
, (2.67)

which means that Ĝ(n)
[
T̂ ĉT̂−1, T̂ ĉ†T̂−1

]
does satisfy the reversed equation,

because inserting this into Eq. (2.65) yields:

(−1)n
[
−i~∂zk − h(0)(zk)

]
Ĝ(n)

[
T̂ ĉT̂−1, T̂ ĉ†T̂−1

]
(z1...zn; z′1...z

′
n) =

∓ (−1)n+1i~
∫
C

dz̄ W (zkz̄)Ĝ
(n+1)

[
T̂ ĉT̂−1, T̂ ĉ†T̂−1

]
(z1...znz̄; z

′
1...z

′
nz̄

+)

+ (−1)n−1
n∑
p=1

(±1)k+pδC(zkz
′
p)Ĝ

(n−1)
[
T̂ ĉT̂−1, T̂ ĉ†T̂−1

]
(z1...ZZzk...zn; z′1...SSz

′
p...z

′
n) .

(2.68)

Dividing both sides of this equation by −1 yields the reversed equation (2.65).
The same holds true for the adjoint equation (2.23). This is consistent with the
way that creation and annihilation operators, which are Heisenberg operators,
transform under time reversal, as seen in section 2.3.3.
From this follows directly, by taking the ensemble average of both sides, that

G(n)
[
T̂ ĉT̂−1, T̂ ĉ†T̂−1

]
satisfies the reversed nth-order equations of the Martin–

Schwinger hierarchy in the same way.

2.3.6 Time Reversal Invariance of the Selfenergy

More precisely, this section treats the time reversal invariance of different
approximations to the Kadanoff–Baym equations by different approximations
to the selfenergy.

General Criterion

Substituting z → −z, z′ → −z′ in the first Kadanoff–Baym equation (2.26)
yields:

[−i~∂z − h(z)] G(1)(zz′) = −δC(zz′)1−
∫
C

dz̄ Σz(′)→−z(′)︸ ︷︷ ︸
Σ̃

(zz̄)G(1)(z̄z′) . (2.69)

Substituting Ĥ → −Ĥ yields:

[i~∂z + h(z)] G(1)(zz′) = δC(zz
′)1 +

∫
C

dz̄ΣĤ→−Ĥ(zz̄)G(1)(z̄z′) , (2.70)
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which is equivalent to Eq. (2.69) if

Σz(′)→−z(′) = ΣĤ→−Ĥ . (2.71)

The Hartree–Fock Selfenergy

For the Hartree–Fock selfenergy ΣHF, substituting z → −z, z′ → −z′ yields:

ΣHF
z(′)→−z(′)(zz

′) = +i~δC(zz′)
∫
C

d(−z̄) (−W (zz̄))G(1)(z̄z̄+)− i~W (z+z′)G(1)(zz′)

= i~δC(zz′)
∫
C

dz̄ W (zz̄)G(1)(z̄z̄+)− i~W (z+z′)G(1)(zz′) .

(2.72)

Substituting Ĥ → −Ĥ (and thereby substituting W → −W ) yields:

ΣHF
Ĥ→−Ĥ(zz′) = −i~δC(zz′)

∫
C

dz̄ (−W (zz̄))G(1)(z̄z̄+) + i~(−W (z+z′))G(1)(zz′)

= Σ̃HF(zz′) . (2.73)

The Second Born Selfenergy

For the second Born selfenergy ΣSOA, substituting z → −z, z′ → −z′ yields:

ΣSOA
z(′)→−z(′)(zz

′)

= (i~)2

∫
C

∫
C
d(−z̄)d(−¯̄z) G(1)(zz̄)(−W (z+ ¯̄z))G(1)(z̄ ¯̄z)G(1)(¯̄zz′)(−W (z̄+z′))

− (i~)2

∫
C

∫
C
d(−z̄)d(−¯̄z) G(1)(zz′)(−W (z+z̄))(−W (z′ ¯̄z))G(1)(¯̄zz̄)G(1)(z̄ ¯̄z+)

= (i~)2

∫
C

∫
C
dz̄d¯̄zG(1)(zz̄)(−W (z+ ¯̄z))G(1)(z̄ ¯̄z)G(1)(¯̄zz′)(−W (z̄+z′))

− (i~)2

∫
C

∫
C
dz̄d¯̄zG(1)(zz′)(−W (z+z̄))(−W (z′ ¯̄z))G(1)(¯̄zz̄)G(1)(z̄ ¯̄z+)

= ΣSOA
Ĥ→−Ĥ(zz′) . (2.74)

The T-Matrix Selfenergy

For the T-matrix selfenergy to satisfy Eq. (2.71) the following must hold true:

Tz(′)→−z(′) = TĤ→−Ĥ . (2.75)

T is given by the Lippmann-Schwinger equation, which can be solved iteratively:

T 0(zz′) = 0 (2.76)

Tn(zz′) = ±i~W (z)GH(zz′)W±(z) + i~
∫
C

dz̄ W (z)GH(zz̄)Tn−1(z̄z′) . (2.77)

The equivalence (2.75) can easily be shown by mathematical induction. The
base case is trivial:

T 0
z(′)→−z(′) = 0 = T 0

Ĥ→−Ĥ . (2.78)
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Assuming Tn−1
z(′)→−z(′) = Tn−1

Ĥ→−Ĥ
:

Tnz(′)→−z(′) = ±i~W (z)GH(zz′)W±(z)− i~
∫
C

dz̄ W (z)GH(zz̄)T z
(′)→−z(′)

n−1

(2.79)

Tn
Ĥ→−Ĥ = ±i~W (z)GH(zz′)W±(z)− i~

∫
C

dz̄ W (z)GH(zz̄)T Ĥ→−Ĥn−1 (2.80)

⇒Tnz(′)→−z(′) = Tn
Ĥ→−Ĥ . (2.81)

Thereby, not only do the full T-matrix and T-matrix selfenergy display the
correct time reversal behaviour, but even when the series is truncated and T ≈
TN for some N ∈ N, as is done in numerical calculations, Eq. (2.71) is exactly
satisfied.
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3 Model System

3.1 The Hubbard Model

The Hubbard model is a greatly simplified approximation of condensed matter
systems. In its limits, however, it is as powerful as it is instructive. In the
model, solid state crystals are considered to be lattices of stationary atomic
cores with overlapping outermost electronic orbitals[16]. Electrons in those out-
ermost orbitals are able to tunnel from one site to the next with a probabilty
proportional to the hopping parameter J . The assumpations of the Hubbard
model are illustrated in Fig. 3.1 Interactions are assumed to be on-site only
(an assumption which is justified by the lower orbital electrons shielding the
potentials of the outer electrons). Tunnelling between non-neighbouring sites is
neglected. The system can then be described in terms of occupation numbers
of spin up and spin down electrons on each site, which yields a description in
second quantization.
The Hubbard Hamiltonian takes the following form:

Ĥ(t) = −J
∑
〈i,j〉

∑
α

ĉ†i,αĉj,α + U
∑
i

n̂↑i n̂
↓
i . (3.1)

〈i, j〉 denote neighbouring sites. The first term on the right hand side describes
tunnelling processes as hopping from one site to another with an amplitude J .
The second term describes on-site interaction of electrons with a given interac-
tion strength U [17].

3.2 The Model System

The systems that have been simulated in this thesis are one-dimensional, four-
site Hubbard chains, as illustrated in Fig. 3.2. Initially, one spin-up electron
and one spin-down electron are deployed on each of the first two sites. The
Hubbard hopping parameter J = 1. The Kadanoff–Baym equations (2.26) and
(2.27) have been discretized and solved numerically in discrete time steps on
the two-dimensional time plane in accordance with Fig. 3.3. For the selfenergy,
the T-matrix approximation (2.33) has been chosen as an example. The initial
state has been chosen to be an ideal, uncorrelated state.
For more details on the numerical implementation, see e.g. Ref. [17].
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Figure 3.1: Illustration of the Hubbard model. In a), a single atom with nonde-
generate electronic orbitals is shown. In b) a one-dimensional lattice of the same
atom is shown, with the outermost orbitals overlapping. The arrows designate
the capacity of the electrons in those orbitals to move between the atoms. In
c), the inner orbitals cease to be considered except for their screening effects.
d) shows the final model, as described in section 3.1. The figure is taken from
Ref. [16].

←
−
−→ ←
−
−→

1 2 3 4

Figure 3.2: Illustration of the initial state of the system. The system consists of
four atoms in a one-dimensional chain. One spin-up electron and one spin-down
electron are deployed on the first and second site, each. Initially, there are no
correlations.
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Figure 3.3: Illustration of the time propagation on the two-dimensional time
plane.
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4 Quantitative Analysis

4.1 The Time Reversal Switch Function

The first approach was to accomplish time reversal by simply reversing the
sign of the Hamiltonian, that is by multiplying the Hamiltonian with a step
function that returns plus one before and minus one after the return time ttr.
That was not successful, however. Figure 4.1 shows the density evolution on
each of the four sites during a simulation where time reversal occurs at t = 10.
The sample rate rsample is a parameter that increases numerical accuracy when
decreased, similar to the time step1. The system clearly does not return into
its initial state, although an increase in numerical accuracy does somewhat
ease the problem. It turns out, however, that this is not simply a problem
of numerical accuracy. Figure 4.2 shows the energy evolution during the first
of the two simulations shown in Fig. 4.1. The oscillations seen in panel (a)
are typical of numerical problems. In this case the problem lies with the fact
that the Hamiltonian was non-continuous during time reversal. Since the time-
stepping algorithm uses multiple previous time steps in the calculation of the
next time step, shortly after time reversal, it uses energies from before time
reversal that differ from the energies after time reversal by 2U . In the case of
a continuous Hamiltonian, that difference could (in theory) become arbitrarily
small for arbitrarily small time steps. Fortunately, the above analysis is valid
for a wide range of Hamiltonians, including time-dependent ones. Therefore
it is possible to substitute the simple, non-continuous step function by a more
complicated, but still antisymmetric function ftrsf that is defined by

ftrsf(t) =
1, for t < ttr − τ

−3

8

(
t− ttr
τ

)5

+
10

8

(
t− ttr
τ

)3

− 15

8

(
t− ttr
τ

)
, for ttr − τ ≤ t ≤ ttr + τ

−1, for ttr + τ ≤ t
(4.1)

where τ is a parameter describing the width of the switching. This function, as
well as its first and second derivative, is continuous. It is also antisymmetric
with respect to ttr. The time reversal switch function is illustrated in Fig. 4.3.

1The algorithm that is used for time propagation is a point sampling scheme, which means
that for the integration in the calculation of the next step, only every rsample-th point is used.
Doing this while increasing the order of the propagation scheme proves to be more efficient for
a given numerical effort than using a simple scheme that is more accurate in the calculation
of the integral, but of lower order.
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Figure 4.1: Time-reversed simulation of a one-dimensional four-site Hubbard
chain in TPP. Time-reversal occured at t = 10. The interaction strength was
U = 1.

10 12 14 16 18 20

time t

−2.025

−2.020

−2.015

−2.010

−2.005

−2.000

−1.995

−1.990

to
ta

l
en

er
gy

E
to

t

(a) Energy after ttr

0 5 10 15 20

time t

−3

−2

−1

0

1

2

3
(b) Entire simulation

Figure 4.2: Time-reversed TPP simulation of a one-dimensional four-site Hub-
bard chain. Shown is the total energy (a) during the entire simulation and (b)
after time reversal. For the paramters, see Fig. 4.1
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In th following analysis, unless otherwise specified, the time reversal switching
width has been chosen to be τtr = 0.3 .

4.2 Reversed and Perturbed TPP Simulations

With the continuous time reversal switch function the numerical problems re-
sponsible for the damping of the reversed calculation in Fig. 4.1 disappear.
Figure 4.4 shows the results of a time reversed TPP simulation. The time evo-
lution of the entanglement entropy is shown for exact reversal, i.e., ∆U = 0
as well as for slightly perturbed systems. On panel (b), the backwards calcu-
lated entropy has been projected onto physical time. The interaction strength
is U = 1. It can be seen that even for a relatively large perturbation ∆U = 0.1,
which is 10% of the total interaction strength, the backward calculation does
not deviate too far from the forward calculation. This is partly due to the very
small size of the system. However, it might be interesting to see how the qual-
ity, or stability, of time reversal depends on different parameters, such as the
propagation time or the interaction strength, and of course, of the method used
to calculate the simulation.
It is therefore useful to define a quantity q that measures how well a system
returns into its inital state. This quantity can then be compared for various val-
ues of the aforementioned parameters. One possibility is to calulate the mean
squared difference of the backward from the forward calculation for a given
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Figure 4.4: Time evolution of the entanglement entropy in time reversed, per-
turbed TPP simulations. Panel (b) shows essentially the same as panel (a),
except for the fact that the part after the time reversal (at t = 5) has been pro-
jected onto physical time, so as to better compare it with the forward calculated
part (in black). The interaction strength is U = 1.

parameter p:

q(p) =
√
ttr

√∫ ttr

0

dt
[
p(t)− p(ttr − t)

]2
∫ ttr

0

dt p(t)

. (4.2)

Figure 4.5 shows one example of that. The deviation q has been calculated for
the entanglement entropy S, the correlation energy Ecorr, the kinetic energy
Ekin, the Hartree–Fock energy EHF and the densities on all four sites (shown
here is the average of these four deviations). For comparison, the actual time
evolution of these parameters is also shown in the smaller panels. For the
Hartree–Fock energy, the kinetic energy and the densities, the deviation grows
linearly with the perturbation ∆U , while the correlation energy as well as the
entanglement entropy deviations seem to grow quadratically with ∆U . Of all
the parameters that have been considered, the density deviates the least from
the initial state. The correlation energy and Hartree–Fock energy deviate the
most. The reason for that is that they depend depend explicitly on U , cf. Eqs.
(2.51) and (2.52). This can be seen in the small right-hand panels of Fig. 4.5.
Close to the point of time reversal (within a margin of τtr, to be precise), most of
the behaviour of all the energies is governed by the influence of the time reversal
switch function. The Hartree–Fock and correlation energies evolve qualitatively
very similar for all perturbations, but they are shifted by a near constant value.
This is due to their U -dependence and can be understood when considering
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the influence of ∆U on U . This influence is illustrated in Fig. 4.6. The time
dependence of U can be written as

U(t) = ftrsw(t)

{
U+∆U t < ttr ,

U + ∆U t > ttr .
(4.3)

Note that even for ∆U 6= 0, the interaction strength is still continuous, though
no longer differentiable in t = ttr , since ftrsw(ttr) = 0 . This behaviour is very
similar to the one displayed by the U -dependent energies in Fig. 4.5.

4.2.1 Effect of the Interaction Strength U on Time Rever-
sal Quality Q

Since both the Hartree–Fock energy and the correlation energy depend explicitly
on U , after time reversal, they depend explicitely on ∆U as well. Thus, let the
parameter Q that describes the time reversal quality of a simulation be the
average of the deviations of those quantities that do not depend on U :

Q =
1

3

[
q(S) + q(Ekin) + q(n)

]
. (4.4)

Figure 4.7 shows the dependence of the time reversal quality on the interaction
strength. The most striking feature of the figure is the fact that the deviations
are very large for weakly interacting systems with U = 0.1 (except for the
densities). To understand this, it is useful to look at the dependence of all
these quantities on the interaction strength. The kinetic energy and the
entanglement entropy do not explicitely depend on U , but the entanglement
entropy in particular is a measure of the correlation of the system, which
obviously depends on the interaction.

Figure 4.8 shows that the entanglement entropy converges after some
time towards some (U -independent) value. The rate of the convergence,
however, depends heavily on U and in particular, it is very slow for small U . It
converges to some constant rate at around U = 1. This explains why for small
U , a comparatively small perturbation ∆U can have considerable effects.
For larger interaction strengths, the quality of time reversal decreases with
increasing U , and the dependence on ∆U seems to become nonlinear.
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Figure 4.7: Mean square deviation of forwards calculated quantities from
backwards calculated quantities in TPP simulations for different interaction
strengths U and different perturbations ∆U . The smaller frames show devia-
tions for single quantities. The return time is ttr = 5.
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Figure 4.9 shows a possible (qualitative) reason for that behaviour. For
larger interaction strengths, the system shows the damped behaviour described
earlier, in section 2.2.5. This is particularly clear for the entanglement entropy
and the density. The entropy reaches its final value at around t = 2, and the
density (on site 1) at around t = 3. In a sense, the converged values occupy a
much denser part of the parameter space, since the probability of the system
to have reached these values becomes very high after some time. Therefore it
is to be expected that time reversal is less stable once the converged state has
been reached.

For GKBA+TPP simulations (Fig. 4.10) and exact diagonalization sim-
ulations (Fig. 4.11) the tendencies are very similar, with the notable exception
that for large U the time reversal quality does not seem to depend very much
on U , and the nonlinear dependence of q of ∆U disappears. This is further
evidence that this behaviour was due to the unphysical damping of the full
TPP simulation. The damping effects become much more obvious at very large
perturbations.
This can be seen in Fig. 4.12. The perturbations ∆U are of the order of
magnitude of the interaction strength U . Still, particularly for the density, the
system does not deviate entirely from the forward calculation, especially in the
beginning. For such large perturbations, the mean square deviations q increase
less with increasing ∆U than they did for smaller ∆U . The entanglement
entropy and density deviations, as well as the kinetic energy deviations, tend
to some saturated value. This is due to two main reasons.
Firstly, the parameter space for this very small, very simple system consisting
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Figure 4.10: Mean square deviation of forwards calculated quantities from back-
wards calculated quantities in GKBA+TPP simulations for different interaction
strengths U and different perturbations ∆U . The smaller frames show devia-
tions for single quantities. The return time is ttr = 5.
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Figure 4.11: Mean square deviation of forwards calculated quantities from back-
wards calculated quantities in exact diagonalization for different interaction
strengths U and different perturbations ∆U . The smaller frames show devi-
ations for single quantities. The return time is ttr = 5.
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Figure 4.13: Mean square deviation of forwards calculated quantities from back-
wards calculated quantities in TPP simulations for different propagation dura-
tions and different perturbations ∆U . The smaller frames show deviations for
single quantities. The interaction strength is U = 1.

only of four electrons and four atomic sites is limited and it is simply not
possible to deviate arbitrarily far from any given path.
Secondly, if the system is very perturbed it will not return to its initial state
at all, but rather tend to the damped steady state. The propagation will
then not change very much for even higher ∆U . This is most obvious for
the entanglement entropy. It can be seen in Fig. 4.12 that the evolution is
very similar for ∆U = 0.9 and ∆U = 1.0. The correlation energy and the
Hartree–Fock energy, on the other hand, depend explicitly on U , therefore the
deviation will continue to grow with growing ∆U (i.e., growing U).

4.2.2 Effect of the Propagation Time on Time Reversal
Quality Q

The influence of the propagation duration on the stability of time reversal seems
straightforward on first sight, the longer the duration, the higher the deviation
from the forward calculation for a given perturbation. For the exact diagonaliza-
tion and for the GKBA calculation (Figs. 4.14 and 4.15) that is exactly the case.

For the TPP simulations (Fig. 4.13) it is not quite as simple, which, of
course, is again due to the unphysical damping. In this case, the difference
in deviations between ttr = 2.5 and ttr = 5 is small, and it even varies from
parameter to parameter which one deviates more.
The deviation for ttr = 10 starts to converge towards a constant value for the
entanglement entropy and the correlation energy, though that is not the case
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Figure 4.14: Mean square deviation of forwards calculated quantities from back-
wards calculated quantities in GKBA+TPP simulations for different propaga-
tion durations and different perturbations ∆U . The smaller frames show devi-
ations for single quantities. The interaction strength is U = 1.
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Figure 4.15: Mean square deviation of forwards calculated quantities from back-
wards calculated quantities in exact diagonalization for different propagation
durations and different perturbations ∆U . The smaller frames show deviations
for single quantities. The interaction strength is U = 1.
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Figure 4.16: Time evolution of various quantities in time reversed TPP simu-
lations for different propagation times. The interaction strength is U = 1, the
perturbation of the interaction strength is ∆U = 0.1 .

either for the kinetic energy or for the density, whose deviations are, on the
other hand, much smaller.

Figure 4.16 shows the time evolution (forwards and backwards calculated) of
these quantities for ∆U = 0.1 and for the three different propagation times.
The entanglement entropy in particular does not deviate very far from the
entirely damped state for ttr = 10. The entanglement entropy, in general, is
always zero in the initial state (the system is uncorrelated in the beginning)
and converges to some constant non-zero value later on (at least, that is what
happens in the TPP simulations).
If it does not return into the initial state, then the deviation is necessarily
large. Similar things are true for the correlation energy, which is also a measure
of the correlation of the system: It starts out at zero and converges later on.
Additionally, the correlation energy depends explicitely on U .

4.3 Summary

One thing that all simulations, for all interaction strengths, propagation dura-
tions and approximations, have in common, is that they are indeed exactly time
reversible for ∆U = 0. The time reversal properties of GKBA simulations are
more similar to those of the exact diagonialization than those of TPP simula-
tions are. This is mostly due to the unphysical damping observed in the full
method.
The influence of the interaction strength U on the quality of time reversal is
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complex, and deserves further analysis. The dependency of the behaviour of the
system on U depends itself on U . It seems that the system is far more sensitive
to perturbations in U for small U .
Longer propagation times lessen the quality of time reversal. The exact relation
depends on the simulation method.
In general the choice of ∆U as a perturbation parameter should be critically
assessed. The interaction strength has many obvious and some more subtle
influences on the behaviour of a system. Particularly if one is interested in
potential chaotic behaviour of larger systems it might be difficult to separate
the effects that stem from the direct influence of the interaction strength from
the stability of the system. At least it might be interesting to see whether the
perturbation of different parameters has similar effects on the time reversibility
of the system.
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5 Conclusion and Outlook

In this thesis it has been shown that the governing equations of the Green
functions theory, which are the Martin–Schwinger hierarchy and the Kadanoff–
Baym equations, are analytically exactly time reversal invariant, and that
reversing time is formally equivalent to reversing the sign of the Hamiltonian.
The same holds true for all the approximations to the selfenergy that have
been treated in this thesis, which are the Hartree–Fock selfenergy, the second
Born selfenergy and the T-matrix selfenergy.

For small systems, the numerical time reversal is quite stable with re-
spect to small perturbations of the Hamiltonian, as long as that Hamiltonian is
sufficiently continuous. Simulations done with the generalized Kadanoff–Baym
ansatz display similar behaviour with respect to time reversal as exact diago-
nalization does. The full two-times simulations, on the other hand, behave in
some instances differently due to the unphysical damping that is characteristic
to those methods.

Amongst the next possible steps there is the analysis of time reversal in-
variance of the generalized Kadanoff–Baym ansatz and a theoretical treatment
of the influence of ∆U by a perturbative approach.
On the numerical side, it could be interesting to consider the influence of both
the size and particle number as well as the dimension of the system on the
quality of time reversal. Another possibility would be to perturb some other
parameter rather than the interaction strength and to compare in particular the
dependence of the time reversibility quality for varying ∆U of the interaction
strength.
In conclusion, the use of time reversal symmetry in numerical testing is justified
for the nonequilibrium Green functions formalism, since the equations are
exactly time reversible and since that reversibility is sufficiently stable not to
be influenced by the inherently limited accuracy of computers.
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Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig und
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