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Abstract: Two-component dense quantum plasmas are created in vari-
ous experimental facilities by means of compression of matter by charged
particles or laser beams. These experiments are motivated by the prob-
lem of inertial confinement fusion and the investigation of the physics of
massive astrophysical objects. The simultaneous importance of thermal ex-
citations and electronic quantum and correlation effects makes a theoretical
study of dense quantum plasmas challenging. Ab initio methods such as
Quantum Monte Carlo and Kohn-Sham density functional theory are, cur-
rently, not able to serve as a tool for the large scale simulation of dense
quantum plasmas due to the large computational effort. Therefore, quan-
tum hydrodynamics (QHD) has gained attention as a possible method to
circumvent this restriction and, thus, to carry out large scale simulations.
However, it appeared that QHD suffers from a lack of a reliable theoretical
foundation and has not yet been generalized to finite temperatures. With
the aforementioned shortcomings, we have to consider QHD as a unreliable
method to simulate high-energy-density plasmas. Therefore, the thesis at
hand presents the first consistent derivation of finite temperature QHD for
fermions and the first unifying picture to the various previously used ver-
sions of the QHD. Moreover, linking with the linear response theory, the
results presented in this thesis go beyond all previous considerations by pro-
viding a consistent derivation of the fully non-local potentials taking into
account the electronic exchange-correlation effects for both low frequency
and high frequency phenomena. Further, in order to verify the importance
of the electronic quantum non-locality and correlations, different existing ap-
proximations describing the electronic density response function have been
implemented to study the structural properties of strongly coupled ions. As
a result, the applicability ranges of the involved approximations are deter-
mined and the plasma parameters at which the electronic quantum non-
locality and correlations cannot be neglected are found. The latter allows
to allocate the range of the plasma parameters where the presented QHD
equations with non-local potentials are appropriate for the investigation of
a dense plasma.
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Zusammenfassung: Zweikomponentige, dichte Quantenplasmen
werden in verschiedenen Versuchsanlagen erzeugt. Dabei wird Materie
durch Laser oder hochenergetische Bündel geladener Teilchen komprimiert.
Motiviert sind diese Experimente durch Arbeiten an der Trägheitsfusion
und der Untersuchung der physikalischen Eigenschaften massereicher
astrophysikalischer Objekte. Die gleichzeitige Bedeutung von thermis-
chen Anregungen und elektronischen Quanten- und Korrelationseffekten
macht eine theoretische Untersuchung von dichten Quantenplasmen
äußerst schwierig. Ab initio-Methoden wie Quantum Monte Carlo und
die Kohn-Sham-Dichtefunktionaltheorie sind derzeit aufgrund des ho-
hen erforderlichen Rechenaufwands nicht in der Lage, als Werkzeug für
großskalige Simulation von dichten Quantenplasmen zu dienen. Daher hat
die Quantenhydrodynamik (QHD) als mögliche Methode zur Umgehung
dieser Einschränkungen und damit zur Durchführung von großskaligen
Computersimulationen an Bedeutung gewonnen. Es zeigt sich jedoch,
dass es der QHD an verlässlichen theoretischen Grundlagen mangelt
und sie noch nicht auf endliche Temperaturen verallgemeinert wurde.
Deshalb muss die QHD als unzuverlässige Methode zur Simulation von
hochenergetischen Plasmen angesehen werden. Dadurch motiviert, gibt die
vorliegende Arbeit eine erste konsequente Ableitung der fermionischen QHD
für endliche Temperaturen und die erste Vereinheitlichung verschiedener
zuvor verwendeter Versionen der QHD. Weiterhin gehen die Ergebnisse
dieser Arbeit, durch die Verknüpfung mit der Linear-Response-Theorie
sowie eine konsequente Ableitung vollständig nicht-lokaler Potenziale unter
Berücksichtigung der elektronischen Austausch-Korrelations-Effekte für
niederfrequente und hochfrequente Phänomene, über alle bisherigen Ar-
beiten hinaus. Um den Einfluss von elektronischer Quanten-Nichtlokalität
und von Korrelationen zu überprüfen, werden verschiedene bestehende
Approximationen zur Beschreibung der elektronischen Dichte-Antwort-
Funktion für die Untersuchung der strukturellen Eigenschaften von stark
gekoppelten Ionen implementiert. Dadurch werden die Anwendungsbere-
iche der beteiligten Approximationen ermittelt und die Plasmaparameter
bestimmt, bei denen die elektronische Quanten-Nichtlokalität und Kor-
relationen nicht vernachlässigt werden können. Letzteres erlaubt es, den
Bereich der Plasmaparameter zu bestimmen, in dem die dargestellten
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QHD-Gleichungen mit nicht-lokalen Potentialen für die Untersuchung eines
dichten Plasmas geeignet sind.

Schlüsselwörter: Quantenhydrodynamik bei endlicher Temperatur,
dichte Plasmen, stark gekoppelte Plasmen, Thomas-Fermi-Modell mit Gra-
dientenkorrekturen, Bohm-Potential, Screening, Struktureigenschaften.
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Chapter 1

Introduction

A quantum plasma can be characterized as a system consisting of free elec-
trons and of positively charged ions, where the Fermi energy of the elec-
trons is comparable with or larger than the thermal energy of the elec-
trons. In this thesis, the quantum plasma is considered in the context
of high-energy-density plasma physics. The subject of high-energy-density
plasmas is the state of matter with extraordinarily high energy densities
[Fortov 2016] such as dense plasmas, warm dense matter, hot dense matter
etc., [Graziani 2014a]. From now on, under a quantum plasma, I will be
referring to a dense plasma with partially or totally degenerate electrons. In
this way, the subject matter of this thesis is presented in the frame of—the
well defined field—dense plasmas. More precisely, I consider two-component
dense plasmas consisting of quantum electrons and strongly correlated ions.

Experimentally, a plasma with quantum electrons is realized by com-
pressing matter until a high degree of ionization is achieved at tempera-
tures comparable with the electronic Fermi energy. Recent examples in-
clude the experiments on inertial confinement fusion (ICF) [Zastrau 2014,
Hurricane 2014, Cuneo 2012, Gomez 2014], and the compression of a target
by lasers or intense charged particle beams [Sharkov 2016, Kawata 2016]. In
particular, plasmas generated at the OMEGA Laser System and at the Na-
tional Ignition Facility enter the regime of a quantum plasma with strongly
coupled ions [Hu 2010]. Additionally to ICF, the aforementioned experi-
ments are motivated by the interest in understanding physics of astrophys-
ical objects like the giant planets of the Solar System, exoplanets, brown
and white dwarfs, neutron stars etc., [Fortov 2016, Graziani 2014a].

The ability to simulate dynamical properties is crucial due to the out-
of-equilibrium state of the experimentally generated dense plasmas (warm
dense matter). For example, the simulation of such processes as the relax-
ation from the non-isothermal state with cold ions and hot electrons (or vice
versa) to a thermal equilibrium, the energy loss of an ion, and the dynam-
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ics of the system under impact of external fields are of importance for the
realization of the ICF [Graziani 2012]. Arguably, at the moment the most
advanced and reliable theoretical method for the description of high-energy-
density plasmas at finite temperature is based on free-energy (finite tempera-
ture) Kohn-Sham DFT (e.g., see Refs. [Eschrig 2010, Pribram-Jones 2016]).
This method is already computationally costly at relatively low tempera-
tures (T . 103 K), with a computation time proportional to the cube of the
number of electrons (N3

e ), and at more extreme parameters (T & 104 K) has
its computational bottleneck. In the latter case, a severe limitation of the
application of Kohn-Sham DFT is caused by the additional N3

b scaling of
the calculation cost [Karasiev 2014], where Nb is the number of the occupied
levels (basis functions) due to thermal excitations. Time-dependent Kohn-
Sham DFT at relevant temperatures and densities suffers from the same (or
even worse) computational bottlenecks as the aforementioned static version.
As the result, the large scale (with at least Ne ∼ 103) simulation of the dy-
namics of a quantum plasma as well as warm dense matter at T & 104 K

by Kohn-Sham DFT based methods is not feasible [Karasiev 2014].
Other ab initio methods for the simulation of non-ideal dense quantum

two-component plasmas at finite temperature like quantum Monte Carlo
methods [McMahon 2012, Dornheim 2018] and non-equilibrium Green func-
tions [Bonitz 2016] are in the stage of development and computationally
even more challenging than the finite temperature Kohn-Sham DFT. It
should be remarked that another important method is based on the use
of so called quantum potentials [Filinov 2003, Filinov 2004] in a molecular
dynamics simulation (MD). The advantage of this approach is that electrons
and ions are treated on an equal footing, i.e., without involving an adiabatic
approximation. However, this method has the unsolved problem of defin-
ing the so-called electron-ion temperature [Seuferling 1989, Bredow 2003,
Shaffer 2017]. Additionally, the applicability of this method is restricted to
classical and semi-classical plasmas. Besides, the classical mapping approach
is promising; the main idea of which is the introduction of a set of modified
parameters, like an effective temperature [Dharma-wardana 2000, Liu 2014],
in order that classical methods can be used for the prediction of the proper-
ties of the quantum system of interest [Dufty 2013, Dutta 2013]. However,
this method has not been applied yet to a two-component quantum plasma.
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To find a workaround to the problem of the unfeasibility of large scale ab
initio Kohn-Sham DFT simulations of quantum plasmas and warm dense
matter, intensive development of orbital-free DFT (OF-DFT) has been per-
formed in the recent years [Sjostrom 2015, Sjostrom 2014a, Karasiev 2012,
Sjostrom 2013a, Sjostrom 2014b, White 2013]. The outcome of these stud-
ies is that OF-DFT is now able to describe the thermodynamic properties
of dense plasmas with the same accuracy as finite temperature Kohn-Sham
DFT (at the parameters relevant to the warm dense matter regime with
T & 104 K). In the OF-DFT one only needs to solve a single Euler-Lagrange
problem using a proper free energy functional, instead of the multidimen-
sional Kohn-Sham eigenvalue problem in Kohn-Sham DFT. As a result,
the power-law scaling of the computation time of Kohn-Sham DFT is re-
placed by a behavior that is almost invariant under temperature variations
[Sjostrom 2014a, Karasiev 2014]. Obviously, the OF-DFT, determining the
electronic density distribution at given ionic configuration, is not able to
describe the dynamical density distribution of electrons, which is needed,
e.g., to compute important quantities like the stopping power, for the sim-
ulation of the system under the impact of the alternating external field,
and for the case of a dense plasma with a stream of heavy particles rel-
ative to the electrons [Graziani 2012, Ludwig 2010]. Therefore, a method
which allows for the large scale simulation of electronic dynamics taking
into account important quantum and non-ideality effects is crucial for high-
energy-density plasma physics. To this end, the development of a quantum
fluid description of dense plasmas, which can be the basis for the needed
large scale simulation of a two component plasma, is the primary goal of
this thesis. Accordingly, the electronic subsystem is treated via continuous
variables within the quantum fluid model taking into account electronic cor-
relations. The ions are described by using the method of integral equations
and molecular dynamics simulations.

The quantum fluid description of electrons is considered on the basis
of the so called quantum hydrodynamics (QHD). Below, the terms “quan-
tum fluid description” and “quantum hydrodynamics” are used as synonyms.
Here, the term “quantum hydrodynamics” is introduced with a note of cau-
tion in order to avoid any confusion related to the meaning and assump-
tions that are embedded in the word “hydrodynamics” in classical physics,
where this usually means the consideration of macroscopic phenomena at a
scale much larger than both the mean interparticle distance and the char-
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acteristic de Broglie wave length of an electron. In contrast, the quantum
hydrodynamics—which is the focus of this work—is formulated in the spirit
of DFT and based on the dynamical quantum response function at a finite
wavenumber, and, therefore, is not restricted by the length and time scales
of the hydrodynamics in the classical meaning of this word.

Since the works by Manfredi and Haas at the beginning of the new
millennium [Manfredi 2001], the quantum hydrodynamics of fermions has
gained popularity as a “simplified, but not simplistic approach” [Haas 2011]
for quantum plasmas. Manfredi and Haas used the formulation of quantum
hydrodynamics with the quantum non-locality taken into account as the first
order gradient correction to the Fermi pressure, which is referred to as the
Bohm potential due to its similarity to the namesake in the famous Bohmian
mechanics [Bohm 1952a, Bohm 1952b, Bohm 1954]. Based on such a formu-
lation of the QHD, for the sake of finding agreement with the results of the
random phase approximation (RPA) for the plasmon dispersion, the Fermi
pressure and the Bohm potential were “corrected” by introducing constant
pre-factors [Halevi 1995, Yan 2015, Akbari-Moghanjoughi 2015]. Further,
an approximate static exchange correlation potential had been implemented
for the study of dynamical processes [Crouseilles 2008, Yan 2015]. In this
form, the QHD has often been chosen as the tool for approximate research
well beyond its applicability range and, sometimes, with explicitly incor-
rect expressions. This has led to unphysical predictions and, thereby, to
justified strong criticisms [Khan 2014, Krishnaswami 2015, Bonitz 2013a,
Bonitz 2013b]. As the result, it was revealed that the QHD model suffered
from the lack of consistency in the closure relation for the involved poten-
tials (or equivalently for the force field) and in the generalization to the
finite temperature case [Khan 2014].

Another important aspect of a self-consistent description of a quantum
plasma with strongly coupled ions is that an accurate analysis of the ef-
fects due to ionic non-ideality is required. In addition, in experiments with
the ionic temperature being much less than that of the electrons [Ma 2013,
Glenzer 2007, Lee 2009], the ions can be highly sensitive to the choice of the
approximation for the electronic correlations [Clérouin 2015b, Harbour 2016,
Plagemann 2015]. Both circumstances were ignored in earlier considerations
on the basis of the QHD.

Taking into account the described state of affairs and the requirement
of a reliable quantum fluid model for high-energy-density plasma science,
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within the thesis, the following objectives were set and achieved:

• Provide a consistent derivation of the QHD equations at finite temper-
ature, that recovers the OF-DFT model in the static limit so that the
recent achievements in OF-DFT can be employed for the computation
of the static electronic density distribution.

• Derive the closure relation for the QHD equations on the basis of
a known electronic density response function taking into account the
quantum non-locality and exchange-correlation effects (without intro-
ducing uncontrolled approximations via empirical pre-factors).

• Define the applicability and limitations of widely used models of the
electronic density response function applied to the quantum plasma
with strongly coupled ions.

Thesis outline

Chapter 2 constitutes a bird’s-eye view. In this chapter the general theo-
retical description of a two-component plasma with quantum electrons and
classical ions is introduced using a multi-scale approach. In addition, to
avoid any inconsistency inherited from the previous formulations of the
QHD model, the reasons for the revision of the foundations of quantum
hydrodynamics are discussed in more detail. The following chapters 3 and
4 constitute the core of the thesis. In chapter 3, the QHD equations are de-
rived for finite temperatures and a fully non-local quantum Bohm potential
is presented. The latter is derived linking the RPA polarization function
to the second-order functional derivative of the non-interacting free energy
density. This approach has allowed to systematically derive the equation
for the exchange-correlation potential of the QHD model, which is also dis-
cussed in chapter 3. In chapter 4, the effect of the electronic degeneracy and
non-ideality (correlations) on the structural properties of strongly coupled
ions is analyzed using models with different levels of sophistication. This
analysis sheds light on the applicability and limitations of some widely used
models of the electronic density response function in the context of a non-
isothermal plasma with strongly coupled ions and quantum electrons. Each
of chapters 3 and 4 ends with a brief summary. Finally, I draw conclusions
and give some perspectives in chapter 5.





Chapter 2

Two-component quantum
plasmas

Contents
2.1 Dimensionless parameters . . . . . . . . . . . . . . . 21

2.2 Plasma parameters under consideration . . . . . . 23

2.3 Multi-scale approach . . . . . . . . . . . . . . . . . . 25

2.4 Motivations for the revision of the foundations of
QHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

In this chapter, an extended presentation of the considered plasma state
using standard dimensionless parameters is given. The theoretical consider-
ation of two component quantum plasmas based on a multiscale approach
using a fluid description of the quantum electrons is discussed. Addition-
ally, more details about inconsistencies and limitations of the QHD poten-
tials used in previous works are reviewed. Thereby, a clear picture about
motivations for the development of an improved quantum fluid model is
provided.

2.1 Dimensionless parameters

A fully ionized plasma state consisting of electrons and of a certain type of
ions is specified by the number density of electrons, n, the temperature of
electrons, Te, and of ions, Ti∗.

The energy scales of a two-component dense quantum plasma are defined
by the thermal energy (per particle), of both electrons and ions, Eth

e ∼ kBTe
∗For given temperature and density values, ionization state can be calculated by using,

e.g., Saha models or average atom models.
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and Eth
i ∼ kBTi, the electron Fermi energy EF = h̄2k2

F /(2me), where kF
is the Fermi wave number, and the plasmon energy, h̄ωp, with the plasma
frequency ωp = (4πne2/me)

1/2 (me is the electron mass). The latter also
characterizes the potential energy of free electrons. The time scales of the
electronic and ionic subsystems are determined by the inverse plasma fre-
quency, τe ∼ ω−1

p , and the inverse ionic plasma frequency , τi ∼ ω−1
pi , re-

spectively. Here, the ionic plasma frequency is ωpi = (me/mi)
1/2ωp, where

mi is the ion mass. The mean distance between adjacent electrons (ions), ae
(a), and the Bohr radius, aB, are the length scales which are of relevance.

In what follows, the number density is in units of cm−3, temperature in
K, and energies in Hartree (Ha), which is related to the binding energy of
a ground-state hydrogen atom by ER = 13.6 eV = Ha/2. For the plasma
frequency, one can find ωp = 5.6× 104 n1/2 [s−1]. Additionally, the symbol
“e” is used for the elementary charge equal to the absolute value of the
electron charge.

The following dimensionless parameters are used to describe the plasma
state:

• the electron degeneracy parameter, θ = kBTe/EF ,

• the density parameter (Brueckner parameter) rs = ae/aB (with ae =

( 3
4πn)1/3), which is also used as the quantum coupling parameter of

electrons,

• the coupling parameter of the ions, Γ = Q2
i /(akBTi), where the ion

charge is Qi = Ze.

Accordingly, knowing the plasma temperature and density, one can find
the degeneracy (θ) and density (rs) parameters characterizing the electronic
subsystem, and the coupling parameter (Γ) describing the ionic component
of a plasma.

It is handy to have the following formulas to easily evaluate the temper-
ature (thermal energy per particle) and density knowing the dimensionless
parameters: Te ' θ

r2s
0.58×106 [K], kBTe ' θ

r2s
×50.12 [eV] ' θ

r2s
×1.84 [Ha],

and n ' 1.6127 × 1024 · r−3
s . The relation for the ionic coupling parame-

ter Γ ' (Z5/3/1.84)(rs/θ)(Te/Ti) is also convenient to have at hand. For
example, with the choice Z = 1, at rs = 1.5 and Γ . 50, the degeneracy
parameters θ = 0.5 (θ = 0.1) lead to Te/Ti . 30 (Te/Ti . 6).
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2.2 Plasma parameters under consideration

Earlier, a plasma has been identified as a quantum plasma if the electronic
thermal energy is less than or comparable to the Fermi energy. Therefore,
a plasma with the electronic degeneracy parameter θ = kBT/EF . 1 is
considered in this work. Further, the thermal energy of an electron must
be sufficiently high so that it is able to overcome the atomic binding energy
and, as the result, the state of the complete or high degree of ionization can
be achieved. On the other hand, the plasma micro-fields can significantly di-
minish the ionization energy. This effect is known as the pressure ionization
or Mott effect. At θ � 1, the condition for the appearance of the Mott effect
in experiments on quantum plasmas can be obtained approximately by re-
quiring that the Fermi energy exceeds the characteristic attractive potential
energy of an electron to an ion, i.e., rs = ae/aB < 2 [Chabrier 1990]. This
evaluation is supported by first-principles path-integral Monte Carlo simula-
tions of the hydrogen plasma, which indicate that at rs ∼ 1.2 bound states
break up [Bonitz 2005]. Therefore, the focus of this work is on plasmas
with densities ne > 1023 cm−3 and electronic temperatures Te & 104 K.

Dense plasmas have been the subject of experimental investigations
since the mid-1950s due to the nuclear defense projects in several countries
and later due to the national ignition campaign in the US [Moses 2010a,
Moses 2010b]. Nowadays, additionally to the realization of inertial confine-
ment fusion, the scientific activity in the physics of dense plasmas is fueled
by the interest in astrophysical objects as mentioned in the introduction.
Experimental techniques for high-energy-density plasma research include
shock-compression driven by lasers, explosions, and charged-particle beams;
and, in addition, using devices like diamond anvil cells, high-current Z-
pinches, and multistage light-gas guns [Fortov 2016]. In these experiments,
plasmas can be realized at a broad range of parameters, with temperatures
in the range from ∼ 103 K up to ∼ 108 K and with densities in the range
from ∼ 1018 cm−3 up to 1028 cm−3 [Fortov 2016]. Therefore, for present pur-
poses, some experiments where two-component dense plasmas with quantum
electrons and strongly coupled ions were realized are compiled in Table 2.1.
From these data, it can be concluded that the aforementioned theoretical
consideration about thermal and pressure ionization, at the plasma param-
eters at hand, is supported by recent experiments.
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Table 2.1: Examples for experiments where two component quantum plasmas with strongly coupled ions were
realized. From reference [Moldabekov 2018b].

Plasma parameters

References n [1023 cm−3] Te & Ti [103 K] θ & rs Γ

Cryogenic DT implosion on
OMEGA [Boehly 1997, Hu 2010]

2 <∼ n <∼ 10 23 <∼ Te <∼ 230

Ti = Te

0.2 <∼ θ <∼ 0.8

1.17 <∼ rs <∼ 2

1 <∼ Γ <∼ 6

Direct-drive ignition at
the NIF [Paisner 1994, Hu 2010]

2.5 <∼ n <∼ 3 69 <∼ Te <∼ 464

Ti = Te

0.2 <∼ θ <∼ 0.8

1.75 <∼ rs <∼ 1.86

0.5 <∼ Γ <∼ 3

Solid Be heated by 4-5 keV

pump photons [Landen 2001]
2 <∼ n <∼ 4 11 <∼ Te <∼ 110

Ti = Te

0.07 <∼ θ <∼ 1.15

1.6 <∼ rs <∼ 2

2 <∼ Γ <∼ 10

∗ Laser-driven shock-compressed
aluminum [Ma 2013]

n ' 5.46 Te ' 100

Te/Ti ' 5

θ ' 0.5

rs = 1.435

Γ ' 50

† Laser-driven shock-compressed
Be sample [Glenzer 2007]

n ' 2.28 Te ' 139

2 <∼ Te/Ti <∼ 20

θ ' 0.88

rs = 1.92

7.5 <∼ Γ <∼ 75

‡ Laser-driven shock-compressed
Be sample [Lee 2009]

n ' 6.7 Te ' 150

1.8 <∼ Te/Ti <∼ 6.5

θ ' 0.95

rs = 1.34

4 <∼ Γ <∼ 16

∗Te/Ti was evaluated in Refs. [Clérouin 2015b, Harbour 2016]
†Te/Ti was evaluated in Ref. [Harbour 2016]
‡Te/Ti was evaluated in Refs. [Plagemann 2015, Harbour 2016]
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In addition, the ions are strongly coupled and the coupling parameter is
considered to be 1 <∼ Γ <∼ 50. For completeness, I mention that relativistic
effects will not be considered in this work. Therefore, a lower bound to
the density parameter is identified as rs � 0.014, which follows from the
condition vF � c (with vF = h̄kF /me), which means that the characteristic
velocity of the electrons is significantly smaller than the speed of light.

2.3 Multi-scale approach

The complete information about the considered system is contained in the
full electron-nuclear wave function. However, it is conventionally assumed
that a plasma of electrons and ions can be considered as a combination of
two subsystems: electrons moving in the field of inert ions, and ions moving
in the electronic medium. This is usually referred to as the multi-scale
approach [Ludwig 2010]. Based on the fact that the mass of an ion is much
larger than that of an electron, such a picture is justified by the following
physical reasons:

• The characteristic time scales of electrons and of ions differs drastically
because τe/τi ∼

√
me/mi.

• The ions are considered to be classical due to their large mass.

• When an electron collides with an ion, the momentum transfer to
the ion is negligible compared to that of due to ion-ion collision, and
the ion interacting with other ions can be considered as moving in a
polarizeable medium of electrons.

The multi-scale approach has long been widely used since it is intuitively
clear. In spite of this, a rigorous separation of the electronic and ionic mo-
tion by an exact factorization of the full electron-ionic wave function was
performed only recently in Ref. [Abedi 2010]. This exact splitting of the
degrees of freedom of ions and electrons is a proper starting point for the
systematic derivation of the mixed quantum-classical picture. Therefore,
in what follows, a brief discussion of the road from the full quantum pic-
ture to the mixed quantum-classical one is outlined, from which the main
approximations inherent to the multi-scale approach become more evident.
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∗ The Schrödinger equation for the complete electron-ionic wave function
reads

ĤΨ
(
r,R, t

)
= ih̄∂tΨ

(
r,R, t

)
, (2.1)

with the Hamiltonian taking into account interparticle interactions and the
impact of an external time-dependent potential

Ĥ = T̂e + T̂i + Ŵee + Ŵii + Ŵei + V̂eext + V̂iext, (2.2)

where T̂e (T̂i) is the electronic (ionic) kinetic energy operator, Ŵee (Ŵii) is
the electron-electron (ion-ion) interaction, Ŵei is the electron-ion interac-
tion, V̂eext (V̂iext) is the potential energy of electrons (ions) due to an external
potential, r = (r1, ..., rNe) and R = (R1, ...,RNi) denote the coordinates of
the electrons (with the total number Ne) and ions (with the total number
Ni), respectively. The pair interaction between particles is given by the
Coulomb potential.

Following Refs. [Abedi 2010, Bao 2016], the exact solution of the Schrö-
dinger equation for the complete electron-ionic wave function can be written
as

Ψ
(
r,R, t

)
= ψR

(
r, t
)
χ
(
R, t

)
exp

[
i

h̄

∫ t

t0

〈
Ĥe(τ)

〉
R

dτ

]
, (2.3)

where 〈...〉R is the expectation value, at a given ionic configuration R, of
the operator

Ĥe = T̂e + Ŵee + Ŵii + Ŵei + V̂eext + Q̂, (2.4)

and

Q̂ =

Nν∑
ν=1

me

mi

[
(−ih̄∇ν + eAν

(
R, t

)
)2

2me

+
1

me

(
−ih̄∇νχ
χ

− eAν

(
R, t

))
(−ih̄∇ν + eAν

(
R, t

)
)

]
, (2.5)

with Aν

(
R, t

)
= ih̄/e

〈
ΦR

(
r, t
) ∣∣∣∇νΦR

(
r, t
)〉

representing the so-called
Berry connection (vector potential) [Berry 1984, Xiao 2010, Resta 2000],

∗The main results of this thesis (chapters 3 and 4) are independent from the presented
discussion of the splitting of the ionic and electronic degrees of freedom. The latter is
given to illustrate the place of the QHD in the broader context of many-body physics.
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and the notation ΦR

(
r, t
)

= ψR

(
r, t
)

exp

[
i
h̄

∫ t
t0

〈
Ĥe(τ)

〉
R

dτ

]
(t > t0).

In the considered case, using an analogy to the relation of the vector poten-
tial and its curl from electromagnetism, ∇×Aν

(
R, t

)
can be described as

the microscopic magnetic field induced by ion motions [Abedi 2010].
Making use of the ansatz (2.3) gives the following differential equations

for the electronic, ψR

(
r, t
)
, and ionic, χ

(
R, t

)
, wave functions [Abedi 2010,

Bao 2016]:

ĤeψR

(
r, t
)

= ih̄∂tψR

(
r, t
)
, (2.6)(

T̂i + V̂iext +
〈
Ĥe

〉
R

)
χ
(
R, t

)
= ih̄∂tχ

(
R, t

)
. (2.7)

Eqs. (2.6) and (2.7) represent the time-dependent Schrödinger equation
for the two component coupled electron-ion system. Apart from Ŵei, the
electronic subsystem is coupled to the ions due to the presence of the terms
Ŵii and Q̂ in the equation for the electronic wave function (2.6) via Hamil-
tonian (2.4), and the ionic subsystem is coupled to the electrons due to the
term

〈
Ĥe

〉
R

in Eq. (2.7). These connections are due to the fact that the lo-

cation and motion of the ions depend on the state of the electrons, which, in
turn, parametrically depends on the ionic coordinates. The solution of Eqs.
(2.6) and (2.7) provides the formally exact wave function of the system,
but is computationally highly challenging.

To facilitate the description, we can introduce a set of reasonable ap-
proximations based on the fact that mi � me:

(i) Taking the limit me/mi → 0, it is assumed that Q̂ = 0. This limit is
commonly referred to as the Born-Oppenheimer approximation in the
literature [Cederbaum 2008]. Therefore, the parametric dependence of
the electronic wave function on the location of the ions is only due to
scalar potentials.

(ii) Electronic dynamics are considered with fixed (immobile) ions, mean-
ing that Ŵii in Eq. (2.4) is time independent when it is used in Eq.
(2.6). Therefore, Ŵii is neglected in Eq. (2.6), since, in this case,
Ŵii = Wii(R) is a constant and shifts the eigenvalues only by a finite
constant.
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(iii) The ions are treated classically. Therefore, the Wentzel-Kramers-
Brillouin approximation [Landau 1965, Brown 1972] can be used to
generate classical equations of motion of the ions on the basis of Eq. (2.7).

Approximations (i)− (iii) form the basis of the multi-scale approach to the
two-component plasmas considered in this work. From Eq. (2.6), assump-
tions (i) and (ii) lead to the following equation for the electrons:

ih̄∂tψR

(
r, t
)

=
(
T̂e + Ŵee + Ŵei + V̂eext

)
ψR

(
r, t
)
. (2.8)

The many-particle Schrödinger equation (2.8) describes the electrons
moving in the field of the fixed ions. Further simplification is achieved by
description of the dynamics of the quantum electrons in terms of the elec-
tron density n(r, t) and the electron current density j(r, t). The possibility
of the description in terms of the continuum variables is guaranteed by the
Hohenberg-Kohn-Mermin theorem of DFT [Hohenberg 1964, Kohn 1965,
Mermin 1965] and the Runge-Gross theorem of time-dependent (or current)
DFT [Runge 1984, Pribram-Jones 2016])∗. Additionally, from assumption
(iii), the classical equations of motion for ions follow. Thereby, the elec-
tronic dynamics are described by the continuity and momentum equations
[Giuliani 2008], while the ions are driven classically† [Ullrich 2014]:

∂

∂t
n (r, t) +∇ · [j (r, t)] = 0, (2.9)

me
∂

∂t
j (r, t)− n (r, t) eE(r, t) = −∇ ·Σ(r, t), (2.10)

−∇R

[
Wii + Viext +

∫
drn(r)Wei([n(r)]; R)

]
= mi

∂2

∂t2
R(t). (2.11)

where Σ denotes a tensor—the exact form of which is not known—that
contains all many-particle and quantum effects [Tokatly 2007, Gao 2010]
(including correlations and dissipation), and E is the strength of the electric
field.

Eqs. (2.9)-(2.11) constitute the general form of the quantum fluid the-
ory of dense plasmas within the multi-scale approach. If the microscopic
∗The discussion of the electronic density and current within TD-DFT at finite tem-

perature can be found in Ref. [Pribram-Jones 2014].
†Here, to avoid unnecessary complication of the discussions, the terms due to a mag-

netic field are dropped. The relevant discussion of the case with non-zero magnetic field
is provided in chapter 3.
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consideration of ionic dynamics is replaced by the hydrodynamic one, the
description is simplified to the two-fluid model, which, e.g, is widely used for
the investigation of laser plasmas [Mulser 2010]. The consistent derivation
of Σ—introduced in Eq. (2.10)—at finite temperature in a proper approx-
imation for the description of quantum electrons at the considered plasma
parameters is the content of chapter 3 and the investigation of the structural
properties of the ions in the medium consisting the quantum electrons—in
accord with Eq. (2.11)—is the subject of chapter 4.

2.4 Motivations for the revision of the foundations
of QHD

Methods involving an accurate self-consistent quantum kinetic treatment
of non-ideal dense quantum plasmas are challenging both theoretically and
computationally. Consequently, as a simplified model for the study of quan-
tum plasmas, the QHD has been adopted and widely used in recent years.
A commonly used QHD model is based on Eqs. (2.9) and (2.10) with Σ

that takes into account the pressure of ideal electrons, P , and the Bohm
potential, VB, i.e.,

−∇ ·Σ(r, t) = −∇P [n(r, t)]− n (r, t)∇VB[n(r, t)]. (2.12)

In Eq. (2.12), P and VB were used with some ad hoc fitting parameters,
which are discussed in more detail below.

In the ground state, θ � 1, the QHD closure (2.12) was derived by
different authors using different approaches. Here, the two most general and
representative of them are discussed. The interested readers are refereed to
Ref. [Khan 2014] for the relevant historical details, corresponding discussions
in a pedagogical manner, and additional reference.

The first way which was used to derive the QHD equations [Manfredi 2001]
(with Σ given by Eq.(2.12)) is based on the equation governing the evolu-
tion of the one-particle Wigner function in mean field approximation (the
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quantum Vlasov equation)∗(
∂

∂t
+ v · ∇

)
fW (r,v, t)− ime

h̄

∫ ∫
ds

(2πh̄)3
dv ′eime(v−v

′)s/h̄

×
[
Veff

(
r +

s

2

)
− Veff

(
r− s

2

)]
fW (r,v, t) = 0, (2.13)

where v is the electron velocity, Veff is the total self-consistent potential,
and fW is the one-particle Wigner function [Wigner 1932, Bonitz 2016]

fW (x,v, t) =
me

(2πh̄)3

K∑
i=1

wi

∫ ∞
−∞

dsψ∗i

(
r +

s

2
, t
)
ψi

(
r− s

2
, t
)
eimev s/h̄

(2.14)
with wi being the probability that the system is in state i.

The zero and first order moments of the one-particle Wigner distribution
function give the density distribution, n(x, t) =

∫
fW (x,v, t)dv, and the

velocity distribution, v(x, t) = 1
n0

∫
vfW (x,v, t)dv, respectively; here n0

denotes the mean number density of the electrons. In Ref. [Manfredi 2001],
the QHD model based on closure (2.12) was derived assuming that ψi (r, t) =

A(r) exp (iS(r, t)/h̄), where all orbitals have the same amplitudes Ai(r) =

A(r), and taking the first two moments of Eq. (2.13). This model was used
for the study of a large variety of processes involving quantum electrons
such as linear and non-linear waves, screening etc. [Shukla 2011]. In this
formulation, the electronic pressure and Bohm potential are used in the
following form:

P = PDF (Te, n0)

(
n(r)

n0

)(D+2)/D

, (2.15)

VB = γ
h̄2

8m

(∣∣∣∣∇nn
∣∣∣∣2 − 2

∇2n

n

)
, (2.16)

where PDF is the Fermi pressure of a D-dimensional fermion system, n0 is
the mean electronic density, and γ is a correction coefficient.

An alternative approach—well known in the field of solid-state physics—
to derive the closure relation (2.12) (at θ � 1) is based on the variational
principle [Ying 1974, Eguiluz 1975],

δ

∫ t2

t1

L[n(r, t), w(r, t)]dt = 0, (2.17)

∗This approach can be improved by taking into account electronic correlations by
using, e.g., famous BBGKY hierarchical equations [Bonitz 2016].
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applied to the Lagrangian

L[n(r, t), w(r, t)] =

∫
n(r, t)

∂w(r, t)

∂t
dr−H[n(r, t), w(r, t)], (2.18)

where w is the scalar field defined as v = −∇w, and H is a semi-classical
electronic Hamiltonian, a further discussion of which is given in chapter 3.

In Refs. [Manfredi 2005, Eliasson 2008], the choice D = 1 was made
in order to study the high frequency electronic oscillations, but—at the
same time—using kF for the three-dimensional system. This was justi-
fied by the agreement with the correct RPA result for the plasmon dis-
persion relation. Because of the same reason, the Bohm potential (2.16)
with the pre-factor γ = 1 was used. Further, an approximate exchange-
correlation potential for the static (equilibrium) case at θ � 1 was added to
the Bohm potential in order to extend the model to the case of correlated
electrons [Crouseilles 2008]. Similarly, in plasmonics, the QHD model is
used with fitting parameters [Yan 2015, Yan 2016, Ciracì 2016] correspond-
ing to additional prefactors of the Fermi pressure and the Bohm potential
and with an exchange correlation potential which is derived for the the static
(equilibrium) case. In general, it was found that these parameters depend
on the characteristic length-scale and time-scale of the physical problem
and, moreover, these pre-factors are found to be a function of the density
and temperature; thereby, resulting in complicated parametric dependencies
[Haas 2015, Eliasson 2008, Moldabekov 2015b, Stanton 2015]. This led to
some confusion and, therefore, to the usage of the QHD model beyond its
range of applicability. For example, applying the QHDmodel for the descrip-
tion of the screening of a point-like ion charge by fully degenerate electrons
with the assumption γ = 1, the discovery of a new attraction mechanism
between ions was reported [Shukla 2012, Akbari-Moghanjoughi 2013]. This
was clearly shown to be an artifact due to the usage of the QHD model
outside the scope of applicability [Bonitz 2013a, Bonitz 2013c]. Finally, it
was revealed that the “novel attractive force” from Ref. [Shukla 2012] is
just the result of the invalid description of the well-known Friedel oscilla-
tions [Moldabekov 2015b] and that a more accurate description of the static
screening at θ � 1 is provided by the choice γ = 1/9. Another example is
the implementation of the correction factor of 1/9 to study the propagation
of surface waves in a half-space quantum plasma in Ref. [Khalilpour 2015].
This was consequently criticized because this factor was derived for the static
case only [Akbari-Moghanjoughi 2016].
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Therefore, the QHD model with the above mentioned correction factors
is far from being a reliable model for the large scale simulation of dense
quantum plasmas. For instance, if the interaction of the ion beam with an
quantum plasma or a streaming dense plasma is considered [Ludwig 2010],
the relevant frequency is given by the relation ω = k · v and, thereby,
neither of the correction factors describing different liming cases (high or low
frequency) can be used (where v is the penetrating ion or streaming velocity,
and k is the wave vector which varies during the simulation). Additionally,
the QHD model, in this formulation, has the following drawbacks:

• The quantum non-locality is taken into account approximately by the
Bohm potential, which is the first order correction due to quantum
diffraction effects in the non-interacting electron limit [Michta 2015,
Moldabekov 2015b]. Therefore, in this sense, the QHD model cannot
provide a full quantum mechanical treatment even in the case of ideal
electrons.

• The exchange-correlation term derived for the equilibrium case and
incorporated on the basis of the variational principle [Crouseilles 2008,
Yan 2015, Ciracì 2016], is applicable only for the low frequency case
and the use of it for the study of the high frequency phenomena like
plasmon dynamics is unjustified in the absence of a benchmark by a
more accurate method.

Knowing the limitations and drawbacks of the previously used QHD
equations, in the next chapter the QHD equations at finite temperature and
the needed closure relations are formulated in a more consistent way and
with a clear discussion of the introduced approximations.

In a nutshell, in this chapter: The plasma state under consideration
in terms of both dimensional and dimensionless parameters was described.
Recent experiments in which the considered plasma parameters were real-
ized were specified. The multi-scale approach, which lies at the heart of
most theoretical considerations of the two component electron-ion plasma,
was discussed. Limitations and open questions of the previously used QHD
models, and the motivation for the revision of them from the very founda-
tions were provided.
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After setting the framework from both the theoretical and the experi-
mental perspective, in this chapter the consistent formulation of the QHD
equations at finite temperature and the derivation of the closure relations
determining the potentials for the QHD are presented. The latter allows
to take into account quantum non-locality as well as exchange-correlation
effects in the QHD description of a dense plasma. Moreover, the deter-
mined QHD model agrees with the OF-DFT in the static limit. Further,
a generalized fully non-local Bohm potential is proposed. As an appli-
cation of the obtained closure relations and of the generalized non-local
Bohm potential, the existing QHD results are revised and, in part, im-
proved with a clear description of the used approximations. Additionally,
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the density gradient correction to a non-interacting free energy density func-
tional and the Bohm potential for the two- and one-dimensional cases are
derived and analyzed. The applicability of the QHD equations in the pres-
ence of an external magnetic field is discussed. The formulas for func-
tional derivatives needed to follow the derivations in this chapter are listed
in Appendix A. The results presented in this chapter were published in
Refs. [Moldabekov 2018a, Moldabekov 2017a].

3.1 Derivation of the QHD equations at finite tem-
perature

As discussed in chapter 2, there are two ways to derive the QHD equations.
One can employ a kinetic equation to derive relations between the zero and
first order moments of the one particle distribution function. Alternatively
a derivation can be realized in a field-theoretical manner by variation of
the semiclassical Lagrangian of the electrons. In this chapter an approach
equivalent to the latter procedure is used. Starting from a semi-classical
Hamiltonian of the electrons, we derive the QHD equations by using Hamil-
ton’s equations. This is possible due to the simultaneous existence of a
one-body density n(r) and a velocity field v(r) realized by a determinantal
(antisymmetrized) wave function for N ≥ 4 particles [Lieb 2013].

We start from the magnetic field free case with the semi-classical Hamil-
tonian of the electrons in the form:

H[n(r, t), w(r, t)] = E[n(r, t)]−
∫
eVextn(r, t)dr

+

∫
men(r, t)

2
|∇w (r, t)|2 dr +

e2

2

∫
n(r, t)n(r′, t)

|r− r′|
drdr′, (3.1)

where w is the scalar potential determining the velocity field by v = −∇w,
E[n] = Eid[n]+Exc[n] is the sum of the kinetic and the exchange-correlation
energy functionals, and Vext refers to the external electric potential.

Hamilton’s equations, with n(r, t) and mew(r, t) being canonically con-
jugate field variables, read [Lurie 1968]:

δH[n(r, t), w(r, t)]

meδw(r, t)
= −∂n(r, t)

∂t
, (3.2)

δH[n(r, t), w(r, t)]

δn(r, t)
= me

∂w(r, t)

∂t
. (3.3)
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Using Eq. (3.1) in Hamilton’s equations (3.2) and (3.3), the following equa-
tions of motion, which are the basis of the QHD are obtained [Ying 1974,
Banerjee 2000]:

∂

∂t
n (r, t) = ∇ · [n (r, t)∇w (r, t)] , (3.4)

me
∂

∂t
w (r, t) =

δE[n]

δn
− eVext + e2

∫
n(r′, t)

|r− r′|
dr′ +

1

2
me |∇w (r, t)|2 . (3.5)

Taking into account the relations v = −∇w and (v · ∇)v = 1
2∇(∇w)2, the

QHD equations can be formulated in terms of the average density n (r, t), ve-
locity v (r, t), and the generalized force−∇µ [r, t] [Ying 1974, Banerjee 2000]

∂

∂t
n (r, t) = −∇ · [n (r, t) v (r, t)] , (3.6)

me
∂

∂t
v (r, t) +me [v (r, t) · ∇] v (r, t) = −∇µ (r, t) , (3.7)

µ[n(r, t)] =
δE[n(r, t)]

δn(r, t)
+ eϕ(r, t), (3.8)

where the following effective potential is introduced:

ϕ(r, t) = e

∫
n(r′, t)

|r− r′|
dr′ − Vext. (3.9)

The derived QHD equations describe a curl-free flow.
The QHD equations (3.6), (3.7), and (3.8) are formulated in the micro-

canonical ensemble, as they are derived from the semi-classical Hamiltonian
(3.1). In previous works [Yan 2015, Michta 2015], Eqs. (3.7) and (3.8) were
derived for the case of fully degenerate electrons (θ � 1), where the utilized
potential µ[n(r, t)] was obtained by substituting the following Tomas-Fermi
energy density functional including the first order density gradient correction
into Eq. (3.8):

Eid([n], T ) = ᾱ

∫
E0[n(r)]dr + γ

h̄2

8me

∫
| ∇n(r) |2

n(r)
dr. (3.10)

In Eq. (3.10), E0 is the energy density in the local density approximation,
ᾱ and γ are the correction factors that were introduced in chapter 2. The
Bohm potential appears in quantum hydrodynamics via µ[n(r, t)] due to
the functional derivative of the leading order term of the density gradient
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correction (the second term on the right hand side of Eq. (3.10)), which is
found using Eq. (A.2):

VB = γ
h̄2

8me

δ

δn

(∫
| ∇n(r) |2

n(r)
dr

)
= −2

h̄2

8me
γ
∇2n(r)

n(r)

+O
(

(ñ/n0)2
)
, (3.11)

where ñ = n(r)− n0 is the density perturbation. A discussion of the coeffi-
cients ᾱ and γ will be provided later in subchapter 3.4, after a more general
closure relation that determines µ[n(r, t)] is derived.

The applicability of the aforementioned low temperature QHD model
to high-energy-density plasmas is severely limited due to the importance of
thermal excitations in such systems. To properly extend the QHD equa-
tions to finite temperature the grand canonical ensemble is employed. Note
that the considered system is infinite and quasi-neutral so that the pair
interaction is screened. Therefore, according to Ref. [Campa 2009], the con-
ditions for the equivalence of the different statistical ensembles are fulfilled∗.
At finite temperature, equations (3.4) and (3.5) have the same form, but
the quantities n, v (with corresponding w), and µ (or equivalently δE

δn )
are replaced by their expectation values in the grand canonical ensemble
[Zubarev 1971]. The following relation holds for the expectation value in
the grand canonical ensemble of the functional derivative of the energy with
respect to the density variation [Zubarev 1971]:〈

δE

δn

〉
=
δΩ

δn
, (3.12)

with the grand potential

Ω[n(r)] = F [n(r)]− µ0N, (3.13)

where F [n] is the free energy functional, µ0 = const is the chemical potential
of the system in thermodynamic equilibrium, and N =

∫
n(r)dr is the mean

number of particles in the grand canonical ensemble. The proof of the
equality (3.12) is given in Appendix B.

∗ Non-neutral plasmas and self-gravitating systems are examples for which the ensem-
ble equivalence does not hold [Campa 2009].
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Using Eqs. (3.8), (3.12), and (3.13), we find the following potential of
the generalized force at finite temperature:

µ[n(r, t), T ] + µ0 =
δF [n(r, t)]

δn(r, t)
+ eϕ(r, t). (3.14)

Further, F [n] = Fid[n]+Fxc[n] is decomposed into the ideal (non-interacting)
contribution, Fid[n], and the exchange-correlation part, Fxc[n] ∗.

3.2 Non-interacting free energy functional

First, the ideal system is considered, where Fxc[n] = 0. In the previous
works (discussed in chapter 2) electronic quantum non-locality effects were
taken into account via the Bohm potential (3.11), which in the case of a
weak density perturbation is proportional to ∇2n/n. This approximation is
valid in the long wavelength limit [Perrot 1979], i.e., far from a test charge
that induces the electronic density perturbation. At large wavenumbers
(short distances) the previously used QHD model is not applicable. In the
next chapter, the investigation of the structural properties of strongly cou-
pled ions in quantum plasmas will reveal that the inclusion of the large
wavenumbers in the treatment of the electronic subsystem is vital at θ . 0.1.
Another example that shows the importance of quantum non-locality effects
is presented in Appendix C, where a quantum wakefield in dense plasmas
is considered. Thus, it is important to inquire whether the long wavelength
approximation can be avoided.

The basic idea is to compute the density response function, ΠQHD(k, ω) =

δñ(k, ω)/eδϕ̃(k, ω), of the electrons to the perturbation by the effective field
δϕ̃(k, ω) (cf. Eq. (3.9)) using the QHD under the condition that it coin-
cides with the polarization function of linear response theory in the whole
frequency-wavenumber range. In the case of uncorrelated electrons the ob-
vious choice is hence to use the RPA polarization function, i.e,

Πid
QHD(k, ω) ≡ ΠRPA(k, ω), (3.15)

∗It should be noted that in the static long wavelength limit, the determination of the
generalized force, −∇µ[n(r, t), T ], is equivalent to setting the pressure tensor P in the
standard fluid theory [Chihara 2001],

∇ ·P = n(r, t)∇δF [n(r, t)]

δn(r, t)
.
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where Πid
QHD(k, ω) is the QHD polarization function when assuming that

Fxc[n] = 0. This ansatz will result in a generalized fully non-local Bohm
potential since the RPA polarization function is non-local.

From Eq. (3.14), for an equilibrium density profile n0(r) (that is current-
free, with w0(r) = 0 and µ[n(r, t), T ] = 0) the following Euler-Lagrange
equation underlying OF-DFT can be easily obtained

δF [n0(r)]

δn0(r)
+ eϕ0(r) = µ0, (3.16)

where µ0 is a constant (the chemical potential at equilibrium). Now, the
equilibrium system satisfying Eq. (3.16) is subject to an external perturba-
tion. This leads to n(r, t) = n0(r) + n1(r, t), w(r, t) = w1(r, t), ϕ(r, t) =

ϕ0(r) + ϕ1(r, t), with n1, w1 being the change in density, and velocity field
potential, respectively, induced by the perturbation, ϕ1(r, t). In this case
the Taylor expansion of the functional derivative of the free energy is given
by

δF [n]

δn(r)
=
δF [n]

δn(r)

∣∣∣∣
n=n0

+

∫
dr′

δ2F [n]

δn(r, t)δn(r′)

∣∣∣∣
n=n0

n1(r′) + . . . . (3.17)

In first order in the perturbation, using Eqs. (3.16) and (3.17) in com-
bination with the continuity and the momentum equations we find

∂n1(r, t)

∂t
−∇ · (n0∇w1) = 0, (3.18)

me
∂w1(r, t)

∂t
= eϕ1(r, t) +

∫
dr′

δ2F [n]

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

n1(r′, t), (3.19)

where w1, by definition, determines the velocity perturbation, v1 = −∇w1.
The last term on the right hand side of Eq. (3.19) represents the total
potential incorporating the Fermi pressure, Bohm potential and, in general,
the exchange-correlation terms when Fxc[n] 6= 0.

Now, in order to connect the term δ2F [n]
δn(r,t)δn(r′,t)

∣∣∣
n=n0

with the polariza-

tion (density) response function from linear response theory, the equilibrium
density is assumed to be uniform. Using the Fourier transform to frequency
and wavenumber space (k, ω), which is denoted by F, Eqs. (3.18) and (3.19)
yield

−iωñ1 + k2n0w̃1 = 0, (3.20)



3.3. Exchange-correlation potential for QHD 39

−iωw̃1 =
eϕ̃1

me
+ F

[
δ2F [n]

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
ñ1

me
. (3.21)

The QHD result for the inverse polarization function Π−1
QHD(k, ω) = eϕ̃1/ñ1

is deduced from Eqs. (3.20) and (3.21):

Π−1
QHD(k, ω) =

meω
2

n0k2
− F

[
δ2F [n]

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
. (3.22)

For the non-interacting case, i.e., Fxc[n] = 0, and Πid
QHD = ΠRPA, we find

the following relation:

− F

[
δ2Fid

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
=

1

ΠRPA(k, ω)
− 1

Π0(ω)
, (3.23)

where Π0(ω) denotes the long-wavelength limit of the RPA polarization
function,

Π0(ω) ≡ lim
k→0

ΠRPA(k, ω) =
k2

ω2

n0

me
. (3.24)

As was mentioned previously, Eq. (3.23) takes into account both the Fermi
and Bohm potential.

Note that, in the static limit where
[
Π0(ω = 0)

]−1
= 0, the relation

(3.23) reduces to that which is used in the OF-DFT for the construction of
a non-interacting free energy functional for the application in dense plasma
and warm dense matter simulations [Sjostrom 2013a].

The next question to be addressed is how correlation effects can be con-
sistently included in the QHD description. This question is discussed in the
following subchapter.

3.3 Exchange-correlation potential for QHD

At this point we also take into account the exchange-correlation contribution
to F [n]. Thereby, the polarization function is extended from the ideal to the
interacting one, Πid

QHD → ΠQHD. Previously, for the case θ � 1, exchange-
correlation contributions were included in QHD only in a phenomenological
manner [Crouseilles 2008].

It is known from DFT and linear response theory that the exchange-
correlation effects can be included using a so-called local field correction
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[Sjostrom 2014b, Ichimaru 1982]. We use this approach to take into account
the exchange-correlation potential in the QHD model.

First of all, substituting F = Fid + Fxc into Eq. (3.22) we find:

1

ΠQHD(k, ω)
=

1

Π0(ω)

− F

[
δ2Fid[n]

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
− F

[
δ2Fxc[n]

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
. (3.25)

Taking into account Eq. (3.23) we have

1

ΠQHD(k, ω)
=

1

ΠRPA(k, ω)
− F

[
δ2Fxc[n]

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
. (3.26)

The polarization function given by Eq. (3.26) can be rewritten in a more
familiar form as

ΠQHD(k, ω) =
ΠRPA(k, ω)

1− F

[
δ2Fxc

δn(r)δn(r′)

∣∣∣
n=n0

]
ΠRPA(k, ω)

. (3.27)

On the other hand, the polarization function of a correlated electron gas can
be expressed in terms of a local field correction as [Ichimaru 1982]:

ΠLFC(k, ω) =
ΠRPA(k, ω)

1 + ũ(k)G(k, ω)ΠRPA(k, ω)
, (3.28)

with ũ(k) = 4πe2/k2 being the Fourier transform of the Coulomb potential.
From the requirement that the correlated QHD polarization is in agreement
with the latter result, i.e., ΠQHD(k, ω) ≡ ΠLFC(k, ω), we arrive at the closure
relation for the exchange-correlation free energy:

F

[
δ2Fxc

δn(r)δn(r′)

∣∣∣∣
n=n0

]
= −ũ(k)G(k, ω). (3.29)

Note that a similar result was obtained in the context of TDDFT [Runge 1984,
Giuliani 2008].

Now, in the case of the homogeneous equilibrium (static) density distri-
bution, we can write down the derived QHD momentum equation taking
into account exchange-correlation effects:

me
∂w1(r, t)

∂t
= eϕ1(r, t) +

(
δF [n(r)]

δn(r)

)(1)

, (3.30)
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with the non-local potential

(
δF [n(r)]

δn(r)

)(1)

=

∫
dr′ n1(r′, t)

[[[ ∫
dk

(2π)3
dω ei[k·(r−r

′)−ωt](
− 1

ΠRPA(k, ω)
+

1

Π0(ω)
− 4πe2

k2
G(k, ω)

) ]]]∣∣∣∣
n0

. (3.31)

This case, for instance, is relevant to ICF plasmas, where a macroscopic
density gradient scale length, L = n0/|∇n0|∼ 100 µm, is larger than all
characteristic microscopic length scales [Bates 2018] (for comparison, the
wavelength of an ion-acoustic wave is . 0.1 µm).

In the case of the inhomogeneous equilibrium density distribution, simi-
larly to the standard approach of the OF-DFT, Eqs. (3.29) and (3.23) deter-
mining δ2F [n]

δn(r,t)δn(r′,t)

∣∣∣
n=n0

allow to find a proper non-local free energy density

(e.g., Refs. [Wang 1992, Garcia-Aldea 2012, Sjostrom 2013a, Huang 2010,
Sjostrom 2014b, Witt 2018]). In the next subchapter, this will be demon-
strated by re-deriving the fluid equations within the well established Thomas-
Fermi (TF) approach with the Kirzhnitz-von Weizsäcker density gradient
correction.

To have a closed set of QHD equations the information about the local
field correction, G(k, ω), is needed. In quantum plasma physics, the local
field correction has been studied for a long time. For example, the analytic
properties of the dynamic local field correction—such as the asymptotic
expansion—were studied in detail by Kugler [Kugler 1975], and the inter-
polation formula for the dynamic local field correction was considered in
Refs. [Tanaka 1987, Dabrowski 1986]. Hence, this “input” function can be
obtained by a number other methods/approximations.

Let us briefly discuss different methods which can be used to compute
the local field correction. The static local field correction, G(k), can be
computed using the finite temperature Singwi-Tosi-Land-Sjölander approxi-
mation (STLS), which was widely used for the investigation of dense plasma
properties [Tanaka 1986, Tanaka 2017, Sjostrom 2013b]. This approxima-
tion is discussed and analyzed in more detail in chapter 4 in the context of
a quantum plasma with strongly coupled ions. It should be noted that the
most reliable result for G(k) can be obtained from ab initio quantum Monte
Carlo simulations [Dornheim 2016]. In Ref. [Corradini 1998], an analytical
formula ofG(k) for fully degenerate electrons in the ground state, i.e., θ → 0,
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was obtained by a fit to accurate quantum Monte Carlo data [Moroni 1995].
The ab initio calculation of the local field correction at finite temperature
for different values of wavenumber was presented in Refs. [Dornheim 2017a,
Dornheim 2017b, Groth 2017a]. In the long wavelength limit, the static lo-
cal field correction is expressed using the exchange-correlation free energy
density, fxc, of the uniform electron gas by the relation G(k � 2kF , 0) '
− k2F

4πe
∂2nfxc
∂n2 k2, where the result for an accurate parametrization of fxc for

the case of partial degeneracy from Ref. [Groth 2017b] can be used. Further,
the fit formula based on the data from quantum Monte Carlo for both small
and large wavenumbers can written in the form G(k) = A[1− exp

(
−Bk2

)
]

[Vashista 1972, Dandrea 1986], where the values of the coefficients A and B
can be extracted from the pair-distribution function of the uniform electron
gas, g(r), at r → 0 and G(k � 2kF , 0) [Sjostrom 2014b].

Once a proper static local field correction, G(k, 0), is obtained, the dy-
namic result, G(k, ω), can be approximately computed using the method
of moments [Arkhipov 2010]. Alternatively, the dynamic STLS approx-
imation can be employed to compute the dynamic local field correction
[Kumar 2009]. Another approximation often used in warm dense matter and
dense plasma studies is the so-called dynamic collision frequency approach
[Reinholz 2000, Veysman 2016]. The application of this approximation in
QHD will be discussed later in this chapter.

3.4 Local density approximation with gradient cor-
rections

As was discussed earlier, all previous works on the QHD description of quan-
tum plasmas are based on the LDA taking into account the leading order
density gradient correction and relying on various fit parameters. Despite
the wide usage, the previously used QHD models suffer from a number of
inconsistencies as discussed in subchapter 2.4. As an application of the
derived closure relation (3.23), the results of previous works on QHD are
revised and improved in this and the next subchapters.

First, in order to derive a potential related to the Fermi pressure and the
Bohm potential, we set Fxc[n] = 0 and consider the following free energy
functional for the case of a non-uniform (inhomogeneous) electron distribu-
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tion:

Fid[n] = F0[n(r, t)] +

∫
dr a2 [n(r, t)] | ∇ñ(r, t) |2, (3.32)

where ñ(r, t) = n(r, t) − n0 is the density perturbation relative to the con-
stant mean density n0. The term F0 is defined via the free energy density

F0[n] =

∫
f0[n(r, t)]dr. (3.33)

Here, f0[n] and a2[n] are unknown functions which must be found. Func-
tionals in the form of Eq. (3.32) are often referred to as the generalized
Thomas-Fermi (TF) model with the von Weizsäcker-type density gradient
correction [Garcia-Aldea 2012].

In first order in the perturbation, the second order functional derivative
of Eq. (3.32) at n = n0 reads

δ2Fid

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

=
∂2f0[n]

∂n2

∣∣∣∣
n=n0

δ(r− r′) + 2a2[n0]∇ · ∇′δ(r− r′),

(3.34)
where Eqs. (A.1) and (A.2) were used. The Fourier transform of Eq. (3.34)
is given by

F

[
δ2Fid

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
=
∂2f0[n]

∂n2

∣∣∣
n=n0

+ 2a2[n0]k2. (3.35)

Equation (3.23) allows us to express f0[n] and a2[n] systematically using
the RPA. In what follows we will need the real part of the RPA polarization
function, which in equilibrium at arbitrary temperature reads [Arista 1984]

Re ΠRPA(k, ω) = − k2χ2
0

16πe2z3
[g(u+ z)− g(u− z)] , (3.36)

where u = ω/(kvF ) and z = k/(2kF ) are the dimensionless frequency and
wavenumber, respectively, χ2

0 = (πkFaB)−1 ' rs/6.03, and kF = (3π2n)1/3.
In Eq. (3.36), the function g(x) is given by

g(x) = −g(−x) =

∫
y dy

exp(y2/θ − η) + 1
ln

∣∣∣∣x+ y

x− y

∣∣∣∣ . (3.37)

This explicit expression of the RPA polarization was used to study various
limiting cases with respect to frequency and wavenumber. In particular,
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in the limiting case of large or small values of z, we need the following
expansion of the inverse of the real part of the RPA polarization function
[Arista 1984, Wang 2000]:

1

2 Re ΠRPA(z, u)
' ã0 + ã2(2kF )2 z2 + ã4(2kF )4 z4 + ...+ cu2

' ã0 + ã2k
2 + ã4k

4 + ...+
1

2

ω2

k2

me

n0
. (3.38)

Substituting Eq. (3.35) into Eq. (3.23) and using expansion (3.38) we derive
the following equations determining f0[n] and a2[n]:

ã0[n0] = − 1

2

∂2f0[n]

∂n2

∣∣∣∣
n=n0

, (3.39)

ã2[n0] = −a2[n0]. (3.40)

Equations (3.39) and (3.40) are related to the stiffness theorem. The
latter connects the free-energy perturbation (energy, in the case of ground
state) due to an applied external field with an inverse linear response func-
tion. For the proof of this theorem in the ground state see Ref. [Giuliani 2008].
Further, in Appendix D the discussion of the stiffness theorem at finite tem-
perature for the case of a perturbation by an external electric field is given.
Additionally, the consistency of the results of this work with this theorem
is discussed.

In accordance with the standard concept of the LDA, after the coeffi-
cients ã0[n0] and a2[n0] are obtained, the equilibrium density is allowed to
vary in space and time, n0 → n(r, t). In the LDA, the Bohm potential for
any degeneracy parameter is computed from the second term on the right
hand side of Eq. (3.32) using Eq. (A.2):

VB =
δ

δn

∫
dr a2 [n] | ∇n(r) |2

= |∇n|2 ∂a2[n]

∂n
− 2

(
a2[n]∇2n+∇n · ∇a2[n]

)
, (3.41)

where the abbreviation n(r) = n(r, t) is introduced.
It should be stressed that the coefficients ã0 and a2 depend on the con-

sidered limits for k and ω. Obviously, this affects the value of the Bohm
potential. To make this point conspicuous, in the ground state (i.e., at
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θ = kBT/EF ∼ T ×n−2/3 → 0), we rewrite the Bohm potential (3.11) using
Eq. (A.2) in the form:

VB(ω, k) = γ(ω, k)
h̄2

8m

(∣∣∣∣∇nn
∣∣∣∣2 − 2

∇2n

n

)
, (3.42)

where the coefficient γ is now determined by a2([n]; θ � 1) = γh̄2/(8mn),
as it can be seen by comparing Eq. (3.10) with Eq. (3.32) (note that in the
ground state F → E). The coefficient γ depends on the considered values
of the wavenumber and frequency.

The Fermi pressure is related to the functional derivative of the first
term on the right hand side of Eq. (3.32), which at θ → 0 can be written as:

δF0[n]

δn
=
∂f0[n]

∂n
= −

∫
2ã0 ([n], θ → 0)dn = ᾱ(ω, k)EF , (3.43)

where the coefficient ᾱ depends on the considered limit on the k–ω plane.
Eq. (3.43) represents the consistent derivation of the previously artificially
added coefficient ᾱ (see Eq. (3.10)), but now this coefficient is not an arbi-
trary fitting parameter, i.e., ã0 ([n], θ → 0) determines the coefficient ᾱ.

Eqs. (3.39) and (3.40), derived on the basis of the closure relation (3.23),
provide a unified general picture for the understanding of the complex para-
metric dependencies of the pre-factors of both Fermi pressure and Bohm
potential on frequency, wavenumber, density and temperature. Now, using
Eqs. (3.39) and (3.40), we analyze different limits for the coefficients ã0[n]

and a2[n] = −ã2, for different frequency-wavenumber ranges.
In what follows, the coefficients ã0[n] and a2[n] are expressed in terms

of the density n(r) and the dimensionless chemical potential, η = βµ, where
β = 1/(kBT ) is the inverse temperature. We use the relation n(r) =√

2m3/2

π2β3/2h̄3
I1/2[η(r)], which is valid in the local density approximation, to write

the following partial derivatives needed to find the Bohm potential (3.41),

∂η

∂n
= C

1

I−1/2(η)
, (3.44)

∇η = C
∇n(r)

I−1/2(η)
, (3.45)

where C = 2π2β3/2h̄3√
2m3/2 = 4

3nθ
−3/2, and Iν is the Fermi-Dirac integral of order

ν.
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3.4.1. Low frequency and long wavelength limit

First we consider the static long wavelength case, k � 2kF . The results
obtained in this case are valid also for low frequencies, i.e., u � 1 or ω �
kvF . This case is important for the investigation of the screening of a test
charge and the dispersion of low-frequency waves (e.g., ion-acoustic waves) in
plasmas. In a number of publications the static screening of an ion charge in
a quantum plasma was treated incorrectly using the wrong factor γ = 1 for
the Bohm potential [Shukla 2012, Shukla 2008], which—while being valid
for the high-frequency case—is almost by a factor of ten larger than the
proper value for the static case (γ = 1/9). This resulted in the unphysical
prediction of an attraction between ions in an equilibrium dense plasma, for
detailed discussions see Refs. [Bonitz 2013a, Bonitz 2013b, Bonitz 2013c].

In the present limiting case, the coefficients ã0[n] and a2[n] of the ex-
pansion (3.38) read [Perrot 1979, Moldabekov 2015b]:

ã0 [n] = − πe2

2k2
Fχ

2
0H1(η)

, (3.46)

a2 [n] = − h̄2H2(η)

72menH2
1 (η)

, (3.47)

with
H1(η) =

√
θ[n]

2 I−1/2(η), H2(η) = 1

2
√
θ[n]

I−3/2(η).

Substituting Eq. (3.47) into Eq. (3.32) we recover the density gradient
correction derived in Ref. [Perrot 1979] for finite temperatures. This density
gradient correction was used recently to study the ion screening by quantum
electrons [Stanton 2015]. In the case kBT � EF , we have H1 ' 1 and H2 '
−1. In this limit Eq. (3.47) gives the asymptotic result a2 → h̄2/(72mn).
Therefore, for the coefficient in front of the Bohm potential in Eq. (3.42)
we have γ = 1/9 [Perrot 1979, Kirzhnitz 1957]. The convergence of the
expansion (3.38) in the static case at k < 2kF is discussed in Appendix E.

On the other hand, for the static case (ω = 0), it is known that f0 ≡ fTF,
where fTF is the free energy density in the Thomas-Fermi approximation:

fTF ([n], θ) =

√
2m3/2

h̄3π2β5/2

(
ηI1/2(η)− 2

3
I3/2(η)

)
. (3.48)

The second order partial derivative of Eq. (3.48), −1
2
∂2fTF [n]
∂n2 , in the static

long wavelength limit (k � 2kF ) exactly matches ã0[n] given by Eq. (3.46)
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[Perrot 1979]. Finally, the functional derivative of the Thomas-Fermi term
yields:

δFTF

δn
=
η

β
. (3.49)

In the limit θ � 1, we have η = βEF . This leads to the well-known result
δE0/δn = EF (e.g., see Ref. [Michta 2015]). On the other hand, using the
first term on the right hand side of Eq. (3.10), we have δE0/δn = ᾱEF .
Thus, in the static long wavelength limit it is ᾱ = 1.

From the relations (3.44) and (3.45), taking into account the dependence
θ[n] ∼ n−2/3, the finite-temperature generalization of the Bohm potential
can be obtained by substituting Eq. (3.47) into Eq. (3.41). By regrouping
terms, we write the Bohm potential (3.41) as

VB = V1 + V2, (3.50)

where
V1 = −2a2[n]∇2n, (3.51)

and

V2 = |∇n|2 ∂a2[n]

∂n
− 2∇n · ∇a2[n]

= |∇n|2 ∂η
∂n

∂a2[n]

∂η
− 2(∇n · ∇η)

∂a2[n]

∂η

= − |∇n|2 C

I−1/2(η)

∂a2[n]

∂η
. (3.52)

The last line of Eq. (3.52) was found by making use of Eqs. (3.44) and
(3.45). To make the finite temperature Bohm potential look similar to its
zero temperature form, the coefficient γ is generalized to finite temperature:

γ[n] = a2 [n]

(
h̄2

8men

)−1

= −2

9

I−3/2(η)

I2
−1/2(η)

θ−3/2, (3.53)

which equals 1/9 at θ � 1. We use this coefficient in V1 to find

V1 = γ[n]
h̄2

8me

(
−2
∇2n

n

)
. (3.54)

For V2, taking into account that C = 4
3nθ
−3/2, we obtain:

V2 = −γ[n]
h̄2

8me

2I−1/2(η)I1/2(η)

I−3/2(η)

∂a2[n]

∂η
× |∇n|

2

n2
. (3.55)
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Figure 3.1: The factors γ̄, γ, and γγ̄ for the long-wavelength case. From
reference [Moldabekov 2018a].

Further, we introduce one more coefficient:

γ̄[n] = −
2I1/2(η)I−1/2(η)

I−3/2(η)

∂

∂η

(
I−3/2(η)

I2
−1/2(η)

)
. (3.56)

Substituting Eqs. (3.54) and (3.55) into Eq. (3.50), and taking into account
the definition of the coefficient γ̄, Eq.(3.56), the following expression for
the finite-temperature Bohm potential in the static long wavelength limit is
derived:

VB(θ) = γ(θ)
h̄2

8m

(
γ̄(θ)

∣∣∣∣∇nn
∣∣∣∣2 − 2

∇2n

n

)
. (3.57)

The dependence of γ, γγ̄, and the correction coefficient γ̄ on θ are shown
in Fig. 3.1. In the case of fully degenerate electrons, θ → 0, and in the
classical limit, θ � 1, the correction coefficient tends to unity, γ̄ → 1. As
can be seen from Fig. 3.1, the correction coefficient γ̄ is expected to be
important for a partially degenerate plasma with θ ∼ 0.5.

For completeness, it should be mentioned that the finite-temperature
Bohm potential was also recently considered in Ref. [Haas 2015]. In this
work, the coefficient γ given by Eq. (3.53) was found by comparing the lin-
earized QHD result to the RPA result, but the correction coefficient γ̄ was
omitted. The reason for the latter is that the first term of the Bohm poten-
tial in Eq. (3.57) is proportional to (n0/n1)2, where n1/n0 � 1. Thereby,
in Ref. [Haas 2015], after the linearization of the QHD equations the infor-
mation about the term ∼ (n0/n1)2 and the related coefficient γ̄ was lost.
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3.4.2. Short wavelength limit at low frequencies

It is known that in the limit of short wavelengths, the plasma behaves
like a collection of individual particles [Pines 1952], in contrast to pro-
nounced collective behavior in the long-wavelength limit. The behavior
of the coefficients ã0 and a2, determining F0[n] and the gradient correc-
tion in Eq. (3.32), at the transition from the long wavelength to the short
wavelength limit is important for the analysis of QHD results for currently
interesting topics such as plasmonics [Ciracì 2016, Pitarke 2007], quantum
plasmas [Haas 2000] and the application of OF-DFT to dense plasmas (warm
dense matter) [Sjostrom 2014a, Starrett 2017, Karasiev 2012].

In the short wavelength limit, as was shown in Ref. [Jones 1971] for
the degenerate electron gas, the first order density gradient correction has
the form of the von Weizsäcker gradient correction with a2 [n] = h̄2

8men

[Weizsäcker 1935]. In this case we have γ = 1 for the Bohm potential.
Note that the von Weizsäcker gradient correction correctly reproduces the
Kato-Steiner cusp condition [Kato 1957, Steiner 1963] for the electron dis-
tribution close to a test charge (core) [Plumper 1983, Ladányi 1992].

First, we need the expansion of the function ∆g = g(u + z) − g(u − z)
(cf. Eq. (3.37)) in the limit z � 1, which reads [Arista 1984]:

∆g ' 2g(z) + u2g′′(z), (3.58)

where

g(z) =
2

3z
+
I3/2θ

5/2

3z3
. (3.59)

Using Eqs. (3.58) and (3.59) we find

z

∆g
' −3

8
I3/2(η)θ5/2 +

3z2

4
− 3u2

4
+ .... (3.60)

Substituting Eq. (3.60) into the formula (3.36) for the inverse polarization
function,

1

Re ΠRPA(k, ω)
= − 4πe2

χ2
0k

2
F

z

∆g
, (3.61)

and subsequently using the obtained result in the expansion (3.38), we derive
the coefficients ã0[n] and a2[n] in the short wavelength case:

ã0 [n] = − 4πe2

k2
Fχ

2
0

× 3

16
I3/2(η)θ5/2[n], (3.62)
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Figure 3.2: ΠRPA(0, 0)/ΠRPA(k, 0) at θ = 0.1 and various approximations
to it (see the text). From reference [Moldabekov 2018a].

a2 [n] =
h̄2

8men
. (3.63)

Now, we use Eqs. (3.62) and (3.63) to find the coefficients ᾱ and γ. At
θ � 1, by substituting Eq. (3.62) into Eq. (3.39) and subsequently integrat-
ing the result for ∂2f0[n]

∂n2 over n, we find that:

δF0[n]

δn
' 3

5
EF . (3.64)

A finite temperature correction is obtained by expanding ã0 around θ = 0,

δF0[n]

δn
' 3

5
EF +

3π2

8
EF θ

2. (3.65)

The value of ᾱ is determined by the pre-factor in front of EF on the right
hand side of Eq. (3.64). Therefore, the transition from the long wavelength
to the short wavelength limit results in a change of ᾱ in Eq. (3.10) from 1

to 3/5. Additionally, from Eq. (3.63) we find that the coefficient in front of
the Bohm potential in Eq. (3.42) becomes γ = a2 · 8men

h̄2
= 1 [Jones 1971],

and independent of temperature.
Interestingly, in the considered limit k/kF � 1, which can also be un-

derstood as a vanishing number density of the electrons (kF → 0), the von
Weizsäcker gradient correction is the leading term in Fid given by Eq. (3.32)
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[Plumper 1983]. Thus, one can neglect F0 and use Eqs. (3.14) and (3.7) to
find the momentum equation which coincides with the Madelung equation∗

[Madelung 1926, Madelung 1927],

me
∂

∂t
w (r, t)− 1

2
me (∇w (r, t))2 = − h̄2

2me

∇2√n√
n
− eVext, (3.66)

where the following identity was used:

VB (k/2kF � 1) =
h̄2

8me

(∣∣∣∣∇nn
∣∣∣∣2 − 2

∇2n

n

)
= − h̄2

2me

∇2√n√
n

. (3.67)

Therefore, we arrive at the conclusion that in the short wavelength limit
defined as k/kF � 1, indeed, electrons behave like a collection of non-
interacting individual particles with negligible quantum statistical effects.

The applicability of the results obtained in the short wavelengths case
can be gauged by comparing the inverse RPA polarization function with the
expansion result at k/2kF � 1. Such a comparison is presented in Fig. 3.2.
Obviously, the convergence of the expansion in the limit k/2kF � 1 to the
RPA result is rather slow. In contrast, the convergence of the expansion in
the long-wavelength limit, which is also shown in Fig. 3.2, is very good and
it is applicable up to k ' kF .

3.4.3. High frequency limit, ω � h̄k2/2me

This case is important for plasma electrodynamics and related to such pro-
cesses like the optical (Langmuir) oscillations of the electrons as well as the
high-frequency electromagnetic field propagation in plasmas (or interaction
with plasmas).

To find the correct values of the factors γ and ᾱ in the limit u � z

(ω � h̄k2/2me), we need the following expressions [Arista 1984]

g(u+ z)− g(u− z) = 2zg′(u) +
z3

3
g′′′(u), (3.68)

g(u) =
2

3u
+
I3/2θ

5/2

3u3
. (3.69)

∗In the original work by Madelung, the field w was defined using v = ∇w, whereas
here it is v = −∇w.
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Eqs. (3.68) and (3.69) yield

z

∆g
' −9

8
I3/2(η)θ5/2 +

3z2

4
− 3u2

4
+ ... (3.70)

Substituting Eq. (3.70) into Eq. (3.61) and using the obtained result in
Eq. (3.38), we deduce the coefficients ã0[n] and a2[n] in the high frequency
limit,

ã0 [n] = − 4πe2

k2
Fχ

2
0

× 9

16
I3/2(η)θ5/2[n], (3.71)

a2 [n] =
h̄2

8men
. (3.72)

Further, in the case θ � 1, Eqs. (3.71) and (3.39) allow us to obtain the
following formula for the functional derivative of F0[n] at ω � h̄k2/2me:

δF0[n]

δn
' 9

5
EF +

9π2

8
EF θ

2, (3.73)

where the expansion of I3/2(η) at θ � 1 and the equality I3/2(θ → 0) =
2
5θ
−5/2 were used.
From the first term on the right hand side of Eq. (3.73) it follows that, in

the high-frequency limit, for the QHD equations we have the factor ᾱ = 9/5

at θ → 0. This result agrees with previous works [Yan 2015, Halevi 1995],
where this factor was empirically included to find the correct plasmon dis-
persion relation from the linearized QHD equations. Thereby, in the long
wavelength limit, the transition from the low frequency to high frequency
regime leads to the change of the factor ᾱ from 1 to 9/5.

In the past, the foregoing feature of the factor ᾱ led to some confusion
due to the lack of a unifying picture of the various versions of QHD. For
example, in Ref. [Caizergues 2014], ᾱ = 1 was used to compute a photoab-
sorption cross section at high frequencies.

From Eq. (3.72) we see that the pre-factor in front of the Bohm potential
equals γ = 1 as in the short wavelength limit. In the case of high frequencies,
the coefficient a2[n] is independent of the temperature. Therefore, at finite
temperature the Bohm potential is given by Eq. (3.42). This is reasonable
since the movement of the electrons is not affected by thermal excitations
at sufficiently high frequency of the perturbing electric field.
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The correctness of the derived coefficients ã0 and a2 for the high-frequency
case can be checked by using them to derive the well-known plasmon dis-
persion on the basis of the QHD equations:

ω2(k) = ω2
p − 2

[
ã0([n0], θ)− a2([n0], θ)k2

] n0

me
× k2, (3.74)

which, at θ � 1, leads to

ω2(k) = ω2
p +

3

5
v2
Fk

2 +
h̄2k4

4m2
e

, (3.75)

where it is taken into account that 2ã0[n0]n0/me → −3
5v

2
F , at θ � 1, and

that, in the considered case, a2[n] = h̄2/8men.
In the opposite limit of high temperatures, i.e., θ � 1, we have ã0[n0]→

−3
2
kBT
n0

, which yields

ω2(k) = ω2
p + 3v2

thk
2 +

h̄2k4

4m2
e

, (3.76)

with vth =
√

kBT
me

being the thermal velocity.
In the case of fully degenerate electrons, it has thus been shown that

the value of the factors γ and ᾱ depends on the characteristic wavelengths
and frequencies of the phenomena involved. To illustrated this finding, the
different results for the coefficients γ and ᾱ in the k–ω plane are summarized
in Fig. 3.3. Additionally, the obtained coefficients a2[n], γ and ã0[n], ᾱ are
collected in tables 3.1 and 3.2.

Finally, note that the Bohm potential is commonly expressed via
√
n

using Eq. (3.67) [Shukla 2011]. However, from the considered case of low
frequencies and long wavelengths at finite temperature, we see that the
equality (3.67) for the Bohm potential is not always valid. It is evident
that the identity (3.67) holds at finite temperature only if high frequencies
(ω � h̄k2/2me) or short wavelengths (k � 2kF ) are considered.
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Figure 3.3: The factors γ in Eq. (3.42) and ᾱ in Eq.(3.43) for differ-
ent limiting cases (indicated by arrows) at θ � 1 (given in Tables 3.2
and 3.1). The dashed line indicates the well-known plasmon dispersion
ω = ω2

p + (3/5)k2v2
F + (1/4)h̄2k4/m2

e in the RPA. The dash-dot line rep-
resents the ion-acoustic waves multiplied by the factor mp/me. The static
long wavelength limit corresponds to the dashed area. The so-called pair
continuum takes place in the area between curves ω1 and ω2. From reference
[Moldabekov 2018a].

Table 3.1: The value of γ at θ � 1 [cf. Eq. (3.42)] and the result for the
coefficient a2[n] in different limits.

a2[n] γ

ω � h̄k2/2me

k � 2kF

− h̄2H2(η)
72menH2

1 (η)
1/9

ω � h̄k2/2me

k � 2kF

h̄2

8men
1

ω � h̄k2/2me
h̄2

8men
1
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Table 3.2: The value of ᾱ [cf. Eq. (3.43)] and the result for the coefficient
ã0[n] in different limits.

ã0[n] ᾱ

ω � h̄k2/2me

k � 2kF

− πe2

2k2Fχ
2
0H1(η)

1

ω � h̄k2/2me

k � 2kF

− 4πe2

k2Fχ
2
0
× 3

16I3/2(η)θ5/2 3/5

ω � h̄k2/2me − 4πe2

k2Fχ
2
0
× 9

16I3/2(η)θ5/2 9/5

3.4.4. Summary for the LDA case

On the basis of the closure relation for the non-interacting free energy,
the LDA approximation—most commonly used in dense plasma physics—
with the leading order gradient correction was extensively analyzed in this
subchapter. However, it is known from TDDFT, that in case of an inho-
mogeneous electronic system the exchange-correlation kernel (the second-
order functional derivative of Fxc) is not rapidly decaying with |r − r′|; in
contrast to the homogenous case where the exchange-correlation kernel is
short-ranged. This leads to the so-called ultra-non-locality problem of time-
depended DFT, which states that a frequency-dependent adiabatic local
density approximation of an inhomogeneous electronic system does not exist
[Giuliani 2008, Runge 1984]. Nevertheless, the local density approximation
for the exchange-correlation potential can be used if the characteristic length
scale on which the time-dependent potential changes is much smaller than
that of the equilibrium density distribution [Giuliani 2008, Harbola 1998].
In this case, the applicability condition of the QHD equations can be de-
duced from the continuity equation (3.18)

∂n1(r, t)

∂t
= ∇ · (n0∇w1) = n0∇2w1

(
1 +
∇n0 · ∇w1

n0∇2w1

)
.

Here the information contained in the last term in the brackets vanishes in
a uniform electron gas. The ensuing consequence of this is that the LDA is
valid only if

∣∣∣∇n0·∇w1
n0∇2w1

∣∣∣ � 1. In terms of the velocity, |∇n0 · v|� n0|∇ · v|,
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the latter condition yields:

|∇n0|
n0

� |∇ · v|
|v|

. (3.77)

Therefore, the characteristic length scale over which the density distribu-
tion changes must be substantially larger than that of corresponding change
of the velocity.

3.5 Fully non-local Bohm potential

Next it is demonstrated how a fully non-local Bohm potential, that goes
beyond previous works, can be introduced using relation (3.23). We start
from the following ansatz:

Fid[n] = F0[n(r)] +

∫
dr dr′K([n0]; |r− r′|)n1(r, t)n1(r′, t), (3.78)

where the kernel K is symmetric with respect to permutation of r and r′.
Taking the first order functional derivative of the second term on the right
hand side of Eq. (3.78) yields the generalized non-local Bohm potential:

VB =
δ

δn

(∫
dr dr′K([n0]; |r− r′|)n1(r, t)n1(r′.t)

)
. (3.79)

Further, using Eqs. (3.33), (A.1) and (A.3), from Eq. (3.78) we find:

F

[
δ2Fid

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
=
∂2f0[n]

∂n2

∣∣∣∣
n=n0

+ 2K̃([n0]k), (3.80)

where K̃ ([n0]; k) is the Fourier transform of the kernel K.
Substituting Eq. (3.80) into Eq. (3.23), we can express the kernel K̃ in

terms of the known RPA response function and the ideal free energy,

K̃ ([n0]; k) =
1

2

[
− 1

ΠRPA(k, ω)
+

1

Π0(ω)
− ∂2f0[n]

∂n2

∣∣∣∣
n=n0

]
. (3.81)

Thus, the generalized non-local Bohm potential in the first order of the
density perturbation reads

VB '
∫

2K([n0]; |r− r′|)n1(r′)dr′ +O
(

(n1/n0)2
)
, (3.82)
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where the functional K([n0]; |r − r′|) is given by the inverse Fourier trans-
formation of Eq. (3.81).

Eqs. (3.79) and (3.81) can be used to rederive the results of the LDA
from the previous subchapter. To show this, we neglect the imaginary part
of the response function and use Eq. (3.36). Now, we expand the kernel K
in Fourier space∗,

K̃([n0]; k) = ã2[n0]k2 + ã4[n0]k4 + ..., (3.83)

and perform the inverse Fourier transformation,

K([n0]; |r−r′|) = a2[n0]∇·∇′δ(r−r′)+a4[n0](∇)2(∇′)2δ(r−r′)+... . (3.84)

Then we find, taking into account Eq. (3.39), that Eq. (3.79) yields the
Bohm potential in the form of Eq. (3.41) if the first term of the expansion
(3.83) is retained.

As another example of the utility of relation (3.23), the force field µ[n(r, t)],
Eq. (3.14), can be computed via the ansatz [Wang 1992]:

Fid = FTF + FvW +

∫
drdr′ [n(r, t)]aW

(
r− r′, T, n0

) [
n(r′, t)

]b
, (3.85)

where FTF is defined by the Thomas-Fermi free energy density (3.48) and
FvW has the same form as the gradient correction in Eq. (3.32) with a2 =

h̄2/8men (i.e., γ = 1), and a = b = 5/6.
Using the relation (3.23), the kernelW (r− r′, T, n0) is determined using

its Fourier transform as

W̃ (k, ω) = − 1

2abn
(a+b−2)
0

[
1

ΠRPA(k, ω)
− 1

Π0(ω)

]
+

(ã0 − a2)

abn
(a+b−2)
0

, (3.86)

where ã0 is given by Eq. (3.46), and a2 is defined by Eq. (3.72). Recently,
the static version of Eqs. (3.86) and Eq. (3.85) were successfully used for the
description of the thermodynamical properties of hydrogen at warm dense
matter conditions on the basis of the OF-DFT with the accuracy comparable
to that of Kohn-Sham DFT simulations [Sjostrom 2013a].

The ansatz defined by Eqs. (3.85) and (3.86) (or by Eqs. (3.78) and
(3.81)) can be used in the momentum equation (3.14) to simulate the dy-
namics of the non-uniform electron gas within the QHD formalism.
∗Since K is real due to the usage of only the real part of ΠRPA, meaning K̃(−k) =

K̃(k). Thus, the expansion (3.83) contains only even powers of k.
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3.6 Collision effects in the relaxation-time approx-
imation

As an example of the application of relation (3.29) for the exchange-correlation
potential, we consider the relaxation time approximation. In this approxi-
mation, the polarization function is given by

ΠLFC(k, ω) =
ΠRPA(k, ω)

1 + ih̄νΠ̃(k, ω)
, (3.87)

where

Π̃(k, ω) =
1

h̄ω

[
ΠRPA(k, ω)

ΠRPA(k, 0)
− 1

]
. (3.88)

The electron collision frequency ν [Mermin 1970, Ludwig 2010] takes into
account all scattering processes [Bonitz 2016] and must, thus, incorporate a
contribution from both electron-electron collisions [Barriga-Carrasco 2006,
Daligault 2017] and electron-ion (neutral) collisions.

From Eqs. (3.28) and (3.87), we see that

4πe2

k2
G(k, ω) =

iν

ω

[
1

ΠRPA(k, 0)
− 1

ΠRPA(k, ω)

]
. (3.89)

Making use of the expansion (3.38) in the limit k/2kF � 1, we find,

4πe2

k2
G(k, ω) '

iν

ω

[
2
(
ã0

0[n0]− ã0[n0]
)

+ 2
(
ã0

2[n0]− ã2[n0]
)
k2 − 1

Π0(ω)

]
(3.90)

' − ime

n0

ων

k2
, (3.91)

where the coefficients ã0[n0] and ã2[n0] are given by Eqs. (3.71) and (3.72),
respectively, and the coefficients ã0

0[n0] and ã0
2[n0] are defined by Eqs. (3.46)

and (3.47), respectively.
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Eq. (3.91) results in a friction force in the momentum equation (3.21),∫
dr′

δ2Fxc[n]

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

n1(r′, t) =

F−1

[
−4πe2

k2
G(k, ω)ñ1

]
= F−1

[
ime

n0

ων

k2
ñ1

]
=

F−1 [νw̃1me] = νw1 (r, t)me, (3.92)

where the expression w̃1 = iω
k2n0

ñ1, and the relation (3.29) were used.
The so-called hydrodynamic Drude model that is often used in plasmon-
ics [Halevi 1995, Yan 2015, Fernández-Domínguez 2012, Teng 2017] is re-
covered if one uses Eq. (3.90) retaining the terms scaling as ∼ ã0 and ∼ ã2.

The Mermin polarization function with a constant collision frequency is
the simplest analytical model which takes into account correlations. This
model was substantially improved by introducing a dynamical collision fre-
quency, ν = ν(ω) [Reinholz 2000]. This approximation is widely used
for the description of dense plasmas and warm dense matter [Thiele 2008,
Sperling 2013, Neumayer 2010]. The required information about the dynam-
ical collision frequency can be obtained using the Green functions method or
semiclassical molecular dynamics simulations [Reinholz 2000, Morozov 2005].
In appendix C, the dynamical collision frequency approach is employed to
evaluate the impact of the correlations on quantum wakefield.

3.7 Bohm potential and gradient correction for sys-
tems of reduced dimensionality

The QHD and OF-DFT equations for dense quantum plasmas formally have
the same form as those used in plasmonics. Therefore, as another example of
the utility of the derived relation (3.23), gradient corrections for the systems
of 2D and 1D electrons are investigated in this subchapter.

Previous works mainly focused on 3D systems and, thereby, much less is
known about density gradient corrections at finite temperature for systems
of reduced dimensionality. The accuracy of the OF-DFT computations de-
pends on the non-interacting free energy functional as well as the exchange-
correlation energy functional. The LDA was proven to be a very accurate
approximation for two-dimensional systems [Koivisto 2008, Eschrig 1996,
Trappe 2016a]; even with bound states or strong inhomogeneity.
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In Refs. [Holas 1991] and [Salasnich 2007] the gradient correction for the
ground state was obtained using the expansion of the inverse ideal polar-
ization function of electrons and the so-called Kirzhnitz expansion method,
respectively. In particular, it was found that the leading term of the gradient
correction to the kinetic energy is zero in 2D and negative in 1D. Recently,
in Ref. [Putaja 2012] it was revealed that in the ground state all higher
order terms of the density gradient correction to the kinetic energy vanish
in 2D. However, at finite temperature it has been shown that the density
gradient correction to the kinetic energy in 2D is non-zero [van Zyl 2011].

In the aforementioned works a kinetic energy functional rather than a
free energy functional was studied. However, the Fermi temperature in 2D
and 1D systems can be comparable to temperatures that occur in exper-
iments [Pouget 2016]. Therefore, for the adequate description of physical
phenomena, such as screening and transport [Das Sarma 2015], the finite
temperature DFT and QHD which are based on the free energy functional
must be used. In what follows the density gradient correction to the non-
interacting free energy and related Bohm potential at finite temperature are
derived.

To facilitate a comparison of the finite temperature result with the pre-
vious zero temperature results, it is convenient to rewrite Eq. (3.32) in the
form:

Fid([n], T ) =

∫
f0[n(r)]dr +

h̄2

8me

∫
γD (n, T )

| ∇n(r) |2

n(r)
dr, (3.93)

where D indicates the dimensionality.
Using Eq. (3.93), for the Bohm potential we find:

VB =
h̄2

8me

δ

δn

(∫
γD (n, T )

| ∇n(r) |2

n(r)
dr

)
(3.94)

= −2
h̄2

8me
γD (n, T )

∇2n

n
+O

(
(n1/n0)2

)
, (3.95)

and according to Eqs. (3.39) and (3.40), for f0 and γD we have

ã0[n0] = − 1

2

∂2f0[n]

∂n2

∣∣∣∣
n=n0

, (3.39 revisited)

ã2[n0] = −γD(n0, T )
h̄2

8mn0
. (3.96)
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For example, if D = 3, for long wavelengths and low frequencies from
Eqs. (3.96) and (3.47) we have:

γ3 [n] =
1

9
4θ−3/2

I ′−1/2(η)

I2
−1/2(η)

, (3.97)

where the derivatives of I−1/2 are taken with respect to η. In the zero
temperature limit, γ3 coincides with the previously introduced coefficient γ,
i.e, γ3(θ → 0) = 1/9. For high frequencies Eq. (3.72) yields γ3

(
ω � h̄k2

2me

)
=

1.
To proceed further, we need the polarization function of ideal electrons

in 2D and 1D. For the 2D case, we use the polarization function expressed
in terms of the dimensionless variables u = ω/(kvF ) and z = k/(2kF )∗

[Bret 1993]:

ΠD=2

RPA(k, ω) = −
k2
Fχ

2
0

2πe2k
[g2(u+ z)− g2(u− z)] . (3.98)

where χ2
0 = 1/(πkFaB), and kF = (2πn)1/2 (the Fermi wavenumber for the

two dimensional electron gas). The function g2 in Eq. (3.98) is defined as:

g2(x) = 2π
x

|x|

∫ x

0

y dy

[exp(y2θ−1 − η) + 1]
√
x2 − y2

− 2iπ

∫ ∞
x

y dy

[exp(y2θ−1 − η) + 1]
√
y2 − x2

, (3.99)

where the dimensionless chemical potential, η = µ/kBT , can be computed
using the identity η = ln

(
exp
(
θ−1
)
− 1
)
.

In the 1D case, the electronic polarization function [Jérome 1982] is

ΠD=1

RPA(k, ω) =
2

L

∑
k

f(εk)− f(εk−q)

εk − εk−q − h̄ω + ih̄η+
, (3.100)

where f(εk) is the Fermi-Dirac function, L is the system length, and η+ →
+0 is a positive infinitesimal assuring a causal response of the system. A
discussion of the polarization function for the 1D case is given, e.g., in

∗Following Ref. [Arista 1984], in Ref. [Bret 1993] the variables u and z were used to
analyze the polarization function in 2D.
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Ref. [Bonitz 2016]. Following Refs. [Arista 1984] and [Bret 1993], the real
part of the polarization function of the 1D electron gas is written as

Re ΠD=1

RPA(k, ω) = −kFχ
2
0

e2k
[g1(u+ z)− g1(u− z)] , (3.101)

where u, z, and χ0 are defined as in the 2D and 3D cases (see Eqs. (3.36)
and (3.98), respectively), but with kF = πn/2. The function g1 is given by
the principal value of the following integral:

g1(x) = P

∫ ∞
−∞

dy

[exp(y2θ−1 − η) + 1](x+ y)
. (3.102)

In Eq. (3.102), the dimensionless chemical potential, η = µ/kBT , is con-
nected to the degeneracy parameter of the 1D electron gas by the relation
2θ−1/2 = I−1/2(η). Note that the expansion of the inverse RPA polariza-
tion function in the 2D and 1D cases has the same form as in the 3D case,
Eq. (3.38).

The expansion of the polarization functions for 2D and 1D allow to find
the coefficient γD and, thereby, compute both the density gradient correction
and the Bohm potential at finite temperature. First, we start with the static
long-wavelength limit for the 2D and 1D cases, and continue with the high
frequency limit.

3.7.1. Low frequency and long wavelength limit: 2D electron
gas

As was discussed in subchapter 3.4, the static long wavelength limit is impor-
tant for the description of screening at large distances. The results obtained
in the static case are applicable for low frequencies (u� z) as well. For this
case, we find from Eq. (3.98):

ΠD=2

RPA(k, ω = 0) = −
2k2

Fχ
2
0

e2k

∫ z

0

ydy

[exp(y2θ−1 − η) + 1](z2 − y2)1/2
, (3.103)

which in the long wavelength limit leads

ΠD=2

RPA(k � 2kF , ω = 0) ' −kFχ
2
0

e2

1

[1 + exp
(

2z2

3θ − η
)

]
. (3.104)
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Using Eq. (3.104) the following coefficients of the expansion (3.38) are ob-
tained:

ã0(n, T ) = −πe
2aB
2

[1 + exp(−η)] , (3.105)

ã2l(n, T ) = −πe
2aB
2

(
2

3

)l exp(−η)

l ! θl(2kF )2l
, (3.106)

where l = 1, 2, 3, ... are integer values.
For the discussion of the convergence of the expansion of the inverse

RPA polarization function, Eq. (3.38), the following dimensionless inverse
static polarization function is introduced:

Π
−1
RPA(k) =

ΠD
RPA(k = 0)

ΠD
RPA(k)

= 1 +
ã2

ã0
k2 + ...+

ã2l

ã0
k2l + .... (3.107)

In Fig. 3.4, the convergence of the expansion (3.107)—or equivalently
of the expansion (3.38)— is illustrated for different θ using Eqs. (3.105)
and (3.106) for the 2D case. In the limit of low temperatures, θ ' 0.1 ,
the zero order term, Π−1

RPA(0) = 2ã0, provides an accurate description at
small wavenumbers (up to k/2kF ' 0.4). However, at large wavenumbers
(k & kF ), the convergence of the expansion (3.107) is unsatisfactory. At
higher temperatures (θ = 0.75 and θ = 1.5), retaining the term (ã2/ã0)k2

in the expansion (3.107) provides an excellent approximation of Π
−1
RPA(k) at

k < kF . Therefore, it is expected that the long wavelength approximation
is very accurate at any degeneracy as long as k < kF .

Now, γ2[n] determining the first order gradient correction in Eq. (3.93)
and the Bohm potential (3.94) for the 2D electron gas is obtained using
Eqs. (3.106) and (3.96):

γ2 [n] =
1

3

θ−1

exp(θ−1)− 1
. (3.108)

From Eq. (3.108), we see that in the zero temperature limit (θ � 1),
the leading term of the gradient correction for the 2D case tends to zero as
∼ exp

(
−θ−1

)
. In the opposite limit of high temperatures (θ � 1), we have

γ2 = 1/3.
Note that the result obtained in Ref. [van Zyl 2011] for the gradient

correction to the kinetic energy can be found using the relation f0(n.T ) =
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Figure 3.4: Convergence of the expansion (3.107) for different values of θ in
the 2D case. The coefficients of the expansion are given by Eqs. (3.105) and
(3.106). Solid thin (black) curves represent approximations with different
maximum orders in the expansion that are retained, as indicated on the right
hand side of the figure. At θ = 0.75 and θ = 1.5, the curves corresponding
to the higher order corrections are visually indistinguishable from the exact
curves at this scale. From reference [Moldabekov 2017a].

τ0(n, T )−Tσ(n, T ) between the free energy density, the kinetic energy den-
sity, and the entropic contribution (σ = − ∂f0

∂n

∣∣∣
T
). In the limit θ � 1

(ground state), substituting Eq. (3.39) into Eq. (3.105), one can recover the
well-known result for the kinetic energy density in the LDA, f0[n]→ τ [n] =
h̄2π
2m n

2.

3.7.2. Low frequency and long wavelength limit: 1D electron
gas

Now we consider the static long wavelength limit for the 1D electron gas.
In this case, Eq. (3.101) reduces to

ΠD=1

RPA(k, ω = 0) =
kF
πEF

∫ ∞
0

dy

[exp(y2θ−1 − η) + 1](y2 − z2)
. (3.109)
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Figure 3.5: The same as in Fig 3.4, but with the coefficients defined by
Eqs. (3.112) and (3.113). From reference [Moldabekov 2017a].

In the limit z = k/2kF � 1, the expansion 1
y2−z2 '

1
y2

+ z2

y4
+ ...+ z2j

y2j+2 + ..,
with j = 1, 2, ..., allows to write the following expansion in terms of Fermi
integrals:

ΠD=1

RPA(k � 2kF , ω = 0) ' kF
πEF

(
1

2θ1/2
I−3/2(η) +

1

8k2
F θ

3/2
I−5/2(η)k2 + ...

)
.

(3.110)

We find, using Eq. (3.110), that

1

2ΠD=1
RPA(k)

=
πEF θ

1/2

kF I−3/2(η)(1 +
∑
biz2i)

, bi ([n] , θ) =
θ−iI−i−3/2(η)

I−3/2(η)
.

(3.111)

From Eq. (3.111), for the first five non-vanishing coefficients of the ex-
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Figure 3.6: Dependence of the coefficient γD in Eqs. (3.93) and (3.94) on
θ in the static case. In the high temperature limit γD tends to 1/3. In the
zero temperature limit (θ � 1): γ1 = −1/3, γ2 = 0, and γ3 = 1/9. From
reference [Moldabekov 2017a].

pansion (3.38), we find:

ã0(n, T ) =
πEF θ

1/2

kF I−3/2(η)
,

ã2(n, T )

ã0(n, T )
= − b1

4k2
F

,
ã4(n, T )

ã0(n, T )
=
b21 − b2
16k4

F

,

(3.112)

ã6(n, T )

ã0(n, T )
=
−b31 + 2b1b2 − b3

64k6
F

,
ã8(n, T )

ã0(n, T )
=
b41 − 3b21b2 + b22 + 2b1b3 − b4

256k8
F

.

(3.113)

The convergence of the expansion (3.107) for the 1D case, with the co-
efficients given by Eqs. (3.112) and (3.113), is illustrated in Fig. 3.5. In the
low temperature limit (θ = 0.1), the convergence is slower in comparison
to the 2D case as well as the 3D case, which is discussed in Appendix E.
In contrast, at high temperatures (θ = 0.75 and θ = 1.5) the quality of
the convergence of the expansion (3.107) is much better, e.g., taking into
account the first two terms of the expansion (3.107) provides a very ac-
curate description of the exact static RPA result at k < kF . The power
expansion of the inverse polarization function is the Fourier transformation
of the density gradient expansion of the second order functional derivative of
free energy (see Eqs. (3.34) and (3.35)). Therefore, the foregoing discussion
of the expansion convergence indicates that in the 1D case the LDA with
gradient corrections can be used at partial degeneracy.

From Eqs. (3.112) and (3.96) we deduce γ1[n] needed for the computation
of the gradient correction to the non-interacting free energy and the Bohm
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potential:

γ1 [n] =
1

3
2θ−1/2

I ′′−1/2(η)

I ′2−1/2(η)
. (3.114)

In the limit θ � 1, we find from Eq. (3.114) that γ1 = −1/3, in agree-
ment with the results of Refs. [Salasnich 2007, Holas 1991]. At high tem-
peratures (θ � 1), Eq. (3.114) yields γ1 = 1/3.

The results for γD, obtained for the electron gas in 1, 2, and 3 dimensions,
are presented in the Fig. 3.6. At finite temperature, γD depends only on
the degeneracy parameter. From this figure we see that the coefficient γD
in the high temperature limit approaches 1/3 for all considered cases, D=1,
2, 3. Note that γ1 changes its sign at θ ' 1.1. Another interesting feature
of the pre-factor γ1 is that it has an absolute minimum γ1(θmin) ' −0.374

at θmin ' 0.19, while both γ2 and γ3 have their minima at θ = 0.
The negative sign of γ1 means that the uniform state is not stable bellow

a certain temperature, i.e., any small perturbation of the density causes the
system to decrease its free energy. This behavior is the well-known Peierls
instability [Pouget 2016, Jérome 1982], which leads to such phenomena as
charge density waves and periodic lattice distortions. From Fig. 3.6 one can
see that thermal electronic excitations (at degeneracy parameters θ >∼ 1.1)
can stabilize the uniform state due to a positive per-factor γ1, in accordance
with more elaborate studies [Pouget 2016].

The results given by Eqs. (3.108) and (3.114) are applicable at low fre-
quencies (ω < kvF ), but not in the high frequency limit (ω � h̄2k2/2m).
Therefore, we now turn to the high frequency regime.

3.7.3. High frequency limit in the 2D and 1D cases

In the case of high frequencies (ω � h̄2k2/2m ), by analyzing the afore-
mentioned polarization functions at k � 2kF it is found that in the 2D
case γ2 = 0, and in the 1D case γ1 = 1. Additionally, it is revealed that
ã0 = −3πh̄2

2m θ2I1(η) for the 2D case, and in the 1D case ã0 = −π2h̄2

8m n.
In Refs. [Akbari-Moghanjoughi 2014, Zhang 2017], plasmons in 2D sys-

tems in the limit of full electronic degeneracy (θ � 1) were investigated
employing the QHD approach with the ad hoc non-zero Bohm potential
with the pre-factor γ = 1. This is one more example of the inconsistencies
in previously used QHD models. On the other hand, it is clear that the
result γ2 = 0 (for the high frequency regime and in the static ground state)
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does not imply that there is no quantum non-locality in 2D systems. For ex-
ample, going well beyond the LDA for the 2D system, in Ref. [van Zyl 2014]
the non-vanishing density gradient correction introduced in the static case
by applying the so-called average-density approximation. Furthermore, in
Ref. [Trappe 2016b]—also for the static case—a non-zero gradient correction
was obtained in terms of an effective potential for the DFT (formulated as a
joint functional of both the single-particle density and the effective potential
energy [Englert 1992]). The relation (3.23) presented in this work can be
used for the construction of the fully non-local free energy functional and
the Bohm potential for the consideration of the electronic dynamics in 2D
and 1D systems (similarly to the 3D case discussed in subchapter 3.5).

The results presented in this subchapter improve, to some degree, the
understanding of the non-interacting electronic free energy functional of in-
homogeneous quantum systems of reduced dimensionality. The density gra-
dient correction to the non-interacting free energy and the quantum Bohm
potential at any degeneracy for QHD in the 2D and 1D cases are the new
results.

3.8 QHD equations with an external magnetic field

Up to this point the magnetic field free case has been considered. Re-
cent progress towards inertial confinement fusion (ICF) [Higginson 2017,
Perkins 2013] shows that an external magnetic field (with B > 105G (10T))
can significantly facilitate the solution of the ICF related problems (like
the improvement of the alpha particles energy deposition into a DT fuel).
Therefore, in this subchapter we add a magnetic field to the QHD equations
and discuss the range of applicability of these equations with respect to the
strength of the applied external magnetic field.

The QHD equations can be found from the following Hamiltonian

H[n(r,B), w(r,B)] = E[n(r,B)] +
e2

2

∫
n(r,B)n(r′,B)

|r− r′|
drdr′

−
∫
eVextn(r,B)dr +

∫
men(r,B)

2

∣∣∣∇w (r,B)− e

cm
A
∣∣∣2 dr,

(3.115)

where B = ∇ × A, the velocity field is defined using the scalar potential
w and a vector potential of an external magnetic field A by the relation
v = −∇w + e

cmA. In Eq. (3.115), m is the electron mass, c is the speed
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of light, E[n(r,B)] is the sum of the kinetic and the exchange-correlation
energy functionals, B denotes an external constant magnetic field, and Vext

refers to the external electric potential. For simplicity, in Eq. (3.115), the
time variables are not explicitly written. Additionally, in Eq. (3.115), terms
corresponding to spin-magnetic field and spin-spin interactions are not in-
cluded.

Starting from the Hamiltonian (3.115), in the same way as the QHD
equations were derived in subchapter 3.1, we arrive at the QHD equations
that take into account an external magnetic field:

∂

∂t
n (r, t) +∇ · [n (r, t) v (r, t)] = 0, (3.116)

me
∂

∂t
v (r, t) +me(v (r, t) · ∇)v (r, t) = −∇µ (r, t)− e

c
v ×B, (3.117)

and

µ[n(r, t)] =
δFid[n(r, t)]

δn(r, t)
+
δFxc[n(r, t)]

δn(r, t)
+e2

∫
n(r′, t)

|r− r′|
dr′−eVext, (3.118)

where the relation (v · ∇)v + e
cm [v × (∇ × A)] = 1

2∇[
(
∇w − e

cmA
)2

] was
used [Eguiluz 1976].

With a choice of an ansatz for F (e.g., see Eq. (3.78) or Eq. (3.85)), the
following closure relations are needed:

F

[
δ2Fid

δn(r, t)δn(r′, t)

∣∣∣∣
n=n0

]
= −

[
1

ΠRPA(k, ω; B)
− 1

Π0(ω; B)

]
, (3.119)

where ΠRPA(k → 0, ω; B) = Π0(ω; B), and

F

[
δ2Fxc

δn(r)δn(r′)

∣∣∣∣
n=n0

]
= −4πe2

k2
G(k, ω; B). (3.120)

The quantum polarization function in the RPA with an external mag-
netic field—with B in the z direction—is given by [Nersisyan 2007]

ΠRPA(k, ω; B) = − 1

4π2e2k2
zλ

2
BaB

∑
σ=±1/2

∞∑
n;n′=0

F 2
nn′(ξ)

×
{
Gnσ(Q−) +Gnσ(Q+) +

ikz
π|kz|

[f(Enσ(Q−))− f(Enσ(Q+)]

}
, (3.121)
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where λ2
B = h̄/(meωc), ξ = (k2

x+k2
y)λ

2
B/2, Q± = kz/2+ m

h̄kz
[ωc(n

′ − n)∓ ω],
f is the Fermi-Dirac distribution function, Enσ = h̄2k2

z/2me + h̄ωc(n+ σ +

1/2), the function Fnn′(ξ) is given in terms of the generalized Laguerre
polynomials Ln′n (ξ) by

Fnn′(ξ) =

(
n!

n′!

)1/2

ξ(n′−n)/2e−ξ/2Ln
′−n
n (ξ), (3.122)

and the function Gnσ(Q) is defined by the principal value of the following
integral:

Gnσ(Q) =

∫ +∞

−∞
dq
f(Enσ(q))

Q− q
. (3.123)

ΠRPA(k→ 0, ω; B) = Π0(ω; B) obtained from Eq. (3.121) reads

Π0(ω; B) =
k2

4πe2

[
ω2
p

ω2
cos2(b) +

ω2
p

ω2 − ω2
c

sin2(b)

]
, (3.124)

where b is the angle between the wave vector k and the magnetic field.
The RPA polarization function (3.121) was analyzed considering dif-

ferent limiting cases in Refs. [Zyryanov 1961, Zyryanov 1962, Mermin 1964,
Horing 1965, Greene 1969, Das 1976, Nersisyan 2007]. Eq. (3.121) was used
to study the induced charge density by a test charge in Ref. [Perrot 1995],
where it was shown that at B/B0 ∼ 1 the magnetic field induced anisotropy
in the polarized electron cloud around a test charge becomes important
(with B0 = 2.3505 × 109G being the magnetic field that corresponds to an
electron cyclotron energy equal to one Hartree (or equivalently two times
the binding energy of an electron in a hydrogen atom)). An extended study
of the electron-ion collision and stopping power on the basis of Eq. (3.121)
is given in Ref. [Nersisyan 2007].

The Hamiltonian (3.115) is valid if the magnetic field is non-quantizing;
here a quantizing magnetic field is referred to the situation when most of
the electrons are on the few lowest Landau levels [Potekhin 2013]. In or-
der to estimate corresponding magnetic field strength, we need the dimen-
sionless parameter ζ = h̄ωc/〈K〉 defined as the ratio of the electron cy-
clotron energy to the characteristic quantum-kinetic energy of electrons,
〈K〉 '

√
(kBT )2 + (EF )2; here ωc = eB/mec is the electron cyclotron

frequency. In terms of the degeneracy and density parameters (θ and rs,
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respectively), ζ is expressed as

ζ =
h̄ωc
〈K〉

' r2
s

18.4
√
θ2 + 1

× B

B0
. (3.125)

The inverse value of ζ gives the approximate number of the involved Landau
levels.

In the limits of quantum and classical plasmas, from Eq. (3.125) we find
the following conditions for the regime with a non-quantizing magnetic field:

ζ � 1

θ < 1

]
→ B

B0
� 18.4

r2
s

,
ζ � 1

θ � 1

]
→ B

B0
� 18.4× θ

r2
s

. (3.126)

At the considered plasma densities, rs . 2, the non-quantizing regime is
realized when B/B0 � 4. Note that the electron cyclotron energy, h̄ωc, is
much less than the electron rest energy, mec

2, if B � 4.4×1013 G ∼ 105 B0.
Thus, at B/B0 � 4, relativistic effects related to electronic cyclotron oscil-
lations can be neglect.

Another important parameter is the ratio of the cyclotron frequency to
the electronic plasma frequency, β = ωc/ωp. This parameter determines
whether the plasma electrons are magnetized (β > 1) or not (β < 1). For
classical plasmas [Ott 2018], the ratio ωc/ωp describes the importance of the
magnetic field impact. The parameters ζ and β can be expressed via each
other as ζ/β '

√
rs/(1 + θ2). At β > 1, the electrons become magnetized.

In this case the conditions for a non-quantizing magnetic field in quantum
and classical plasmas read

ζ � 1

θ < 1

ωc/ωp > 1

→ rs � 1,

ζ � 1

θ � 1

ωc/ωp > 1

→ rs � θ2. (3.127)

In other words, in order to have magnetized quantum electrons in non-
quantizing magnetic field, the density must be such that rs � 1. Note that
at rs < 0.1, relativistic effects must be taken into account. If ωc/ωp < 1,
the inequalities given by Eq. (3.126) remain valid.

In a two-component plasma, one more parameter, the ratio of the ion
cyclotron frequency to the ionic plasma frequency, ωci/ωpi = (ωc/ωp) ×√
me/mi, is of interest. If the ions are magnetized (meaning that the elec-
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trons are, also, strongly magnetized), we have the following conditions:

ζ � 1

θ < 1

ωci/ωpi > 1

→ rs �
1

(mi/me)
,

(
ultrarelativistic
quantum plasmas

)
(3.128)

and

ζ � 1

θ � 1

ωci/ωpi > 1

→ rs �
1

(mi/me)
× θ2. (3.129)

Therefore, the plasma with quantum electrons and magnetized ions is a rela-
tivistic quantum plasma. This case is out of the scope of our considerations.

To sum up, the momentum equation (3.117) can be used for the de-
scription of quantum electrons if the inequalities given by Eqs. (3.126) and
(3.127) for θ < 1 are hold. Corresponding parameters cover the range of
densities, temperatures, and applied external magnetic field strengths in
experimental ICF studies [Higginson 2017, Perkins 2013].



3.9. Summary 73

3.9 Summary

In the presented chapter the QHD equations at finite temperature and the
closure relations that determine the force field were derived. The fully non-
local potential for the QHD description of the quantum non-ideal electrons
was deduced making link with linear response theory. This represents the
first unifying picture of various QHD models used earlier for the study of
different phenomena in quantum plasmas. Clearly understanding the limi-
tations of the previous formulations of QHD, the present work goes beyond
all earlier models by invoking the quantum RPA and local field corrections
approach. The latter is essential for the adequate description of quantum
plasmas with the density parameter rs > 1. In this case electronic corre-
lations cannot be discarded. The quantum non-locality is expected to be
important at θ < 1. The importance of the inclusion of the electronic cor-
relations and degeneracy for the description of the quantum plasma with
strongly coupled ions is demonstrated in the next chapter.
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The multi-scale approach facilitates the description of a two-component
plasma with quantum electrons and classical ions. The quantum electrons
can be described using continuous variables governed by the QHD equations
and the ions can be considered as immersed into an electronic medium. In
this case the choice of the approximation in the treatment of the electronic
component must be done taking into account the resulting consequences
for the ionic subsystem. Therefore, in this chapter the structural prop-
erties of strongly coupled ions in dense plasmas with non-ideal quantum
electrons are investigated. The radial pair distribution function (RPDF)
and static structure factor (SSF) are investigated in detail. Different the-
oretical models describing the screened ion-ion interaction—within linear
response theory—are considered including the Singwi-Tosi-Land-Sjölander
(STLS) approximation, local field corrections obtained from ground-state
quantum Monte Carlo data, the RPA, and analytical models obtained from
the long wavelength approximation to the RPA. Taking into account the con-
siderable number of models (approximations) needed to be analyzed and the
relatively wide range of plasma parameters under consideration, the hyper-
netted chain approximation (HNC) is employed as a fast alternative to the
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much more computationally involved molecular dynamics simulation (MD).
Before carrying out the bulk of the calculations, the applicability of the HNC
approach in the considered range of plasma parameters was verified using a
so-called effective coupling parameter [Ott 2014]. The latter was introduced
in previous works on the basis of MD data for one component systems of the
charged particles interacting via the Yuakwa potential to provide a descrip-
tion by a single dimensionless parameter under different coupling strengths
and characteristic screening lengths. It is revealed that the HNC correctly
captures the relative differences in RPDFs and SSFs obtained for different
ion-ion pair interaction potentials. Therefore, the HNC was used to inves-
tigate the effect of electronic correlations and degeneracy on the structural
properties of strongly coupled ions, and subsequently the main conclusions
were verified by MD simulations. The results presented in this chapter were
published in Refs. [Moldabekov 2018b, Moldabekov 2017b].

4.1 Decoupling of ionic dynamics from the elec-
trons

First, we briefly discuss the assumptions that allow to decouple the dynamics
of the ions from that of the electrons. To proceed further, we need to define
the electron-ion coupling parameter Γei = Ze2/akBTe (additionally to the
dimensionless parameters introduced in chapter 2). This parameter is used
to gauge the validity of the linear response based approach, which is used
in this chapter. For Γei < 1, the ions can be represented as a system of
charged particles with a screened ion-ion pair interaction potential, i.e., the
effect of electrons is given by the modification of the ion potential. In this
weak electron-ion coupling regime, a modified ion potential can be described
on the basis of linear response theory. This approach is inadequate if the
coupling between the electronic and ionic subsystems is strong, Γei > 1.
In this case, the linear response based treatment fails in the vicinity of an
ion. Fortunately, in dense plasmas it usually holds Γei . 1 [Clérouin 2015a,
More 1986], as explained in chapter 2, which was confirmed by simulations
using orbital-free density functional theory [Clérouin 2015a]. Additionally,
it is clear that a more realistic parameter describing the electron-ion coupling
should be of the form Γ̃ei = Γei × exp(−κ), which takes into account the
screening. At the considered temperatures and densities, the characteristic
screening length in units of a is in the range κ ∼ 1 − 2. Thereby, the real
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electron-ion coupling is reduced due to strong screening. For simplicity, we
always take Z = 1 without loss of generality.

The electronic and ionic subsystems are coupled via the interaction en-
ergy,

Uei =
1

2Ω

∑
k 6=0

ϕ̃ei(k)ñi(k)ñe(−k), (4.1)

where ñ is the deviation from the mean density, and the Fourier transform of
the bare electron-ion interaction potential is denoted as ϕ̃ei(k). The electron-
ion interaction can be considered as a perturbation when the electronic
quantum kinetic energy exceeds the potential energy Uei. For example, if
Γei � 1—the lowest order approximation—one can set Uei = U

(1)
ei = 0 (e.g.,

for an extremely dense plasma, rs � 1, or very hot electrons). In this limit,
the ions can be described as a system of particles interacting through the
bare Coulomb potential. This corresponds to the picture where the electrons
do not respond to the field of the ions and their role is a neutralizing uniform
background.

In the second order approximation, using the the static electron-density
response function χe(k), we can write the electronic density induced by
the weak perturbing field of an ion as ñe(−k) = χe(k)ϕ̃∗ei(k)ñi(−k). By
substituting this result into Eq. (4.1), we get

U
(2)
ei =

1

2Ω

∑
k 6=0

|ϕ̃ei(k)|2 χe(k)ñi(k)ñi(−k). (4.2)

Note that in Eq. (4.2), U (2)
ei is expressed using solely the variables of the

ions. Further, by introducing an effective ion-ion interaction potential of
the form [Hansen 2013]

Φ(rj′ , rj) =
Z2e2

|rj′ − rj |
+

∫
d3k

(2π)3
|ϕ̃ei(k)|2 χe(k) eik·(rj′−rj) , (4.3)

we are able to write total Hamiltonian of the system as the sum of an ionic
Hamiltonian with the potential (4.3) and that of a uniform electron gas
without any perturbation by the field of the ions,

H = Hi (R,P) +He[ne], (4.4)

where the complete set of ionic coordinates and momenta is denoted as
R = r1, ..., rNi and P = p1, ...,pNi , respectively.
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The ionic Hamiltonian is given by

Hi (R,P) = Ki (P) +

Ni∑
j=1

Ni∑
j′>j

Φ(rj′ , rj), (4.5)

whit Ki being the kinetic energy.
Next, substituting the Coulomb potential as the bare electron-ion inter-

action potential, ϕ̃ei(k) = 4πZe2/k2, into Eq. (4.3) we arrive at the widely
used expression for the screened potential,

Φ(r) =

∫
d3k

2π2

Q2

k2ε(k, ω = 0)
eik·r , (4.6)

expressed in terms of the inverse dielectric response function of the electrons

ε−1(k, ω) = 1 +
4πe2

k2
χe(k, ω). (4.7)

It is important to note that in the general case of an arbitrary electron-ion
pseudopotential (such as the so-called empty core potential), Eq. (4.6) is
not appropriate and the more general form Eq. (4.3) must be used.

Further, all electronic correlation effects are conviently incorporated in
the so-called local field correctionG that enters the density response function
via

χ−1
e (k, ω) = χ−1

0 (k, ω) +
4πe2

k2
[G(k, ω)− 1] , (4.8)

where χ0 denotes the finite temperature ideal density response function of
the electron gas.

4.2 Electronic density response function

Let us recall the relation between the polarization function, Π, used in the
previous chapter 3, and the density response function, χe. The polarization
function is defined as the electronic density response to a screened test charge
field (cf., Eq. (3.9)), while the density response function is introduced as the
response to a bare test charge potential. Therefore, these two functions are
connected via the following equation:

1

Π(k, ω)
=

1

χe(k, ω)
+

4πe2

k2
. (4.9)
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For example, using relation (4.9), Eq. (4.7) can be equivalently written as
[Bonitz 2016]

ε(k, ω) = 1− 4πe2

k2
Π(k, ω). (4.10)

In the case of non-interacting quantum electrons, the ideal response func-
tion, χ0, in Eq. (4.8), is equal to ΠRPA [Giuliani 2008] (with the real part
given by Eq. (3.36)). Therefore, Eq. (4.8)—describing non-ideal electrons—
is equivalent to Eq. (3.28).

In the following, we introduce five different approximations for the de-
scription of the electronic density response function, which are subsequently
employed to study the impact of the electronic quantum degeneracy and
correlation effects on the structural properties of strongly coupled ions in
subchapter 4.4.

4.2.1. STLS approximation

Among the theoretical models describing quantum electrons, the STLS ap-
proximation gained wide usage. Indeed, STLS-based methods were used to
investigate variety of dense plasma properties; e.g. transport and relaxation
[Bennadji 2009, Reinholz 1995, Benedict 2017], stopping power [Wang 1997,
Zwicknagel 1999, Montanari 2017, Gauthier 2013, Barriga-Carrasco 2009],
thermodynamics [Bennadji 2011, Tanaka 2017, Schweng 1991], and the dy-
namical as well as the static structure factor [Fortmann 2010, Gregori 2007,
Plagemann 2012, Saumon 2012].

The STLS scheme is based on the following self-consistent closed set of
nonlinear equations [Singwi 1968, Tanaka 1986]:

GSTLS
( [
SSTLS

]
,k, ω = 0

)
= − 1

n

∫
dk′

(2π)3

k · k′

k′2
[SSTLS(k−k′)−1] , (4.11)

and

SSTLS
( [
GSTLS

]
,k
)

= − 1

βn

∞∑
l=−∞

χ0(k, zl)

1 + 4πe2

k2
[GSTLS(k, zl)− 1]χ0(k, zl)

,

(4.12)
where the latter is the well-known fluctuation-dissipation theorem involving
the static structure factor SSTLS. In Eq. (4.12) the summation is over the
Matsubara frequencies, zl = 2πil/βh̄.
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The STLS scheme has its roots in classical many-particle physics, where
a classical two particle distribution function is approximated as

f(r,p; r′,p′; t) = f(r,p; t)f(r′,p′; t)g(|r− r′|), (4.13)

with g(|r− r′|) being the equilibrium value of the electron-electron RPDF.
Substituting ansatz (4.13) into the equation of motion of the classical dis-
tribution function f(r′,p′; t), results in the following force (in addition to
the Hartree mean field and the external field forces):

∇V STLS
xc (r, t) =

∫ [
g(|r− r′|)− 1

]
∇ e2

|r− r′|
n1(r′, t)dr′, (4.14)

where n1(r′, t) is the time-dependent density perturbation. The Fourier
transform of Eq. (4.14), in combination with the relation V STLS

xc (k, ω) =

−4πe2

k2
G(k)n1(k, ω), gives Eq. (4.11) [Giuliani 2008].

The screened ion potential (4.3), which is computed using χe(k, ω = 0)

on the basis of GSTLS is what will be called the STLS potential throughout
the remaining of this work∗.

4.2.2. Quantum Monte-Carlo data based result

An exact benchmark for G(k.0) with all exchange-correlation effects in-
cluded is highly desirable. Despite recent progress in ab initio quantum
Monte-Carlo simulations (QMC) at finite temperature [Dornheim 2017a,
Groth 2017a], the QMC data on the static density response function of
electrons at finite temperature [Dornheim 2017a, Groth 2017a] have yet
insufficient k-resolution for the computation of the screened ion potential.
Therefore, in order to be able to gauge other approximations, we use the
following parametrization of the ground state quantum Monte Carlo data
[Moroni 1995] from Ref. [Corradini 1998]:

G(k) = Ck2 +
Bk2

g̃ + k2
+ α̃k4 exp

(
−β̃k2

)
, (4.15)

where C, B, g̃, α̃, β̃ are fit parameters depending on the electronic density;
for more details, the interested reader is referred to Refs. [Moroni 1995,
Corradini 1998].
∗ An improved version of the STLS for classical plasmas was recently derived in Refs.

[Kählert 2014, Kählert 2015].
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The quantum Monte Carlo data presented in Ref. [Moroni 1995], corre-
spond to the ground state with rs = 2, 5, 10 and 100. In the context of the
parameters that are of interest to the present work, the ground state G(k)

data of Ref. [Corradini 1998] at rs = 2 is used in Eqs. (4.8)–(4.6) for the
quasiground state with θ = 0.01. In the following, the potential computed
in this way will be referred to as the QMC potential.

At this point, it is important to note that often parametrizations of the
local field correction similar to the one from Ref. [Ichimaru 1982] (based on
STLS) were used (e.g., Ref. [Reinholz 1995, Sjostrom 2014b]). This class of
parametrizations includes the restriction G(k → ∞) < 1. This restriction
originated from the works of Refs. [Shaw 1970] and [Niklasson 1974], and
became widely used after the seminal work by Ichimaru [Ichimaru 1982].
However, it turned out that the condition G(k → ∞) < 1 is wrong. The
correct asymptotic form of the local field correction is G(k → ∞) ∼ k2,
as it was proven in Ref. [Holas 1991] and subsequently confirmed by the
ground state QMC simulations [Moroni 1995]. A recent overview of various
theoretical approaches for the uniform electron gas and a comparison to
QMC data at finite temperature can be found in Ref. [Dornheim 2018].

4.2.3. Exact RPA result

It is important to compare the results obtained invoking a local field cor-
rection to those computed using the ideal density response (RPA polariza-
tion) function. For this purpose, the static polarization function given by
Eq. (3.36), with ω = 0, is used in Eqs. (4.10) and (4.6), where G = 0.
In the following, the potential calculated in the RPA will be referred to as
the RPA potential. The properties of the RPA potential are well-known; an
exponential decay at intermediate distances (characterized by a screening
length) and an oscillatory tail at large distances are among its main fea-
tures. The latter is known as the Friedel oscillations with the asymptotics
∼ cos(2kF r)/r

3 [Friedel 1952] in the fully degenerate electron limit. Fur-
ther, thermal excitations lead to a faster decay as ∼ cos(2kF r)/r

2 exp(−wr),
where w =

√
2mπkBTe/

√
µh̄ [Grassme 1993].

Essentially, the RPA potential does not include electronic non-ideality
(correlations), but does fully take into account the quantum non-locality
embedded into the ideal response function of the non-interacting electrons.
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4.2.4. First order long wavelength approximation to RPA

Yukawa-type potentials are the most often used screened pair potentials in
plasma physics. These include: the Debye-Hückel potential for a classical
plasma, and the Thomas-Fermi potential which is due to the screening by
fully degenerate electrons. A general form of the Yukawa potential inter-
polating between the classical and quantum limits can be found simply by
considering the first order result of the long wavelength expansion of the
static inverse RPA polarization function of the electrons

Π−1
RPA(k → 0, ω = 0) ≈ 2ã0(n, Te), (4.16)

with ã0(n, Te) = 2πe2/k2
Y (cf. Eq. (3.38)). Substituting this expansion into

Eq. (4.10) and subsequently using the resulting static dielectric function in
Eq. (4.6), we arrive at the well-known formula,

ΦY (r;n, T ) =
Q2
i

r
e−ksr, (4.17)

where the finite-temperature inverse screening length, ks, is equal to kY =[
1
2k

2
TF θ

1/2I−1/2(µ/kBTe)
]1/2. Note that even at θ ∼ 1, the potential (4.17)

is often referred to as the Thomas-Fermi potential (TF).

4.2.5. Second order long wavelength approximation to RPA

Another analytical model, which is often considered as a significant im-
provement for the description of the screened ion potential [Stanton 2015]
in comparison to Eq. (4.17), is based on the second order result of the long
wavelength expansion of the static inverse RPA response function,

Π−1
RPA(k � 2kF , ω = 0) ≈ 2ã0(n, Te) + 2ã2(n, Te) · k2, (4.18)

with ã2(n, Te) = −a2(n, Te) (see Eq. (3.47)). Using expansion (4.18), one
recovers the analytical model by Stanton and Murillo (SM) [Stanton 2015]

φ(r;n, T ) =
Q2
i

2r

[
(1 + b) e−k+r + (1− b) e−k−r

]
, (4.19)

where b = 1/
√

1− αSM and k± = kTF (1∓
√

1− αSM )1/2/
√
αSM/2, αSM =

3
√

8βλI ′−1/2(βµ)/π, λ = 1/9, and I ′p(βµ) is the derivative of the Fermi in-
tegral with respect to βµ; the inverse Thomas-Fermi screening length at
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finite temperature is given by kTF = (4I−1/2(η0)/π
√

2β)1/2. In a certain
range of densities and temperatures (at αSM > 1), the SM potential has
an oscillatory pattern. Thereby, in this case, Eq. (4.19) was expressed in a
different form to make conspicuous the appearance of the oscillatory pattern
[Stanton 2015]. This can be achived using Euler’s formula relating trigono-
metric functions and the complex exponential function. Nevertheless, both
forms of the potential give essentially the same value of the potential, mean-
ing that potential (4.19) can be used regardless of the value of αSM .

In Ref. [Stanton 2015], the potential (4.19) was derived starting from
the Thomas-Fermi model with the first order gradient correction (Eq. (3.32)
with a2 given by Eq. (3.47)). In Ref. [Akbari-Moghanjoughi 2015], the po-
tential (4.19) was independently derived by considering the ideal density
response function of the fully degenerate electron gas.

It should be stressed that the Yukawa potential totally disregards the
quantum non-locality related to finite values of the wavenumber, while the
SM potential takes into account the quantum non-locality as a correction
in the limit of small wavenumbers. Overall, the Yukawa and SM potentials
are, in fact, lower order approximations with respect to the full (nonlocal)
RPA description.

To sum up the discussion of the described different approximation, we
have—to some extent—the following hierarchy of models:

(i) The QMC potential is the most accurate which, in linear response,
exactly takes into account quantum-non locality and electronic corre-
lations.

(ii) The STLS potential includes both quantum-non locality and electronic
correlation effects, but the latter approximated on the basis of ansatz
(4.13).

(iii) The RPA potential exactly takes into account the quantum non-locality
on the level of non-interacting quantum electrons, but totally neglects
electronic correlations.

(iv) The SM potential takes into account quantum non-locality as a correc-
tion and provides a description of the RPA potential at large distances;
similarly, electronic correlations are not taken into account.
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(v) The Yukawa potential totally discards both the quantum-non locality
and electronic correlations; it represents a truly local density approxi-
mation without any gradient corrections.

With these five models we are now prepared for the in-depth investiga-
tion of the impact of the electronic quantum and non-ideality effects on the
structural properties of strongly coupled ions in dense plasmas.

4.3 The hypernetted chain approximation

To investigate the structural properties of ions in a relatively wide range of
plasma parameters on the basis of five different screened ion potentials, we
solve the Ornstein-Zernike equation in the hypernetted chain approximation,
instead of computationally significantly more costly MD simulations. But
first, the applicability of the HNC at the considered plasma parameters is
verified.

The Ornstein-Zernike relation [Hansen 2013] for a homogenous system
is given by

h(r) = c(r) + n

∫
c(r′)h(|r− r′|)dr′ , (4.20)

with the formally exact closure

g(r) = exp{[−βu(r) + h(r)− c(r) +B(r)]}, (4.21)

where β = (kBT )−1, u(r) is the pair interaction potential, g(r) denotes
the radial pair distribution function (RPDF), c(r) the direct correlation
function, h(r) = g(r) − 1 the total correlation function, and B(r) is the
bridge function. The HNC corresponds to setting B(r) = 0.

The static structure factor is related to the Fourier transform of the
direct correlation function, c̃(k), by

S(k) ≡ 1 + n

∫
[g(r)− 1] exp(ik · r)dr =

1

1− nc̃(k)
. (4.22)

Note that the SSF, S(k), is directly measured using the X-ray Thomson
scattering technique [Glenzer 2009] and, thereby, the computation of S(k)

is needed for the interpretation of experimental observations. Additionally,
the accurate calculation of S(k) is needed, e.g., for the investigation of the
optical properties of dense plasmas on the basis of the dynamical collision



4.3. The hypernetted chain approximation 85

frequency approach [Veysman 2016] and for the calculation of the plasma
resistivity on the basis of the Rousseau-Ziman formula [Bennadji 2009].

First, we shall give a brief discussion of the key assumption underlying
the HNC from the point of view of the classical density functional theory.
For this, the starting point can be the intrinsic free energy of classical ions,

Fi[ni] = Fi[ni]−
∫
Qiñi(r)Vext(r)dr = Fid[ni] + Fex[ni], (4.23)

which has been decomposed into the sum of the ideal and excess part (with
ñi being the deviation of the ion density from the mean ionic density, n0);
here, the ideal part is given in the LDA with the free energy density of
the non-interacting classical gas. Additionally, we need the relation h(r) =

ñi(r)/n0 = g(r)−1; this can be understood as a density distribution around
an ion at the origin. Further, the excess part of the intrinsic free energy can
be expanded around the mean density as

Fex[ni] = Fex[n0] +

∫
Kex

(
r− r′;n0

)
ñ(r)ñ(r′)drdr′

+

∫
Lex

(
r, r′, r′′;n0

)
ñ(r)ñ(r′)ñ(r′′)drdr′dr′′ + ... (4.24)

By definition, the direct correlation function reads

c(r− r′) ≡ −(kBTi)
∂Fex[ni]

∂ni(r)∂ni(r′)
. (4.25)

Now, keeping the terms up to the one with the kernel Kex and dropping the
higher order terms on the r.h.s. of Eq. (4.24), we find from Eq. (4.25):

c(r− r′) ' c(2)(r− r′) = −Kex (r− r′;n0)

2kBTi
. (4.26)

From Eq. (4.23), taking into account the free energy minimization con-
dition, and Eqs. (4.24)–(4.26), one can find the HNC closure [March 2002],

g(r) ' exp
{[
−βu(r) + h(r)− c(2)(r)

]}
.

Therefore, the basic idea of the closure (4.21) is to put all higher order
correlation terms into the bridge function, B(r), which can then be approx-
imated. As it was mentioned, the HNC follows by setting B(r) = 0.



86 Chapter 4. Structural properties of strongly coupled ions

4.3.1. Numerical solution

To solve self consistently the system of nonlinear equations given by (4.20)
and (4.3), one can use the method from Ref. [Springer 1973]. The main idea
is to rewrite Eqs. (4.20) and (4.3) as

Ñs = c̃/(1− n0c̃)− c̃s,
g(r) = exp[Ns(r)− us(r)],
cs(r) = g(r)− 1−Ns(r),

where N(r) = h(r)− c(r), and

us(r) = u(r)− ul(r),
cs(r) = C(r) + ul(r),

Ns(r) = N(r)− ul(r).

Here ul is an ad hoc, in principle arbitrary function that accelerates conver-
gence.

For the one-component system of charged particles interacting through
a bare Coulomb potential (the Coulomb system), i.e., κ = 0, Ng showed
that a quick convergence can be achieved by the choice [Ng 1974]

ul(r) =
Γ

r
erf(αr),

where α = 1.08 and the distance is given in units of a.
In the case of a one-component system interacting via the Yukawa po-

tential (the Yukawa system) with 1 < κ < 2 and Γ < 100, the convergence
of the iterations is fast enough without any ul (i.e., ul = 0). In contrast, at
κ < 1, ul is needed for the convergence, and a sufficient form was revealed
by trial and error to be

ul(r) =
Γ

r
[exp(−κr)− exp(−αr)] , (4.27)

where α = 2.16 and κ = ksa is the screening parameter. In the context of
the present work, ul in the form given by Eq. (4.27) is used to accelerate
the convergence of the HNC calculations when the numerically precomputed
STLS, RPA and QMC potentials are used.



4.3. The hypernetted chain approximation 87

4.3.2. Test on the basis of the effective coupling parameter

The Ornstein-Zernike equation (4.20) was solved by implementing the fore-
going numerical scheme. The correctness of the numerical solution was
confirmed for the Yukawa system by comparison with the MD data from
Refs. [Ott 2014, Bruhn 2011], as it is illustrated in Fig. 4.1. In this figure,
along the HNC and MD results, the RPDF calculated using two differ-
ent bridge functions from Refs. [Daughton 2000] and [Ng 1974] are shown.
In Ref. [Daughton 2000], the bridge function for the Yukawa system was
proposed on the basis of the MD data. In Ref. [Ng 1974], the bridge func-
tion for the Coulomb system was obtained by compering to the classical
Monte Carlo simulation data. Following the notation of Ref. [Bruhn 2011],
the result obtained using the bridge function from Ref. [Daughton 2000]
and Ref. [Ng 1974] are denoted as the IHNC (“improved HNC”) and AHNC
(“adjusted HNC”), respectively. Evidently, the IHNC data are in excellent
agreement with the exact MD data [Daughton 2000].

For completeness, further, test of applicability of the HNC for the present
research was done using an effective coupling parameter, Γeff , defined for the
Yukawa system. The main idea of the effective coupling approach is that
a single dimensionless parameter can describe a system characterized by
two independent parameters; Γ and κ. The point is that different pairs of
values of Γ and κ can generate the same RPDF. Thus, Γeff is a function
of Γ and κ and different combinations of Γ and κ can yield the same Γeff .
Such a unifying picture was achieved by mapping the Yukawa system onto
the Coulomb system [Ott 2014]. In Ref. [Ott 2014], the following simple
parametrization of Γeff was found by analyzing data from MD simulations:

Γeff(Γ, κ) =
(
1− 0.309κ2 + 0.08κ3

)
· Γ, (4.28)

which is valid in the range 0 ≤ κ ≤ 2, and 1 ≤ Γeff ≤ 150.

Let us briefly summarize the result of the HNC test on the basis of Γeff :

• It was found that—similar to the MD results—the HNC results nicely
follow a one-to-one mapping between the RPDF of Coulomb and
Yukawa systems [Ott 2014]. This is illustrated in Fig. 4.2, where
RPDFs with fixed Γeff but different screening parameters approxi-
mately coincide. Some differences are visible, at the given scale, near
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Figure 4.1: The result of the solution of Eqs. (4.20) and (4.3) for the RPDF
of the Yukawa system with the screening parameter κ = 2.0 and different
values of the coupling parameter, Γ. Additionally, the comparison with the
MD results from Refs. [Ott 2014, Bruhn 2011] at Γ = 10 and 100 is given.
From reference [Moldabekov 2018b].

the first peak of the RPDF. This feature is inherited from the MD re-
sults on the basis of which Γeff , Eq. (4.28), was constructed; a detailed
discussion of this feature was given in Ref. [Ott 2014].

• It was found that up to Γeff ' 10, HNC provides an accurate descrip-
tion of the RPDF. For instance, the condition Γeff(Γ, κ = 2) = 10

gives Γ = 25 as the maximal value of Γ up to which the HNC and MD
data on the RPDF are in agreement with each other. This can be seen
from Figs. 4.1, 4.2, and 4.3.

The latter point indicates that, if the screening is stronger, κ > 2, the agree-
ment of the HNC data with MD result extends well beyond Γ = 25. Indeed,
as it will be shown later in this chapter, the HNC data are in agreement with
the MD data even at Γ = 50 when the STLS potential is used at rs = 1.8 and
θ = 0.1. Note that due to electronic non-ideality and quantum non-locality
effects, the screening is much stronger in the latter case in comparison to
the Yukawa potential (4.17) with κ = 2.

Therefore, the HNC approach allows to analyze the structural properties
of the strongly coupled ions by looking at the relative differences (changes)
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due to the use of different approximations in the treatment of the electronic
density response function. Furthermore, in this work, the main results ob-
tained on the basis of the HNC are verified by MD simulations of ions
interacting through a screened ion potential. It should be noted that the
screened pair interaction potentials used in this work depend on the tem-
perature and density of the system and, therefore, belong to the class of
state-dependent potentials. Many of the widely used integral equations, like
the Ornstein-Zernike relation, were originally derived considering a pair in-
teraction which does not have a dependence on the temperature and density
(e.g. Coulomb potential). Therefore, the use of the solution of these integral
equations on the basis of the screened pair interaction potentials must be
done with caution (see discussions in Refs. [Tejero 2009, D’Adamo 2013]).

Finally, it is interesting that even in the regime of strong screening, at
κ = 2, the AHNC leads to relatively good agreement with the IHNC results,
as it is can be seen from Figs. 4.1 and 4.3. This is an illustration of a known
certain level of universality of the bridge functions [Rosenfeld 1979].

Figure 4.2: The radial pair distribution function computed using the HNC
for the various values of the screening parameters, κ, and the effective cou-
pling parameters, Γeff . From reference [Moldabekov 2018b].
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Figure 4.3: The RPDF computed for different Γeff , Eq. (4.28), using the
HNC, the AHNC (with the bridge function from Ref. [Ng 1974]), and the
IHNC (with the bridge function from Ref. [Daughton 2000]). From reference
[Moldabekov 2018b].

4.4 Results

The calculations and subsequent analyses were divided into three parts with
different electronic density parameters: rs ≤ 1, rs = 2, and 1 < rs < 2.
Accordingly, regarding electronic correlations, these three cases are charac-
terized as weakly (rs ≤ 1), strongly (rs = 2), and moderately (1 < rs < 2)
non-ideal regimes. Additionally, for each foregoing case the degeneracy pa-
rameter is increased starting from θ = 0.01 until the effect of quantum
nonlocality significantly diminishes. The latter is gauged by the compari-
son of more involved descriptions with the results obtained making use of
the Yukawa potential, which totally disregards the electronic quantum non-
locality, and on the basis of the SM potential, which takes into account the
quantum nonlocality as a first order correction to LDA.

The transition from the higher density, rs < 1, to the lower densities,
rs ∼ 2, is accompanied by a build up of the inter-electronic correlations.
This process is tracked by comparing the data computed using the RPA
potential with those calculated using the STLS and QMC potentials. More-
over, the analysis of the results obtained using the STLS potential will allow
to identify the applicability range of the STLS approximation. In particular,
for the latter purpose, the comparison with the data calculated using the
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Figure 4.4: Ion potential calculated using different approximations. From
reference [Moldabekov 2018b].

QMC potential is important.

4.4.1. Densities rs ≤ 1: weakly non-ideal electrons

Let us start from the density parameter rs = 1 and investigate the transition
from the ideal to the non-idela domain. In the limit of strongly degenerate
electrons, this case is at the edge of the applicability of the RPA description.

In Fig. 4.4, the different considered potentials are shown for the case
of strong degeneracy, θ = 0.01. From this figure, first of all, it is apparent
that the inter-electronic correlations result in stronger screening in the range
0.5 < r/a ≤ 2 and the Yukawa, SM, and RPA potentials are grouped closely
to each other. The RPDFs computed on the basis of various potentials are
presented in Fig. 4.5 for Γ = 0.5, 1, 5, 10, 25 and 50. From Fig. 4.5 we see
that:

(i) the RPA, Yukawa, and SM potentials result in approximately the
same RPDFs up to Γ = 10, while the STLS potential yields a slightly smaller
correlation-hole in the RPDF due to the stronger screening;

(ii) the SM potential, despite being a better approximation to the RPA
than the Yukawa potential, gives the RPDF close to that calculated using
the Yukawa potential;

(iii) at larger coupling parameters, Γ = 25 and 50, the RPDFs computed
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Figure 4.5: Radial pair distribution function computed using different
screened ion potentials with: (a) Γ = 0.5, 1, 5; (b) Γ = 10; (c) Γ = 25; (d)
Γ = 50. From reference [Moldabekov 2018b].

using the RPA potential are much closer to those obtained using the STLS
potential rather than to the data found on the basis of the Yukawa and SM
potentials.

Observation (iii) indicates that the structural properties of the strongly
coupled ions are sensitive to the exact shape of the potential. Therefore,
the potentials shown in Fig. 4.4 must be placed under careful scrutiny. This
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Figure 4.6: Different screened potentials divided by the Yukawa poten-
tial (4.17). From reference [Moldabekov 2018b].

is done by looking at the ratio of the considered potentials to the Yukawa
potential in Fig. 4.6 and at the difference between the RPA screened po-
tential and other potentials presented in Fig. 4.7. From Figs. 4.6 and 4.7
we see that the RPA potential exhibits oscillations around the decaying SM
potential and the STLS potential, too, has such oscillating pattern but with
stronger overall screening than that of the RPA potential.

Essentially, the oscillations in the RPA and STLS potentials have a very
similar shape (position of local extrema etc.) up to r/a = 3.75. This is in
contrast to the behavior at r/a > 5, where the oscillations in the STLS and
RPA potentials turn into the Friedel oscillations. Therefore, we can argue
that the aforementioned similarity in the pattern of the RPA and STLS
potentials at r/a ≤ 3.75 is the reason why, at larger coupling parameters,
these two potentials give almost the same RPDF. To verify this hypothesis,
let us consider the following potential, which is a hybrid of the RPA and
Yukawa potentials:

Φ(r; rc) =

ΦRPA(r), r < rc

β(rc)× ΦY (r), r ≥ rc
(4.29)

where β(rc) = ΦRPA(rc)/ΦY (rc). We consider rc/a = 5.5, rc/a = 2, and
rc/a = 1.25. The distances rc are chosen such that: at r > 5.5a the RPA
potential damps away and only Friedel oscillations remain; at r > 2a and
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Figure 4.7: The difference between the RPA potential and other potentials.
From reference [Moldabekov 2018b].

r > 1.25a the second maximum and the first peak, respectively, of the
RPDF are located. In other words, Φ(r; rc) is the RPA potential up to rc
followed by the Yukawa-type pattern at r ≥ rc. Potential (4.29) is designed
to dispose of the impact of the oscillations from different regions and, thus,
to examine the sensitivity of the RPDF of the strongly coupled ions to these
oscillations.

The RPDFs computed on the basis of Φ(r; rc) (with different values of
rc) and the Yukawa potential (Yukawa RPDF) are presented in Fig. 4.8.
From this figure we see that: Φ(r; rc = 5.5a) yields the same outcome as the
RPA potential; Φ(r; rc = 2a) leads to a RPDF closer to the Yukawa RPDF
at r/a > 2 and is in agreement with the RPDF obtained using the RPA
potential at r/a < 2; Φ(r; rc = 1.25a) closely reproduces the Yukawa RPDF
(some differences appear as the consequence of matching the RPA potential
at r = rc).

Thereby, it is confirmed that the deviation of the RPDF calculated on
the basis of the RPA potential from the Yukawa RPDF at Γ = 25 and 50
is the result of the manifestation of the oscillations in the RPA potential in
the intermediate region between very small distances, where bare Coulomb
repulsion is dominant, and large distances, where the Friedel oscillations are
present. The curves of the static structure factor, S(k), for Γ in the range
from 0.5 to 50 are presented in Fig. 4.9. From this figure the following con-
clusions are drawn out:
• The RPDF computed using the STLS potential has a larger value
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Figure 4.8: RPDF computed using the Yukawa potential (4.17), the RPA
potential, and the test potential (4.29). From reference [Moldabekov 2018b].

of S(0) than those calculated neglecting the electronic correlations. Note
that the ionic isothermal compressibility can be expressed as S(0)/(nkBTi)

[March 2002]. Therefore, the inter-electronic correlations increase the isother-
mal compressibility of the ions.
• At ka < 3, at considered coupling parameters, the SSF obtained us-

ing the RPA potential is in very good agreement with the Yukawa and SM
potentials based results. Therefore, the Friedel oscillations do not affect the
structural properties of the ions in dense quantum plasmas.
• At ka > 2.5, the STLS result for the SSF agrees with that obtained

from the RPA, Yukawa, and SM potentials up to Γ = 10. In contrast,
at Γ > 10 and ka > 3, the RPA and STLS results deviate from the data
computed using the Yukawa and SM potentials. This, again, is due to the
aforementioned manifestation of the electronic quantum non-locality in the
form of potential oscillations at intermediate distances.

These conclusions remain valid for all 1 ≤ rs ≤ 2, as the following
investigations at different density parameters will show.

As one can expect, the impact of the electronic quantum non-locality
and correlation effects diminishes at higher densities. This is illustrated
in Fig. 4.10, where the RPDF and SSF at rs = 0.5 are presented. From
this figure the agreement of the results obtained making use of different
approximations for the ion-ion interaction potential is clearly seen up to
Γ = 25. However, at Γ = 50, a slight difference around the first peaks is
observable. Therefore, at even higher coupling parameters, Γ� 50, (which
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Figure 4.9: SSF calculated using different screened potentials for the differ-
ent values of Γ. In the left figure (a) the curves for Γ = 5.0 are shifted for
the better visibility. From reference [Moldabekov 2018b].

Figure 4.10: (a) Radial pair distribution function and (b) static structure
factor obtained using different screened potentials for various values of Γ at
rs = 0.5 and θ = 0.01. From reference [Moldabekov 2018b].
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Figure 4.11: RPDF and SSF calculated for different values of the degeneracy
parameter θ of the electrons at rs = 1.0 and Γ = 50. From reference
[Moldabekov 2018b].
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Figure 4.12: The STLS , RPA, and QMC potentials at rs = 2.0 and θ = 0.01.
From reference [Moldabekov 2017b].

beyond the scope of this work) the aforementioned effects due to quantum
non-locality and non-idelity can manifest at higher densities, rs < 1.

Next, the influence of electronic thermal excitations is examined for θ =

0.1, 0.2, and 0.3. The RPDF and SSF calculated at these parameters are
presented in Fig. 4.11. All curves collapse to a single one as the electronic
degeneracy parameter (temperature) increases. Obviously, at θ > 0.3, the
electronic thermal excitations results in a significant suppression of electronic
quantum non-locality and non- ideality effects.

4.4.2. Density rs = 2: non-ideal electrons

Now we consider the other limiting case which is characterized by strong
inter-electronic correlations. As was mentioned, the finite temperature QMC
results for the local field correction cannot be used yet for the calculation of
the screened ion potential due to insufficient k-resolution. However, in the
case rs = 2 and θ = 0.01, the STLS treatment of the electronic subsystem
can be gauged by comparing the STLS potential based result to the result
obtained using the ground state QMC potential. As mentioned before, the
accurate parametrization from Ref. [Corradini 1998] is employed for this
purpose.

The STLS, RPA, and QMC potentials, at rs = 2 and θ = 0.01, are
presented in Fig. 4.12. We see that at r/a < 1 the STLS and QMC potentials
are close to each other and show stronger screening in comparison to the
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Figure 4.13: Radial pair distribution function of the ions at Γ in the range
from 0.5 to 10 calculated on the basis of various screened ion potentials.
From reference [Moldabekov 2018b]

RPA potential. At 1 < r/a < 2.5, both the RPA and QMC potentials
remain positive, while the STLS potential has a negative minimum around
r/a = 1.25. At larger distances, r/a > 2.5, all three potentials exhibit
Friedel oscillations (not shown in the figure).

The RPDFs calculated using different potentials in the range from Γ =

0.5 to Γ = 50 are presented in Figs. 4.13, 4.14, and 4.15. The SSFs com-
puted on the basis of various potentials for Γ = 0.5, 1, 10 and Γ = 25 are
given in Figs. 4.16 and 4.17. From these figures, we made the following
observations:

• At Γ ≤ 1, the RPDF computed using the STLS potential is close to
that of based on the QMC potential, as it is demonstrated in Fig. 4.13.

• At Γ > 1, the STLS potential yields significantly larger value for the
first peak of the RPDF in comparison to the RPDF obtained using the
QMC potential, but the position of the first peaks are in agreement (see
Figs. 4.14, and 4.15). The former observation is due to the ion-ion attrac-
tion (the negative minimum) in the STLS potential, and the latter is due to
a similar behavior of the potentials at intermediate distances, r/a ≤ 1.
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Figure 4.14: RPDF computed using different potentials for Γ = 25. From
reference [Moldabekov 2018b].

Figure 4.15: The same as in Fig. 4.14 but for Γ = 50. From reference
[Moldabekov 2018b].

• For all considered parameters, the RPA potential based RPDFs and
SSFs exhibit a noticeable deviation from the QMC potential based result.
Pronounced disagreement between RPDFs (SSFs) obtained using the RPA
potential and the Yukawa (SM) potential appears at Γ� 1.

• The SSF computed using the STLS potential has its minimum at k > 0

due to the attractive part in the corresponding potential, in contrast to those
obtained using other approximations. Particularly, a minimum at ka ' 2,
which becomes more pronounced with increase in Γ, is demonstrated in Figs.
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Figure 4.16: Static structure factor calculated on the basis of different ion
potentials at different values of Γ. From reference [Moldabekov 2018b].

Figure 4.17: SSF calculated using various screened ion potentials at different
coupling parameters. From reference [Moldabekov 2018b].

4.16 and 4.17. An important aspect is that the foregoing feature of the SSF
does not exist in the SSF calculated using the QMC potential.

From the aforementioned observations, it is evident that considering elec-
tronic screening in the STLS approximation essentially fails to adequately
describe the SSF (RPDF)—at small wavenumbers, ka < 4 (large distances,
r/a > 1)—of the strongly coupled ions at certain densities and temperatures
in the considered parameters, rs ≤ 2 and θ ≥ 0.01, due to unphysical at-
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traction between ions. On the other hand, Fig. 4.16 also illustrates that
the STLS results and the QMC data based results for the SSF (RPDF) at
ka > 4 (r/a < 1) are in agreement with each other. The reason for this is
that the STLS potential correctly reproduces the QMC potential at r/a < 1

(see Fig. 4.12).

4.4.3. Density 1 < rs < 2: moderately non-ideal electrons

Considering 1 < rs < 2, we can understand in more detail how the STLS
potential fails to provide correct structure properties of the ions when the
density decreases. The curves of the STLS and RPA potentials for rs = 1.5

and 1.8 are shown in Fig. 4.18. As before, inter-electronic correlations yield
stronger screening as it is seen by comparing the STLS and RPA poten-
tials. The second point, which is clearly observable from Fig. 4.18 and the
previously discussed case rs = 1, is that the first negative minimum of the
Friedel oscillations transforms into a single pronounced minimum by de-
creasing the electronic density. Therefore, the attractive part of the STLS
potential is the result of the interplay between screening and the Kohn
anomaly [Kohn 1959]. This transition from the strongly oscillatory tail to
the specific negative minimum results in dramatic changes in the SSF and
RPDF computed using the STLS potential. This is clearly demonstrated in
Figs. 4.19 and 4.20, where the RPDFs and SSFs are presented. From these
figures we see that:

• At rs = 1.5, the RPDF calculated using the STLS potential has a
smaller correlation-hole and the height of the first peak is in between those
computed on the basis of the Yukawa (SM) potential and the RPA potential
(see Fig. 4.19). In contrast, at rs = 1.8, the height of the first peak of the
RPDF found using the STLS potential is higher than those calculated using
other approximations (see Fig. 4.19), which is due to the manifestation of
the attraction part of the STLS potential.

• The manifestation of the unphysical behavior at rs = 1.8 (see Fig. 4.20)
due to the attraction between ions interacting through the STLS potential is
more noticeable on the curve of the SSF at ka < 4. In contrast, at rs = 1.5,
such a feature is absent (see Fig. 4.20).

• In addition, from Figs. 4.19 and 4.20 we see that at Γ = 50, θ = 0.01,
rs = 1.5, and rs = 1.8 the Yukawa and SM potentials are not able to cor-
rectly reproduce the results computed using the RPA potential.
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Figure 4.18: The STLS and RPA potentials at the density parameters rs =

1.5 and rs = 1.8 (θ = 0.01). From reference [Moldabekov 2018b].

Figure 4.19: RPDF of ions calculated for the density parameters rs = 1.5

and 1.8 at θ = 0.01 and Γ = 50. From reference [Moldabekov 2018b].
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Figure 4.20: Static structure factor of ions computed for the density pa-
rameters rs = 1.5 and 1.8 at θ = 0.01 and Γ = 50. From reference
[Moldabekov 2018b].

Figure 4.21: Static structure factor of ions for 1.8 at θ = 0.01 and Γ = 50.
The STLS result and the result obtained neglecting the attractive part of
the pair interaction potential are compared.
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Figure 4.22: Radial pair distribution function of ions. From reference
[Moldabekov 2018b].

Figure 4.23: Static structure factor of ions. From reference
[Moldabekov 2018b].

In the case of rs = 1.8, in order to demonstrate that the strong deviation
of the SSF behavior from the others at ka < 4 can be traced back to the
discussed negative minimum in the STLS potential, in Fig. 4.21 the data
obtained using the truncated STLS potential (without the part after Φ = 0)
are shown in comparison to the result obtained using full STLS potential.
From this figure, it can be seen that the aforementioned negative minimum
of the STLS potential is indeed culpable for the unphysical pattern of the
SSF at ka < 4.

The thermal electronic excitations lead to the disappearance (damping)
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Figure 4.24: (a) Radial pair distribution function and (b) static structure
factor calculated using the STLS potential by the HNC and MD simulations
at rs = 1.8 and θ = 0.1 for different values of the coupling parameter. From
reference [Moldabekov 2018b].

of the potential oscillations (i.e., the effect which we called non-locality) and,
thereby, to a diminished anomal behavior of the SSF and RPDF obtained
on the basis of the STLS potential. This is illustrated in Figs. 4.22 and 4.23
for θ = 0.5, where the effect of the attraction cannot be seen.

4.4.4. Verification of the HNC results by MD simulations

The MD simulation of the ions interacting via the STLS potential is an im-
portant check of the revealed features of the structural properties of the ions
using the HNC. In subchapter 4.3.2, it was found that the HNC calculations
provide accurate data on the ionic structural properties up to Γeff = 10. It
was mentioned that, in the case of the strong screening, with κ > 2, the HNC
is expected to be accurate even at Γ > 25. This, and the aforementioned
features of the RPDF and SSF obtained using the STLS potential were con-
firmed by performing MD simulations with the number of ions set equal to
N = 1000. The results are shown in Figs. 4.24 and 4.25. In Fig. 4.24, the
RPDF and SSF are computed at θ = 0.1 and rs = 1.8, for Γ = 5, 10, 25 and
50. In Fig. 4.25, RPDF and SSF are computed at Γ = 20, for two different
combinations of the density and degeneracy parameters (rs = 1.4, θ = 0.5,
and rs = 2.0, θ = 0.01). Indeed, we find excellent agreement between the
MD and the HNC results.



4.5. Applicability of the STLS approximation 107

Figure 4.25: (a) Radial pair distribution function and (b) static structure
factor calculated using the STLS potential by HNC and MD simulations at
Γ = 20 for different values of the density and degeneracy parameters.

4.5 Applicability of the STLS approximation

We are now in a position to determine the applicability of the STLS approx-
imation to dense plasmas with strongly coupled ions. For this purpose, the
absence of the pronounced impact of the attraction in the ion-ion interaction
on S(k) is used as a necessary criterion. For example, in the Fig. 4.26, the
STLS potential is shown at θ = 0.01, 0.1, 0.2, 0.3 and 0.4. With increasing
degeneracy parameter, the absolute value of the negative minimum reduces
and its position shifts to a larger distance. Corresponding SSFs and RPDFs
at Γ = 50 are shown in Fig. 4.27. As discussed earlier, the suppression of the
manifestation of the ion-ion attraction takes place due to thermal electronic
effects. To be specific, at θ = 0.4, the value of the SSF at the minimum—
which located in the range 0 < ka < 2—is less than 5% of the SSF value at
k = 0. Further, the SSF minimum at 0 < ka < 2, due the negative mini-
mum in the STLS potential, rapidly vanishes with increasing θ, as it is can
be seen from Fig. 4.22 where the aforementioned minimum does not exist
at θ = 0.5. Apart from that, from Fig. 4.27(b), we see that the value of the
first peak of the RPDF decreases with increasing θ due to the deterioration
of the attractive part of the potential, while the correlation-hole increases
due to the stronger repulsion between ions.

In a similar way, a large scale study of the SSF on the basis of the
STLS potential has been carried out. Different values of the degeneracy and
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Figure 4.26: The STLS potential at rs = 1.8 and different values of the
degeneracy parameter of electrons θ. From reference [Moldabekov 2018b].

Figure 4.27: The static structure factor (a) and radial pair distribution
function (b) at Γ = 50 computed using the STLS potential at rs = 1.8 and
different values of the degeneracy parameter of electrons. From reference
[Moldabekov 2018b].

density parameters have been considered in the range 0.01 ≤ θ ≤ 1 and at
the densities rs ≤ 2. The results are summarized in Fig. 4.28. In region I,
the artificial minimum of the SSF due to the negative minimum of the STLS
potential does not appear. In contrast, in region II (dashed) the unphysical
absolute minimum in the SSF at k > 0 appears at Γ ≥ 1 and amplifies with
the departure from the line delineating the two areas. Therefore, in region
II, the ab initio finite temperature QMC data for local field corrections with
sufficiently high k-resolution is needed.
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Figure 4.28: The result of analysis of the SSF at the values of the degeneracy
and density parameters in the range 0.01 ≤ θ ≤ 1 and rs ≤ 2, respectively,
is summarized. The region corresponding to the applicability parameters
of the STLS potential is denoted as I. At these parameters the unphysical
feature of S(k) due to the pronounced negative minimum in the STLS po-
tential is absent. In contrast, in the region denoted as II (dashed area), the
artificial absolute minimum in S(k) at 0 < k < 4 appears at Γ ≥ 1. From
reference [Moldabekov 2018b].

4.6 Summary

The detailed analysis of the structural properties of strongly coupled ions in
dense quantum plasmas has revealed the following results:

(i) The structural properties of strongly coupled ions in a quantum plasma
are highly sensitive to the shape of the ion-ion pair interaction poten-
tial. Hence, a relatively small discrepancy to the true pair interaction
potential due to an approximate treatment of the electronic subsystem
can lead to unphysical predictions. Consequently, the self-consistent
study of a two component quantum plasma requires a more involved
theoretical consideration of the electrons in the case of strong ionic
coupling, Γ > 1, in comparison to the case Γ < 1.

(ii) The Yukawa potential, which often has been used for the study of
strongly coupled ions, is not capable to provide an adequate description
of the ionic dynamics at θ ∼ 0.1 and rs ≥ 1. The same applies to
the SM potential, which had been proclaimed as providing a unified



110 Chapter 4. Structural properties of strongly coupled ions

description of the linear screening in dense plasmas [Stanton 2015].

(iii) The parameters where the STLS approximation is applicable have been
identified.

(iv) The HNC provides an accurate description for Γeff . 10.
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Conclusions and Outlook

Conclusions

The first paper on the quantum fluid model for a quantum electron gas
by Manfredi and Haas in 2001 and experiments relevant to quantum plas-
mas have sparked an unprecedented interest in the QHD. Despite a large
number of publications on this topic, the QHD approach suffered from the
lack of a reliable foundation [Khan 2014], especially for the finite temper-
ature case. This circumstance has impaired the development of the QHD
description and, in fact, made the QHD unsuitable for high-energy-density
plasma science. The main achievement of the work presented in the thesis
at hand is the establishment of the theoretical foundations of finite tem-
perature quantum hydrodynamics for plasmas [Moldabekov 2018a]. Now,
the agreement of the QHD with the linear response theory in the limit
of weak electronic density perturbation is guaranteed. Moreover, in the
static limit the QHD reduces to the OF-DFT. These properties make the
QHD a promising tool for the large scale simulation of dense quantum plas-
mas. Another important point is that the QHD has also started being
popular for large scale simulations in plasmonics [Toscano 2015, Yan 2015,
Ciracì 2016]. Thereby, the results presented in this thesis constitute a
“timely contribution” [Manfredi 2018] for plasmonics as well. In this regard,
among other results, I would like to stress the importance of a consistent
inclusion of the dynamical exchange-correlation potential into the QHD for
plasmonics, since a static exchange-correlation potential was used previously
even for the description of high frequency phenomena [Crouseilles 2008,
Yan 2015, Fernández-Domínguez 2012]. Additionally, in chapter 3, the LDA
with the first order density gradient correction at finite temperature has
been analyzed extensively in a whole range of frequencies and wavenum-
bers for the fist time. This ansatz is very important for both dense plas-
mas [Abdourahmane 2017, Sjostrom 2018], and plasmonics [Toscano 2015,
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Krasavin 2018, Ding 2018].

Furthermore, considering the quantum plasma with strongly coupled
ions and with weak electron-ion coupling—typical for dense plasmas—the
impact of the electronic quantum degeneracy and correlation effects on the
structural characteristics of the ions has been studied quantitatively and
qualitatively. As a result, it was found that when the ionic component
of the plasma is non-ideal (Γ > 1) the electronic correlations are crucial
and cannot be neglected at T < 6 × 105 K and n < 1.6 × 1024 cm−3 (or
θ < 1 and rs > 1). In addition, the electronic quantum non-locality is
strongly pronounced at T . 6 × 104 K (θ . 0.1). The importance of the
findings from chapter 4 is that they undeniably indicate the need of a more
involved description of the dense plasma electrons due to the stronger ionic
non-ideality than in the case with Γ < 1. A case in point is given by
the discussed failure of the STLS treatment of the electronic properties at
the parameters which were previously considered to be well suited for this
approximation [Reinholz 1995, Bennadji 2009]. In fact, the foregoing result
together with the defined applicability limits of the STLS (for the quantum
plasma with strongly coupled ions) is significant by itself because the STLS
ansatz is often used for the self-consistent description of electron-ion plasmas
[Graziani 2014b, Bennadji 2011]. Obviously, all findings mentioned here are
relevant and important for the quantum fluid description of quantum non-
ideal electrons on the basis of the QHD, where information about a static
ionic structure is needed to compute an effective external field.

Finally, by bringing together the preceding three chapters we have a
full picture of the quantum fluid approach for dense plasmas within the
framework of the multi-scale description. In this approach, the electronic
subsystem is described by the QHD equations presented in chapter 3 and
the ions are treated as classical particles interacting with each other by the
effective potential introduced in chapter 4. The examples of the parameters
of experimentally generated plasmas that are relevant to this work are illus-
trated on the θ–rs plane in Fig. 5.1. The discussed applicability range of the
STLS scheme is also given in this figure. It can be seen that the quantum
fluid approach with electronic correlations included by the STLS scheme can
be used for the description of ICF plasmas starting from the initial stage
with non-ideal quantum electrons all the way to the final regime with ideal
electrons.
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Figure 5.1: Examples of the experimental plasma parameters with Γ > 1.
The data for ICF experiments were extracted from Ref. [Hu 2010]. In the
experiments related to the ICF, the change in the plasma parameters during
compression is sketched by an arrow. The dashed area (II) corresponds to
the parameters at which the STLS scheme cannot be used for the description
of the electronic correlations.

Outlook

An obvious first extension of the presented analysis of the structural char-
acteristics of the ions in dense quantum plasmas is the investigation of the
effects related to the non-linear response of the electrons. Important steps
in this direction have already been done for systems where screening can be
described within the multi-scale approach [Porter 2010, Gravel 2007], but
not for the description of dense plasmas. On the one hand, for the elec-
tronic subsystem with the characteristic energy EF , the inclusion of higher
order effects due to non-linear response cannot lead to a significant change
in the induced electronic density perturbation as far as a weak electron-ion
coupling is considered. On the other hand, for the non-ideal ions—with
the characteristic energy kBTi � EF—this modification due to non-linear
electronic response terms can yield a dramatic change in the structural char-
acteristics since the properties of the strongly coupled ions in the quantum
plasma are very sensitive to the peculiarities of the screened pair interaction
potential (see the discussion in chapter 4).

The next question worth considering is an investigation of the properties
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of streaming quantum plasmas. Often, an experimentally generated plasma
is in a non-equilibrium condition with a non-zero mean streaming veloc-
ity of the electrons relative to the ions. Examples are experiments on an
ion or electron beam driven dense plasma [Hoffmann 2005, Sharkov 2016,
Kawata 2016]. In this case, plasma properties can be studied considering
a stationary non-equilibrium system with a constant streaming velocity of
the electrons relative to the ions. A dynamically screened ion potential can
be used for the study of various physical properties of such a plasma. In
comparison with the equilibrium case, the appearance of a significant ion-
ion attraction and a strong wakefield can lead to a number of new and
interesting features (see the figures in appendix C). A screened ion po-
tential in dense streaming quantum plasmas has been carefully studied in
Refs. [Moldabekov 2015a, Moldabekov 2015c, Moldabekov 2016].

Concerning the description of the electrons at a finite temperature by the
QHD developed in chapter 3, the most interesting application in my eyes is
the simulation of ICF plasmas. Previous considerations mainly used a hybrid
particle-in-cell method∗ for a large scale simulation, where the electrons
were treated as a classical fluid (i.e., neglecting the electronic quantum non-
locality). Therefore, the QHD can be implemented into existing codes, as
the one described in Refs. [Vu 1997, Harte 1996, Marinak 2001]. Indeed, this
would be the first time that a large-scale simulation of the dense quantum
plasma of ICF is performed taking into account the electronic quantum non-
locality. Previously, this was not possible due to the lack of a consistent finite
temperature QHD theory taking into account both the quantum non-locality
and correlations.

∗Besides, hydrodynamics simulations are also often used [Vold 2015, Ohnishi 2006]. In
addition, it should be noted that the kinetic theory molecular dynamics [Graziani 2014b,
Haack 2017] can be used to simulate certain stages of a target compression.



Appendix A

Functionals and functional
differentiation

In this Appendix the functional derivatives needed to follow the deriva-
tions in chapter 3 are given. For an extended and mathematically rigor-
ous discussion the interested reader is referred to Refs. [Giaquinta 2004a,
Giaquinta 2004b, Hansen 2013].

A functional F [f1, f2, ..., fN ] is given by an operation (procedure), which
takes as an input (argument) a function or a set of functions and gives
a number as an output. In the context of this thesis, this operation is
defined by the integration over the variables of a function (or functions).
The functional derivative δF

δf1(r1) is defined as∫
δF [f1(r1), ..., fN (rN )]

δf1(r1)
ξ(r1) dr1 = lim

ε→0

F [f1 + εξ1, ..., fN ]− F [f1, ..., fN ]

ε
,

where ξ1(r1) is an arbitrary function.
The second order functional derivative is computed as:

δ2F

δf1(r1)δf1(r′1)
=

δ

δf1(r′1)

(
δF

δf1(r1)

)
.

In this work the following functionals and their derivatives are used:

F [f ] =

∫
J [f(r)]dr,

δF [f ]

δf(r)
=
∂J [f ]

∂f
,

δ2F [f ]

δf(r)δf(r′)
=
∂2J [f ]

∂f2
δ(r− r′),

(A.1)

where J [f ] denotes an ordinary function of f .
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F [f ] =

∫
J [f(r),∇f(r)] dr,

δF [f ]

δf(r)
=
∂J [f(r),∇f(r)]

∂f
−∇∂J [f(r),∇f(r)]

∂∇f
.

(A.2)

where J [f,∇f ] is an ordinary function of f and ∇f .

F [f ] =

∫
W (|r− r′|)f(r)f(r′) drdr′,

δF [f ]

δf(r)
= 2

∫
W (|r− r′|)f(r′) dr′,

δ2F [f ]

δf(r)δf(r′)
= 2W (|r− r′|).

(A.3)

where W (|r− r′|) is a function of |r− r′|.

F [f ] =

∫
[f(r)]aW

(
r− r′

) [
f(r′)

]b
drdr′

δF [f ]

δf(r)
= af (a−1)(r)

∫
W
(
r− r′

)
f b(r′) dr′

+ bf (b−1)(r)

∫
W
(
r− r′

)
fa(r′) dr′,

δ2F [f ]

δf(r)δf(r′)
= ab

(
f(r)(a−1)f(r′)(b−1) + f(r)(b−1)f(r′)(a−1)

)
W
(
r− r′

)
,

(A.4)
where a and b are constant numbers.
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Functional derivative of a
Hamiltonian in the grand

canonical ensemble

In Ref. [Zubarev 1971] it was shown that for the partial derivative of a
Hamiltonian with respect to a parameter a it holds〈

∂H
∂a

〉
=
∂Ω

∂a
, (B.1)

where 〈. . . 〉 denotes averaging over the grand canonical ensemble, and H is
a Hamiltonian of the system at rest and in the absence of an external field,
i.e w = 0 and Vext = 0.

In order to extend the relation (B.1) to the case of the functional deriva-
tive, i.e.

〈
δH
δn

〉
= δE

δn , we consider the density perturbation n1(r) around the
mean density n0 = const, where

∫
n1(r)dr = 0. In this case we have the

following expansion of the semi-classical Hamiltonian around n0:

H[n] = H[n0] +

∫
dr

δH[n]

δn(r)

∣∣∣∣
n=n0

n1(r)

+
1

2

∫ ∫
drdr′

δ2H[n]

δn(r)δn(r′)

∣∣∣∣
n=n0

n1(r)n1(r′) + . . . , (B.2)

where n0 is understood as the smoothed (coarse-grained) density distribu-
tion with respect to microscopic density fluctuations.

From Eq. (B.2), we immediately see that

δH[n]

δn(r)
=
δH[n]

δn(r)

∣∣∣∣
n=n0

+

∫
dr′

δ2H[n]

δn(r)δn(r′)

∣∣∣∣
n=n0

n1(r′) + . . . , (B.3)

where δn = δn1.
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grand canonical ensemble

Further, we need the following formula for the functional derivative of
the functional F [f ] = exp

[∫
f(x)g(x)dx

]
:

δF [f ]

δf
= g(x) exp

[∫
f(x)g(x)dx

]
. (B.4)

Using Eqs. (B.2), (B.3), and (B.4) we arrive at

δ

δn

[
e−(H[n]−µ0N)/T

]
= − 1

T

δH[n]

δn
e−(H[n]−µ0N)/T , (B.5)

where T is in energy units (kB = 1).
Eq. B.5 allows us to deduce the desired result:

δE

δn
=

〈
δH
δn

〉
= eΩ/TTr

(
e−(H[n]−µ0N)/T δH

δn

)
= −TeΩ/T δ

δn
Tr
(
e−(H[n]−µ0N)/T

)
= −TeΩ/T δ

δn
e−Ω/T

= −TeΩ/T

(
− 1

T

δΩ

δn

)
e−Ω/T =

δΩ

δn
.
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Wake effect in quantum
plasmas

The effects of quantum non-locality and correlations are more pronounced
in the case of a streaming plasma. This demonstrated here by considering
the dynamically screened ion potential∗ [Ludwig 2010],

Φ(r) =

∫
d3k

2π2

Q

k2ε(k, ω = k · vs)
eik·r , (C.1)

where vs is the streaming velocity of the electrons relative to an ion and
ε(k, ω) is computed using the polarization function in relaxation-time ap-
proximation, Eq. (3.87), with the following dynamical collision frequency
[Reinholz 2000, Wierling 2001]:

νLB
ei (ω) = −i ε0niΩ

2
0

6π2e2neme

∫ ∞
0

dk k6φ̃2
ei(k)× 1

ω

[
ε−1
RPA(k, ω)− ε−1

RPA(k, 0)
]
,

(C.2)
where Ω0 is a normalization volume, and φ̃ei is the bare Coulomb interaction
potential between an electron and an ion. Note that here the dynamical col-
lision frequency is given in the SI units. Eq. (C.2) represents the dynamical
collision frequency due to electron-ion correlations in the second order Born
approximation and, in the case θ � 1, can be used at n ≥ 1.6 × 1024cm−3

(rs ≤ 1). Eq. (C.2) is referred to as the Lenard-Balescu (LB) dynamical
collision frequency. Clearly, it takes into account the screening and related
electronic quantum non-locality effects.

As a computationally easier way to incorporate the frequency dependent
collision frequency, the following form of the dynamical collision frequency
∗ 3D Fourier transformation was performed using the modified version of KIEL-

STREAM [Ludwig 2014]. The latter was originally designed for the calculation of the
screened potential in a streaming classical complex plasma. Therefore, for the considered
case, the code has been modified by implementing the dynamic dielectric function for
quantum electrons.
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Figure C.1: The dynamically screened ion potential Φ(z, r = 0) for colli-
sional and collisionless systems. The potential is presented along the stream-
ing direction z. The ion is positioned at (r = 0, z = 0).

is often used instead of Eq. (C.2) [Wierling 2001, Fortmann 2010]:

νY
ei(ω) = −i ε0niΩ

2
0

6π2e2neme

1

ω

∫ ∞
0

dk k6Φ̃2
Y (k)× [εRPA(k, ω)− εRPA(k, 0)] ,

(C.3)
where Φ̃Y (k) = φ̃ei(k)/εRPA(k → 0, ω = 0) is the electron-ion interaction
taking into account the static screening in the long wavelength approxima-
tion (cf., Eq. (4.17)).

The main difference between νLB
ei (ω) and νY

ei(ω) is that the former takes
into account a plasmons excitation while the latter does not. In addi-
tion, νY

ei obviously provides a somewhat less accurate description of the
electronic non-locality, as the long wavelength approximation is involved.
Eq. (C.3) was derived from Eq. (C.2) assuming that Im [εRPA] /Re [εRPA]�
1 [Wierling 2001].

The importance of the effects of correlations and non-locality can be
gauged by comparing the dynamically screened potentials computed using
νei = 0 (i.e., neglecting collisions), νLB

ei (ω), and νY
ei(ω). The results of these

calculations are presented in Figs. C.1 and C.2 for rs = 1, θ = 0.01, Z = 1,
with the streaming velocity defined by the parameter M = vs/vF . In this
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Figure C.2: The dynamically screened ion potentials for collisional (the lower
part of the figure) and collisionless (the upper part of the figure) plasmas.
The dynamical collision frequency is computed using Eq. (C.2).

figure, the ion is located at (r = 0, z = 0) and the streaming of the electrons
is directed from left to right (in the direction opposite to the z axis). In
Fig. C.1, the dynamically screened ion potential along the z axis at r = 0 is
shown. From this figure we see that (i) the effect of collisions (correlations)
is significant, and (ii) the νY

ei(ω) based result is not able to provide an
accurate approximation to the one calculated using νLB

ei (ω). Thus, a fully
non-local treatment is crucial. In Fig. C.2, the upper part represents the
collisionless case and the lower part the case with νLB

ei (ω). From Figs. C.2
and C.1 it is clearly seen that the collisions lead to a stronger repulsive
region (the areas around the positive maximums at (z > 0, r = 0)) and a
stronger attractive part (the area around the first negative minimum of the
potential). This is the illustration of the collision-induced wake amplification
[Moldabekov 2016]. Apart from that, the wakefield in quantum plasmas has
the inverse V shape at z > 0, in contrast to that of in a classical plasma
[Moldabekov 2015c]. Therefore, both quantum and correlation effects are
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highly important in the case of streaming quantum plasmas.
It should be remarked that, for dense plasmas, the results for the dy-

namically screened ion potential with the self-consistently computed dynam-
ical collision frequency are presented here for the first time. In previous
works electron-ion collisions were neglected or treated as a constant that is
independent of plasma parameters [Moldabekov 2015a, Moldabekov 2015c,
Moldabekov 2016, Ludwig 2018, Else 2010].



Appendix D

The stiffness theorem at finite
temperature

The relation between the static inverse density response function and a
change in the free energy due to a density perturbation by an external field
reads [Gravel 2007]

F [n]− F0[n0] =
1

Ω

∑
k

χ(k)| ˜eVext(k)|2

2
=

1

Ω

∑
k

|ñ(k)|2

2χ(k)
, (D.1)

where χ = −ñ(k)/[eṼext(k)] is the density-density response function (related
to the polarization function via Eq. (4.9)).

Eq. (D.1) is a special case of the so-called stiffness theorem at finite
temperature [Giuliani 2008]. Indeed, Eq. (D.1) resembles a “stiffness en-
ergy” proportional to the square of the variable (density) deviation from an
equilibrium value, |ñ|2, and to the stiffness of the system, which is given by
χ−1.

Herein I would like to provide a derivation of Eq. (D.1) that is based on
the fact that the density distribution of a system at equilibrium minimizes
the free energy of the system. The derivation presented here has the ad-
vantage of being rather simple, although it cannot be called rigorous in a
mathematical sense.

Eq. (D.1) can be derived starting from the total intrinsic free energy of
the perturbed system,

F [n]−
(
e2

2

∫
ñ(r)ñ(r′)

|r− r′|
drdr′ −

∫
eñ(r)Vext(r)dr

)
= F0[n0] +

∫
K(r− r′)ñ(r)ñ(r′) drdr′+

+

∫
L(r, r′, r′′)ñ(r)ñ(r′)ñ(r′′) drdr′dr′′ + ..., (D.2)
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where F0[n0] is the unperturbed free energy, n0 the mean density, Vext a
weak external field, and n = n0 + ñ, with |ñ|/n0 � 1, is the electron density
after perturbation. In Eq. (D.1), the expansion of the intrinsic free energy in
terms of the density perturbation ñ is used [cf., Eq. (B.2)]. The contribution
in Eq. (D.2) due to the term linear in ñ vanishes as a result of the conditions∫
ñ(r)dr = 0 and δF [n]

δn |n0 = const. Further, we neglect the terms related
to nonlinear response features, i.e., the terms with the kernel L and higher
order terms.

The minimization condition of F [n], applied in Eq. (D.2), yields

− eϕeff(r) = 2

∫
K(r− r′)ñ(r′) dr′, (D.3)

where ϕeff(r) is the effective potential defined by Eq. (3.9).
Using Eq. (D.3), the Fourier expansion of K(r−r′), and the convolution

theorem we arrive at

K̃(k) = −eϕ̃eff(k)

2ñ(k)
= − 1

2Π(k)
. (D.4)

Finally, substituting Eqs. (D.3) and (D.4) into Eq. (D.2) we deduce Eq. (D.1).
Considering non-interacting electrons, we see that in the static case

Eq. (3.81) agrees with Eq. (D.4) except for the constant summand. The
latter appears because F0[n] in Eqs. (3.32) and (3.78) is the free energy of
the perturbed system, in contrast to F0[n0] in Eq. (D.2). Therefore, the
results represented by Eqs. (3.81) and (D.4) are consistent with each other.
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Convergence of the long
wavelength expansion of

Π−1
RPA(k, ω = 0)

In this appendix the convergence of the expansion (3.38) for the static case
in the limit of long wavelengths, k � 2kF , is discussed. We consider the
dimensionless inverse static polarization function for the three dimensional
case, i.e.,

Π
−1
RPA(k) =

ΠD=3
RPA(k = 0)

ΠD=3
RPA(k)

= 1 +
ã2

ã0
k2 + ...+

ã2l

ã0
k2l + ... (E.1)

The coefficient ã0 is given by Eq. (3.46) and ã2 is defined by Eq. (3.47)
(taking into account that ã2 = −a2). Other coefficients up to ã8 are the
following [Moldabekov 2015b]:

ã4(n, T )

ã0(n, T )
=
b21 − b2
16k4

F

,

ã6(n, T )

ã0(n, T )
=
−b31 + 2b1b2 − b3

64k6
F

,

ã8(n, T )

ã0(n, T )
=
b41 − 3b21b2 + b22 + 2b1b3 − b4

256k8
F

,

(E.2)

where bi involve Fermi integrals Ii(η) of different orders:

bi ([n] , θ) =
θ−i

2i+ 1

I−i−1/2(η)

I−1/2(η)
.

The convergence of the expansion (E.1), in the case of the homogeneous
electron gas, is illustrated in Fig. E.1. From this figure we see that the
first term, with l = 2, provides an accurate description at k/kF < 1, which
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improves with increasing temperature, θ. For θ & 1, a very accurate inter-
polation of Π−1

RPA(k, 0) at k < 2kF is presented by

Π−1
RPA(k, 0) = 2(ã0 + ã2k

2 + ã4k
4).

Figure E.1: The inverse static RPA polarization function is presented for
the values of the degeneracy parameter 0.1, 0.75, and 1.5 (colored curves).
Solid thin (black) curves represent the different maximal orders of the ex-
pansion that are included, where the maximal order is indicated on the
right hand side of the arrow. The expansion coefficients ã4–ã8 are given in
Eq. (E.2) and ã2 is given by a2, Eq. (3.47), multiplied by -1. From reference
[Moldabekov 2018a].
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