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The fundamental laws necessary
for the mathematical treatment
of large parts of physics and the
whole of chemistry are thus
completely known, and the
difficulty lies only in the fact that
application of these laws leads to
equations that are too complex

to be solved.

(Paul A. M. Dirac, 1929)
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Abstract

The objective of the present work is the theoretical investigation physical structure
formation by means of computational simulation methods. Of particular interest are
charged few-particle systems in external trapping potentials, which allow one to realize
and control strong correlation and quantum effects. Such “artificial atoms” have unique
features absent in real atoms: by controlling the confinement strength they can be

transformed from a weakly coupled state to a strongly coupled, crystal-like phase.

The first central topic is devoted to the structural properties of 3D Coulomb crystals,
which have been observed in trapped ion systems as well as in (multi-component) com-
plex plasmas. The ground state properties, such as the shell structure, are studied by
first-principle molecular dynamics simulations. The detailed comparison of the theoret-
ical results with experiments provides the basis for a theory of these strongly correlated

classical systems.

The second major topic concerns electron-hole quantum plasmas in dimensionality re-
duced semiconductor heterostructures. At first, the realization of a quantum Stark
confinement for spatially indirect excitons in a single quantum well is investigated in
view of an experimental implementation. Furthermore, the effects of field-strength,
temperature, density, exciton dipole moment, and electron-hole mass asymmetry are
extensively studied by means of quantum Monte Carlo simulations. As a universal
melting criterion for classical and quantum few-particle systems a modified version of

the Lindemann parameter for the pair distance fluctuations is introduced.



Abstract




Kurzfassung

Die Zielsetzung der vorliegenden Arbeit ist die theoretische Untersuchung von physikalis-
cher Strukturbildung mit Hilfe von Computersimulationen. Von besonderem Inter-
esse sind Systeme aus nur wenigen geladene Teilchen in externen Fallenpotentialen,
welche die Realisierung und Kontrolle von starken Korrelations- und Quanteneffekten
ermoglichen. Derartige “kiinstliche Atome” besitzen im Gegensatz zu echten Atomen
besondere Eigenschaften: durch Steuerung des Einschlusspotentials konnen sie von
einem schwach gekoppelten Zustand in eine stark gekoppelte, kristalline Phase iiber-

fihrt werden.

Die erste zentrale Fragestellung ist den strukturellen Eigenschaften dreidimension-
aler Coulombkristalle gewidmet, die als Ionensysteme in Fallen sowie als komplexe
(Vielkomponenten-) Plasmen beobachtet werden. Die Grundzustandseigenschaften,
wie die Schalenstruktur, werden mittels Molekulardynamik-Simulationen naherungsfrei
studiert. Ein detaillierter Vergleich der theoretischen Resultate mit Experimenten dient

als Basis fiir eine Theorie dieser stark korrelierten klassischen Systeme.

Der zweite Themenkomplex befasst sich mit Elektron-Loch-Plasmen in dimension-
alitatsreduzierten Halbleiterheterostrukturen. Zunachst wird die Realisierung einer
geeigneten Potentialgeometrie fiir rdumlich indirekte Exzitonen in einem einzelnen
Quantenfilm durch Anwendung des Quanten-Stark-Effekts im Hinblick auf eine exper-
imentelle Umsetzung untersucht. Desweiteren wird der Einfluss von Feldstérke, Tem-
peratur, Dichte, Dipolmoment der Exzitonen sowie Massenasymmetrie von Elektronen
und Lochern mit sehr umfangreichen Quanten-Monte-Carlo-Simulationen studiert. Als
ein universelles Schmelzkriterium fir klassische und Quantensysteme aus nur wenigen
Teilchen wird eine modifizierte Form des auf den Paarabstandfluktuationen basierenden

Lindemann-Parameters eingefiihrt.



Kurzfassung
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1 Introduction: Plasma Crystals and
Artificial Atoms

1.1 Outline of the Thesis

Self-organized structure formation is one of the most fundamental processes in nature
and among the most exciting cooperative phenomena in the field of charged many-
particle systems. Many questions of many-body physics are not related to specific
materials, but rather of fundamental nature. Thus, the understanding of the details
of physical structure formation is of very general interest. In particular few-particle
systems in external trapping potentials are of interest in many fields of science, since

they allow to realize and control strong correlation and quantum effects.

Aim of this thesis is the investigation of structure formation of small particle ensembles
in confined geometries by means of computational simulation methods. Thereby, this
thesis focuses on two central topics related to mesoscopic classical and quantum Coulomb
systems: (1) spherically confined (multi-component) complex plasmas, and (2) electron-

hole quantum plasmas in dimensionality reduced semiconductor heterostructures.

The main results of this cumulative dissertation have been published in peer-reviewed
journal publications. Each chapter opens with a short introduction and overview, and
gives the reader additional information which is not included in the publications. The
publications are listed and appended at the end of the respective chapter to allow for

an easy access by the reader. The outline of this thesis is as follows:

Chapter 1 — Introductory Part. The first chapter provides a brief introduction into the
topic of strongly correlated few-particle systems in traps. Besides an overview of
the current status of research, this part introduces the theoretical model system,

physical key parameters and the problems of interest.

11



1 Introduction: Plasma Crystals and Artificial Atoms

Chapter 2 — Computational Approaches to the Many-Body-Problem. This second

introductory chapter briefly discusses the main concepts and ideas of the numer-
ical methods, which are centrally used in the frame of this work. In particular,
the specific advantages and limitations of the different many-particle simulation
approaches are critically reviewed. Additionally, the imaginary time path integral
representation of the density matrix is derived and its numerical solution with

efficient Monte Carlo methods is discussed.

Chapter 3 — First Principle Simulations of Finite Classical Systems in Traps. The

third chapter contains the first central topic of the present thesis and is devoted
to the structural properties of 3D Coulomb crystals, which have been observed
in trapped ion systems as well as in dusty plasmas. We study the ground state
properties, such as the shell structure, by first-principle molecular dynamics sim-
ulations. The detailed comparison of the theoretical results with the experiments

provides the basis for a theory of these strongly correlated classical systems.

Chapter 4 — Statistical Properties of Confined Systems. Chapter 4 aims at a deeper

insight into the statistical properties of confined plasmas and thereby naturally
connects the investigations on complex plasmas (chapter 3) and those of electron-
hole plasmas (chapter 5). The theoretical objective concerns (i) the dependence
of the ground state particle distribution of a confined plasma on the range of the
interaction potential, and (ii) the role of pair distance fluctuations as a universal

melting criterion for classical and quantum few-particle systems.

Chapter 5 — Spatially Indirect Electron-Hole Systems in Mesoscopic Traps. The

fifth chapter contains the results of the second major topic of this thesis. First
of all, we investigate the realization of a quantum Stark confinement for spatially
indirect excitons in a single quantum well in view of an experimental realization.
Further, we extensively study the effects of field-strength, temperature, density,
exciton dipole moment, and electron-hole mass asymmetry. The quantitative re-
sults of this chapter were primarily obtained with the finite temperature quantum
Monte Carlo method as introduced in chapter 2. Recent progress in the field
of strongly correlated classical and quantum plasmas is described in the review

article contained at the end of this chapter.

Chapter 6 — Summary and Discussion. The last chapter summarizes the main results

12

obtained in the thesis at hand.



1.2 Mesoscopic Strongly Coupled Coulomb Systems

1.2 Mesoscopic Strongly Coupled Coulomb Systems

The question concerning a finite number of interacting particles and how they arrange
themselves energetically most favourably is of fundamental interest not only in many
fields of physics, but also in chemistry, biology and beyond. Examples of strongly

correlated, two- and three-dimensional confined classical and quantum systems are:

e Localized charge densities of electrons in quantum dots and wells [1, 2] or electron

dimples on the surface of a helium droplet [3, 4] (as shown in figure 1.1).

e Crystallization of holes in mass asymmetric electron-hole-plasma in semiconduc-

tors [5], see section 5.3.

e Laser-cooled ion plasma crystals, which are confined by electromagnetic fields in
Paul or Penning traps [6]-[9] (see for instance figure 1.2). The classical ground
states which apply to recently observed spherical ion Coulomb crystals, see fig-

ure 1.3, are systematically analyzed in section 3.2.

e Two- and three-dimensional complex plasma crystals of highly charged dust micro-
spheres which are immersed in a discharge plasma of electrons, positive ions and
neutral atoms [10]-[15] (see figure 1.5 and 1.4). Dusty plasma crystals are the

main subject of chapter 3.

e Spatial, correlation-driven structures of inter-well exciton photoluminescence as
shown in figure 1.7 [16, 17, 18]. Strongly correlated states of spatially indirect

excitons are the central topic of chapter 5.
e Polymers [19], atomic and molecular clusters [20, 21, 22].
e Folded small protein structures in biochemical systems, e.g. [23].

The different nature of the mentioned examples shows that the occurrence of structure
formation is not a question of high or low temperatures; however, it is closely related
with the ratio of the mean interaction energy Fj;,; to the average kinetic energy El;y,.

This defines the plasma coupling parameter

r
Ekin

(1.1)

A system becomes strongly coupled whenever the interaction energy dominates over the
kinetic energy. Furthermore, if the dimensionless parameter I' exceeds a critical value

that is typically around T'¢, 2 100; the system of charged particles self-organizes in an

13



1 Introduction: Plasma Crystals and Artificial Atoms

Figure 1.1: Electrons in macroscopic dimples on the surface of liquid helium *He. Configura-
tions of (a) 8 and (b) 20 dimples (appearing as dark spots) in an external potential of cylindrical
symmetry. From Ref. [4].

ordered, crystal-like state, and the detailed spatial arrangement as well as the structural

properties of the particle ensemble become important, e.g. [24].

In physical situations where the sizes of the particle wave functions are of the same order
of magnitude as the mean interparticle distance, quantum-mechanics becomes essential.
A second key quantity, which describes the particle correlations in quantum systems is

the Brueckner parameter 5 defined by

a
rs=—. 1.2
= (12)
This means that the quantum coupling parameter is given as the ratio between mean
interparticle particle distance a and the effective Bohr radius is ap = 4mweh?/(mq?).
In few-particle systems a is typically taken as the first peak of the pair distribution

1. In the case of electrons (holes), ¢ and m are the elementary charge e =

function
1.602-10~'2 C and the effective electron (hole) band mass Me(h), respectively. Hence, the
Brueckner parameter r; expresses the transition from a weakly coupled, ideal quantum
system (rs < 1) to a pure classical one (rs — c0). While both limits of I' < 1 and ry < 1
are fully structureless, crystal-like states of matter are known to exist only under the
condition that I' > I'¢, 2 100 and 75 > 75 2 100. Consequently, the regime of strong
coupling can be achieved at moderate densities and low kinetic energies in the case of
elementary charged particles, but also at room temperature if the individual particles are
highly charged (such as complex plasmas with typically ¢ = 1000e. .. 10000e, depending

on the particle size).

In macroscopic homogeneous systems the interparticle distance a is often referred to as the Wigner-
Seitz radius a?P = (7n)~/? for 2D systems and a®P = (4/37n)"Y/3 for 3D systems with n being
the average density.

14



1.2 Mesoscopic Strongly Coupled Coulomb Systems

Figure 1.2: Crystalline structures formed by laser cooled Ca™ ions in a Paul trap [8]: Left:
Fluorescence pattern of N = 10 ions in the quasi-two-dimensional confinement showing a (2,8)
configuration. Right: Periodic system of 2D crystals for 1 to 18 ions. The side length of each
image is 123um. The configurations are essentially in agreement with molecular dynamics cal-
culations in static 2D parabolic potentials [25, 26].

0.1 mm

Figure 1.3: Recent observation of three-dimensional spherical Ca™ ion Coulomb crystals show-
ing shell structures. The Coulomb crystals are confined in a Paul trap and contain about 300,

700 and 1400 ions, from left to right. Typically, the temperature is T = 5 mK, and the coupling
parameter is I' = 400. From Ref. [9, 27].

Figure 1.4: Picture of a Yukawa ball consisting of several hundred dust particles (white dots).
The ball has a diameter of about 7 mm and the dust grains are 3.5 pm sized. One clearly
recognizes the spherical shape and the nested shell structure of the cluster. The dust-dust coupling
parameter is on the order of I' =~ 1000. The electron and ion temperatures are T, ~ 40,000 K
and T; < 1000 K, respectively. From Ref [28].

15



1 Introduction: Plasma Crystals and Artificial Atoms

1.3 Theoretical Modeling

The theoretical description of the classical and quantum Coulomb systems under con-
sideration begins with the many-particle Hamiltonian. This reads in coordinate repre-

sentation as

N
H(r;) = Z; ——lVQ + Z; Zl Vi (|r; — 1)) + ZVeXt (1.3)
‘ i=1 j=i+

where r; denotes the coordinate of the i-th particle. The first term describes the dy-
namics of the particles and gives rise to structural disorder as well as an increase of
entropy. In contrast, the combination of a repulsive pair potential V™ and a stabilizing
external confinement Ve allows for arbitrarily strong coupling of particles leading to

collective behaviour.

The fundamental, infinitely-long-ranged Coulomb pair potential causes the structure of

atoms, solid state matter, and all classical plasma correlation effects:

q2

—_— 1.4
4relr; —rj| (14)

th( —rj) =
In section 3.2 and 4.3 the Coulomb potential is applied in its pure form to describe
the ground state and the melting process of spherical Coulomb clusters. It is also used
within all sections of chapter 5 for the first principle treatment of electron-hole bilayer
systems. Based on this fundamental potential, two (effective) short-ranged potentials

emerge which are implemented:

e in section 3.3 and 4.1, the Yukawa pair potential as an electrostatically screened

Coulomb potential,
e in section 5.2, the repulsive dipole-dipole interaction potential.

Within the present work we focus on external trapping potentials of harmonic form
m
Vet(r;) = gwgriQ ) (1.5)

which provides a useful approximation for arbitrary types of (especially isotropic) po-
tentials in the vicinity of the stable equilibrium point. Within a suitable range, the
parabolic approximation also applies to the lateral electrostatic exciton confinement,
which is analyzed in section 5.2. Considering the case of a pure Coulomb interaction,

due to the quadratic increase of confinement strength in the radial direction, one finds

16



1.3 Theoretical Modeling

the density to be constant over the entire cluster (see section 4.2). This implies that

melting effects on the cluster surface are strongly reduced (see section 4.3).

In total, the considered model (1.3-1.5) has been very successful in describing charged
few-particle systems in various traps. This model has the advantage of analyzing order-
disorder transition phenomena in both classical and quantum systems on equal footing.
Due to wniversal scaling laws [29], similar physical correlation phenomena, such as
plasma crystallization, are present in completely different physical regimes. By use of
dimensionless energy and length scales, the theoretical results become universally valid;
nevertheless, they are still easily applicable to a particular experimental measurement.
Within the thesis at hand all quantities are reduced to a dimensionless form by choosing

characteristic units.

Classical systems: The most suitable base units of length and energy for classical sys-

tems are
ro = (¢2/2memw)? | Ey = ¢?/(4merg) = (mwiq®/32m2e2)1/3 (1.6)

Here, the base length r( is the equilibrium distance of two identical classical par-
ticles in a harmonic confinement that interact via a Coulomb potential. Energies
are expressed in terms of the pair interaction energy Fy for this distance. A
dimensionless system of units is obtained by applying the transformation rules
{r — r/ro, E — E/Ey}. The strength of the external confinement potential is
controllable by the harmonic trap frequency wg, which defines in the classical case
the characteristic scales g and Ej, but does not affect the obtained dimension-
less results. This fact clearly underlines the universal scaling behaviour of classical
many-body effects. Note that quantum effects naturally limit the universal scaling

which is found for classical systems.

Quantum systems: In contrast to the classical limit, in a pure quantum system the
kinetic energy does not vanish even for temperature T — 0, resulting in a fi-
nite spatial particle extension. For harmonically trapped quantum particles it is

therefore useful to introduce the oscillator length and energy as base units

l() = 1/h/(me(h)wo) s ES = hwo . (17)

The strength of the harmonic confinement (and density) of a mesoscopic trapped

17



1 Introduction: Plasma Crystals and Artificial Atoms

system is characterized by the dimensionless coupling parameter

E 2 l
Mwo) = c-_1 =2

= = = . 1.8
ES 47rel0hw0 ap ( )

This relates the characteristic Coulomb energy Ec = ¢*/(47elg) to the character-
istic confinement energy Ej. Starting with a non-interacting quantum system at
A = 0, we find that the system gradually becomes strongly coupled, as A is in-
creased. Furthermore, in the limit A — oo, the system transforms into a classical

one consisting of localized particles (see section 5.4).

Conversion: In order to form a comprehensive picture, it is often instructive to compare
the classical and quantum calculations, which can easily be done with the following

relations

E
L= = (2) (1.9)
lo E}
If one sets the interparticle distance a = rp, according to equation (1.2), one

obtains the two-particle approximation r, = ro/ag = (2X*)'/3.

Hence, by specifying the corresponding system properties, the length and energy scale

are uniquely determined.

1.4 Finite-Size and Surface Effects

Finite-size, surface effects, as well as charge quantization are exceptional features inher-
ent to quantum and (quasi-)classical strongly coupled few-particle systems (figure 1.1-
1.7). From numerous experiments, e.g. [1, 11, 13, 30, 31, 32], and simulations, e.g.
[2, 25, 33, 34, 35, 36, 37, 38|, finite Coulomb systems in a parabolic confinement po-
tential are known to arrange themselves in nested concentric rings (in 2D) or shells (in
3D systems). The arrangements have characteristic occupation numbers (N7, No, .. .),
where N; denotes the number of particles on the i-th ring or shell (starting from the

center).

A striking feature common to all mentioned few-particle systems is that their structure
and properties are very sensitive to the exact particle number. Different exceptional
physical situations were identified, in particular those involving so called “magic” con-

figurations [2, 34, 39, 40]. Interestingly enough, even without change of density or

18



1.4 Finite-Size and Surface Effects

11 (3,8)

16 (5,11)

21(1,7,13)

17 (1,5,11) 18 (1,6,11) 19(1,6,12) 20 (1,7,12)

Figure 1.5: Microimages of experimentally determined ground state configurations of dust crys-
tals in a 2D circular symmetric rf plasma trap with N = 2 to N = 21. The snap shots (exposure
time 1/30s) are taken from experiments by the group of Lin I (Taiwan) [11]. Note that the
comparison of the experimentally observed structures and packing rules, see figure 1.6, with
theoretical results allows one to clearly identify the combination of the underlying interparticle
interaction and trapping potential as well; cf. e.g. the different shell population numbers of
screened 2D dust clusters with that obtained for 2D ion Coulomb crystals in figure 1.2.

6 7 8 9 10 11 12 13 14 15 16

18 1 a8 | un | @n | 28 | @68 (3.9) (49 | 410 | 610) | 5,11
G ird 18
(1,511)](1,8.11)

19 20

(1,6,12)|(1,7,12)

21 22 23
(1,7.13)] (27,13) | (2.8,13)
24 25 26
(28,14) | (38,14) | (3.8,14)
27 28 29
(3.9.15) | (48,15

(4,10,15)
30 31 32
(4,10,16) [(5,10,16)| (5.11,16)

Figure 1.6: Classical 2D periodic table of the packing sequence for small N corresponding to
figure 1.5. For N = 3 to 5, the particles occupy a single shell only. For N = 6, a pentagon
with a single particle at the center is formed. In contrast to real atoms, where new electrons
add to outer orbitals if N is increased, the generic behavior is that the clusters grow alternately
one-by-one first in the center and then successively fill up the outer shell. For N = 17, the third

shell appears with the (1,5,11) configuration. Increasing N the particles periodically fill the third
shell. From Ref. [11].
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1 Introduction: Plasma Crystals and Artificial Atoms

Figure 1.7: Ezperiments on the spatial resolution of interwell exciton photoluminescence ob-
served within a circular electrostatic trap created by a 5 um window in a opaque metallic mask
on top of GaAs/AlGaAs double quantum wells of 12nm width. Luminescence patterns measured
for excitation power Pron. = 50uW and temperatures of (a) 1.74, (b) 3.90, (¢) 4.25 and (d)
4.33 K. At T < 4 K discrete patterns consisting of siz equidistant spots were observed which start
to wash off with temperature increase. (e) the spatial structure of intrawell exciton luminescence,
here at 1.7 K, is not found to show such correlated states. From Ref [16].

temperature, qualitative transformations of the physical properties can be achieved just
by adding or removing a single charged particle [2]. This behavior of few-particle sys-
tems reflects the basis of chemistry: even the change of the particle number by a single
particle can result in drastically different collective properties (structural, electronic,

magnetic, transport or optical).

In addition, compared to real atoms, an even wider range of interesting physical ar-
rangements becomes accessible by controlling the confinement parameters via external
electric or magnetic fields [41] or even by tuning the effective particle interaction strength
[22, 38] (for details see chapter 5). An additional degree of freedom arises from the var-

ious confinement geometries. Examples include:

e Self-assembled quantum dots, which have a typical size between 10 and 50 nm.
Quantum dots are often considered as quasi-zero-dimensional because their strong
confinement in all three spatial directions allows for a full quantization of the
electron’s motion. This implies that the structure of their energy spectrum can

be engineered by tuning the shape and size of the potential well.

e Thin two-dimensional single or multilayer traps, such as single or bilayer semi-
conductor quantum wells. These consist of one or two nm-thin epitaxial layers
that are sandwiched between layers of another semiconductor material with higher

conduction-band energy.

e Real three-dimensional geometries, have been recently generated for ion plasmas
[27] as well as dusty plasmas [15]. 3D traps allow for spherical but also strongly

anisotropic (e.g. ellipsoidal) cluster shapes, see e.g. [42].

20



1.4 Finite-Size and Surface Effects

Aside from the number of confined dimensions, the particular shape and strength of
the trapping potential, there are variable particle properties such as the dipole moment
(e.g. that of spatially indirect of excitons in semiconductors), the effective band mass
of electrons and holes (of different semiconductor materials), or the particle charge in
dusty plasmas. Hence, controlling all mentioned trap and particle parameters as well as
the exact number of trapped particles, their polarity etc. offers researchers an excellent
opportunity to study finite-size phenomena and phase transitions under a vast variety

of different conditions.

With respect to the outlined high degree of variability, strongly coupled few-particle
systems in traps are often considered as manufacture-designed “artificial atoms” or
“superatoms” [30]. In allusion to the periodic table of the chemical elements, periodic
Mendeleev-type tables have been extensively studied, in particular for parabolically
confined classical systems, where the number of particles N is the only free parameter (in
dimensionless units). Many of these investigations focused primarily on two-dimensional
single layer systems, see e.g. figure 1.5 and figure 1.6 [2, 13, 14, 26, 34, 36, 39, 43, 44, 45,
46, 47]. Within the frame of this work, the ground state configurations of parabolically
confined mesoscopic 3D Coulomb crystals (see section 3.2) and that of dipolar electron-
hole bilayer systems (see section 5.4) have been systematically analyzed, extended and
partially corrected. The obtained results are of utmost significance, as the structural
symmetries have a deep impact on most static and dynamical properties of strongly
coupled few-particle systems. Moreover, special interest arises from the fact that the
shell configurations are very sensitive to the fundamental interactions (as exposed in
section 3.3 and 5.4). Hence, the question about the structure of few-particle clusters in
strongly confined geometries emerges as a key issue for a variety of phenomena occurring
physical systems at different energy and length scales, and has immediate importance

for the understanding of collective behaviour.
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1 Introduction: Plasma Crystals and Artificial Atoms
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2 Computational Approaches to the
Many-Body-Problem

Structure formation of matter was (and still is) one of the main open problems in sci-
ence for long times. The problem is closely related to the exact treatment of many-body
correlations. To rigorously take into account the mutual interplay between a large num-
ber of individual particles requires either solving multi-dimensional integrals or systems
of high-order differential equations, which are coupled by interaction terms. In the
case of strong correlations, the mathematical problem cannot be reduced without over-
simplifications, because analytical approaches often involve more or less uncontrollable

approximations to reduce the problem’s inherent strongly non-linear feedback effects.

However, the tremendously fast development of digital computers in the last decades,
and in particular the growing availability of cheap computer equipment such as desktop
PCs and Linux clusters, enables researches nowadays to solve many of the fundamental

equations of physics without mathematical simplifications — from first principles.

Today, modern numerical methods are central part of all directions in (natural) sciences

as well as industrial engineering, research and development for several reasons:
e computer-simulated experiments do not require extensive laboratory facilities,
e the model “experiments” can be arbitrarily often repeated and easily modified,

e comprehensive and concurrently detailed scans of large parameter sets and ranges
can help to define the conditions of exceptional physical phenomena or optimal

settings for real physical experiments,

e computer simulations can provide maximum information at the microscopic level

and therefore help to give a deeper understanding of laboratory measurements.

In the work at hand, we will concentrate in particular on trapped few-particle systems.

23



2 Computational Approaches to the Many-Body-Problem

These small systems serve as very suitable (classical and quantum) laboratories for
the investigation of fundamental many-body interaction phenomena because they do
not require undesirable simplifications of the fundamental equations with regard to
limited computational capabilities. Moreover, in trapped systems there are no periodic

boundary conditions to consider that may introduce correlational artifacts.

Two essentially different particle-based bottom-up approaches have been used for our

theoretical investigations.

Deterministic simulation models: The strict deterministic integration of the classical
equations of motion for many-particle systems are commonly named molecular
dynamics. Once the positions and velocities of all individual particles are known,
their dynamical propagation through the position-momentum phase-space can be
directly computed. Molecular dynamics has been utilized to calculate the ener-

getically most favourable states of Coulomb and Yukawa balls (see chapter 3).

Stochastic simulation models: Random number based Metropolis Monte Carlo meth-
ods (MC) are applied to efficiently sample the high-dimensional configuration
space. Both, classical thermodynamic and quantum MC techniques are applied to

study finite-temperature equilibrium problems (see sections 4.3, 5.2 and 5.3).

The aforementioned computational tools are standard and widely used to investigate
structures, dynamics and thermodynamics in physics, chemistry, biology, economics,
material science, astrophysics etc. Hence, we will limit our explanations to a brief

overview of the conceptual ideas behind the pursued methods.

2.1 Molecular Dynamics Simulation

The molecular dynamics method (MD) was originally introduced by B. J. Alder and
T. E. Wainwright in the late 1950’s with the aim to calculate many-body correlations
of classical hard sphere systems exactly by means of “electronic computors” [48, 49, 50]
(see figure 2.1). Valuable insights concerning the collective behavior of interacting many-
body systems emerged from their studies with the first super computers. A prominent
example is the evidence of crystal-like stable structures in 2D systems at finite tempera-
ture. Down to the present day, molecular dynamics has evolved into the probably most

frequently used method to study time-dependent processes in many-particle physics.

In molecular dynamics the time propagation of the N-particle Hamiltonian (1.3) is
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2.1 Molecular Dynamics Simulation
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Figure 2.1: Molecular dynamic motion simulated by means of the first mainframe computers
by Alder and Wainwright [49, 50]. Shown are the trajectories of several ten hard sphere particles
with periodic boundary conditions in the quasi-long-range ordered solid phase (left), after it

has transformed to the short-range ordered fluid phase (middle), and in the liquid-vapor region
(right). Each picture follows the system for 3000 collisions.

achieved by high-precision numerical integration of the IV coupled Newtonian differential
equations F; = mi%ri. These equations can be split into a coupled system of first-order

ordinary differential equations (ODEs)

d

7T = Vi (2.1)
d F;

dy. = Fi 2.2
dtv m; ( )

for the motion of the particles ¢ = 1... N of mass m;, position r;, velocity v; and the

total force

N
ex 1 in
F,=-V, |V t(ri)+2§¢_v ‘v, —1;) | - (2.3)
NE=4

The considered conservative force is due to the external confinement and the mutual

particle-particle interaction energies.

The numerical time integration is performed by means of an adaptive stepsize controlled
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2 Computational Approaches to the Many-Body-Problem

algorithm based on the fifth-order Runge-Kutta formula

kl = hf(l‘n, yn) ) (2'4)
k2 = hf(:En + a2h7 Yn + b21k1) ) (25)
ke = hf(zn+ash,yn + be1ky + -+ besks) , (2.6)
Yn+1 = UYn + Clk‘l + CQkQ + Cgkg + 041454 + C5k35 + Cﬁk?(i + O(h6) 5 (27)

which requires six (force) function evaluations to advance the solution through the
interval h from z, to 11 = x, + h. Another combination of the six functions yields

an embedded fourth-order Runge-Kutta formula
Yii1 = Yo+ Ciki+ cka + ks + Cika + ciks + chke + O(B°) (2.8)

where a;, b;j, ¢; and ¢} are the Cash-Karp coefficients [51]. The difference between the
fourth- and fifth-order accurate estimates of y(x + h) gives an appropriate estimate of

the local numerical truncation error

6

A(h) = yni1 — Yo = D (i — ki (2.9)
=1

which is employed to adapt the stepsize h in a way that the desired degree of pre-
determined accuracy in the trajectories is achieved with minimum computational ef-
fort. Especially for small particle numbers, where the minimum two-particle distance
(and hence the force field amplitude) strongly alternates during the simulation run, the
adaptive algorithm provides drastic performance gains by a factor of ten to hundred
compared with the standard fixed step size Runge-Kutta method of fourth-order. For
implementation details see Ref. [52, 53].

2.2 Metropolis Monte Carlo Method

The classical Monte Carlo approach has been applied to study the liquid-to-solid tran-
sition as a function of the heat-bath temperature (see section 4.3 and 5.2). Unlike
molecular dynamics, the Monte Carlo method is stochastic rather than dynamical and
thus, following the general concept, only statistical averages of equilibrium properties

can be computed.
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2.2 Metropolis Monte Carlo Method

The original idea of this stochastic simulation method was coined by E. Fermi, J. von
Neumann, S. Ulam, and N. Metropolis, who proposed in 1953 a stochastic algorithm to
generate microstates according to the Boltzmann distribution, so that thermal averages
can be computed easily [54]. This famous Metropolis sampling scheme has been recently
rated as being among the top ten algorithms having the “greatest influence on the

development and practice of science and engineering in the 20th century” [55].

To describe the considered model system (1.3) by means of MC methods the dynamical
physical process has to be transformed into a stochastic one. A key element in the
Metropolis Monte Carlo procedure is thus the concept of the Markov chain. It means
that the immediate sequencing state depends on the present state only, regardless of
the preceding development of the system. The Markov process generates a path in the
configuration space and all quantities of interest are averaged along this trajectory which
is the probabilistic analogue to that generated by the equations of motion in molecular
dynamics [56, 57] (see figure 2.1).

In mathematical terms the Markov chain is defined as a sequence of sample points i in

the configuration space {2

, (2.10)

rp, — ... — T

where the vector rZN

= (r1,ra,...,ry); € Q of dimension 3N comprises the coordinates
of all N particles. The transition operator W (r)¥ — rj-v ) has to obey the detailed balance
condition [58]

P(rN)W(rN — rN) = P(rév)W(rN — rN) ) (2.11)

J (2

for each MC step from one to any other state. In thermal equilibrium at fixed external

heat bath temperature T the probability P(rY) of obtaining configuration r¥ is weighted
according to the Boltzmann probability distribution
PNy = e PECD) 7 | (2.12)

where = Ey/kpT is the dimensionless inverse temperature, kp is Boltzmann’s con-

stant, E the (dimensionless) total system energy according to Hamiltonian (1.3) and

Z =3 e PEET) the partition function of the canonical ensemble. Hence, the relative
N

transition probability for the step ri — 1 isa function of the total energy change
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2 Computational Approaches to the Many-Body-Problem

AFE = E(rév) — E(r}) only
I = PRE (2.13)

This equation is satisfied by the Metropolis function [54]

_BAE)  AE>0
Wl ey = | SPOAE) (2.14)
1 AE <0.

This means, if a trial move rfv — rév lowers the energy, then the step is always accepted.
However, if the energy is increased, the trial step is accomplished with a probability

W <1 only and otherwise rejected.

Starting from an arbitrary configuration r)’ € €, after an initial thermalization time
of the simulation, the expectation value of the ensemble average of a generic physical
quantity A(r") can be estimated as an arithmetic mean over the Markov chain of K

consecutive MC steps

K
(A) =S PENAGN) ~ 23 A) (215)
1€Q k=1

A central point in this context is the ergodicity of the Markov process which refers to the
condition that any state in the configuration space has to be accessible from any other
state in a finite number of MC steps. An inherent problem with respect to the ergodicity
in strongly correlated systems is, naturally, the (exponentially) growing autocorrelation
time with the system size which may easily exceed the simulation time. Especially at
low temperatures it has to be taken care of that the statistics are not biased, since
the expectation values of the observed quantities may seem to have converged although
the system is trapped in local minima and has barely moved in the configuration space
Q). However, one should be aware of that long simulation times do not automatically

guarantee more accurate results generally as accounted for in section 4.3.

Recommendable reviews on the subject of classical Monte Carlo simulations are to be
found, for example, in Ref. [56, 57, 59, 60].
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2.3 Path Integral Monte Carlo

2.3 Path Integral Monte Carlo

The path integral Monte Carlo simulation (PIMC) technique is founded on R.P.
Feynman’s path integral formulation of quantum mechanics which, contrary to E.
Schrodinger’s and W. Heisenberg’s differential equation formalism, naturally general-
izes the ideas and concepts of classical mechanics, especially Hamilton’s principle of
least action. In spite of its intuitivity and theoretical smartness, the evaluation of the
path integrals is by far not trivial since one has to integrate over all possible states of

the system for each moment in time [61].

In analogy to classical statistical mechanics, where thermal equilibrium expectation
values are defined as a canonical average of all microstates weighted by the Boltzmann
factor (see equation 2.15), the equilibrium state of a quantum system at a given inverse

temperature 3 is fully characterized by the many-body density operator,
ﬁ(ﬁ) =e M = Z |1;Z)n> e PEn <1/)n| . (2'16)
n

This statistical operator p is defined as the superposition of the pure N-particle eigen-
functions |¢,), which are exponentially weighted with their eigenvalues F),, according
to the stationary Schrodinger equation H |tn) = Ep|t,). Thus, the concept of the
density operator generalizes that of the wave function to finite temperatures, i.e., mixed
ensembles. The thermal average of an observable A, which is diagonal in basis |¢y,), is

in the thermodynamic equilibrium, defined as

_ e P (Wl Ala) _ Sp[pA] _ SplpA]

AV = = , 2.17
WO =5 e Gl — 5ol 2 217

where the trace of p provides the quantum partition function
Z=Splpl=> e PP, (2.18)

The partition function determines all thermodynamic quantities of the system in ques-
tion. However, equation (2.16) requires to find the complete energy spectrum by solving
the N-particle Schrodinger equation, which in most cases is impossible for interacting
systems. As we will see, we can get around this problem by using a (path) integral
representation of the N-particle density matrix, which can be evaluated efficiently with

the help of numerical Monte Carlo methods.

V=

To do so, we first change into the basis of position vectors r ri,ro,...,ry), where
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2 Computational Approaches to the Many-Body-Problem

the off-diagonal density matrix becomes a function of 6N particle coordinates, i.e.,
p— oM,V 8) = (Ve PH|pN') = > (e )e P, (') (2.19)
n

Note that in the position basis all particles are labeled. Moreover, the function values
of the density matrix are positive! for all of its arguments and have the meaning of
a probability for the transition from the initial ™ to the final state r™'. The non-
negativity of the density matrix elements is an essential prerequisite for the subsequent
application of Monte Carlo methods. In coordinate representation the thermal average

of operator A becomes

AN eV ANy far [ e p(eN eV p) N |AeY)

(4)(8) 7 > ,

(2.20)

and the partition function

2(9) = [ ar¥oexVi5) . (2.21)

In general, these functional integrals cannot be carried out since an explicit analytical
form of p(r™,rV’; B) is most commonly unknown for non-ideal quantum systems. To
overcome this problem, we will reduce the density matrix to the one known for free
particles in the high-temperature limit. To this end we utilize the product property of

the density matrix

~ R M
pB) =e =g ml. ol —T]s <B> , (2.22)

~~ M
M times s=1

which allows us to expand a low-temperature density matrix into a series of density
matrices at M times higher temperature, where the particle interactions are strongly

reduced (by a factor 1/M). Insertion of M — 1 high-temperature factors gives us the

'"Here we do not yet consider the problematic issue of Fermi statistics.
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density matrix in the position basis
p eV g) = (Ve e

M B fr
= H —arH (2.23)
M—1
= /.../dr{vdrév...dr%_ln (Nle™ MH\I‘ 1) (2.24)
s=0

M—
— drN¥ drd .. .d s 2.25
= ry dary . I'M 1 H P 57 3+17M > ( : )

where the ordered set (ro S AT ,r]\N4) represents a path in the configuration space.

Expression (2.25) is exact and comprises in the limit M — oo an integration over all
possible paths through configurational space linking the fixed initial and final points
N N N

r)l =1V and r); = r Interestingly, the partition function, equation (2.21), now

becomes an integral that runs over closed paths

g
/ /dr1 dr2. derHP(s>s+1§M ) rg)V:rJ\N/[’(Q'26)

and is thus determined by the off-diagonal (high-temperature) density matrix elements.

Considering the system in question (see section 1.3), the Hamiltonian consists in its

general form,
H=K+V, (2.27)

essentially of two non-commuting N-particle operators, the kinetic K and the poten-
tial V' operator with [K , V] # 0. Expansion yields a cumbersome expression for the

exponential operator

“wEAV) iR e Ve PRV 2= (G’ IV KLE2VI/6 | 0((8/M)Y) (2.28)
et K etV =GRV 1 o((5/M)°) (2:29)
~ e IR o8/ (230)

However, Trotter’s product formula states for the self-adjoint operators K and V', which
are bounded from below in a Hilbert space, that in the limit of a large number of high-
temperature factors, M — oo, the total density matrix (2.22) can be approximated as a

simple product of potential and kinetic density matrices by neglecting the commutators
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from the exact operator identity (2.28)-(2.30), i.e

A M
p(B) = e‘ﬁ(KW):[e—%(KW)} (2.31)
N M
L Jim [e—%f%—%‘f} (2.32)
X M
~~ [e_%Ke_%V] +O<]\14> (2.33)

Note that the validity of the approximation made for finite M in the last step (2.33) is
not at all obvious due to the propagation of the error terms with respect to the ratio
B/M [62, 63]. The error of the high-temperature representation is therefore strongly
affected by the number of high-temperature factors M. Hence, the convergence with M

has to be checked carefully for each particular system under study.

The high-temperature matrix element p(rY,r) ;8/M) in the equations (2.25) and
(2.26) can be approximated as

pel el 8/M) = (x)]e” M“”V)l ri ) (2.34)
V\rsm (2.35)

= e wVEN Ve w Kl )y (2.36)

~ <N’€ M Keo—a1

where V is diagonal in the spatial coordinate representation. The kinetic energy density

matrix elements of free particles are obtained by a momentum eigenstate expansion

~ 2
_B NN Py
N fR el ) = / dp" (eN|pMy e FEC I (VN ) (2.37)
N_.N 2
N AP A (2.38)
N p?

Here we take advantage of the diagonality of the kinetic operator K = > in

i=1 2m;
momentum space, and that the Gaussian type integral can be evaluated analytically
after the explicit expressions for the plane waves (r|p") and (p™|rl,,) have been
substituted. The term A\j; = \/m denotes hereby the thermal De Broglie
wave length. Insertion of the high-temperature matrices (2.36) and (2.38) into equation
(2.25) provides us the discrete time path integral representation of the N-particle density

matrizc
T \~"\M-1, N__N
p(x™, V' / /dr{vdrz drd e *?M o (e r5+1) wr Teo' V) ,(2.39)

which is valid for arbitrary quantum systems with the Hamiltonian (2.27).
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2.3 Path Integral Monte Carlo

Following the analogy between Feynman’s original idea of a time-evolution operator
Ut t') = e~Ht/h and the definition in equation (2.16), the inverse temperature [ is
often considered as imaginary time, where ¢ < $h/i and the imaginary time step 63 =
(B/M. Thus, the integer numbers s =1...M —1 are commonly named “imaginary time
slices” since only particle images within the same slice rY¥ interact via the weakened
(iso-time) potential v(rY) = V(rl¥)/M with each other. The classical-like particle
images in successive slices {rév ,ré\ﬂrl} are linked by a spring-like energy term, which
is due to the quantum mechanical kinetic energy of the free particle and ensures a
finite particle extension. Hence, in the imaginary-time path integral formulation a
quantum system becomes mapped onto a classical one such that each physical (quantum)
particle is represented by a path through M positions (here called particle images) in the
configuration space at different values in imaginary time. This path forms a classical (!)
ring polymer of M links. Depending on the inverse temperature § and particle mass m
the spring coupling becomes more or less rigid and, consequently, the quantum particles

become more or less delocalized.

Most of the thermodynamic quantities, such as energies, are determined by the trace of
the density matrix (2.39), i.e., closed imaginary time trajectories form r™ to rV' =rV.
For instance the probability p(r*) to observe an arbitrary particle at the position r* is

given as arithmetic average over the imaginary time paths of all N particles

M-

1 N
= W Z I' — r pN N (240)
i=1 s=0

H

where (...)  defines the thermodynamic average according to equation (2.20).

So far, only quantum systems composed of distinguishable spinless particles (Boltzman-
nons) have been considered. However, even in the considered case that the Hamilto-
nian does not explicitly depend on the particle spin, inclusion of quantum statistics
requires sampling of the particle permutations in addition to the integrations in coor-
dinate space. More specifically, the obtained many-body density matrix (2.39) has to
be properly symmetrized with respect to an arbitrary exchange of two indistinguishable

Bosons (e.g. bosonic atoms, molecules or excitons), i.e.,
/ 1 el !
PS5 e B) = o SRl e ) (2.41)
P

or, respectively, antisymmetrized under arbitrary exchange of two indistinguishable
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Fermions (such as electrons or holes with the same spin projection), i.e.,

~

pt N eV 8) = % > (=D, PrY'ip) (2.42)
P

where P is the permutation operator on the particle indices and P is the parity of
the permutation. In the picture of path integral theory, the permutations can be de-
composed into a sequence of two-particle exchanges along the imaginary timeline. The
pair exchanges are carried out by transposition of particle positions in particular time
slices by what the paths of several particles can become merged into a single one. Such

multi-particle paths correspond to the off-diagonal elements of the density matrix.

The superposition of all N! permutations of N identical particles leads to the inher-
ent (numerical) Fermion sign problem since the alternating sign of the prefactor in the
case of Fermions, equation (2.42), causes an essential cancellation of positive and neg-
ative contributions corresponding to even and odd permutations, respectively. Thus,
an accurate calculation of this vanishing differences is strongly aggravated with the in-
crease of quantum degeneracy arising at low temperatures and high densities, where all

permutations appear with equal probability.

The high-dimensional convolution integrals of the density matrix, equation (2.39),
(2.41), and (2.42), over 3N (M — 1) degrees of freedom? can be numerically evaluated
by a slightly modified version of the Metropolis sampling algorithm outlined for the
classical systems. However, to reduce the computational efforts and to increase the
efficiency of the Monte Carlo sampling various sophisticated move strategies (e.g. the
multi-level bisection sampling method or the worm algorithm [64]), approximations for
the pair density matrix (e.g. using matrix-squaring technique [65, 66]), fast converging
estimators with less statistical variance and many further improvements have been de-
veloped over the last decades. For further (technical) details on this subject, we refer the

interested reader to the following recommended in-depth references [58, 59, 67, 68, 69].

2.4 Aspects of Many-Particle Simulations

Today, modern experimental techniques allow for a selective manipulation of small
micro- and nanoscale systems of only ten or hundred particles. Although the funda-

mental physical laws which can describe these measurements are well-known, exact an-

2We typically use numbers of high-temperature factors M in the range 100 < M < 300.
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alytical solutions are available only for a very limited number of many-particle systems
such as ideal solids (i.e. highly periodic structures without any lattice defects or distor-
tions) or non-interacting classical (i.e. I' < 1) or quantum gases (rs < 1). However,
interaction makes things much more interesting but also more complex and theoret-
ically challenging. In most practical cases the fundamental many-body Hamiltonian
(1.3) cannot be directly diagonalized and more efficient numerical methods are needed.
As a matter of fact, even simple models used to describe interacting quantum systems
in the regime of strong particle correlations are computationally very demanding (see
chapter 5).

For the investigation of ground states and phase transitions we utilize different classical
and quantum bottom-up approaches. This means, the theoretical description starts
at the microscopic level of individual particles and, thereby, takes fully into account
all microscopic many-particle interactions. The only simulation input data involved
are the fundamental pair interaction potentials as well as the boundary (confinement)
conditions. Hence, the theoretical framework of computational bottom-up methods on
hand allows for a highly flexible modeling with regard to the specific experimental setup
(trap geometry, external fields, number of particles etc.) and yields direct results that

are free from any fit parameters.

In the following we give a short comparison of the advantages and shortcomings of the
different computational approaches we used to solve the many-body-problem (see table
2.1).

Particle Picture

The most obvious difference between the considered computational simulation methods
lies in the underlying description of the particle nature. Molecular dynamics and ther-
modynamic Monte Carlo are purely classical techniques, i.e., the individual particles
are reduced to their center of mass coordinates. The classical approach is doubtlessly
well-suited in the limits of high temperatures and low densities and allows for an efficient

treatment of large particle numbers.

The basic idea of PIMC lies in the isomorphism between quantum particles and classical
ring polymers, which allows to model quantum systems accurately with high-performant
classical Monte Carlo methods, under inclusion of quantum effects such as finite spa-
tial particle extensions, quantum zero-point energy, tunneling and quantum statistics.

However, in contrast to wave-function based methods like Hartree-Fock, PIMC provides
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Feature MD NMA MC PIMC SCHF
Particle descrip. point mass point mass point mass polymer’ wave fctn.
Dynamical prop. ++4 + — — +
Correlations +++ +-+ +++ +++ -
Quantum statistics  — - - ++1 +++

No. of particles < 10000 < 1000 < 10000 < 250 <25
Ensemble’ NVE - NVT NVT puVT

Table 2.1: Rating of different computational approaches to the many-body problem of classical
and quantum systems used in this work: molecular dynamics (MD), linear dynamics by nor-
mal mode analysis (NMA), Metropolis Monte Carlo (MC), path integral Monte Carlo (PIMC),
and self-consistent (ground state) Hartree-Fock (SCHF). The shortcomings and strengths of the
different techniques are rated from — (not accessable) to +++ (excellent), respectively. As a
benchmark of the numerical efficiency of the methods we specify the number of individual parti-
cles, which can be simulated in a typical run on a desktop PC (in the year 2008). The statistical
ensemble can be characterized by (fixed) particle number N, chemical potential p, total energy
E, temperature T or volume V. ¥ Polymers of classical-like particles representing the N -particle
density, ¥ more specifically: Bosons: +++, Fermions: +, 5 ensembles used in the present work.
Details are to be found in the text.

information on the density level only. This means that the computed quantities of in-
terest (see below) are formally exact, but the density picture may lead to qualitative
misinterpretations in the understanding of the system (see section 5.4) as it yields only

amplitude, but no phase information of the N-particle wave function.

Many-Particle Correlation Effects

In the present thesis we are interested in strongly interacting plasmas, where the mutual
particle interaction is essential and cannot be treated as a small perturbation. With
the described computational methods it is possible to include interparticle interactions,
such as Coulomb repulsion (1.4), and thus cooperative phenomena from first principles.
Molecular dynamics include all dynamical many-body correlations, but neglect quantum
dynamical effects. Also the classical and quantum Monte Carlo method take into account
correlation effects without any simplifications. Beside these particle-based methods,
the idea of Hartree-Fock (as the simplest approximation of many-body theory) is the
reduction of the many-body problem to an effective one-particle problem by neglecting
all correlation effects®. The self-consistent Hartree Fock scheme is appropriate for the
exploration of many-particle ground states (that is 7= 0) and yields essentially better

results than perturbation theories for rs > 1 (see section 5.4).

3More specifically, the pair interactions are replaced by a mean-field (Hartree) potential plus an addi-
tional exchange (Fock) term, which assures quantum statistics.
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Thermodynamic Ensemble

Another important distinction between the different considered simulation techniques
concerns the statistical ensemble and, in particular, the conservation of total energy and
fixation of temperature. The Metropolis algorithm generates samples in the canonical
ensemble, which allows for constant (non-zero) temperature simulations yielding direct
thermodynamic averages. Because of this, Monte Carlo methods are particularly well
suited for the investigation of phase transitions in classical and quantum systems. Apart
from that, MD can be utilized to generate microcanonical states in the phase space that

conserve the total energy (kinetic plus potential energy) of the system.?

Quantum Effects

While many systems can be described in a classical approximation, there is a large class
of systems for which a classical or semi-classical approximation is not valid. However,
in particular these complex many-body quantum systems are of high scientific interest
in this work (see chapter 5). One of the main differences between quantum and classical
systems is the finite particle extension and prevailing quantum fluctuations even at a
temperature of absolute zero, at which all thermal fluctuations are frozen out. In the
PIMC method the quantum fluctuations are ensured by fluctuations on the imaginary

timeline, while in classical Monte Carlo simulations no kinetic energy is included at all.

As a matter of fact, the PIMC method is one of the most powerful available numerical
tools for the treatment of strongly correlated quantum systems. Despite the complexity
of a physical system the PIMC algorithm achieves excellent performance, as long as the
particles obey Boltzmann® or Bose statistics. While the path integral method is able
to treat significantly more than 100 Bosons (or Boltzmannons), it is limited to system
sizes of only very few, typically 5 — 10, Fermions at temperatures in the range of the
Fermi temperature. The Fermion sign problem (see section 2.3 for details) manifests
itself as one of the most challenging problems in computational physics and restricts our
investigations to 3 — 5 composite excitons only (see section 5.2). Although different ap-

proaches provide remarkable improvements, either by appropriate approximations at the

Tt is worth to note here that the implementation of (canonical) constant-temperature MD, especially
in the context of small few-particle clusters, has always a somewhat manipulative character with
respect to the dependence on the choice of the thermostat and the fluctuation contributions [70].
This means that thermodynamic Monte Carlo simulations are often preferred for the computation
of equilibrium properties.

SPIMC runs most efficiently if quantum statistics is neglected and the particles are assumed to obey
Boltzmann statistics. See section 2.3 for details.
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analytical level (restricted PIMC [67, 71]), direct simulations (direct PIMC [72, 73]) or
algorithmic strategies (such as multilevel blocking [74, 75]), the problem of a sufficiently
accurate and efficient computation of the alternating sign of probability contributions to
the fermionic expectation values still remains crucial for practical purposes. A general
solution to the sign problem would allow to greatly extend the range of applicability of
PIMC and mark a big step in the ab initio modeling of strongly correlated electronic

systems.

Quantum Dynamics

Based on an equilibrium theory, PIMC simulations are able to yield first-principle results
of thermodynamic (equilibrium) properties only. The “exact” treatment of the time
evolution of quantum systems requires the solution of the von Neumann equation, i.e.,

the equation of motion of the N-particle density operator
ih-2p(t) = [, (1) (2.43)

where the brackets denote the commutator. However, up to now no numerical efficient
and robust method such as PIMC has been established for time-dependent problems.
In the case of purely classical, point-like particles (such as ions at low densities or dust
grains), equation (2.43) reduces to the classical law of motion and can be directly numer-
ically integrated (see section 2.1). As the name implies, the MD method generates true
many-particle dynamics and allows for direct computation of both equilibrium and non-
equilibrium properties of classical systems (see figure 2.2). In an important theoretical
advance, the classical molecular dynamics framework has been extended to include quan-
tum dynamical effects of many-body systems. In the most straightforward approach,
dominant quantum effects are included into “precalculated” pair potentials, which saves
the time-consuming effort of the solution of the electronic structure problem at each
molecular dynamics step. Using effective interaction potentials, which capture basic
quantum diffraction but also spin effects [76], the range of applicability of the classical
simulation scheme can be significantly extended, particularly, to the region of weakly
and moderatly coupled quantum systems [70]. Alternative trajectory-based concepts
that describe dynamical correlations of quantum systems are “wave packet molecular
dynamics” [77], “quantum dynamics with Bohmian trajectories” [78], “Wigner function
molecular dynamics” [79] or “centroid molecular dynamics” [80], which incorporates
discrete path integral formalism into molecular dynamics. However, all these methods

(which are currently under active development) have their own strengths but also short-
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comings, which are, among others, related to the accurate description of wave packet
dispersion, bound-state formation, strong correlation effects, quantum statistics, nu-
merical stability and so on.® Moreover, all particle-based schemes do not yield reliable
information about the population of quantum energy levels and excitation processes
as do powerful time-dependent Hartree-Fock and quantum kinetic approaches [81, 82].
However, the latter are limited by the inefficient treatment of correlation effects [83].
Due to these reasons, we will limit our investigations to the equilibrium properties of

electron-hole plasmas in semiconductor nanostructures (see chapter 5).

As mentioned in section 2.2, the correlated subsequent states of a Markov chain can be
associated with a “time series”. According to that the Metropolis Monte Carlo process
can be interpreted as a (pseudo) dynamical process obeying a master equation, see e.g.
[56, 57]. As a matter of fact, the stochastically generated trajectories through config-
urational space allow one to analyze the dynamic evolution of one-particle and many-
particle system observables and, in particular, the statistical evaluation of fluctuations
(e.g. in energy or the pair distances). Of special interest are the energy autocorrela-
tion times as well as the pair distance fluctuations because they are found to be very
sensitive to liquid-solid phase transitions (see section 4.3). It is, however, important
to note that the Markov process does not correspond to the strict time evolution such
as generated by the Newtonian equation of motion, as it is lacking a “real-time” scale.
This means that in contrast to molecular dynamics, Monte Carlo simulations are not
able to adequately model relaxation processes or non-Hamiltonian system behavior (e.g.
introduced by friction effects) [84].

Classical Excitation Spectrum

The fundamental dynamical features of classical correlated systems, including the spec-
trum of all classical collective excitations can be identified by a normal mode analysis
(NMA) within a harmonic approximation (see figure 2.2). Normal modes are defined
by the structure of the system, i.e., more precisely, the topology of the potential en-
ergy surface. The classical N-particle normal mode vectors ef and frequencies wy are

obtained by diagonalization of the dynamical matrix

0*’H
87‘1‘87']‘ R ’

Hij = (2.44)

SA balanced review of the different approaches is by far out of the scope of the thesis at hand. We
refer an interested reader to reference [59] for more details.
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Figure 2.2: The combination of NMA and MD allows to gain insight into the fundamental
dynamical properties of strongly correlated systems. Shown is a 3D Coulomb system consisting
of N =12 classical particles in a harmonic trap at T' = 5000 (see section 3.2). Left: Molecular
dynamics simulation of the thermal particle fluctuations about the local potential energy minimum
of the (1,11) configuration. Right: Corresponding power density spectra Sk, equation (2.45) , for
the 3N normal modes (mode amplitude increases from blue to red). The white circles denote the
mode eigenfrequencies wy as derived from the dynamical matriz, equation (2.44). The threefold
degenerate center-of-mass oscillations of the cluster (mode numbers 34 —36), show distinct peaks
due to the harmonic external confinement potential. All values in arbitrary units. [85]

where H denotes the classical N-particle Hamiltonian, r;; = {z1,y1,21,22,y2...} are
the spatial coordinates of the particles, and R the equilibrium positions of the particles
in a stable configuration. Stable means that the lowest eigenvalue of the dynamical
matrix is non-negative. Normal modes describe collective classical particle behaviour,
such as shell rotations, vortices or breathing-like modes [86, 87] (see section 5.4). The
normal mode spectrum of each mode £k = 1...3N is obtained in form of the spectral

power density

1] /7T 2
Se(w) = = / feO)etdr| (2.45)
T \|Jo
where the quantity
N
fult) =Y ek vilt) (2.46)
i=1

denotes the projection of the MD simulated trajectories v;(¢) of the particlesi =1... N
onto the normal mode eigenvectors ei-“, which describe the amplitude and direction of

the (collective) particle oscillations.
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Quantities of Interest

Thermodynamic and quantum Monte Carlo provide detailed information on the statis-

tical properties of classical and quantum systems such as
e energy, pressure (equation of state), specific heat,
e fluctuations (for instance of the pair distances, see section 4.3),
e distribution functions such as the pair distribution or the density profile,
e the condensate or superfluid fraction, etc.

at any given finite temperature. Quantum Monte Carlo simulations do allow us to follow
the evolution of cluster size effects with particle number, temperature, density or other
external control parameters with rigorous accuracy. Despite its obvious advantages,
there are some practical limitations of PIMC. The calculation of the free energy and
entropy is a troublesome task and requires special techniques [88]. Also, in contrast to
variational and diffusion Monte Carlo techniques or Hartree-Fock, the PIMC approach
does not yield explicit information about single particle orbitals ¢; and the quantum
energy levels ¢; as it directly averages over many pure quantum states by sampling of the
density matrix. Consequently, the calculation of optical properties is a serious problem
for PIMC. However, the computation of complete energy spectra is a (numerically)
challenging task also for the most other present many-body methods such as density

functional theory or non-equilibrium Green’s functions, e.g. [59].

In contrast, if the particles can be treated as point charges, classical molecular dynam-
ics is the method of choice, in particular, if one is interested in real dynamics at the
microscopic level. The classical dynamical method propagates the particle trajectories
in the 6 N-dimensional position-momentum phase-space and allows thereby for the ex-
act computation of all classical equilibrium quantities and, in addition, time-dependent

features. Molecular dynamics can help to answer questions that are related to
e transport processes such as diffusion or conductivity,
e spatial and time correlations,
e the connection between structure and dynamics,

e (selective) collective excitations, e.g., of normal modes, and so on.
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Moreover, in chapter 3 we apply molecular dynamics to determine the classical V-

particle ground and meta-stable states by simulated annealing.

Computational Issues

The computational effort of particle-based methods manifests itself primarily in the
number of particles that can be simulated in feasible computational time. In the con-
sidered classical simulation schemes the exact computation of all pair interactions scales
quadratic with system size. This limits the cluster size to typically N = 10000 classi-
cal particles. In contrast to this relatively modest growth of the computational effort
with increasing system size, exact diagonalization and many body techniques are often

limited to a few particles only because of poor size scaling.

Despite the high accuracy of PIMC simulations, which are only limited by computational
time, there is a crucial point related to the serial correlation of states and the finiteness
of the Markov chain. If we consider a series of n independent (canonically distributed)
configurations, the statistical error decreases as 1/4/n, where n is generally proportional
to the simulation time. However, the sample mean holds this rate of convergence only
if the subsequent states are independent of each other. The Monte Carlo algorithm
samples serially correlated configurations by locally displacing particles.” This local up-
date procedure reduces the practical achievement from a full exploration of the relevant
configuration space, because it captures the system for long periods of time in single
metastable configurations (corresponding to a small region in the phase space), causing
long correlation times. This behavior can easily lead to noisy, or even worse, biased
results, when simulating large quantum systems with many degrees of freedom. The
running variance of some estimators may be comparatively small in the case of large
systems, and it may seem that the thermodynamical observables converge quickly. How-
ever, the contrary is true for sufficient exploration of the configuration space. Typically
we require much longer simulation runs than in small systems and may easily exceed
available computing capabilities. Therefore, it is necessary to carefully check that the
asymptotic regime of the central-limit theorem has been achieved in each special case.
To do so it is suggestive to inspect the system size scaling of the autocorrelation times
by starting with very small systems. By a gradual increase of the system size it can be

ensured that the autocorrelation times do not exceed the simulation [60].

Strongly correlated many-particle systems are found to be very sensitive to even small

"Due to the correlation of subsequent configurations a straightforward calculation of the statistical
error using the standard deviation will lead to an significant underestimation of the error.
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modifications in the (effective) pair potential. These can be caused for instance by
screening or quantum effects. Consequently, only checks against measurements can
clarify the validity of the obtained theoretical results or their underlying model system.
Thus, simulated experiments on model systems can not replace experiments on physical
systems (but rather complement them). It is also important to note that the validity of
numerical computations is strictly limited to the specific case solved. Wherever possible,
numerical results should be used to develop general analytical solutions (such as was

done for the plasma density profile, see section 4.2).
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3 First Principle Simulations of Finite
Classical Systems in Traps

This chapter is primarily devoted to the structure formation in dusty plasmas. We
begin with a brief introduction to the topic in section 3.1. Thereafter, in section 3.2, we
study the shell structure, the cluster stability, and symmetry of ground and metastable
states of spherical Coulomb clusters by means of first-principle molecular dynamics
simulations. The model of a pure Coulomb interaction is very general and, among others,
of direct practical importance for (laser-cooled) ion crystals in traps [27, 89]. Afterwards
in section 3.3, we include the effect of Debye screening of the ambient plasma on the
dust-dust interaction by using a screened Coulomb potential. The simulation results
are found to be in excellent agreement with dust clusters from experiments [32, 89, 90]
including the details of the shell radii and the particle distribution over the shells.
A major part of the work in section 3.3 is focused on the detailed comparison of the
simulations with experimental data, which serves as a basis for a theory of these strongly

correlated classical systems.

3.1 Introduction and Overview

The field of macroscopic and mesoscopic complex plasmas has become an important part
of plasma physics in recent years. The research interest was initiated in 1994 by the
experimental discovery of a new state of (soft) matter — the plasma (Wigner) crystal
[91]-[94]. In a sheath of a noble gas radio frequency discharge highly charged dust grains
of micrometer size were investigated for the first time under laboratory conditions. Due
to their charge of several thousand elementary charges, these microspheres are strongly
coupled and enable the researchers to observe liquid behavior with short-range order

and even macroscopic Coulomb crystals of hep, fec and bee lattice structure.
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The occurrence of dusty plasma effects exceeds by far basic research interests and has
practical importance in micro and nano technology [95]. In the industrial plasma pro-
cessing the presence of charged dust particulates can completely change characteristic
plasma parameters, such as electron and ion densities, temperature, and plasma poten-
tial. This makes it difficult to run the processes at optimum settings [96]. Additionally,
self-assembling of dust particles plays a crucial role in the fabrication of microchips and
solar cells, where growing dust particulates can have both devastating as well as advan-
tageous effects. On the one hand, by the manufacture of highly-integrated electronic
circuits, the so called chip-killing particles can destroy the damageable plasma-etched
nano-structures [97], while on the other hand dust grains included in polymorphous
solar cells reduce the degradation of these cells [98]. Besides these technological sit-
uations dusty plasmas are, e.g., of great interest in various astrophysical phenomena.
For instance, the formation and stability mechanisms of dusty plasma systems are of
central interest for the understanding of protoplanetary, protostellar, and accretion disk

formation or planetary ring systems [99, 100].

In contrast to the mainly weakly coupled macroscopic plasmas in space and technology,
in this chapter we will focus on the numerical simulation and analysis of strongly coupled
plasmas, namely spherical Coulomb and Yukawa balls in traps. These finite systems are
subject of exceptional current interest since their recent experimental generation, e.g.,

in dusty plasmas [15].

Mesoscopic Plasma Crystals in Experiments

Finite plasma crystals consist of tens to hundreds of monodisperse dust (Melamine)
grains of 3...4 um size. These spherical microparticles are embedded in a hot plasma
background (T, = 2...3eV, T; < 1000K, T,, =~ 300K) of electrons, ions, and neutral
(e.g. argon) atoms. The dusty plasma is typically generated by a capacitively coupled
13.56-MHz radio-frequency discharge at moderate damping due to friction with the neu-
tral gas background. Due to the greatly different mobility of electrons and much heavier
ions, the dust grains acquire high negative charges (on the order of 10,000 elementary
charges) by collecting more electrons than ions. By collisions with the ambient neutral

gas, the dust particles are thermalized to approximately room temperature.

To create a spherical confinement for the dust cloud under earth-laboratory conditions,
first of all the gravitational force F4 has to be balanced. The dust levitation is achieved

by compensating gravitational force F, and the ion-drag force F;,, with an upward force
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Figure 3.1: Left: The superposition of gravity F,, electric field force F g, upward thermophoretic
force Fyp, and downward ion-drag force ¥,y , yields a stable spherical confinement inside the
glass box. Right: Vertical section through the center of a trapped dust cloud (only a 200um thin
slice is illuminated by the laser sheet). Note the shell structure of the cluster. From Ref. [90]

generated by strong electric fields F g, which are strongest in the plasma sheath region
above the lower electrode (see figure 3.1). The downward ion-drag force F,, is caused
by the steady flow of electrons and ions from the bulk plasma onto the lower electrode.
Stable three-dimensional dust clouds are created with additional aid of dielectric walls,
i.e., a small glass box of 30 mm size, and an upward thermophoretic force Fy;, caused
by temperature gradients in the neutral gas due to a heated lower electrode. Due to
surface charges on the dielectric glass wall, the dust particles are repelled from the glass

walls. A disperser above the glass box is used to inject the dust grains into the plasma.

Due to the high dust charge, the repulsive electrostatic dust-dust interaction exceeds by
far the thermal energy which leads to structure formation. In fact, experiments show
that the dust particles arrange themselves in spherically symmetric nested shells with
characteristic numbers of particles in each shell (see figure 1.4). Similar to atoms, the
structure and properties of these systems strongly depend on the particle number. But
unlike atomic systems, the crystal is visible to the unaided eye and can be relatively
easily manipulated. Furthermore, the low charge-to-mass ratio of dust particles allows
for high resolution measurements of the structural and dynamical behaviour not only in
space, but also in real-time. This is due to the fact that dynamical processes occur on
a frequency scale of several Hertz, which means that the motion of individual particles
is sufficiently slow to be tracked with conventional CCD cameras. Therefore, complex
plasmas are very suitable objects to study fundamental interactions and correlation

effects leading to collective behavior. Thereby, the investigations affect fundamental
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issues of both plasma physics on the one hand and condensed matter physics on the
other hand.

The results of this chapter may also be valuable for other kinds of strongly correlated
many particle systems, such as crystallized ions. Experiments on laser-cooled ions in
traps have shown that the regime of strong coupling can be reached [6]. Moreover,
in the case of small ion clouds the particles are found to form spherical onion-like
shell structures which are similar to those observed in dusty plasmas [27, 89, 101] (see
figure 1.3). Small ensembles of crystallized ions have potential for future technological
applications and are presently subject of intense research activities. Cold ions in traps
have been proposed, e.g., as one possible way to realize a quantum register [27, 102].
It should be remarked that due to the high ion mass, the ground state structures can
be treated classically!. For convenience, we will refer also in the case of pure Coulomb
interaction (section 3.2) to the dust particles, keeping in mind that they can also be

trapped ions or any other (approximately classical) particle species.

Simulation Model and Method

Theoretically, the plasma crystal was predicted by H. Ikezi in 1986 [103]. By means of
molecular dynamics simulations he identified the plasma parameters at which a dusty
plasma undergoes a phase transition to an ordered crystalline state. Nevertheless, the
theoretical description of complex plasmas turns out to be extremely difficult due to their
strongly heterogeneous composition, which leads to drastic differences in the underlying
space and time scales of the plasma constituents (electrons, ions and dust particles) [104,
105]. An accurate treatment of the multi-scale problem requires to include the effect
of streaming ions and collisions on the dynamical charging and screening of the dust
particles self-consistently. This challenging task necessitates very large computational

capabilities and remains a future task.

Instead of explicitly taking into account all interactions among the constituent particles,
we draw on a simple model for dust-plasma interaction which, despite its simplicity,
allows to reproduce the experimental measurements without the need of free parameters.
The high mass ratio of ions and dust particles allows us to treat the particles classically.

The dynamically-screened (anisotropic) pair potential, which includes the impact of the

'Even for quantum Coulomb crystals of electrons [2] the ground state configurations are, in most cases,
the same as the classical ones. A detailed analysis of the correspondence between the ground states
of classical and quantum bilayer systems is to be found in section 5.4.
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plasma environment on the dust-dust interaction, is given by

1 . dc(k
P(r;;) = W/dgkelk'r” Dk, kC(ul-lV@) ) (3.1)

with ®c(k) = 4mq?/k? being the Fourier transform of the Coulomb potential. The

velocity u describes the constant ion flow, which is directed towards the lower electrode

(see figure 3.1). The plasma response is embedded in the dielectric function

1 w2 f dSVk'vaio(V)
D(k,b(.)) =1+ - =5 'V—U{ ) (32)
k2)‘3)e k21— i fd?’vil{f,(_v‘l

which includes Landau damping and collisional damping (v; is the ion-neutral collision
frequency, and f;o(v) the ion distribution function). The electron Debye length is given
by Ap, = \/W , where n.(;y and T¢;) refer to the mean electron (ion) density
and temperature. In the limit of |u| — 0 we recover the static case, where the surround-
ing plasma of free electrons and ions is taken into account by means of an isotropically

screened Coulomb potential — the Debye-Hiickel or Yukawa potential

2 —kK|r;—rj]|

N
_47T€0 ‘I‘i—l‘j| '

Di; (3.3)
Here q denotes the charge of the dust component and &, the vacuum permeability. The
range of the dust pair potential ®;; is characterized by the dimensionless® screening

parameter K = ro/Ap, defined as the inverse Debye screening length,

2 2 —-1/2
deMe q; Ny
= ) 3.4
b <€0kBTe+€ok‘BTi) (3:4)

which incorporates the combined effect of static electrons and static ions. Note that the

Yukawa potential includes the pure Coulomb interaction as the special case k = 0.

In order to accurately model the experimental conditions we employ a spherical parabolic

confinement, which is independent of the screening parameter x >
m
Ue(r) = Ewgﬁ , (3.5)

where r = |r| denotes the radial particle position (distance from the trap center). The

?Dimensionless lengths and energies are obtained by introducing the units 7o = (¢*/ 27r5mw(2))1/ 3 and
Eo = (mwdq*/321%?)"/? (see section 1.3).

3The correctness of the assumed s-independent external confinement potential is verified in section
3.3.
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physical properties of the reduced model of N identical dust grains of equal charge ¢

and mass m are defined by the N-particle Hamiltonian

9 N-1 N N
D;
Hy(piri) = ) o T d N @i =)+ ) Ue(ri) (3.6)
=1 =1 j>1 =1

It is interesting to note that this classical system is fully described by only two pa-
rameters: coupling strength I" (equation 1.1) and screening parameter x [106]. Using

molecular dynamics we solve the N-particle problem of dust grains from first principles.

Since we are interested in the ground state structure of Yukawa balls, we apply molecular
dynamics to find the lowest energy states. The classical ground state configurations are
explored by simulated annealing, i.e., from minimizing the kinetic and potential energy
in equation (3.6). Note that in contrast to the quantum case, in classical systems the
kinetic energy vanishes at zero temperature. That means that all particle velocities
become zero, which leads to infinitely strong coupling according to the definition of I"

(equation 1.1).

Finding the global minimum on a multi-dimensional potential energy surface is con-
ceptually simply, but in practice a challenging problem. To assure that the correct
N-particle ground state was detected, the runs were repeated up to several thousand
times, where each run starts with different random initial velocities and positions of all
particles. The quadratic growth of the number of force computations and the exponen-
tial complexity of the problem (due to the growing number of metastable states with
only marginally higher energy) with respect to N makes the computation demanding
and requires aggressive code optimizations. To speedup the computations we tuned the
numerical truncation error A(h), equation (2.9), during the simulated annealings, in de-
pendence of the particular kinetic energy per particle, continuously from 1072 to 1078
(for Epin/N > 1073 we used a fixed minimum accuracy A(h) = 1073 to avoid numerical
instabilities). However, in particular for clusters with N > 100, reliable data can be
only obtained within a feasible time (i.e. within a few weeks) by using several, typically
10 to 20, CPUs. Instead of a code (force) parallelization we were running an ensemble of
independent simulations on distributed processors. This strategy offers best scalability
and makes the most efficient use of the available compute power. The complete table of
ground states containing the shell configurations and energies for spherical 3D Coulomb
crystals in the range of particle numbers N < 160 are presented in section 3.2. From our

simulation data we correct and extend previous results of Hasse and Avilov [33]. Very
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Figure 3.2: Ground state configuration of a Yukawa ball composed of N = 25 dust grains in a
parabolic trap. Upon increase of the screening length k, the cluster size decreases and the shell
configuration changes from (2,23) in the Coulomb regime, to (3,22) in the range 0.3 < k < 2.2
and finally, in the limit of large k values, to (4,21). Different colors denote particles on different
(sub-)shells. Note that not the plotted cluster size, but the point size is correctly scaled with k.

recent work confirms that our simulations are exact, and all N-particle ground states
have been correctly identified [42, 107, 108, 109].

Structural Properties of Spherical Yukawa Crystals

In the following we will address the question of whether and how the Debye shielding
affects the structure formation in dusty plasmas. This question is directly connected to
the (structural) relation between trapped laser-cooled ion systems on the one hand and
Yukawa balls on the other hand. A detailed numerical analysis of the ground states of
pure and screened Coulomb clusters reveals the following generic trends upon increase

of the screening parameter x (see figure 3.2 for one representative example):

1. Screening weakens the repulsive interaction between the dust grains which conse-

quently leads to a compression of the cluster. Including this effect,

2. the shell radii (normalized to mean interparticle distance) are found to be inde-

pendent of screening.

3. By increase of x the shell widths broaden and shell splitting as well as the emer-

gence of sub-shells is observed (see figure 3.2 at k = 20).
4. The number of shells is generally independent of Debye shielding.

5. In contrast, the shell occupation numbers are found to be highly sensitive to a

change of screening.
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k— 00 02 03 04 05 06 0.8 1.0 Experiment

s1 1 1 2 2 2 2 3 4 2
s 18 18 20 20 21 21 22 24 21
s3 56 57 57T 58 B8 60 60 60 60
sq 115 114 111 110 109 107 105 102 107

Table 3.1: Theoretical shell configurations obtained from MD simulations for the Coulomb ball
N =190 as a function of screening parameter k in comparison with experimental data [15] (last
column). Beginning in the cluster center, s1, ..., s4 denote the particle numbers on the i-th
shell. If the screening parameter k is increased, the number of shells remains equal to four, but
the inner (outer) shell become higher (lower) populated. Further details are given in the text.

6. At large values of k the screened Coulomb interaction becomes “hard-sphere”-like.
This induces a structural change from a nested shell configuration to a bulk-like

close-packed symmetry.

Sure enough, the most remarkable finding is the effect of screening on the detailed shell
population and structure of the individual shells. In general it can be stated that the
occupation numbers on the inner (outer) shells gradually increase (decrease) with .4
This implies that a Yukawa system contains a smaller (or equal) number of particles on
the outer and a higher (or equal) number of particles on the inner shell than a comparable
unscreened Coulomb system. A representative example for this general trend is shown in
table 3.1. The comprehensive systematic comparison of molecular dynamics simulations
with experimental measurements reveals that the change in the shell population numbers
can only be attributed to screening (the details of this comparison are presented in
section 3.3). Therefore, our simulations allowed us to determine the Coulomb screening
parameter Kez, ~ 0.62 from experimentally measured shell configurations. The value

agrees well with independent estimations based on experimental parameters [111].

Further Monte Carlo and molecular dynamics simulations show that a finite temperature
and the inclusion of charge fluctuations (in view of a variations of the dust grain sizes)
are negligible compared to the effect of screening and do not lead to significant deviations
from the ground state shell configurations [112]. Therefore, the shell occupation numbers
are found to be very suitable quantities which allow for a non-invasive determination of

the experimental Debye screening parameter in dusty plasma experiments.

We note that an alternative theoretical model by H. Totsuji et al. [113] predicts approx-
imately screening-independent shell populations, which differ from the measurements
[15, 32].

4This statement holds with the exception of a very few special cases at very large x that were recently
detected [110].
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3.2 Ground State Structure of 3D Coulomb Crystals

An analysis of the structural properties of three-dimensional Coulomb clusters confined
in a spherical parabolic trap is presented. Based on extensive high-accuracy molecular
dynamics simulations, a complete table of ground state configurations and energies for
particle numbers in the range N < 160 is compiled, which corrects previous results of
Hasse and Avilov [Phys. Rev. A 44, 4506 (1991)]. Further, the intrashell symmetry of

the ground states and lowest metastable states is investigated.

The results were published as refereed journal publications:

3.2.1 Structure of Spherical Three-Dimensional Coulomb Crystals,
P. Ludwig, S. Kosse, and M. Bonitz, Physical Review E 71, 046403 (2005)

3.2.2 3D Coulomb Balls: Experiment and Simulation,
O. Arp, D. Block, M. Bonitz, H. Fehske, V. Golubnychiy, S. Kosse, P. Ludwig,
A. Melzer, and A. Piel, Journal of Physics: Conference Series 11, 234 (2005)
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An analysis of the structural properties of three-dimensional Coulomb clusters confined in a spherical
parabolic trap is presented. Based on extensive high-accuracy computer simulations the shell configurations
and energies for particle numbers in the range=®0< 160 are reported. Further, the intrashell symmetry and
the lowest metastable configurations are analyzed for small clusters and a different type of excited state that
does not involve a change of shell configuration is identified.
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Spatially confined charged particle systems have a numfrom an isotropic Coulomb interaction to a subsequent study.
ber of unique properties not observed in conventional The theoretical analysis of 3D SCCs is much more in-
quasineutral macroscopiplasmas of electrons and ions in volved than in 2D and has so far mostly been restricted to
discharges or solids, electrons and holes in highly excitedmall cluster sizes with often conflicting resulte.g.,
semiconductors, and so on. With the help of confinemenfl7-19 and references thergirRafacet al.[18], correcting
potentials it has now become routine to trap, for long period®arlier results, identified the first shell closureNat 12 (the
of time, plasmas of a single chargégonneutral plasmas  13th particle is the first to occupy a second shahd pre-
e.g., electrons and ions and even positrons in Paul and Pesented detailed data, including ground state energiedfor
ning traps[1-3] (for an overview sed4]), or colloidal <27, but they missed the onset of the third shell, as did
(dusty) plasmas in discharge chambéesy.,[5]). By varying  Hasse and Avilo\f17]. Tsuruta and Ichimaru extended the
the confinement strength researchers have achieved liqutdble toN=59[19]. The most extensive data, for up to a few
behavior and even Coulomb crystallization of idBs6] and  thousand particles, have been presented by Hasse and Avilov
dust particleg7,8]. These strong correlation phenomena arg17] and has been a valuable reference for theoretical and
of exceptional current interest in a large variety of fieldsexperimental groups. However, as our calculations show,
ranging from astrophysicsinterior of giant planefsand their tables contain excited states rather than the true ground
high-power laser compressed laboratory plasmas, to corstates forN=28-31, 44, 54 and practically for aN>63
densed matter and quantum df$, etc. Coulomh(Wignen (except forN=66). Therefore, it is an important task to ob-
crystals are expected to exist in many white dwarf stars. tain the correct ground state shell configurations and cluster

A particular property of trapped smdN= 1000 clusters  properties for particle numbers beyohid60.
in spherical traps is the occurrence of concentric shells with The reason for the computational difficulties is the exis-
characteristic occupation numbers, shell closures, and urtence of a large number of excitéohetastablestates which
usual stable “magic” configurations. Due to their close simi-are energetically close to the ground state; with increalsing
larity to nuclei, metal clusters, or atoms, these systems artis number grows exponentially whereas the energy differ-
sometimes called “artificial atoms.” A significant number of ence rapidly vanishes. Calculations with a too low accuracy
papers has been devoted to the exploration of the energetiill then frequently miss the correct ground state. Therefore,
cally lowest shell configuratiofground statpand metastable we use an improved computational strategy which drastically
(“excited”) states of two-dimensiongPD) artificial atoms reduces the probability of such missege below.

(e.g.,[10-12 and references thergin Model: we considerN classical particles with equal

On the other handhree-dimensional spherical Coulomb chargeq and massn interacting via the Coulomb force and
crystals(3D SCCs have been observed in laboratory experi-being confined in a 3D isotropic harmonic trap with fre-
ments with ultracold ion plasmds$,6], and the interest in quencyw with the Hamiltonian
them is now rapidly growind13] after their prediction in
expanding laser-cooled neutral plasmi4] and their experi- N m
mental creation in dusty plasmas as wdlb]. This raises a NE D =2+ E — o E
qguestion about theoretical results for the configurations of i=1 2 =1 2 i>] 47’8|r |
spherical 3D Coulomb crystals, which is the subject of this
paper. These results are expected to be an important refddespite its simplicity, the modé€lL) captures the basic prop-
ence for the above experiments but also for other possiblerties of a multitude of classical systems and serves as an
candidates for 3D crystals, including semiconductor nanoimportant reference point also for more complex 3D systems.
structures. It is natural to start with an analysis of the groundBelow we will use dimensionless lengths and energies by
state and lowest metastable states, deferring finite temperitroducing the  units ro=(g?/2memw?® and E,
ture and melting propertiee.g.,[16]] and also deviations =(mw?q*/32m%e?)Y3, respectively.

2
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TABLE I. Shell configurations, energy per particle for the lowest-lying stéimsthe excited states the
energy difference with respect to the ground state is given in ijalimgan radius of the outer shel,
symmetry paramete®y, Eq. (2), and number of VoronoM-polygonsN(M) in brackets. FoiN=4, N(3)
=4, and forN=5, N(3)=2, N(4)=3.

N Configuration E/N ry G, [N(4)] G5 [N(5)] Gg [N(6)]
2 (2 0.750000 0.5000 - - -
3 3) 1.310371 0.6609 - - -
4 (4 1.785826 0.7715 — — —
5 (5) 2.245187 0.8651 1.00(B] - -
6 (6) 2.654039 0.9406 1.00[B] - -
7 @ 3.064186 1.0106 1.00(®] 1.000[2] -
8 (8) 3.443409 1.0714 0.641] 0.821[4] -
9 (9 3.809782 1.1269 0.96] 0.957[6] -
10 (10 4.164990 1.1783 1.000[2] 0.861[8] -
9,9 0.021989 1.2453 0.965[3] 0.957[6]
11 (11 4513275 1.2265 0.940[2] 0.894[8] 1.000[1]
(10,1 0.009876 1.2878 1.000[2] 0.861[8] -
12 (12 4.838966 1.2700 - 1.000[12] -
(11, 0.015345 1.3286 0.938[2] 0.895[8] 1.000[1]
13 (12,1 5.166798 1.3659 - 1.000[12] -
(13 0.005061 1.3130 1.000[1] 0.894[10] 0.932[2]
14 (13,1 5.485915 1.4033 - 0.893[10] 0.933[2]
(14 0.003501 1.3527 1.000[1] 0.938[12] 1.000[2]
15 (14,1 5.792094 1.4383 - 0.938[12] 1.000[2]
(15 0.009031 1.3906 - 0.885[12] 0.963[3]
16 (15,1 6.093421 1.4719 - 0.882[12] 0.962[3]
(16) 0.012200 1.4266 - 0.897[12] 0.993[4]
(16) 0.012635 1.4267 - 0.747[12] 0.884[4]
17 (16,1 6.388610 1.5042 - 0.891[12] 0.993[4]
(16,1 0.000365 1.5042 - 0.746[12] 0.884[4]
(17 0.015766 1.4611 - 0.738[12] 0.810[5]
18 (17,1 6.678830 1.5353 - 0.738[12] 0.810[5]
(18 0.018611 1.4941 1.000[2] 0.829(8] 0.920[8]
19 (18,1 6.964146 1.5654 1.00@] 0.827[8] 0.920[8]
20 (19,1 7.247181 1.5946 — 0.838[12] 0.918[7]
(18,2 0.004264 1.6285 0.991[2] 0.824[8] 0.913[8]
21 (20,1 7.522378 1.6226 — 0.792[12] 0.917(8]
(19,2 0.004668 1.6557 - 0.847[12] 0.927[7]
22 (21,1 7.795469 1.6499 1.000[1] 0.877[10] 0.880[10]
(21,1 2.5-107 1.6499 1.000[1] 0.859[10] 0.866[10]
(20,2 0.000976 1.6821 - 0.801[12] 0.935[8]
(20,2 0.001053 1.6820 - 0.763[12] 0.909[8]

To find the ground and metastable states, we used classyptimized MD time stegit has to be chosen not too small to
cal molecular dynamic$MD) together with an optimized avoid trapping in local potential minimaThe results are
version of the standard simulated annealing method. Startinghown in Tables | and II.
with a random initial configuration dfl particles, the system Consider first the ground state shell configurations beyond
is cooled continuously until all momenta are zero and thehe previously reported result$8,19 (see Table |l. Closure
particles settle in minima of the potential energy surfaceof the second shell is observed twice: fé=57[19] and 60.
Depending on the particle number, the cooling down procesBurther, we have found the closure of the third shell to occur
was repeated between several hundred and several thousaatdN=154; all larger clusters have at least four shélisthe
times until every one of the computed low-energy states waground state The “noble-gas-like” closed shell clusters are
found more than a given number of timggpically 10-100  particularly stable, but a few others also have a compara-
assuring a high probability that the ground state has beetively high binding energyaddition energy changied,(N)
found. Crucial for a high search efficiency is the use of anr=E(N+1)+E(N-1)—-2E(N). Tsuruta and Ichimaru[19]
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TABLE II. Ground state shell configurations, energy per particle
for the lowest-lying states, and mean shell ragiy 3[20].

N Configuration E/N ry ry ra
28 (25,3 9.348368 1.8525 0.6889 -
29 (25,9 9.595435 1.8992 0.7987 -
30 (26,9 9.838965 1.9198 0.7961 -
31 (27,9 10.079511 1.9399 0.7926 -
44 (36,8 13.020078 2.2454 1.0845 -
54 (44,10 15.085703 2.4186 1.1872 -
55 (43,12 15.284703 2.4618 1.2772 -
56 (44,12 15.482144 2.4743 1.2770 -
57 (45,12 15.679350 2.4869 1.2763 -
58 (45,12,2 15.875406 2.5126 1.3765 -
59 (46,12,2 16.070103 2.5247 1.3764 -
60 (48,12 16.263707 2.5236 1.2754 -
64 (49,14, 17.027289 2.6101 1.4478 -
65 (50,14,2 17.215361 2.6212 1.4477 -
80 (60,19,2 19.936690 2.8369 1.6002 -
84 (61,21,2 20.632759 2.9064 1.7140 0.5426
94 (67,24,3 22.325841 3.0347 1.8356 0.7001
95 (67,24, 22491878 3.0522 1.8848 0.8089
96 (68,24, 22.657271 3.0606 1.8846 0.8083
97 (69,24, 22.822032 3.0687 1.8849 0.8095
98 (69,25,4 22986199 3.0864 1.9055 0.8081
99 (70,25,4 23.149758 3.0945 1.9056 0.8071
100 (70,26,4 23.312759 3.1117 1.9259 0.8055
101 (70,27,4 23.475164 3.1291 1.9450 0.8028
103 (72,27,9 23.798274 3.1451 1.9443 0.8017
105 (73,28,9 24.120223 3.1696 1.9641 0.8020
107 (75,28,9 24.439666 3.1850 1.9640 0.8011
109 (77,28,9 24.757151 3.2005 1.9638 0.8006
111 (77,29,5 25.072584 3.2322 2.0249 0.8968
113 (77,30,6 25.385842 3.2637 2.0831 0.9640
115 (77,32,6 25.697308 3.2949 2.1162 0.9630
117 (79,32,6 26.007089 3.3094 2.1158 0.9622
119 (81,32,6 26.315442 3.3237 2.1156 0.9624
121 (83,32,6 26.622118 3.3379 2.1154 0.9614
123 (83,34,6 26.927195 3.3672 2.1493 0.9625
125 (84,34, 27.230458 3.3884 2.1850 1.0340
128 (85,35,9 27.682123 3.4235 2.2358 1.0922
130 (86,36,9 27.981234 3.4445 2.2501 1.0917
133 (88,37,8 28.427062 3.4718 2.2642 1.0912
135 (88,38,9 28.722421 3.4992 2.3110 1.1436
137 (90,38,9 29.016328 3.5119 2.3110 1.1440
139 (91,39,9 29.308774 3.5316 2.3251 1.1430
141 (92,40,9 29.599900 3.5514 2.3387 1.1417
143 (93,40,10 29.889733 3.5707 2.3689 1.1932
145 (94,41,10 30.178106 3.5898 2.3825 1.1920
147 (95,42,10 30.465219 3.6087 2.3957 1.1923
149 (96,43,10 30.750998 3.6273 2.4090 1.1926
151 (96,43,12 31.035390 3.6524 2.4659 1.2814

PHYSICAL REVIEW E 71, 046403(20095

TABLE Il. (Continued).

N Configuration E/N r r ra

153 (97,44,12 31.318528 3.6708 2.4781 1.2811
154 (98,44,12 31.459632 3.6768 2.4777 1.2810
155 (98,44,12,1 31.600488 3.6887 2.5042 1.3846
156 (98,45,12,1 31.741100 3.7006 2.5169 1.3839
158 (100,45,12,1 32.021294 3.7122 2.5166 1.3834
160 (102,45,12,1 32.300405 3.7238 2.5161 1.3833

found the stable clustersi=4,6,10,12,19,32,38,56. For
larger clusters the binding energy decreases, and the relative
differences rapidly decrease. We found the next particularly
stable ones to bBl=81,94,103,116. The results are shown
in Fig. 1. The relative stability of these clusters is linked to a
particularly symmetric particle arrangement within the shells
which will be analyzed below.

The existence of the shell structure is a marked difference
from macroscopic Coulomb systeni®l— ) and is, of
course, caused by the spherical confinement potential. With
increasingN the structure of a macroscopic system emerges
gradually (see also Ref[16]). This can be seen from the
relative widthso,= o,/ 1, Of the mth shell (o, denotes the
variance of the shell radius,). For example, forN=149
(starting from the outermost shelt-;=0.0089, 0,=0.035,
and 03=0.032, whereas foN=160 we obtainc;=0.0091,
0,=0.033, andr;=0.0038. In both cases the outermost shell
is significantly narrower than the second one and this trend
becomes more pronounced Bisincreases. This is easy to
understand because the effect of the confinement is strongest
at the cluster boundary, i.e., in the outer shell, whereas the
inner shells are partially shielded from the trap potential by
the surrounding particle shells. In contrast, the behavior of
the inner shells is not that systematic: in one cd$e 149
the third shell is of similafrelative) width as the second; in
the other cas&@\=160) the inner shell is much narrower. The
reason is symmetry effects which particularly strongly influ-
ence the width of the innermost shéthe clusteN=160 has
a closed inner shell with 12 particles which is very narrow

In Table | we also provide the first excited states, which
correspond to metastable shell configurations that are differ-
ent from the ground state. While the overall trend is a rapid
decrease of the excitation ener@nergy gap to the ground
statg with increasingN, some additional systematics is ob-
served. Clusters that open a new shell typically possess a
close metastable state. For example, Nor13 the relative
stability of the configurationgN,0} and{N-1,1} changes,
the latter becomes the ground state and the former the first
excited statgsee Table )L A similar trend is observed not
only when a new shell is opened but also when an additional
particle moves onto the inner shell between the stfitgs
-1,N,} and{N;,N,—-1}. Away from these transition points
the energy difference increases and eventually another con-
figuration becomes the first excited state.

An interesting observation is that frequently simulations
yielding the same shell configuration resulted in different
total energies; see, e.dN=16,17,22 in Table I. The differ-
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ences are much larger than the simulation error; moreovetetrahedron is distorted, as shown in Figc)2 Two edges
the energies are reproducible. The obvious explanation is thaémain practically constarfAB~CD=1.63, but the edge
the state of a cluster is not completely determined by its shelh\B rotates with respect to the first case by an angle of 34°
configuration(as is the case in 2DIn addition, there exist resulting in a reduction of edgedC and AD to about 1.24
further excited states, i.e., a “fine structure,” which are due tavhile AC and BD increase to 1.94. From this we conclude
a different particle arrangement and symmetry within onethat of two states the one with the more symmetric arrange-
shell To understand the differences in the structure of thesenent of the Voronoi polygons, i.e., Fig(d, has the lower
states with the same shell configuration we analyzed the irenergy. To quantify this topological criterion, we introduce
trashell symmetry by performing a Voronoi analysis, i.e., bythe Voronoi symmetry parameter

constructing polygons around a given particle formed by the

; . . . : Ny M
lines equally bisecting nearest-neighbor pairs on the shell Go = 1 > 1 S @M 2
(see the example =17 shown in Fig. 2 Interestingly, the M7 Ny oM k:le '

two states do not differ with respect to the number of poly-
gons of each kind on the outer shell: there &&6)=12  whereN,, denotes the number of all particl¢sn the shell,
pentagons anbli(6) =4 hexagons. However, what is different each of which is surrounded by a Voronoi polygon of order
is the arrangement of the polygonin one case, the four M (M nearest neighborsandé is the angle between thn
hexagons form a perfect tetrahedr&BCD and are sepa- Particle and itskth nearest neighbor. A valuBs=1 (Gg=1)
rated from each other by pentagofsee Fig. 23)]; in the  means that all pentagoriBexagonsare perfect; the magni-
other two pairs of hexagons tou¢bee Fig. #b)], and the tude of the reduction oG, below 1 measures their distor-
tion. Inspection of the values @), for the two{16,1} con-
figurations forN=17 (Table ) reveals that the state with
lower energy has higher values for badg and G4 than the
second, confirming our observation above. This result is veri-
fied for all otherN (of course it applies only to states with the
same shell configuration

Having obtained withG,, a suitable symmetry measure
that is sensitive to the relative stability of ground and meta-
stable states, we now return to the issue of the overall cluster
FIG. 2. Voronoi construction for the clust&f=17 for the two stability. To this end we compute timeean Voronoi symmetry

energetically lowest states with shell configuratibh={1,16. par_ameter b_y averaging over aII(_BM of a given shell
White (gray) areas are hexagogentagons indicating the number  Weighted with the respective particle numbeteM). The

of nearest neighbors of the corresponding partiblack doj. (a) results for the two outer shells fdM<160 are included in
ground statefb) first excited(“fine structure state;(c) arrange- Fig. 1. We clearly see thahagic clustershave not only a
ment of the four particles surrounded by hexagons; the two stateBigh binding energy but also a prominent symmé¢rg]; see
differ by rotation of the edgéB, black (white) circles correspond in particularN=12, 38, 103, and 116.

to case(a) [(b)]. In summary, in this paper we have presented extensive
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simulation results for spherical Coulomb clusters with  shell configurations in quantum crystals are exactly the same
=<160. The observed cluster ground state configurations fosis in the correspondinggssentially simplerclassical crys-
N=60 differ, in most cases, from the ones previously re-tals[9,12,21. This remains an interesting question for future
ported[17] which have a significantly higher energy and thusgpaysis.

correspond to excited states of the clusters. The presented Further, we have presented an analysis of the lowest ex-

tables(for the complgte table;, S€20)) .ShOUId be a valuable cited states of small clusters. Besides metastable states with a
reference for experiments with classical 3D Coulomb CYS'shell structure different from the ground state we identified
tals in dusty plasmalsl5], ultracold iong 6], or laser-cooled 9

expanding neutral plasm&&4]. Of course, real experiments “fine_ structure” states yvhich are characte_rized by different
with ions or dust grains are likely to exhibit deviations from Particle arrangement within the shells, an important property
the simple mode{1)—the interaction may deviate from the not existing in 2D crystals. These states have a lower sym-
Coulomb law(e.g., due to screeningatnd may be direction metry which is linked to higher values of the total energy.
dependent, the confinement potential is often not perfectly Finally, knowledge of the lowest metastable states is very
isotropic or parabolic, etc. Therefore, differences in the eximportant for understanding all dynamic properties of 3D
perimentally observed cluster configurations compared to therystals. The metastable states are expected to be of rel-
above theoretical results may be valuable additional informaevance for the collective excitations of the clustérermal

tion on imperfections of the experimental sefppssible an-  modes that are excited in the system if kinetic energy is
isotropic confinementor on the plasma properti¢screening  supplied as well as for the melting behavior of the 3D crys-

length. tals.
Moreover, the obtained ground state resukkell con-

figurationg are expected to be important also for quantum The authors thank A. Piel and D. Block for stimulating
3D Coulomb clusters which may exist, e.g., in semiconducdiscussions and V. Golubnychiy for assistance with the fig-
tor quantum dots in the strong coupling limit. It was found ures. This work was supported by the Deutsche Forschungs-
before for 2D systems that, in most cases, the ground stagemeinschaft under Grant No. BO-1366/5.
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Abstract. Spherically symmetric three-dimensional charged particle clusters are analyzed
experimentally and theoretically. Based on accurate molecular dynamics simulations ground
state configurations and energies with clusters for NV < 160 are presented which correct previous
results of Hasse and Avilov [Phys. Rev. A 44, 4506 (1991)]. A complete table is given in the
appendix. Further, the lowest metastable states are analyzed.

1. Introduction

Over the last years the investigation of complex (dusty) macroscopic and mesoscopic plasmas
occurring e.g. in astrophysical, laboratory and technical situations has become an important
research field. The theoretical description of complex plasmas is extremely difficult due to their
heterogeneous composition and the drastic differences in the relevant space and times scales,
e.g. [1,2]. With the help of confinement potentials it has become possible to trap, for long
periods of time, plasmas of a single charge (non-neutral plasmas). By varying the confinement
strength researchers have achieved liquid behavior and even Coulomb crystallization of ions [3]
and dust particles [4,5]. Such strong correlation phenomena are of exceptional current interest
in many fields.

In general, the formation of extended, three dimensional dust clouds in rf-discharges is
hampered by the dominance of the gravitational force on the dust particles. Only in a narrow
sheath region above the electrode the electric field forces can compensate gravity. Hence, typical
dust clouds are two dimensional (2D) structures trapped in the non-equilibrium conditions of
the boundary sheath which cause the formation of vertical particle chains [6].

Besides electric field forces thermophoresis is capable to compensate gravitation. This has
recently been demonstrated by Rothermel et al. [7], but instead of homogeneous 3D dust
clouds the formation of dust free regions in the center of the discharge was observed. Similar
observations of these so-called voids are made under microgravity conditions [8]. Although in
both situations the electric field force on the particle is directed towards the plasma center, the
outward directed ion flow is assumed to produce a friction force which exceeds the electric field
forces in the center of the discharge and hence creates the void.

This contribution deals with the simulation and analysis of spherically 3D clusters which
were recently first experimentally observed in dusty plasmas [9]. We compare simulation results

© 2005 IOP Publishing Ltd 234
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Figure 1. (Color online) Picture of the discharge chamber and a schematic drawing of the
experimental setup (top view). The laser produces a vertical laser fan which illuminates vertical
cross sections of the particle cloud. The camera looks at the illuminated plane under right
angle. Laser and camera are mounted on a common positioning system to allow observation of
arbitrary cross sections of the dust cloud.

to real dust clusters from experiments. In the simulations the dust-dust interaction potential is
modelled by a Coulomb potential [10].

2. Experiments on Coulomb balls

2.1. Experimental Setup

The experiments presented in this paper are performed in a capacitively coupled rf-discharge in
argon. The basic setup is well known from several investigations on 2D plasma crystals [6,11-13].
It consists of two plane parallel electrodes. The rf-power is applied to the lower electrode with
17 cm diameter. The upper electrode is a mesh grid of similar size and is connected to ground.
The distance between the electrodes is 6 cm. Compared to previous investigations two changes
are applied to the setup. First, the temperature of the lower electrode can be controlled in
a range between 20 — 80°C. With the upper electrode being at room temperature, vertical
temperature gradients of up to 10°C/cm can be established. Second, a glass tube with square
cross section is placed in the lower half of the discharge on top of the lower electrode.

Typical parameters for the discharge are vertical temperature gradients of 5 Kem ™!, rf-power
below 30 W and neutral gas pressures of 50-150 Pa. For the experiments we use particles with
a diameter of 3.4 um which are injected into the plasma from the top by gently shaking a fine
sieve. The dust particles are illuminated by a vertical laser sheet of less than 500pum width. The
scattered light of the particles is observed with a CCD-camera under right angle (Fig.1). The
CCD camera is focused to the illuminated plane. Both, camera and laser fan are mounted on
a common frame which can be moved in horizontal direction. Hence images of arbitrary cross
section of the dust cloud can be recorded. In particular, all three coordinates of the particles
can be determined from a systematic scan of the dust cloud.
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Figure 2. (Color online) The schematic drawing (left) shows a spherical particle cloud and a
plane which rotates around an axis through the center of the cloud. The measured positions
of all particles hitting this plane are marked with a dot for a particle cluster with 190 particles
(right). The dashed lines indicate concentric circles around the cloud center.

2.2. Experimental Results

After injection of the particles the formation of a spherical dust cloud is observed. The cloud
is located inside the glass tube close to the geometric center of the discharge arrangement. The
example shown in Fig.2 is a dust cloud consisting of 190 particles which has a diameter about
5mm. In contrast to previous investigations [6-8] an important finding is that the dust cloud is
void-free and that the particles show no chain formation. To investigate the spatial structure in
more detail, Fig. 2 shows the particle distribution as a function of the cylindrical coordinates p
and z, i.e. the azimuthal dependence is omitted in this plot. Besides the overall spherical shape
of the dust cloud the occurrence of consentric shells is observed (dashed lines). This becomes
evident when the particle position is plotted as a function of radius (spherical coordinates) only.
Fig. 3 shows that the radial particle distribution function is strongly modulated. The prominent
peaks indicate the formation of concentric spherical shells. A more detailed analysis [9] of the
particle arrangement on individual shells shows that the particles arrange in a close hexagonal
packing which includes few pentagonal defects to form a convex surface. The shell occupation
for the 190 particle cluster is 2, 21, 60 and 107 starting with the innermost shell. This is close
to the occupation number [10] found by numerical simulations of Coulomb clusters [20].

The appearance of a highly ordered particle system is further supported by calculations of the
pair correlation function which yields a typical interparticle distance of 0.715mm. Compared
with the intershell distance of about 0.63 mm a good agreement with hexagonal closed packed
systems is found [18].
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Figure 3. (Color online) Experimental radial particle distribution of a particle cluster with 190
particles.

3. Theory

3.1. Model

To model 3D Coulomb clusters confined in a 3D isotropic harmonic trap we consider N
classical particles with equal charge ¢ and mass m interacting via the Coulomb potential. The
corresponding Hamilton function is

N N N .
Hy=S "2 S M2 NS 6 .
N ZQ” +Z 2wr’+z4m€]ri—r]~\’ (1)
i=1 =1 1>

where w is the strength of the confinement potential. In what follows below we will
use dimensionless lengths and energies by introducing rg = (¢?/2memw?)'/? and E, =
(mw?q*/32n%e2)1/3. The length 7y is the stable distance of two particles confined in the
considered potential, Ey denotes their ground state energy.

3.2. MD-Simulation

Three-dimensional classical Coulomb clusters in a spherical parabolic trap have been investigated
earlier by different authors with different numerical methods. Rafac et al. [15] simulated the
clusters with NV < 27 using MC techniques. An extended table with N < 59 was given by Tsuruta
et al. [16]. The work of Hasse et al. [18] the number of charged particles was increased up to a few
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Figure 4. (Color online) Number of particles N on shell s vs. N. The 2"? shell is opened at
N =13, the 3" shell at N = 58 (and N = 61), the 4" shell at N = 155. Note the reoccurrence
of two shells at N = 60.

thousand. But they did not found the true ground state configurations for N = 28 — 31,44, 45
and for clusters with more than 63 particles, due to accuracy limited calculation. To find
the ground and metastable states, we used classical molecular dynamics (MD) together with
a suitable simulated annealing method [10]. Starting with a random initial configuration of N
particles, the system is cooled continuously until all momenta are zero and the particles settle in
the minima of the potential energy surface. Depending on the particle number, the cooling down
process was repeated up to several thousand times until every of the computed low energy states
was found more than a given number of times (typically 10...100) assuring a high probability
that also the ground state has been found. Crucial for a high search efficiency is the use of an
optimized MD time step (it has to be chosen not too small to avoid trapping in local potential
minima). The complete results for N = 2---160 are given in Table 1 in the Appendix.

3.3. Cluster characterization

At zero temperature (zero particle velocities 7;,) concentric shells are found with characteristic
closures as well as magic clusters. The stability of clusters is characterized by the binding
energy [16]:

Ay(N)=E(N+1)+ E(N —1) — 2E(N). (2)

The symmetry within the shells can be analyzed by performing a Voronoi analysis [10], i.e.
by constructing polygons around each particle formed by the lines equally bisecting nearest-
neighbor pairs on the shell. To quantify this topological criterion, we introduce the Voronoi
symmetry parameter defined as
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Figure 5. (Color online) Binding energy As (Eq. 2) and mean Voronoi symmetry parameter
MVSP (Eq. 4) of the two outermost shells vs. particle number N. Magic clusters are
N =4,6,10,12,19,32,38,56 [16] and N = 81,94,103,116 [10].

1 N]\/[ 1 M )
GM = N— M Z GZMejk . (3)
M55 k=1

Here Nj; denotes the number of particles on the shell, each of which is surrounded by a Voronoi
polygon of order M (M nearest neighbors), and 6, is the angle between the j-th particle and
its k-th nearest neighbor. A value G5 = 1 (Gg = 1) means that all pentagons (hexagons) are
perfect, the reduction of GGp; below 1 is a measure of their distortion. The Voronoi symmetry
parameter G gives a measure for the symmetry of the Voronoi polygons of order M. To
quantify the symmetry of the whole shell we introduce the mean Voronoi symmetry parameter
(MVSP). We define the mean Voronoi symmetry parameter (G®)) of the s-th shell of the cluster
as

1 s
(GW) = = > NuGy. (4)
S M

where Ny denotes the number of all particles on shell s. The MVSP allows to compare clusters
with the same shell configuration because this parameter is very sensitive to the position of the
particles within the cluster.
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Figure 6. (Color online) Number Nj; of Voronoi polygons with M edges in the two outermost
shells vs. total particle number N. The top figure shows the first (outermost) shell and the
bottom figure the second shell.

3.4. Analysis of 3D Coulomb Clusters
Figure 4 shows the number of particles on different shells of the Coulomb clusters as a function
of the total particle number. The figure is easy to understand. For N < 12 all particles occupy
one shell. With N = 12, the shell is filled completely (closed shell). The 13th particle opens a
new shell, i.e. one particle from the outer shell goes inside. Analogously, the 2nd shell is closed
when it contains 12 particles (for N = 57), and the 3rd shell is closed for N = 154, see table 1.
The existence of the shell structure is a marked peculiarity of mesoscopic Coulomb systems,
and is, of course, caused by the spherical confinement potential. With increasing N the structure
of a macroscopic system emerges gradually, see also Ref. [19]. The effect of the confinement is
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strongest at the cluster boundary, i.e. in the outer shell, whereas the inner shells are partially
shielded from the trap potential by the surrounding particle shells. Therefore, bulk properties
start to emerge in the center. This trend is, in fact, clearly seen already for N < 200 by
comparing the widths of the shells [10], see table 1.

For the clusters (N = 2...160) Fig. 5 shows the binding energy As (Eq. 2) of the clusters
and the MVSP (Eq. 4) of the two outermost shells vs. the particle number. With the help of
these two quantities one can identify the so-called magic clusters, which are particularly stable.
The combination of these quantities (a peak in Ag and a higher MVSP in the shells) allows us
to identify magic clusters: N = 4,6, 10, 12,19, 32,38,56 [16] and N = 81,94,103,116 [10].

Now we analyze the symmetry of the clusters in more detail. Figure 6 shows the number
of Voronoi polygons with M edges on the two outermost shells vs. total particle number. The
dashed line in the figures gives the number of particles on the shell. With increasing size the
particle number in the shell is increasing too. For smaller particle numbers in the shell we
observe polygons with M = 3,4. With increasing particle numbers one can see an increase of
the number of polygons with M = 6, the number of polygons with M = 5 grows up to 12 and

is then nearly constant. In each case Euler’s theorem > (6 — M)Ny; = 12 is fulfilled.
M(M>3)

3.5. Cluster Fine Structure

An interesting observation is that the simulations frequently yield for the same shell configuration
different values of the total energy, see e.g. [10]. The differences are much larger than the
simulation error, moreover, the energies are reproducible. Obviously the state of a cluster is
not completely determined by its shell configuration (contrary to the 2D case). There exist
further (excited) states, which have the same shell configuration as the ground state, but a
different particle arrangement and symmetry within one shell. This can be called fine structure.
To understand the differences in the structure of these states with same shell configuration we
analyze the intrashell symmetry by a Voronoi analysis, i.e. by constructing polygons around a
given particle formed by the planes equally bisecting nearest-neighbor pairs on the shell (cf. the
example of N = 17 shown in Fig. 7). Interestingly, both states do not differ with respect to the
number of polygons of each kind in the outer shell: there are N5 = 12 pentagons and Ng = 4
hexagons. Rather the arrangement of the polygons is different. In one case, the four hexagons
form a perfect tetrahedron ABCD and are separated from each other by pentagons, cf. Fig. 7
(left), in the other case two pairs of hexagons touch, see Fig. 7 (right) and the tetrahedron is
distorted (Fig. 8). Two edges remain practically constant (AB ~ CD ~ 1.63), but the edge
AB rotates with respect to the first case by an angle of 34 degrees resulting in a reduction of
edges BC and AD to about 1.24 while AC' and BD increase to 1.94. Comparing the energies
of the two configurations we conclude that the state with the more symmetric arrangement of
the Voronoi polygons, i.e. (Fig. 7, left), has the lower energy.

4. Summary and Outlook

In this contribution we have presented numerical simulation results for spherical Coulomb
clusters with NV < 160. The observed lowest energy states for N > 60 are, in most cases,
lower than those previously reported and should be reliable baring points for experiments with
classical Coulomb balls in dusty plasmas or ultracold ions. Moreover, the shell configurations
detected are expected to be important also for quantum Coulomb clusters (e.g. in quantum dots)
in the strong coupling limit, as for 2D systems it was found that in most cases they have the same
shell configuration as their classical counterpart [14,17]. In addition we performed an analysis
of the lowest excited states of small clusters. Besides metastable states with a shell structure
different from the ground state we identified fine structure states which are characterized by
different particle arrangement within the shells. These states have a lower symmetry which is
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Figure 7. (Color online) Voronoi construction for the cluster N = 17. The two energetically
lowest states with shell configuration N = {1,16} are shown. White (dark) areas are hexagons
(pentagons) — indicating the number of nearest neighbors of the corresponding particle. Left:
ground state, right: first excited (fine structure) state. Above the figures the energies, radius of
the shell 1 and the symmetry parameters are given.

Figure 8. (Color online) Arrangement of the four particles surrounded by hexagons — the two
states differ by rotation of the edge AB. Dark (bright) circles corresponds to the configuration
shown in Fig. 7, left (right).
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linked to higher values of the total energy. Despite the decreasing values of the excitation energy
with increasing N, knowledge of the lowest metastable states is important for understanding
the dynamic properties of mesoscopic clusters.

From the experemental point of view creation of spherical particle clouds consisting of a
relatively large number of charged particles (of order 100 and higher) is rather easily achieved.
Creation of small clusters with a predefined number of particles is still under implementation
in the experiment. On the other hand, computer simulations become very time consuming
for N > 200. First preliminary comparisons of experiments and theory show good qualitative
agreement of the shell structure of the cluster N = 190. The agreement is further improved
if a statically screened Coulomb potential (i.e. Yukawa potential) is used instead of the bare
Coulomb interaction [20]. However, extensive further comparisons for various N are necessary.
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Appendix

Table 1. Ground state shell configurations, energy per particle, mean shell radii r1 234 and
widths 01,2,3,4

N Config. E/N 1 79 o1 09
2 (2 0.5 0.500(0) ~0.000(0) -
3 (3)  1.310370(7) 0.660(9) - 0.000(0) ;
4 (4)  1.785826(2) 0.771(5) - 0.000(0) ;
5 () 2.245187(2)  0.865(1) - 0.010(0) ;
6  (6)  2.654039(0) 0.940(6) - 0.000(0) ;
7 (1) 3.064186(0) 1.010(6) - 0.013(5) ;
8  (8)  3.443409(4) 1.071(4) - 0.000(0) ;
9 (9)  3.809782(0) 1.126(9) - 0.006(3) ;
10 (10)  4.164990(0) 1.178(3) ; 0.005(5) ;
11 (11)  4.513275(4)  1.226(5) ; 0.010(1) ;
12 (12)  4.838966(4) 1.270(0) ; 0.000(0) ;
13 (12,1)  5.166798(3)  1.365(9) ; 0.000(0) ;
14 (13,1) 5.485915(4) 1.403(3) 0.007(1) 0.005(8) ;
15 (14,1)  5.792094(2) 1.438(3) 0.000(0) 0.005(6) ;
16 (15, 1)  6.093421(3) 1.471(9) 0.000(0) 0.005(2) ;
17 (16,1)  6.388609(9) 1.504(2) 0.000(0) 0.006(2) ;
18 (17,1)  6.678830(3) 1.535(3) 0.000(0) 0.000(6) :
19 (18,1)  6.964146(0) 1.565(4) 0.000(0) 0.004(0) ;
20 (19,1) 7.247181(0) 1.594(6) 0.000(2) 0.006(9) ;
21 (20,1) 7.522377(7) 1.622(6) 0.000(0) 0.003(4) ;
22 (21,1) 7.795468(9) 1.649(9) 0.000(7) 0.006(3) -
23 (21,2) 8.063575(4) 1.707(7) 0.530(2) 0.030(2) -
24 (22,2) 8.326802(8) 1.732(6) 0.526(0) 0.029(4) 0.009(2)
25 (23,2) 8.588360(7) 1.757(0) 0.526(2) 0.026(3) 0.000(0)
26 (24,2) 8.844236(2) 1.780(5) 0.524(1) 0.026(3) 0.000(8)
27 (24,3) 9.097334(6) 1.830(5) 0.689(8) 0.036(9) 0.009(6)
28 (25,3) 9.348367(8) 1.852(5) 0.688(9) 0.036(4) 0.001(6)
29 (25,4) 9.595435(1) 1.899(2) 0.798(7) 0.037(4) 0.011(9)
30 (26,4) 9.838964(7) 1.919(7) 0.796(1) 0.034(7) 0.018(0)
31 (27,4) 10.079511(0) 1.939(9) 0.792(6) 0.038(3) 0.007(1)
32 (28,4) 10.318678(8) 1.959(6) 0.793(5) 0.033(8) 0.000(0)
33 (29,4) 10.556587(1) 1.979(1) 0.791(4) 0.034(6) 0.010(7)
34 (30,4) 10.790841(9) 1.998(0) 0.790(1) 0.035(8) 0.000(0)
35 (30,5) 11.022731(0) 2.038(1) 0.885(9) 0.041(0) 0.038(0)
36 (30,6) 11.251022(6) 2.077(5) 0.958(2) 0.035(3) 0.000(0)
37 (31,6) 11.478747(2) 2.094(7) 0.958(5) 0.035(8) 0.017(8)
38 (32,6) 11.702051(6) 2.111(9) 0.954(9) 0.039(4) 0.000(0)
30 (33,6) 11.928322(8) 2.128(9) 0.954(9) 0.035(2) 0.012(0)
40 (34,6) 12.150162(9) 2.145(3) 0.954(7) 0.038(0) 0.011(8)
41 (35,6) 12.370791(5) 2.161(8) 0.953(8) 0.035(4) 0.006(4)
42 (35, 7) 12.589139(3) 2.196(1) 1.026(0) 0.040(6) 0.050(7)
43 (36,7) 12.805545(2) 2.211(9) 1.025(2) 0.037(4) 0.045(6)
44 (36,8) 13.020077(9) 2.245(4) 1.084(5) 0.038(0) 0.013(2)
45 (37,8) 13.232001(2) 2.260(3) 1.084(5) 0.038(0) 0.034(0)
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Continuation of Table 1

N Conﬁg. E/N T 9 r3 01 )] o3
46 (38,8)  13.444601(5) 2.275(1) 1.084(2) - 0.036(4) 0.037(3) -
47 (38,9)  13.654458(5) 2.306(6) 1.139(1) - 0.034(0)  0.048(8) -
48 (39,9)  13.862762(0) 2.321(0) 1.137(9) - 0.033(0)  0.036(2) -
49 (40,9)  14.069919(9) 2.335(1) 1.137(1) - 0.034(1) 0.035(4) -
50 (41,9)  14.275728(5) 2.349(0) 1.137(2) - 0.036(8)  0.026(7) -
51 (41, 10)  14.480101(0) 2.378(8) 1.187(7) - 0.035(2) 0.029(8) -
52 (42,10)  14.683192(6) 2.392(2) 1.187(5) - 0.034(0)  0.029(4) -
53 (43,10)  14.885283(9) 2.405(5) 1.187(2) - 0.037(5)  0.029(5) -
54 (44, 10)  15.085702(8) 2.418(6) 1.187(2) - 0.035(2) 0.024(5) -
55 (43, 12)  15.284702(6) 2.461(8) 1.277(3) - 0.031(8) 0.010(1) -
56 (44, 12)  15.482144(4) 2.474(3) 1.278(0) - 0.036(9) 0.010(1) -
57 (45,12)  15.679350(2) 2.486(9) 1.276(3) - 0.036(3) 0.007(2) -
58 (45,12,1) 15.875406(2) 2.512(6) 1.376(5) 0.005(2) 0.046(3) 0.004(3) -
59 (46,12,1) 16.070103(4) 2.524(7) 1.376(4) 0.000(0) 0.048(0) 0.000(0) -
60 (48,12)  16.263707(3) 2.523(6) 1.275(5) - 0.036(0)  0.003(6) -
61 (48,12,1) 16.455812(8) 2.548(8) 1.375(1) 0.004(2) 0.045(1) 0.002(4) -
62 (48,13,1) 16.647519(7) 2.573(8) 1.413(4) 0.016(3) 0.044(3) 0.023(5) -
63 (48, 14,1) 16.837694(0) 2.598(8) 1.447(3) 0.004(6) 0.039(3) 0.024(7) -
64 (49,14, 1) 17.027288(9) 2.610(1) 1.447(8) 0.001(9) 0.037(3) 0.023(7) -
65 (50,14, 1) 17.215360(8) 2.621(2) 1.447(7) 0.000(0) 0.049(5) 0.018(8) -
66 (50, 15,1) 17.402891(3) 2.645(3) 1.480(5) 0.005(9) 0.043(2) 0.026(6) -
67 (51,15,1) 17.589347(4) 2.656(3) 1.480(3) 0.004(6) 0.043(0) 0.024(3) -
68 (51, 16,1) 17.774874(4) 2.679(7) 1.512(3) 0.003(4) 0.034(5) 0.031(1) -
69 (52,16,1) 17.959432(2) 2.690(3) 1.512(6) 0.001(0) 0.039(3) 0.034(3) -
70 (53,16, 1) 18.143338(3) 2.701(0) 1.511(9) 0.002(3) 0.041(1) 0.031(7) -
71 (54,16, 1) 18.326281(9) 2.711(6) 1.511(8) 0.008(3) 0.041(2) 0.028(0) -
72 (54,17, 1) 18.508444(3) 2.734(2) 1.542(3) 0.005(9) 0.035(3) 0.020(1) -
73 (55,17, 1) 18.689729(4) 2.744(5) 1.542(2) 0.004(7) 0.037(5) 0.020(4) -
74 (56,17, 1) 18.870167(9) 2.754(6) 1.542(3) 0.008(8) 0.042(2) 0.017(8) -
75 (56,18, 1) 19.049742(1) 2.776(5) 1.571(7) 0.005(5) 0.037(2) 0.031(8) -
76 (57,18, 1) 19.228600(2) 2.786(5) 1.571(4) 0.000(0) 0.037(2) 0.025(3) -
77 (58,18, 1) 19.406816(5) 2.796(4) 1.571(4) 0.003(3) 0.038(5) 0.031(4) -
78 (59,18, 1) 19.584175(2) 2.806(3) 1.571(5) 0.004(6) 0.039(8) 0.027(1) -
79 (60,18, 1) 19.760799(9) 2.816(1) 1.570(9) 0.005(0) 0.040(2) 0.027(4) -
80 (60,19, 1) 19.936689(9) 2.837(0) 1.600(2) 0.003(0) 0.038(4) 0.038(4) -
81 (60,20,1) 20.111592(4) 2.857(7) 1.627(1) 0.006(4) 0.031(1) 0.040(6) -
82 (61,20,1) 20.286103(1) 2.867(1) 1.627(4) 0.005(0) 0.031(1) 0.040(6) -
83 (61, 20,2) 20.459834(2) 2.886(6) 1.688(6) 0.544(7) 0.039(0) 0.061(9) 0.044(5)
84 (61, 21,2) 20.632758(9) 2.906(4) 1.714(0) 0.542(6) 0.034(1) 0.069(2) 0.003(3)
85 (62, 21,2) 20.804907(5) 2.915(6) 1.713(5) 0.542(2) 0.038(6) 0.063(9) 0.021(7)
86 (63, 21,2) 20.976517(8) 2.924(7) 1.713(8) 0.540(3) 0.041(2) 0.061(4) 0.009(6)
88 (64, 22,2) 21.317682(0) 2.953(2) 1.737(8) 0.538(5) 0.033(9) 0.059(1) 0.005(7)
89 (65,22,2) 21.487369(1) 2.962(1) 1.737(8) 0.537(5) 0.034(4) 0.057(0) -
90 (66, 22,2) 21.656403(7) 2.970(9) 1.737(6) 0.535(9) 0.037(4) 0.057(5) -
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Continuation of Table 1

N Config. E/N

91 (66,22, 3) 21.824823(2)
92 (67,22,3) 21.992541(8)
93 (66,24, 3) 22.159480(7)
94 (67,24,3) 22.325841(4)
95  (67,24,4) 22.491878(2)
96 (68, 24,4) 22.657270(6)
97 (69, 24, 4) 22.822032(2)
98 (69, 25,4) 22.986199(1)
99 (70, 25,4) 23.149758(0)
100 (70, 26, 4) 23.312759(3)
101 (70,27, 4) 23.475164(4)
102 (72, 26,4) 23.637044(1)
103 (72,27, 4) 23.798274(3)
104 (72, 28,4) 23.959361(3)
105 (73,28, 4) 24.120222(9)
106 (74,28, 4) 24.280223(2)
107 (75,28, 4)  24.439665(7)
108 (76, 28, 4) 24.598713(7)
109 (77,28, 4) 24.757151(3)
110 (77, 28,5) 24.915153(9)
111 (77,29,5) 25.072584(2)
112 (76, 30, 6) 25.229492(1)
113 (77,30, 6) 25.385842(0)
114 (78, 30, 6) 25.541848(2)
115 (77, 32,6) 25.697308(2)
116 (78, 32,6) 25.852252(8)
117 (79, 32,6) 26.007089(4)
118 (80, 32, 6) 26.161426(8)
119 (81, 32,6) 26.315442(5)
120 (82, 32,6) 26.468996(0)
121 (83,32, 6) 26.622118(4)
122 (84, 32,6) 26.774879(2)
123 (83,34, 6) 26.927194(9)
124 (84,34, 6) 27.079019(5)
125 (84,34, 7) 27.230457(6)
126 (84,35, 7) 27.381438(1)
127 (85,35, 7) 27.532034(0)
128 (85,35, 8) 27.682123(2)
129 (85, 36, 8) 27.831888(6)
130 (86, 36, 8) 27.981234(3)
131 (87, 36,8) 28.130244(0)
132 (87,37,8) 28.278862(5)
133 (88, 37,8) 28.427061(5)
134 (88,37,9) 28.574953(4)
135 (88,38, 9) 28.722421(1)




Continuation of Table 1
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N Config E/N el 79 r3 o1 09 03
136 (89, 38,9) 28.869526(8) 3.505(4) 2.311(2) 1.144(0) 0.031(5) 0.078(7) 0.043(7)
137 (90, 38,9) 29.016328(0) 3.511(9) 2.311(0) 1.144(0) 0.033(4) 0.078(9) 0.040(2)
138 (90, 39,9) 29.162701(3) 3.525(4) 2.325(1) 1.143(3) 0.029(9) 0.080(5) 0.037(0)
139 (91, 39,9) 29.308773(6) 3.531(6) 2.325(1) 1.143(0) 0.034(2) 0.085(7) 0.034(9)
140 (91, 40,9) 29.454518(1) 3.544(9) 2.339(1) 1.142(9) 0.029(5) 0.084(2) 0.042(4)
141 (92, 40,9) 29.599899(6) 3.551(4) 2.338(7) 1.141(7) 0.033(5) 0.075(1) 0.038(4)
142 (92, 40, 10) 29.744962(8) 3.564(4) 2.368(9) 1.193(0) 0.034(1) 0.070(0) 0.045(4)
143 (93, 40, 10) 29.889733(5) 3.570(7) 2.368(9) 1.193(2) 0.031(4) 0.071(4) 0.032(2)
144 (94, 40, 10) 30.034090(4) 3.576(9) 2.368(8) 1.193(1) 0.033(1) 0.070(7) 0.055(2)
145 (94, 41, 10) 30.178106(2) 3.589(8) 2.382(5) 1.192(0) 0.035(8) 0.071(2) 0.034(8)
147 (95, 42, 10) 30.465219(1) 3.608(7) 2.395(7) 1.192(3) 0.029(9) 0.079(4) 0.039(4)
148 (96, 42, 10) 30.608238(9) 3.614(8) 2.395(5) 1.192(3) 0.030(6) 0.078(8) 0.036(7)
149 (96, 43, 10) 30.750998(2) 3.627(3) 2.409(0) 1.192(6) 0.032(3) 0.085(3) 0.037(6)
150 (96, 42, 12) 30.893383(1) 3.639(5) 2.454(1) 1.281(6) 0.034(8) 0.079(5) 0.010(3)
151 (96, 43, 12) 31.035390(0) 3.652(4) 2.465(9) 1.281(4) 0.027(1) 0.068(5) 0.014(6)
152 (96, 44, 12) 31.177075(2) 3.664(9) 2.478(3) 1.281(1) 0.031(1) 0.067(4) 0.016(5)
153 (97, 44, 12) 31.318527(6) 3.670(8) 2.478(1) 1.281(1) 0.028(2) 0.067(3) 0.012(9)
154 (98, 44, 12) 31.459632(1) 3.676(9) 2.477(7) 1.281(0) 0.026(3) 0.062(5) 0.014(4)
Continuation of Table 1

N Conﬁg. E/N 1 (] rs3 T4

155 (98, 44,12, 1) 31.600488(0) 3.688(7) 2.504(2) 1.384(6) 0.002(2)

156 (98, 45,12, 1)  31.741100(1) 3.700(6) 2.516(9) 1.383(8) 0.012(7)

157 (100, 44, 12, 1) 31.881320(7) 3.700(4) 2.503(8) 1.383(9) 0.004(3)

158 (100, 45, 12, 1) 32.021293(6) 3.712(2) 2.516(6) 1.383(4) 0.004(3)

159 (101, 45, 12, 1) 32.161014(1) 3.718(0) 2.516(4) 1.383(7) 0.005(3)

160 (102, 45, 12, 1) 32.300404(8) 3.723(8) 2.516(1) 1.383(3) 0.007(3)

N o1 09 03 o4

155 0.030(1) 0.079(9) 0.009(0) -

156 0.033(3) 0.087(1) 0.006(2) -

157 0.034(0) 0.076(2) 0.006(5) -

158 0.032(7) 0.085(2) 0.006(3) -

159 0.031(0) 0.083(1) 0.005(9) -

160 0.034(1) 0.082(2) 0.005(2) -
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3.3 Structural Properties of Screened Coulomb Balls

Small three-dimensional strongly coupled charged particles in a spherical confinement
potential arrange themselves in a nested shell structure. By means of experiments, com-
puter simulations, and theoretical analysis, the sensitivity of their structural properties
to the type of interparticle forces is explored. While the normalized shell radii are found
to be independent of shielding, the shell occupation numbers are sensitive to screening

and are quantitatively explained by an isotropic Yukawa model.

The results were published as refereed journal publication:

3.3.1 Structural Properties of Screened Coulomb Balls,
M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig,
A. Piel, and A. Filinov, Physical Review Letters 96, 075001 (2006)
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Small three-dimensional strongly coupled charged particles in a spherical confinement potential
arrange themselves in a nested shell structure. By means of experiments, computer simulations, and
theoretical analysis, the sensitivity of their structural properties to the type of interparticle forces is
explored. While the normalized shell radii are found to be independent of shielding, the shell occupation
numbers are sensitive to screening and are quantitatively explained by an isotropic Yukawa model.

DOI: 10.1103/PhysRevLett.96.075001

The recently discovered Coulomb balls [1] are an inter-
esting new object for studying strongly coupled systems.
Coulomb balls consist of hundreds of micrometer sized
plastic spheres embedded in a gas plasma. The plastic
spheres attain a high electric charge Q of the order of
several thousand elementary charges and arrange them-
selves into a highly ordered set of nested spherical shells
with hexagonal order inside the shells. Coulomb balls are a
special form of 3D-plasma crystals [2—4]. The formation
of ordered clusters with nested shells was also observed in
laser-cooled trapped ion systems, e.g., [5,6], and is ex-
pected to occur in expanding neutral plasmas [7,8].

The same kind of ordering was found in molecular
dynamics (MD) simulations, e.g., [9-11], and references
therein. In particular, the transition to the macroscopic
limit [12,13], the symmetry properties of the individual
shells including a Voronoi analysis [10] and metastable
intrashell configurations [11,14] have been analyzed. Very
large systems of trapped ions show a transition to the
crystal structure of bulk material, which was measured
by laser scattering [15].

Although the shell structure of ion crystals is quite well
understood in terms of simulation results, these systems do
not yet allow for systematic experimental studies of the
structure inside the shells and the detailed occupation
numbers of individual shells. The advantage of studying
Coulomb balls is the immediate access to the full three-
dimensional structure of the nested shell system by means
of video microscopy. The tracing of each individual parti-
cle is ensured by the high optical transparency of the
system, which results from particle diameters of typically
5 pm at interparticle spacings of 500 um. Compared to
atomic particles, the very high mass of the microparticles
used here slows down all dynamic phenomena to time
scales ranging from 10 ms to seconds. Therefore, studies
of Coulomb balls complement investigations of ion crys-
tals, where dynamical studies are difficult.

Coulomb balls are in a strongly coupled state, i.e., the
Coulomb coupling parameter, I' = Q?/akgT, where a is
the mean interparticle distance, attains large values (I" >

0031-9007/06/96(7)/075001(4)$23.00
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100). Contrary to ion crystals, where the particles interact
via the pure Coulomb force, the microparticles in a
Coulomb ball are expected to interact by a Yukawa type
pair potential, V,; = (Q%/r)e™"/*», which was verified
experimentally in complex plasmas [16]. Therefore,
Coulomb balls are characterized by two parameters, the
coupling parameter I and the Debye shielding length of the
plasma Ap. It is the intention of this paper to study the
influence of shielding on the structure of Coulomb balls, in
particular, to pin down the differences from systems with
pure Coulomb interaction. This will be done by comparing
computer simulations with experimental results. At the
same time, a study of spherical crystals with Yukawa
interaction opens up an interesting new field which in a
natural way bridges the gap between the above mentioned
theoretical investigations of finite size Coulomb systems
and the theory of macroscopic Yukawa plasmas, e.g.
[17,18].

Experiment.—The experiment is described in detail in
Refs. [1,14,19], so here we only summarize the main
results from a systematic investigation of 43 Coulomb balls
consisting of 100 to 500 monodisperse and hence uni-
formly charged particles. All Coulomb balls were trapped
under identical experimental conditions. All of them had a
spherical shape and their diameter was in the range of 4—
5 mm. A typical experimental result for a cluster and its
shell structure is shown in the left part of Fig. 1. In all
43 Coulomb balls a similar shell structure was observed
and the shell radii R, and the shell occupation numbers N,
were measured. Further, from the pair correlation function
the typical mean interparticle distance was derived, which
for all N was close to a = 0.6 mm. The mean intershell
distance d was found to be d = (0.86 = 0.06)a, which is in
good agreement with local icosahedral ordering [9]. An
important experimental result is that the intershell distance
is constant over the whole Coulomb ball and implies a
constant average density of particles and ions, which is
equivalent to a parabolic electric potential well used for the
simulations below. A more detailed experimental verifica-
tion of the parabolic confinement well is described else-

© 2006 The American Physical Society
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FIG. 1. Radial particle distribution for N = 190 given in cy-
lindrical coordinates. Left: experiment [1], right two figures:
MD-simulation results with Coulomb (k = 0), and Yukawa
(k = 1) potential. The shell occupation numbers are compiled
in Table L.

where [19]. A different case with ““self-confinement’ of a
dust cloud in a strongly anharmonic potential was recently
discussed in [20].

Simulations.—For a theoretical explanation of the ex-
perimental results we have performed molecular dynamics
and thermodynamic Monte Carlo (MC) simulations using
the Hamiltonian

N 2 1
H - ;{5—’;1 + Uc(ri)} + Ezvdd(ri — rj)_ (1)

i#j

We assume that the Coulomb balls consist of particles with
the same mass and charge and that a stationary state is
reached close to thermodynamic equilibrium. Furthermore,
the observed isotropic particle configuration suggests to
use an isotropic interaction potential. Screening effects are
included in static approximation using Debye(Yukawa)-
type pair potentials V,,; given above. In the simulations
we use dimensionless parameters, with lengths given in
units of the ground state distance of two particles, rg,.,
defined in Eq. (2), hence in this Letter k = ry./Ap. In
experimental papers, k = a/Ap is often used. In accor-
dance with the experiment on Coulomb balls [19] and
previous experiments and simulations on ion crystals
[17], we use a screening-independent confinement poten-
tial U.(r) = mw? - r*/2. As a result, in our model the
configuration of the Coulomb balls is determined by three
parameters: particle number N, screening parameter «, and
temperature 7. Since experimental plasma densities and
temperatures are not precisely known, we have performed
a series of calculations for different values of « and T.
Furthermore, a wide range of particle numbers, up to N =
503, has been analyzed.

Results.—Consider first the theoretical ground state con-
figurations (7 = 0) in the case of Coulomb interaction,
x = 0, which were obtained by classical MD simulations
using an optimized simulated annealing technique [11].

Using about 1000 independent runs for each value of N
ensured that the ground state is reached. In addition, we
have performed MC simulations in the canonic ensemble
with a standard Metropolis algorithm, which allows for a
rigorous account of finite temperature effects. Both simu-
lations yield identical configurations at low temperature.
Figure 1 shows a comparison of MD simulation and ex-
periment for the case of N = 190 particles. In both cases
four concentric spherical shells are observed, which are the
result of a balance between confinement potential U, and
interparticle repulsion V.

For a more detailed quantitative comparison between
experiment and simulation we analyze the dependence of
the shell radii R; on the cluster size N (Fig. 2). The
interparticle distance a serves as a common length scale
as it is accessible in experiment and simulation. There is an
overall increase & N'/3 of the experimental R, for all shells
and all 43 analyzed clusters. Exceptions occur around
values of N where new shells emerge. The same behavior
is obtained from the MD simulations. Without any free
parameter a very good agreement of experimental radii and
Coulomb MD results (full lines) is observed, in particular,
concerning the absolute values, the slope and the equi-
distance of the shells. Further, these results hold also in
case of a Yukawa potential if « is small (dashed lines in
Fig. 2). Interestingly, the general scaling of the shell radii
in units of the interparticle distance a of weakly shielded
Coulomb balls « N'/3 is the same as for pure Coulomb
systems, such as ion crystals.

However, a marked difference between experiment and
simulations of pure Coulomb systems is observed for the
shell population numbers N ... N,. Table I shows the shell
population numbers for various screening parameter « of a
Coulomb ball with N = 190 as obtained from MD simu-
lations and experiment. Clearly, for k = 0 the MD results
yield systematically more particles in the outer part of the
cluster than observed in experiment. Further, Table I shows
that, with increasing «, particles move from the outer shell

4

FIG. 2. Experimental (symbols) and MD-simulation (lines)
results for the shell radii of three-dimensional Coulomb balls
in units of the mean interparticle distance.
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TABLE I. Experimental (last column) and theoretical shell
configuration of the Coulomb ball N = 190. N, ... N, denote
the particle numbers on the ith shell beginning in the center.

k— 0 02 03 04 05 06 1.0 Experiment

Ny 1 1 2 2 2 2 4 2
N, 18 18 20 20 21 21 24 21
N3 56 57 57 58 58 60 60 60
N, 115 114 111 110 109 107 102 107

inward. Interestingly, for k = 0.58...0.63, the simulations
yield exactly the same shell configuration as the experi-
ment. Therefore, the different population numbers may be
attributed to the influence of screening and hence weaken-
ing of the interaction potential.

To investigate this in more detail, the comparison was
extended to all 43 Coulomb balls. Because of their differ-
ent size and even different number of shells the systematic
differences in shell population of Coulomb and Yukawa
systems can be studied comparing the experimental results
and MD simulations. The result is shown in Fig. 3.
Coulomb and Yukawa simulations as well as the experi-
ment reveal an almost linear behavior of the shell popula-
tion of all shells as a function of N?/3. However, the
experimentally obtained population of the outermost shell
N, is significantly smaller than the one of a Coulomb
system (solid line), whereas the inner shells show a sys-
tematically higher population. Interestingly, the Yukawa
MD simulations (dashed lines) show the same systematic
deviation from the Coulomb case. It is clearly found that
with increasing « particles move to inner shells. Hence, the
finding discussed for the Coulomb balls with N = 190 in
Table I holds generally. This tendency reflects the fact that,
from an energetic point of view, the higher population of
the inner shells becomes less costly, due to the shielding

ARAA

160

—o00
Sonwo

120

FIG. 3. Experimental (symbols) and simulation (lines) results
for the shell population of three-dimensional Coulomb clusters
at different values of « (see inset).

than the occupation of the outermost shell, where the
confinement by the trap dominates the potential energy.

In more detail, we find that the outermost shell exhibits
the largest absolute change with « and it is, therefore, best
suited for a detailed comparison with the experimental
data, see Fig. 3. From a best fit to the experimental data,
we find a screening parameter x"XP = 0.62 + 0.23. An
independent analysis for the other shells confirms this
result, e.g., the third shell, yields «FXP = 0.58 + 0.43.
Determining the mean interparticle distance a from the
first peak of the pair distribution function «EX¥ translates
into an average Debye length Ap/a = 1.54 = 0.7.
Furthermore, as one can see in the right hand part of
Fig. 1, an increase of « leads to compression of the entire
cluster, which is due to the reduction of the potential V ;.
The fact that more and more particles move from the outer
shells inward has the consequence that closed shell con-
figurations are already reached at a smaller number N* of
total particles compared to N in the Coulomb case. While
for k = 0, the first closed shell is found at N = 12 parti-
cles, for k = 4.7 the ground state of a cluster with 12 (and
11 as well) particles contains one particle in the center and
N7 = 10. For « = 0.6 closure of the 2nd to 4th shell is
observed for N; = 54, N5 = 135, N; = 271, whereas in
the Coulomb case N;, = 57,60 [10], N5, = 154 [14] and
Nj. = 310 cf. also Fig. 2.

After analyzing the shell populations we now consider
the shell width. The larger roughness of the shells in the
experiments cf. Fig. 1, is attributed to small anisotropies of
the experimental confinement and finite depth resolution of
the imaging equipment as well as temperature effects.
While the measurements are at room temperature, the
MD simulations refer to T = 0. Therefore, we have ana-
lyzed the influence of temperature on the shell radii and
populations with the help of MC simulations. From the
results we conclude that the effect of temperature on the
shell configurations N, is negligible for k = 0.6. At con-
stant finite 7 we find that an increase of « leads to a
reduction of shell roughness. Contrary to that, a tempera-
ture increase at elsewhere fixed parameters in fact leads to
a roughening of the shells proportional to /T for the outer
shell and an even stronger effect for the inner shells. This
tendency will become evident from the analytical results
below.

Analytical results.—The main influence of screening on
Coulomb balls is readily understood with the help of
analytical results, which can be found for N = 2. First,
the ground state distance rq(x) follows from minimizing
the potential energy U in Eq. (1):

eKro r% _ Q2 _ r3 ‘ (2)
1+ «kry m20> %

Equation (2) yields the two-particle distance, rg,., in an
unscreened system as a function of rq and is easily inverted
numerically [21]. The ratio ry/r. is always smaller than
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unity and monotonically decreasing with «, thereby con-
firming the above observation of screening-induced com-
pression of the Coulomb balls. Second, we analyze the
cluster stability by expanding the potential U in terms of
small fluctuations, y = r — r(, around the ground state, up
to second order: U(r) — U(rg) = 3U"(ry)y* = 207y
This defines an effective local trap frequency )

1 «k*rd 6 02
31+ Kr()) falr0

02(k) = 3w2<1 + 5
m ry
fa(k) = e *0(1 + kry + K2r%/3),

3)

which allows us to estimate the width of the Coulomb ball
shells. Third, we compute the variance of the particle
distance fluctuations, o,, for particles in a parabolic po-
tential with frequency () at temperature T and obtain o2 =
2kgT/(mQ?) which is in agreement with our MC simula-
tions. This allows for two interesting conclusions: At con-
stant screening, the shell width grows with temperature as
VT while screening reduces the shell width. One might be
tempted to conclude that increased screening makes parti-
cle transitions between neighboring shells less likely and
thus stabilizes the cluster against melting. However, the
opposite is true, because screening also reduces the dis-
tance between shells which is of the order of ry. The
relative importance of both tendencies can be discussed
in terms of the relative distance fluctuations, a critical
value of which determines the onset of radial melting
(Lindemann criterion).

2
, oy 11
ur:———

T =Tyhk). 4
23Ty 2 2f2(K) “4)

u, is related to an effective coupling parameter, I; which
depends on the interaction strength of two trapped parti-
cles—via the Coulomb-type coupling parameter, I', =
Q?/(kgTry), and on the screening strength—via the func-
tion f,(k). f, monotonically decreases with « (u, in-
creases), thus screening destabilizes the Coulomb balls.
Finally, these analytical results are closely related to
those for macroscopic homogeneous Yukawa systems,
e.g. [17,18]. This limit is recovered by replacing, in (3),
ro by the mean interparticle distance a at a given density #,
a = (3/4mn)'/3. Then the local trap frequency becomes
O — w?,f(x), showing that, in a Coulomb system, ()
approaches the dust plasma frequency w,; whereas, in the

case of screening, the result is modified by a factor /()
[22]. Also, the effective coupling parameter I7; is in full
analogy to the macroscopic result [18].

In summary, we have presented a combined experimen-
tal, numerical, and theoretical analysis of small spherical
charged particle clusters. The excellent experimental ac-
cessibility of these systems has been demonstrated. The
structure of these clusters deviates from models with pure
Coulomb interaction and requires the inclusion of static
screening. For the particle number range N = 100...500,

comparison with the MD and MC simulations has allowed
us to determine the screening parameter averaged over the
clusters as Ap/a = 1.5. These Coulomb balls are repre-
sentative for finite Yukawa systems, combining shell prop-
erties observed in spherical Coulomb clusters with
screening effects found in Yukawa plasmas. Since the shell
occupation numbers have now been critically analyzed, our
results confirm earlier conclusions about the shell structure
of ion clusters, where such an analysis was not accessible
yet. The results are relevant for other strongly correlated
charged particle systems, such as crystal formation of
droplets in expanding laser produced plasmas, where
shielding becomes important.

This work is supported by the Deutsche Forschungs-
gemeinschaft via SFB-TR 24 Grants A3, A5, and A7
and, in part, by DLR under Contract No. 50WMO0039.
We acknowledge discussions with W.D. Kraeft and M.
Kroll’s assistance in conducting the experiments.
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4 Statistical Properties of Confined
Systems

In this chapter we consider two questions which are of direct importance for the under-
standing of structure formation in both confined classical complex plasmas (chapter 3)
as well as electron-hole quantum plasmas (chapter 5). The first question, considered in
section 4.2, is related to the radial density distribution of screened Coulomb plasmas in
traps and its dependence on the Debye screening length. The findings pertaining to this
question have also implications for the qualitative clarification of configurational tran-
sitions in dipolar bilayer systems (see section 5.4). The second question (section 4.3)
concerns the reliable identification of order-disorder phase transitions in few-particle
systems, which is of fundamental interest for the exploration of finite-size effects and
collective behaviour in both classical and quantum systems. A frequently used and well-
established melting criterion (often referred to as “Lindemann criterion”) was found to
yield divergent and ambiguous results for the critical temperatures and densities. We
present a very simple quantity which overcomes these problems and allows for a sys-
tematic and consistent analysis of crystal phase boundaries in small-scale (classical and

quantum) systems.

4.1 Introduction and Overview

Density Profile of Confined Systems with Statically-Screened Coulomb
Interaction

It is textbook wisdom that in the case of a harmonically confined unscreened Coulomb
system, the (average) radial density profile is constant. However, in chapter 3 we have
shown that the experimentally observed shell structure of spherical 3D dust crystals [15]

can be successfully explained by a model of statically-screened Coulomb interaction.
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4 Statistical Properties of Confined Systems

Furthermore, we found a high sensitivity of the shell occupation numbers of the Yukawa
balls in dependence on the range of the interaction potential. This raises the question
concerning the ground state particle distribution of a confined Yukawa plasma in the
limit of large particle numbers within the discrete particle model as well as within a

statistical description based upon a continuous approach.

Our investigations show that screening has a dramatic effect on the radial charge distri-
bution, see figure 4.1. In the case of a screened Coulomb interaction, i.e. for a screening
parameter x > 0, the density profile becomes strongly inhomogeneous with a strictly
monotonic increase towards the trap center. The combination of MD simulations and
the analytical theory for the confined Yukawa plasmas reveals that the configurational
rearrangement of Yukawa balls in comparison to unscreened Coulomb balls (see chap-
ter 3) can be explained by the (strong) inhomogeneous radial density profile, which is
established when the electrostatic dust-dust interaction becomes screened by the am-
bient plasma and the Debye screening length becomes finite. This essential effect has

been disregarded in previous investigations of trapped Yukawa systems [114].

The results for the radial shell-averaged density of finite systems in the discrete model
consisting of N = 1000...10000 particles' (which exhibit a distinct shell structure) and
the analytical model which applies to macroscopic systems (where no shell structure
exists) are in very good agreement; this accordance was not expected and is not obvious
at all. The mean-field (MF) results (see section 4.2.1) are found to give agreement
for weak screening, whereas the local density approximation (LDA) with correlations

included (see section 4.2.2), yields the proper description in the regime of large screening.

It should be explicitly stated that the formation of distinct shells is a finite-size effect
(particle-number dependent), which reflects the geometric constraints due to the spher-
ical confinement potential. Approaching large cluster sizes, the shells break up and
regular volume order prevails. Bulk order with bcc structure is found for large clusters
with typically 10° — 10° particles, such as large ion crystals in Paul or Penning traps
[7, 115]. These experimental findings are in essential agreement with molecular dynam-
ics simulations, which show that finite-size effects vanish for particle numbers N > 1000
in 2D systems and N > 10*...10% in 3D systems [33, 104, 116].

As a side result of the mean field model for the harmonically confined (continuous)

Yukawa system (section 4.2.1) a fit function can be obtained, which allows to approxi-

Tt should be noted here, that the simulations were performed without simplification with regard to
N(N — 1)/2 pairwise interaction terms.
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Figure 4.1: Ground state radial density profiles n(r) of a parabolically confined one-component
Yukawa plasma in mean-field (dashed lines) and local density approzimation (LDA, solid lines)
for different screening parameters. The symbols mark the mean shell densities obtained by MD
simulations of N = 1000 point charges. The density of the unscreened Coulomb system is
constant, whereas shielding introduces a radial density gradient to establish force equilibrium
(see section 4.2).

mate the cluster radius
R(N, k) = exp(—0.278 + 0.308n — 0.00439772 — 0.000154173 + 0.0000106174)/11 , (4.1)

in units of ro within 1% of relative accuracy in the range € [0.001, 6.58 x 105], where np =
log(k®N). This result is very helpful to estimate the cluster size as function of particle
number N and screening parameter x, which is necessary, e.g., to set the random initial
particle positions in the MD simulations. A good estimator reduces the initial potential
energy of the N-particle system and can thus drastically reduce the computational effort

for the simulated annealing process (see section 3.1 for details).

It is also interesting to note that related structural effects are recovered in electron-hole
bilayer systems, where a transition from a long-range Coulomb to a short-range dipole

interaction is initiated by decreasing layer separation d (see section 5.4 for details).
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Fluctuation Based Melting Criterion for Classical and Quantum
Few-Particle Systems

Solid and liquid behaviour are collective properties of macroscopic systems and thermo-
dynamics gives clear guidance to identify phase transitions in the limit of very large par-
ticle numbers. Nevertheless, qualitatively different collective behaviour already emerges
in small-scale systems and is captured by the naming “liquid-like” and “solid-like” phase.
While in macroscopic large systems several equivalent definitions for phase transitions
exist, the identification of phase behaviour of few-particle (quantum) systems has been
a problematic issue, which is due to the lack of an universal parameter to quantify the
onset of melting and freezing transitions [117]. To overcome this problem empirical rules
are frequently used [118]-[121].

The criterion of choice for studying phase changes in finite disordered systems [19] is the

so-called “Lindemann criterion”?

, which is based on an abrupt change of the relative
interparticle distance fluctuations (IDF) in the order-disorder transition region. The
immediate practical importance of this criterion in many fields of (in particular compu-
tational) science becomes evident by the more than 14000 publications®, which utilize
this criterion. However, this estimator is found to be dominated by a few (exponentially)

rare large fluctuation events.

The averaged fluctuations of all relative interparticle distances (IDF) within a given

few-particle system are quantified by

(Jr; — rj| )
Uypel = — 1 Z Z ’rz — r] >2 -1, (42)

=1 j=i+1

where (...) denotes the statistical averaging. The quantity wu,. captures two scales
of the distance fluctuations: (1) particle vibrations in local minima of the potential
energy landscape which are naturally associated with solid-like behaviour as well as (2)
particle jumps between different local minima. A jump occurs whenever two particles
exchange their local minima positions, which is associated with traversal of a local
maximum or saddle point. Above a critical temperature, when particle jumps become

probable within the simulation, u,. starts to deviate strongly from the linear low-

%It should be noted that even though the famous paper [118] to date has been cited more than 1100
times most authors are not aware that it does neither contain a universal ratio uz nor the concept
of the mean square displacement. The latter key idea is due to Gilvarry [119]. Lindemann instead
used the concept that melting occurs when two atoms come in contact.

3Google Scholar, June 2008.
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temperature dependence and exceeds a critical value of typically uq ~ 0.10...0.15,

which is commonly used as a criterion for the “melting temperature”.

Surprisingly, our Monte Carlos simulations (see chapter 5) revealed a fundamental prob-
lem of this extensively used melting criterion: The quantity u,.; depends on the way it
is computed. If the simulation is sufficiently long, even rare jumps will be eventually
captured at any finite temperature and u,¢ will converge towards the value which is
associated with liquid behaviour. The finding that longer simulation runs lead to lower
values for the critical temperature and densities was already remarked by references
[20, 88] but often ignored. To make use of u,¢ as a melting parameter and to control its
convergence problems, it is useful to subdivide the simulation into fixed “time” intervals
(in MC simulations given as block size M), which allows for a statistical evaluation of
rare fluctuation events (section 5.3). Further investigations suggest the introduction
of the variance of the block averaged relative interparticle distance fluctuations (VIDF)
defined as

K
1 _
O"Umel = E Z uzel(s) - ugel 9 (43)
s=1

where K denotes the number of blocks of equal length M =~ 1000 (classical or path
integral) Monte Carlo steps and u,..; = K1 Zﬁ(zl urel(s) the mean of the block averaged
IDF. The information about the “phase” of the system is given by the probability of
jumps, which grows with temperature. While in the solid phase jumps are rare events, in
the liquid state pair exchanges occur frequently and particles are practically delocalized.
The melting is located inbetween these two limits where a maximum of o, _, (connected
to strong fluctuations of the block averaged IDF w,..;(s)) allows one to reliably detect

the melting point (see figure 4.2).

The main advantages of the VIDF as a fluctuation based quantity that constitutes a

melting criterion, can be summarized by the following points:

Universality: A variety of possible quantities were investigated which are sensitive to
the onset of melting, e.g., specific heat, the total energy autocorrelation function,
the pair distribution or bond angular symmetry parameters, etc., but only the

VIDF was found to be rigorously applicable for quantum systems as well.

Mechanism: The computation (or measurement) is straightforward and transparent as
the VIDF is directly related to the physical process, i.e., fluctuations and jumps

near the phase transition.
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Figure 4.2: Above: The IDF u,¢;, commonly called “Lindemann-parameter”, is frequently used
to identify order-disorder transitions in small systems. Shown is the mean value Uy of the
block averaged IDF (M = 1000) for a classical 3D Coulomb system (left, MC results) and a
2D quantum system (right, PIMC results). The IDF shows a gradual increase in the transition
region. Below: The VIDF which is a much more sensitive quantity. The VIDF clearly detects
the melting transitions upon temperature increase (left) as well as quantum melting upon density
increase (decrease of the Coulomb coupling parameter X). The dashed lines locate the critical
values of T (or \) and ucTi. (See section 4.3 for details.)

rel

Sensitivity: The VIDF does not gradually increase over the transition range, but is

rather unambiguously peaked in the center of the finite melting interval.

Locality: As a local quantity, the VIDF can be analyzed locally for a system part
only, e.g., in the case of strongly inhomogeneous systems. Such spatially resolved
melting analysis is impossible with any thermodynamic quantity or the energy

autocorrelation function.

Experimental importance: The individual particle trajectories and the interparticle
fluctuations are directly accessable, e.g., in dusty plasma experiments, which al-
lows for a direct comparison with computer simulations and the detection of melt-

ing phase transitions (see e.g. [15]).

Generality: The VIDF is a dimensionless (and thus “scale-free”) quantity, which makes

it easy to compare physical systems on different length scales.

Computational aspects: The VIDF converges fast, it is less time-consuming to com-

pute, robust, and convenient to evaluate.

Continued investigations show that the VIDF can also be used for time-dependent sim-

ulations, such as molecular dynamics [122].
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4.2 Density Profile of a Confined Yukawa Plasma

4.2 Density Profile of a Confined Yukawa Plasma in the
Discrete and Continuum Model

The ground state density profile of an externally confined one-component Yukawa
plasma is derived in mean-field approximation (MF') as well as in local density approx-
imation (LDA). By comparison with first-principles simulations for three-dimensional
spherical Yukawa crystals, we demonstrate that the two approximations complement
each other. While the MF results are more accurate for weak screening, the LDA with
correlations included yields the proper description for large screening. Together the
analytical results accurately describe the density profile in the full range of screening

parameters and agree very well with the shell-averaged density in the discrete model.

The results were published as refereed journal publications:

4.2.1 Ground State of a Confined Yukawa Plasma,
C. Henning, H. Baumgartner, A. Piel, P. Ludwig, V. Golubnychiy, M. Bonitz,
and D. Block, Physical Review E 74, 056403 (2006)

4.2.2 Ground State of a Confined Yukawa Plasma Including Correlation
Effects, C. Henning, P. Ludwig, A. Filinov, A. Piel, and M. Bonitz,
Physical Review E 76, 036404 (2007)
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Ground state of a confined Yukawa plasma

C. Henning,1 H. Baumgartner,1 A. Piel,3 P. Ludwig,l’2 V. Golubnichiy,1 M. Bonitz,1’>‘< and D. Block®
Unstitut fiir Theoretische Physik und Astrophysik, Christian-Albrechts-Universitit zu Kiel, D-24098 Kiel, Germany
*Institut fiir Physik, Universitit Rostock, Universitdtsplatz 3 D-18051 Rostock, Germany
3 Institut fiir Experimentelle und Angewandte Physik, Christian-Albrechts-Universitdit zu Kiel, D-24098 Kiel, Germany
(Received 24 July 2006; published 17 November 2006)

The ground state of an externally confined one-component Yukawa plasma is derived analytically. In par-
ticular, the radial density profile is computed. The results agree very well with computer simulations of
three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density
distribution for a confinement potential of arbitrary geometry.

DOI: 10.1103/PhysRevE.74.056403

I. INTRODUCTION

Plasmas in external trapping potentials have been attract-
ing increasing interest over the last few years in many fields,
including trapped ions (e.g., [1,2]), dusty plasmas (e.g.,
[3-5]), and electrons and positrons in Penning traps (see,
e.g., [6] for an overview). Among the main reasons is that, in
these systems, it is relatively easy to realize strong correla-
tion effects in charged particle systems. Probably the most
spectacular manifestation of these effects is Coulomb liquid
behavior and crystal formation which have been found in
various geometries. In particular, the ion crystals and the
recently observed spherical dust crystals or “Coulomb balls”
[7] have triggered intensive new experimental and theoretical
work (e.g., [8-10]). The shell structure of these crystals, in-
cluding details of the shell radii and the particle distribution
over the shells, has been very well explained theoretically by
a simple model involving an isotropic Yukawa-type pair re-
pulsion and an harmonic external confinement potential [10].

Still, it remains an open question as to what the average
particle distribution inside the trap looks like, if it is the same
as in the case of Coulomb interaction. It is well known that
in a parabolic potential, particles interacting via the Coulomb
potential establish a radially constant-density profile. Here,
we extend this analysis to a plasma with Yukawa interaction
by solving a variational problem for the ground-state density
(Sec. II). Then, in Sec. Il we demonstrate that screening has
a dramatic effect on the density profile giving rise to a para-
bolic decrease away from the trap center. There we demon-
strate that the result for the density profile can be directly
generalized to any anisotropic confinement potential. While
our analysis is based on a continuous plasma model on the
mean-field level, we find (Sec. IV), by comparison with mo-
lecular dynamics simulations, that the results apply also to
spherical crystals with a shell structure.

II. GROUND STATE OF A CONFINED PLASMA

We consider a finite one-component plasma (OCP) con-
taining N identical particles with mass m and charge Q in an
external potential ® with pair interaction potential V de-
scribed by the Hamiltonian

*Electronic address: bonitz@physik.uni-kiel.de
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The classical ground-state energy follows from Eq. (1) for
vanishing momenta and can be written as [6,11]

E[n]= f Lru(r), (2)

with the potential energy density

Nl fd3r2n(r2)V(|r—r2|)}, (3)

u(r) = n(r){CI)(r) +

being a functional of the density profile n(r), and we ne-
glected correlation contributions. The ground state corre-
sponds to the minimum of the energy (2) with respect to the
density profile with the restrictions that the density be non-
negative everywhere and reproduce the total particle
number—i.e.,

fd3rn(r) =N. (4)
This gives rise to the variational problem [12]
' 5E[n, u]
=, S)
on(r)
where
Eln,u]=E[n]+ M{N— J d3rn(r)} (6)

and we introduced a Lagrange multiplier u (the chemical
potential) to fulfill condition (4). The variation leads to

N-1

D(r) - pu+ fd3r’n(r’)V(|r—r’|):O, (7)
which holds at any point where the density is nonzero. Also,
Eq. (7) is equivalent to vanishing of the total force on the
particles separately at any space point r (cf. Sec. III B).
Equation (7) is completely general, applying to any pair
interaction V and confinement potentials of arbitrary form
and symmetry (see Sec. III C). Of particular interest is the
case of an isotropic confinement ®(r)=®(r), which leads to

©2006 The American Physical Society
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an isotropic density distribution n(r)=n(r)=n(r)@(R-r), the
outer radius R of which is being fixed by the normalization
condition (4) which now becomes [ gdrrzﬁ(r)=N /4.

II1. DENSITY PROFILE OF A YUKAWA OCP

We now consider the case of an isotropic Yukawa pair
2
potential V(r)=‘07e"‘r, which trivially includes the Coulomb
case in the limit k— 0. Carrying out the angle integration in
the interaction energy in Eq. (7) we obtain [14]
0? , ,
O(r)—pu= 27T__J dr'r'ii(r")[e <+ ) _ gmHdrr |].
N «rJ
(®)

This equation is the desired connection between the ground-
state density 72(r) of the Yukawa plasma and the external
confinement ®(r). This integral equation can be solved for
the density by differentiating 2 times with respect to r [15]
with the result (details are given in the Appendix)

-1 20’
e r(r)

+®"(r) - K*P + Pu.  (9)

The yet unknown Lagrange multiplier can be obtained by
inserting this explicit solution into Eq. (8), which is then
treated as an equation for u, with the result

R®'(R)

/L=(I)(R)+m. (10)

A. Parabolic confinement potential

For the frequently encountered case of a parabolic exter-
nal potential ®(r)= r we obtain, for the density from Eq.

),
N 22
nO):——Jl——j(c—fl;%XR—ﬂ, (11)
47(N-1)Q 2
where the constant ¢ is given by
R*k*3 + kR
c=3+—— (12)
2 1+«R

Finally, the outer radius R limiting the density profile is cal-
culated from the normalization (4) with the result

Q2 0
(N— 1)- 15—K(N— DR+ 15R> + 15kR* + 6K’R°

+ kRO =0. (13)

This equation has four complex and two real solutions, only
one of which is non-negative, and thus constitutes the unique
proper result entering Eq. (12). In the Coulomb limit, Eq.
(11) reduces to the familiar result of a step profile,

n(r) = v_10®e=1), (14)

QZN

where the outer radius is given by
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FIG. 1. Plasma cloud radius R [positive real solution of Eq.
(13)] for a parabolic confinement potential @(r):-r and Yukawa
interaction with screening parameter .
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which is fixed by the number of particles and the constant
density, the latter being controlled by the curvature « of the
potential. In the right part of Eq. (15) we introduced the
length scale ry=320>/a, which is the stable distance of two
charged particles in the absence of screening [10] and which
will be used below as the proper unit for lengths, screening
parameter, and density. Note that Eq. (15) holds also for a
weakly screened Yukawa plasma with kR<<1.

In the other limiting case kR> 1, the radius has the as-
ymptotics KR%[lz—S(Kro)3(N—1)]l/5—l. In general Eq. (13)
cannot be solved for R explicitly. However, a general
analytical result can be found by noting that all parameters
entering Eq. (13) combine into only two parameters
x=(krg)*(N-1) and y=«R. Introducing these paramters into
Eq. (13), an explicit solution is found for the inverse function
x(y), which can be written as

y? + 6y? +15y+15
15 y+1

x(y) = (16)

Figure 1 shows the result for the dimensionless radius
kR=y of the plasma cloud—i.e., the solution of Eq. (13),
which for all values of « and N is given by a single curve.

With the result for R the constant ¢, which is proportional
to central density, can be computed from Eq. (12) and the
complete density profile, Eq. (11), is found. The results are
shown in Fig. 2 for four particle numbers between N=100
and N=2000. One clearly recognizes the inverted parabola
which terminates in a finite-density value—i.e., in a
discontinuity—at r=R. With increasing N, the density in-
creases continuously at every space point and, at the same
time, extends to higher values R. Thereby the density profile
retains its shape.

On the other hand, when the plasma screening is in-
creased, at constant N, the density profile changes dramati-
cally (compare the two curves for N=2000). Increase of «
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FIG. 2. (Color online) Radial density profile for a parabolic
confinement potential ®(r)=ar?/2 and a constant screening param-
eter kro=1 and four different particle numbers N shown in the
figure. For comparison, also the result for xry=0.3 and N=2000 is
shown by the dashed line.

leads to compression of the plasma: the radius R decreases,
and the absolute value of the density increases, most signifi-
cantly in the center. This compressional behavior is shown in
Fig. 3 (cf. the solid green line showing the ratio of the inner
to outer densities of the plasma).

The dependence on « is analyzed more in detail in Fig. 4
below for a fixed particle number N=2000. In the case of a
Coulomb interaction k=0, we recover the constant density
profile (14). On the other hand, in the case of a screened
potential, the density decays parabolically with increasing
distance from the trap center [cf. Eq. (11)]. Also, the density
discontinuity at r=R is softened compared to the Coulomb
case and the step height increases.

B. Force equilibrium

Besides minimizing the total energy [cf. Eq. (7)], the
ground-state density profile can be obtained from the condi-
tion of a local equilibrium of the total force (internal plus

n(0), n(R), n(0)/n(R)

| | I | | I
0 200 400 600 800 1000

(xro)>(N —1)

FIG. 3. (Color online) Dependence of the central density 7(0)
(red dotted line), density at the boundary, n(R) (blue dashed line),
and compression n(0)/n(R) of the plasma (green solid line) as a
function of particle number and screening parameter.
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FIG. 4. (Color) Radial density profile, solutions of Eq. (11), of a
three-dimensional plasma of N=2000 for four values of the screen-
ing parameter (lines), from bottom to top: k=0 (red), xry=0.3 (yel-
low), kro=1 (green), and kry=3 (blue). Symbols the denote mo-
lecular dynamics results of a plasma crystal for the same parameters
where the average density at the positions of the shells is shown (for
details see discussion in Sec. IV B).

external ones) at each point where the density is nonzero. On
the other hand, the shape of the radial density profile and its
change with variation of « is directly related to a change of
the force equilibrium. Here, we demonstrate this for the spe-
cial case of a spherically symmetric confinement potential
®(r). The forces can be directly derived from Eq. (8) by
taking the gradient in radial direction,

&' (r)=F(r) + F=(r), (17)

which means that, for any spherical layer at a distance r from
the center, the external force Fg(r)=—®’(r) which acts to-
wards the center is balanced by the internal force due to the
Yukawa repulsion between the particles. The internal force
contains two parts where F_ arises from the action of all
particles inside the given layer, r'<r, and acts outward,
whereas F- results from the action of all particles located
outside r' =r, and acts inward,

N_ 1 —Kr 1 r
F_(r)=4mx Qze (1 + —)J dr'r'n(r")sinh(kr'),
N r kr/ Jy
(18a)
N-1 1
F.(r)=4m Q2—<—Cosh(/<r)
N r
inh R )
+ M)f dr'r'a(r)e " (18b)
Kr .

This force balance can be used to obtain the ground-state
density profile. Alternatively, we can use the computed pro-
file to analyze the two internal force contributions and their
dependence on k.
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Consider first the limit of weak screening, kR<<1. Then
the forces approach the Coulomb case and, in the case of a
constant density profile (14),

N-10Q?
Fe(r)= 7N< =ar,
FC,>(r) = 07

with N_=n4mr/3 being the particle number in the inner
region. This means that the force is repulsive and increases
linearly with r and exactly compensates the linear external
force Fg(r)=—ar for all values r<R.

In the general case of finite screening the outer force
F-(r) does not vanish [cf. Eq. (18b)]. Since its direction is
always towards the center, the force F_(r) has to increase
simultaneously in order to compensate the combined effect
of Fg(r) and F~(r). This effect increases continuously with
increasing « which is directly verified by evaluating the ex-
pressions in Eq. (18a).

C. Generalization to arbitrary confinement geometry

The result for the density profile in an isotropic confine-
ment, Eq. (9), can be easily extended to arbitrary geometry.
For this purpose we use the textbook result that the
charge density corresponding to the Yukawa potential is
08(r)-Q«k* ™ [r. This allows us to rewrite the Poisson
equation as

—Kr

e

(A-K?) =—4m8(r), (19)

;
showing that the Yukawa potential is the Green’s function of
the Helmholtz equation. For the case of a confinement po-
tential ®@ of arbitrary geometry this fact can be used by ap-
plying the operator (A-«?) to Eq. (7):

—k|r-1’'|

N-1

e

Q2Jd3r’n(r’)(Ar—K2)

+(A - K)[D(r) - u]=0. (20)

Using Eq. (19) the integral can be computed with help of the
6 function with the explicit result for the density profile

r—r’|

— 1Q2n(r) =AD(r) - 2D(r) + u.  (21)

IV. DENSITY PROFILE OF CONFINED COULOMB
AND YUKAWA CRYSTALS

So far we have considered the model of a continuous
density distribution n(r). On the other hand, the ground state
of a confined spherically symmetric system of discrete point-
like charged particles is known to have a shell structure as
was demonstrated for dusty plasmas in Ref. [7]. It is, there-
fore, of interest to verify if such a shell structure can be
derived from our starting equation (2) for the total energy
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and to compare our results to the radial density distribution
in such Coulomb or Yukawa balls.

A. Derivation of a shell model for a trapped
finite Yukawa plasma

The concentric shells observed in spherical trapped Cou-
lomb crystals have led to the proposal of simple analytical
models (cf., e.g., [16,17,21,22]). Such a model for a trapped
one-component plasma is trivially derived from the total en-
ergy expression (2) by inserting for the density the ansatz

-R,), (22)

14

which describes L concentric shells of zero thickness with N,
particles on shell v with radius R, and 3%_|N,+{=N, where
{ denotes the number of partlcles in the trap center (0 or 1)
[17,22]. As a result, we obtain, for the total ground-state
energy of a Yukawa plasma in an isotropic general confine-
ment potential @,

L

~<Ry [ sinh(kR,) N, — 1
ES(N;K)=ENV{<I>(RV>+Q26R (Sm UR,) N,
r=1 v

KR 2
h( R,)
i Esm K M)}

p<v KRy

14

This is essentially the Yukawa shell model of Totsuji et al.
[21] where, however, the finite-size correction factor
(N,—1)/N, in the intrashell contribution and the term  are

missing. In the Coulomb limit k— 0, the result simplifies
with eRv 1 and ek *— 1, and we immediately recover

the Coulomb shell model of Hasse and Avilov [16] (plus the
additional correction factor).

A further improvement is possible by including intrashell
correlations [17]. The simplest model is obtained by replac-
ing N,—1—N,— €(N)\N,, where € is a fit parameter close to
1 which allows one to achieve excellent agreement with the
exact ground state [22]. An alternative way to include corre-
lations was proposed by Ref. [21].

B. Comparison with simulation results
for finite Yukawa crystals

In order to compare the density profile n(r) of our con-
tinuous model with the density of discrete spherical Yukawa
crystals, we performed molecular dynamics simulations of
the ground state of a large number of Coulomb balls (for
details, see Refs. [9,10]). As an example, the numerical re-
sults for a Coulomb ball with N=2000 which is large enough
to exhibit macroscopic behavior [18,19] are included in Fig.
4. The symbols denote the average particle density around
each of the shells. The averaging was accomplished by sub-
stituting each particle by a small but finite sphere, so that a
smooth radial density profile was obtained.

With increasing « the crosses move towards the center,
confirming the compression of the Coulomb balls observed
before [10]. Obviously, the simulation results are very well
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reproduced by the analytical density profile (11) of a continu-
ous plasma. But there are also small discrepancies in the
central part which grow continuously with k. These are due
to the neglect of the correlation contributions in the energy
functional (2), which become important with increasing den-
sity.

V. SUMMARY AND DISCUSSION

In summary, we have presented a theoretical analysis of
the ground-state density profile of spatially confined one-
component plasmas in dependence on the form of the pair
interaction. An explicit result for the density profile for an
arbitrary confinement potential has been derived. In particu-
lar, for an isotropic confinement, we have found that screen-
ing of the Coulomb interaction substantially modifies the ra-
dial density distribution. In contrast to a bare Coulomb
interaction for which the density inside a parabolic external
potential is constant, for a screened interaction, a quadratic
decay away form the center is found.

Interestingly, while our results were derived for a continu-
ous density distribution (a macroscopic system) and with ne-
glect of binary correlations, our analytical results agree very
well also with first-principles simulation results for strongly
correlated Coulomb and Yukawa clusters containing several
thousands of particles for screening paramters kry=< 1. For
larger values of the screening parameter correlation contribu-
tions are significant [20]. The modification of the density
profile by these correlation contributions and by finite-
temperature effects, which are of importance, e.g., for dusty
plasmas [23], deserve further analysis and will be the subject
of forthcoming work.
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APPENDIX: DERIVATION OF THE DENSITY
PROFILE, Egq. (9)

The explicit expression for the density, Eq. (9), can be
derived from the integral equation (8) by first splitting up the

PHYSICAL REVIEW E 74, 056403 (2006)

integral in the latter equation in two parts. One part contains
the integration from O to r, the other part the integration from
r to R:

N=1 e ("
O(r)—pu=—4mw Qzl ¢ f dr'r'n(r")sinh(kr’)
kr Jo

N
sinh R ,
+ ﬂj dr' v ii(r)e } . (A1)
wkrJ,

Thereby the modulus in the second exponent in Eq. (8) is
removed and this expression can directly be differentiated
with respect to r. The first and second derivatives are given
by

@' (r) = 47TN_ lel e""<K+ l)f dr'r'a(r")sinh(kr")
N r

Kr 0

h . h R ,
+ (— cosh(kr) + 22 (;r))f dr'r'a(r')e ™" }

r Kr

(A2)

_ —Kr 2
<1)”(r)=471'NNlQ2 _< |:<K+l> +12}

Kr

XJ dr'r'n(r")sinh(kr’)
0

( k sinh(kr) 2 cosh(kr) 2sinh(/<r)>
+| - + -

r r Kr

R
X J dr'r'ii(r')e ™" + ii(r) (A3)
The explicit expression for the density profile, Eq. (9), can

then be obtained by considering the combination
20/ (r)

- +@"(r)— k2 [®(r)— u]. After some algebra and cancel-
lations one directly obtains 477NT_1Q2ﬁ(r); i.e., we recover the
final result, Eq. (9). We mention that this result follows also

as a special case of Eq. (21). In fact, in the case of an iso-
2
tropic potential A — #+gi and Eq. (21) reduces to Eq. (9).
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The ground state of an externally confined one-component Yukawa plasma is derived analytically using the
local density approximation (LDA). In particular, the radial density profile is computed. The results are
compared with the recently obtained mean-field (MF) density profile [Henning et al., Phys. Rev. E 74, 056403
(2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields
the proper description for large screening. By comparison with first-principles simulations for three-
dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other.
Together they accurately describe the density profile in the full range of screening parameters.

DOI: 10.1103/PhysRevE.76.036404

I. INTRODUCTION

Interacting particles in confinement potentials are omni-
present in nature and laboratory systems such as trapped
ions, e.g., [1,2], dusty plasmas, e.g., [3-5], or ultracold Bose
and Fermi gases [6,7] and quantum confined semiconductor
structures [8]. An interesting aspect of particle traps is that it
is easy to realize situations of strong correlations. The ob-
served particle arrangements extend from gaslike and liquid-
like to solid behavior where the symmetry is influenced by
the trap geometry. Of particular recent interest have been
spherical traps, in which plasma crystals consisting of spheri-
cal shells (Yukawa balls) are formed, e.g., [9-11]. The par-
ticle distribution among the shells is by now well understood
[11-13].

In a recent study [14], we also analyzed the average par-
ticle density in the trap and found that it is very sensitive to
the binary interaction: it changes from a flat profile in the
case of long-range Coulomb interaction to a profile rapidly
decaying away from the trap center in the case of a screened
Yukawa potential. Using a nonlocal mean-field (MF) ap-
proximation the density profile could be computed analyti-
cally and was found to agree very well with first-principles
computer simulations for Yukawa crystals. However, when
the screening is increased, deviations in the trap center kept
growing, which was attributed to correlation effects missing
in the mean-field model.

The goal of this paper is to remove these discrepancies.
For this we extend the analysis of Ref. [14] by including
correlation effects following an idea of Totsuji er al. [15]
applied to two-dimensional systems. We apply the local
density approximation (LDA) using known results [16] for
the correlation energy of a homogeneous one-component
Yukawa plasma. The results clearly confirm that correlation
effects are responsible for the strong density increase in the
trap center. We find that the LDA with correlations included
agrees very well with simulations of Yukawa crystals in
the limit of strong screening. On the other hand, for weak

*bonitz@physik.uni-kiel.de

1539-3755/2007/76(3)/036404(7)
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screening, the previous MF result turns out to be more accu-
rate. Interestingly, for intermediate values of the screening
parameter both methods are accurate, so a combination of
both allows one to quantitatively describe the density profile
in the whole range of screening parameters.

This paper is organized as follows. In Sec. II we introduce
the LDA and use it first to compute the density profile in a
mean-field approximation, which, of course, gives worse re-
sults than a MF calculation, but helps to understand the
LDA. Then in Sec. III we improve the LDA model by in-
cluding correlation effects. In Sec. IV the results for the den-
sity profile are compared to molecular dynamics simulations.
A discussion is given in Sec. V.

II. GROUND STATE OF A CONFINED PLASMA
WITHIN THE LDA

We consider N identical particles with mass m and charge
Q confined by an external potential ® and interacting
with the isotropic Yukawa-type pair potential V(r)=(Q?*/r)
Xexp(—«r). To derive the properties of interest we start with
the expression of the ground-state energy, which is given by

E[n]:faﬁr u(r), (1)

with the energy density wu(r)=u"(r)+uM(r)+u(r),
where the energy densities from confinement and from the
mean-field interaction are

u™(r) = n(r)d(r), (2a)

MF/ .\ _ N-1
" (r) =n(r) N

J d’ryn(ry) V(e = ry). (2b)

The correlation contribution u®" will be discussed below
(Sec. IIT) by means of the local density approximation. First,
we introduce this approximation and obtain first the LDA
results in the mean-field approximation (LDA-MF). These
results will not be as accurate as the MF results, due to the
applied approximation, but the LDA-MF helps in familiar-
ization with the LDA and its characteristics.

©2007 The American Physical Society
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The local density approximation is based upon the idea of
replacing the nonlocal terms within the energy density at
point r by local expressions using the known energy density
of the homogeneous system with its density n, equal to the
local density n(r) of the true inhomogeneous system in ques-
tion. Therefore, to derive the LDA-MF we need to substitute
for the nonlocal term (2b), i.e., for the density of interaction
energy, the corresponding expression of the infinite homoge-
neous system, which is given by (details are given in the
Appendix)

2,12277'
0
K>’

3)

and, as a second step, replace the homogeneous density n, by
the local density n(r). Thus we obtain the LDA-MF ground-
state energy

—K‘l‘—l‘z‘ N _ 1
uo(K) = ngy |r =

N—lefd2 e
S
N M TN

Eypaln]= f dr u(r) )
with the energy density
-1 2
u(r) =n(r)(<b<r> $ an(r)7>. (s)

The variation of the energy

EYpaln, wl= EYpAln] + M(N— f &r n<r>) (6)

with respect to the density n(r) (for details see Ref. [14])
yields an explicit expression for the density profile in an
arbitrary confinement potential,

2

= m[ﬂ-‘b(r)], (7)

Nk

n(r)

which holds at any point where the density is positive. Due
to (6) this density is normalized by

Jd3rn(r)=N. (8)

The case of isotropic confinement ®(r)=®(r), which is of
particular interest, leads to an isotropic density distribution
n(r)=n(r)=n(r)®(R-r), the outer radius R of which is fixed
by the normalization condition (8), which now becomes
[&dr P?ii(r)=N/4m. In this isotropic case the yet unknown
Lagrange multiplier x can be obtained by taking the varia-
tion also with respect to R [15], which yields

n=>(R). )
Compared to the MF result, which was given in [14],

nMi(r) = FTAD(r) + 1M~ D (r)],

4m(N-1)Q
(10)
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FIG. 1. Radial density profile for a parabolic confinement po-
tential d(r)=(a/2)r?, a constant screening parameter xd,.=1, and
three different particle numbers N=100, 700, 2000. The result for
kd,=0.4, N=2000 is also shown by the dashed line. For compari-
son, the nonlocal MF results for kd.=0.4,1.0, N=2000 are given by
the dotted lines.

RMF(I) ’ ( RMF)

MF MF
=d(R +
K R+ R

; (11

the LDA-MF density (7) shows important differences. On
the one hand, the Laplacian of the potential A®(r) is missing
and, on the other hand, the expression for the chemical po-
tential w is simpler than g™, That is based upon the fact that
the missing terms contain derivatives and thus information
about contiguous values of the potential, which is suppressed
within the LDA-MF and generally within the LDA. Conse-
quently, the finite density jump at r=R, which is familiar
from electrostatics of charged bodies and appears in the MF
approximation, Fig. 1, is not reproduced by the LDA-MF.

A. Parabolic confinement potential

For the case of a parabolic external potential P(r)
=(a/2)r? the density following from Eqs. (7) and (9) is

n(r)

aN ( K’R? Pt
2 2

=477(N—1)Q2 ——)@(R—r). (12)

The dimensionless combination xR, which contains the lim-
iting outer radius, can be obtained from the normalization (8)
and is given by

5 2.3 5
R = \/Mz \/g(xdf(N— . (13)

a

Here, we introduced the length scale d,=(2Q%/ a)'3, which
is the stable distance between two charged particles in the
absence of screening [11] and which will be used below as
the proper unit for lengths and screening parameters. As the
unit for densities we use the average density of a large Cou-
lomb system, which is given by n.=(3a)/(47Q?).

The results of (12) are shown in Fig. 1 for three particle
numbers from N=100 to 2000. One clearly sees the para-
bolic decrease of the density away from the trap center until
it terminates in zero. The curvature of the density does not
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FIG. 2. (Color online) Radial MF density profile (solid lines)
compared to the LDA-MF (dashed lines) for three different density
parameters x=(xd,.)>(N—1). The abscissa is normalized with the
MF radius RMF, while the ordinate is normalized with the corre-
sponding MF density nMF(0) at the trap center.

change on increasing the particle number—just the density
increases continuously at every space point and, at the same
time, extends to higher values of the limiting radius R. How-
ever, the curvature of the density profile changes dramati-
cally when the plasma screening is increased at constant N.

Thus, in the case of an isotropic parabolic potential, the
LDA density profile bears a qualitative resemblance to the
density profile in the nonlocal mean-field approximation, al-
though in the case of other confinement potentials the devia-
tions of the LDA-MF from the MF approximation are stron-
ger [cf. Egs. (7) and (10)]. However, quantitatively at two
points the MF result differs from the LDA-MF for parabolic
confinement as well, as can also be seen in Fig. 1.

First, the density in this local density approximation does
not show a discontinuity at r=R, in contrast to the MF result,
Egs. (10) and (11). This is due to the neglect of edge effects
in this derivation of the LDA result. Second, the LDA-MF
yields too small values of the density. This error is reduced
(see Fig. 2) with increasing values of the density parameter
x=(kd.)>(N-1) (cf. Ref. [14]), which, regardless of the fac-
tor N/(N—-1), solely determines the density profile. The rea-
son for this improved behavior with increasing x is that an
increase of « contracts the effective area of integration
within (2b) as well as within (3). The contraction finally is in
favor of the accuracy of the LDA-MF, because the decreased
integration volume contains a more homogeneous density.
Also, an increase of the particle number N, which flattens the
density profile, will similarly improve the LDA-MF.

Because the validity of the mean-field model depends on
the value of the screening parameter «d,, there are the fol-
lowing two cases. In the first case, for small values of the
screening parameter, the MF approximation provides a good
description of the density profile, but the LDA-MF under-
rates this profile and so does not give a good description on
its own. (That applies also if finite-size effects are included,;
see Fig. 3.) In the second case, for large values of the screen-
ing parameter, the LDA-MF approaches the MF approxima-
tion; however, there, the latter does not describe the density
profile correctly due to the neglect of the now relevant cor-
relation contributions [15]. Thus, the local density approxi-
mation of the mean-field energy alone does not give a good
description of the density profile.
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FIG. 3. Radial density profiles of a spherical plasma of N
=1000 and «d,.=0.3 calculated by the LDA-MF with (fs corrected)
and without finite-size effects included. For comparison, the exact
MF result is also given (solid line). The difference between the
finite-size correction and the partial finite-size correction is de-
scribed in the text.

However, it gives a straightforward way to include the
missing correlation contributions in the energy density by
usage of the result for the homogeneous system; see Sec. III.

B. Improvement of the LDA by inclusion of finite-size
effects

As can be seen from Fig. 2 and from Eq. (7) the density
profile obtained by the LDA-MF breaks down in the Cou-
lomb case—the density can no longer be normalized, which
is the same as in the two-dimensional case [15]. But the
application of a local density approximation cannot be the
reason for this, because the method of the LDA is based
upon the usage of results from the homogeneous system, and
the Coulomb system is homogeneous with ny=[N/(N
-1)]n..

In fact, the cause of the breakdown is the use of results
from the infinite homogeneous system, neglecting finite-size
effects. This failure can be avoided by replacing (3) by the
corresponding expression for the finite homogeneous system.
In the Appendix such an expression is derived for isotropic
confinement. As a result, the finite-size effects lead to a cor-
rected density profile

N u—®(r)
") N =0 1= e (1 + wR)sinh(kr) ()
XOR-7), (14

instead of Eq. (7), which indeed yields the constant MF so-
lution in Coulomb case also for the LDA-MF. As another
example, in Fig. 3 the density profiles with [LDA-MF (fs
corrected)] and without these finite-size contributions are
shown for N=1000, «d.=0.3. One clearly sees that in the
case of finite-size correction the density profile shows a dis-
continuity at the boundary and, due to that, it yields in-
creased values of the density. However, the density profile
including edge effects is not monotonically decreasing away
from the trap center but has a density-increasing part in the
outer range, which is not correct. This is due to the space
dependence of the denominator of Eq. (14).
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By contrast a more accurate monotonically decreasing
density profile can also be obtained by taking the finite-size
effects only partly into account [LDA-MF (partly fs cor-
rected)], as derived in the Appendix. The final result is
given by

N&? u—D(r)
47(N=1)0*1 - e R(1 + kR)

n(r) = OR-r), (15)
which now misses the » dependence in the denominator. The
corresponding result is also given in Fig. 3.

Consequently, for Yukawa systems like those analyzed
here, an improvement of LDA is possible by including edge
effects. However, for small values of the screening parameter
even the improved local density approximation does not ap-
proach the degree of accuracy obtained by the nonlocal
mean-field model MF (cf. Fig. 3). On the other hand, for
increased screening the finite-size effects do not alter the
density profile significantly.

Therefore, below we continue to use Eq. (3) from the
infinite homogeneous system.

III. INCLUSION OF CORRELATION CONTRIBUTIONS

The energy expression Ejp, (4), (5) contains only the
energy density of the confinement and of the mean-field in-
teraction. To include the contribution of the particle correla-
tions, we can make use of the result for the density of the
correlation energy of the homogeneous system which is
given by Eq. (3) of Ref. [16]:

U (ng, k) = — 1.4440%n3exp[- 0.375kny'"
+7.4 X 107 (kng'?)*], (16)

where ny is the corresponding density of the homogeneous
system. By replacing this density with the local density n(r)
of the inhomogeneous system, one obtains the correlation
contribution of the energy density within the LDA. Thus we
derive the complete ground-state energy in the local density
approximation,

ELDA[”]=jd37 u(r), (17)

with energy density
N-1
N
Xexp{—0.375kn(r)""% + 7.4 X 107 kn(r)~"*]*}.
(18)

u(r) = n(r)®(r) + an(r)zi—lT - 1.4440%n(r)*3

As before, variation of the energy (17) at constant particle
number [cf. Eq. (6)] yields the ground-state density profile,
but now with correlation effects included. In this case the
strong nonlinear character of the energy density does not
allow for an explicit solution. Just an implicit solution is
possible and is given by the following equation for z3(r)
=«"3n(r), which can be regarded as the local plasma param-
eter of the system:
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FIG. 4. Radial density profile of a confined spherical plasma of
N=2000 particles calculated with the LDA including correlation
contributions (solid lines) compared to the LDA-MF (dashed lines)
for three different screening parameters.

N-1 d(r)—u _
0= N 2(r) + 47TQ2K —[c1z(r) + ¢ = c32(r) 3]
Xexp[—0.375z(r)™" + 7.4 X 1072z(r)™]. (19)
The constants c; are given by
¢;=0.153, (202)
¢, =0.0144, (20b)
c3=1.134 X 107, (20¢)

The solution of Eq. (19) can be obtained numerically. For
the case of a parabolic external potential ®(r)=(a/2)r* re-
sults are given in Fig. 4. There, the density profile of a
plasma of N=2000 particles within LDA is shown for three
different screening parameters: «d.=0.5, 2.0, and 3.0. For
comparison the LDA-MF density profile is shown, too.

It can be seen that for a small screening parameter (see
the line «d.=0.5) both density profiles are nearly identical.
But with increasing screening, i.e., for smaller values of the
local plasma parameter z°, the correlation contributions
within the LDA alter the curvature of the profile, which rises
more steeply toward the center. So the particle correlations
tend to increase the central density of the plasma, which can
also be seen in Fig. 6 in comparison with the mean-field
approximation.

IV. COMPARISON WITH SIMULATION RESULTS
FOR FINITE YUKAWA CRYSTALS

We performed molecular dynamics simulations of the
ground state of a large number of Coulomb balls for the
purpose of comparison of their average density with the ana-
lytical results of the present model (for simulation details,
see Refs. [10,11]). In order to obtain a smooth average radial
density profile, the averaging process was accomplished by
substituting for each particle a small but finite sphere. In Fig.
5 these smoothed density profiles are shown for different
sphere radii of the particles: 0.3d,., 0.4d., and 0.5d,.. Also the
average particle densities in the vicinity of the corresponding
shells are shown (crosses). Note that there is only a small
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FIG. 5. (Color online) Smoothed density of a simulated spheri-
cal Yukawa crystal with N=1000 and xd.=1 with application of
different sphere sizes for substitution of the particles: 0.3d. (top
curve), 0.4d, and 0.5d,. The symbols show the averaged densities
of the shells placed on the centers of mass of the shells.

range of reasonable sphere radii: for values smaller than
0.3d. the shells break up into subshells, whereas for values
larger than 0.5d.. the amplitude of the oscillations decreases
further without effect on the average density. Only the outer
shell density is somewhat sensitive to the sphere radius due
to the increase of the size of this shell with increasing sphere
radius. Therefore, for the comparisons below, we use the
sphere radius corresponding to the average of the possible
density values which, in the figure, is close to the value for
0.44..

Numerical results of the comparison with a Coulomb ball
of N=1000 particles are included in Fig. 6 for four different
screening parameters. The symbols denote the average shell
density, while the lines represent the MF (solid) and the LDA
density (dashed). For small values of the screening parameter
kd.<2 the simulation results are very well reproduced by
the analytical density profile of the nonlocal mean-field
model (MF), whereas the local density approximation under-
rates the results [lower lines in Fig. 6(a)]. On the other hand,
for larger values of the screening parameter xd.>2 the
simulation results are reproduced by the LDA, whereas MF
underestimates these results in the center. This underestima-
tion is accompanied by a wrong prediction of the profile
curvature [Fig. 6(b)]. For intermediate values of the screen-
ing parameter xd.=~2, both methods are very close to the
averaged simulation results [upper lines in Fig. 6(a)]. We
have verified this behavior also for other Coulomb balls. An-
other representative example is shown in Fig. 7 for a Cou-
lomb ball with N=10 000. There, the same behavior as in
Fig. 6 is seen.

V. SUMMARY AND DISCUSSION

A theoretical analysis of the ground-state density profile
of a spatially confined one-component plasma within the lo-
cal density approximation was presented. We derived a
closed equation, Eq. (19), for the density profile, including
correlation effects for arbitrary confinement potentials with
any symmetry. In contrast to the result without particle cor-
relations, the density profile shows an increased central den-
sity with increasing screening parameter. The validity of the
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FIG. 6. Radial density profiles of a three-dimensional plasma of
N=1000 particles calculated with the exact mean-field model (solid
lines) and with the LDA including correlation contributions (dashed
lines) for four different screening parameters: xd,=1, 2, 3, and 5.
Averaged shell densities of molecular dynamics results of a plasma
crystal for the same parameters are shown by the symbols. For
details, see the discussion in Sec. IV.

LDA is, however, limited to not too small values of the
screening parameter, xd.=2.

Comparisons with first-principles simulation results of
strongly correlated Coulomb clusters with varying screening
parameter showed that the LDA allows one to remove the
problem of the MF approximation observed in Ref. [14]
which arises with increasing screening parameter. Therefore,

60 AXQK‘ T I T
50 —

—MF
- —LDA

= o MD (kd, = 1.0
. 40 | e = 3.0 « MD Eml(.::mi -
E . |
— 30 =
= N =10000 A

FIG. 7. Radial density profiles of a three-dimensional plasma
with N=10000 and two different screening parameters (kd.=1,
kd.=3). The solid (dashed) lines show MF (LDA) calculation re-
sults. Symbols denote molecular dynamics results of a plasma crys-
tal for the same parameters where the average density at the posi-
tions of the shells is shown.
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the mean-field model together with the presented local den-
sity approximation complement one another in the descrip-
tion of strongly correlated spatially confined one-component
plasmas.
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APPENDIX: LOCAL DENSITY APPROXIMATION USING
A FINITE REFERENCE SYSTEM

The investigation of an inhomogeneous system within the
LDA uses known results from the corresponding homoge-
neous system. There, the infinite homogeneous system is of-
ten used as a reference system, which entails the neglect of
finite-size effects. To take these into account, the finite ho-
mogeneous system has to be used as reference. In the present
derivation such a modification is made for an isotropic con-
finement and leads to a change of the expression for the
density of interaction energy, Eq. (3),

_ g,
(1) == 0’ f d3rznom
—12

ZPJ__ 1 —Kr2
= no
2N
N-1 )2
=y O

szdrz 477r§e

L)

(A1)

This formula has no spatial dependence due to the infinite
integration volume and it diverges in the limit of Coulomb
interaction (k—0), leading to a breakdown of the approxi-
mation.

By contrast, the density of interaction energy of the cor-
responding finite homogeneous system (a sphere with center
r,=0 and radius R) is given by

P
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(A2)

including a finite-size contribution, which prevents the prob-
lem of divergence at k— 0. As already mentioned in Sec.

PHYSICAL REVIEW E 76, 036404 (2007)

KK
3
2
3

%
K8

XK
95908

0%6%%%
S
19690%%%

FIG. 8. Comparison of the MF method and the different LDA
methods for calculating the energy density of interaction #MF(r) in
the case of finite screening: (a) MF, (b) LDA (infinite reference
system), (c) LDA (fs corrected), and (d) LDA (partly fs corrected).
Within the graphics the system is represented by the dashed line.
The hatched region shows the integration area used within the
method, whereas the solid gray region shows the effective integra-
tion area due to finite screening. The color gradient within (a) rep-
resents the nonconstant density of the system, which is taken into
account within the MF method in contrast to the LDA methods,
which take the density at point r for the whole integration area.

II B the resulting density profiles show the incorrect behavior
of a nonmonotonic density profile (cf. Fig. 3).

An improved correction, which partly takes edge effects
of the system into account too, can be obtained by using the
finite homogeneous sphere centered not at r,=0 but at r,
=r, i.e., on the point where we are calculating the density of
interaction energy,

N-T Lo
0 f d’ryng
2N S(r,R) |r - 1’2|

N-1 K
=n% N 0 27TJ dryre™ 2
0

ug(k,r) = ng

N-1 2
2.2 -KkR
= 1- 1+ «R)].
N Q"oKz[ e kR)]

(A3)

This expression also has no divergent limit for k— 0, and, at
the same time, yields monotonically decreasing density pro-
files as can also be seen in Fig. 3.

All these methods described above are compared, together
with the MF approximation, in Fig. 8 showing the (effective)
integration area of the methods. First consider the Coulomb
case, i.e., that where the solid regions fill out the hatched
ones and where the density is constant within the MF method
too. There, the integration in Fig. 8(a) is equal to that in Fig.
8(c); thus the density obtained by the LDA (fs corrected) is
equal to that of the MF method. In contrast to that, the ef-
fective integration area within Fig. 8(b) is infinite, leading to
the breakdown mentioned above. In the case of finite screen-
ing, where effectively the integration area is reduced, Figs.
8(a) and 8(c) still have the same region of integration. But
the constant approximation within Fig. 8(c), in contrast to
Fig. 8(a), leads to an underestimation of the energy density in
the outer region of the system—the high values of density
toward the center will be ignored. Eventually this leads to the
nonmonotonic density profile of the LDA (fs corrected). By
contrast, Fig. 8(d) features an additional effective integration
region, which partly prevents the underestimation, leading to
the more accurate density profile of the LDA (partly fs cor-
rected).
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4.3 Melting of Trapped Few-Particle Systems

4.3 Melting of Trapped Few-Particle Systems

In small confined systems predictions for the melting point strongly depend on the
choice of quantity and on the way it is computed, even yielding divergent and ambiguous
results. We present a very simple quantity that allows us to control these problems —
the variance of the block averaged interparticle distance fluctuations (VIDF). Further,
it is shown how many particles are required to reliably detect liquid or solid behaviour

and the melting point in a few-particle system.

The results were published as refereed journal publication:

4.3.1 Melting of Trapped Few-Particle Systems,
J. Boning, A. Filinov, P. Ludwig, H. Baumgartner, M. Bonitz, and Yu.E. Lozovik,
Physical Review Letters 100, 113401 (2008)
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In small confined systems predictions for the melting point strongly depend on the choice of quantity
and on the way it is computed, even yielding divergent and ambiguous results. We present a very simple
quantity that allows us to control these problems—the variance of the block averaged interparticle

distance fluctuations.
DOI: 10.1103/PhysRevLett.100.113401

Crystallization and melting and, more generally, phase
transitions are well known to pertain to very large systems
only. At the same time, solidlike or liquidlike behavior has
been observed in finite systems containing only 100 or
even 10 particles and is becoming of increasing interest
in many fields of physics, chemistry, and beyond. Current
examples include bosonic crystals and supersolids, e.g.,
[1], electrons or excitons in quantum dots [2], ions in traps
[3], dusty plasma crystals [4], atomic clusters [5,6], poly-
mers [7], etc. The notion of liquid and solid “‘phases” has
been used successfully to characterize qualitatively differ-
ent behaviors that resemble the corresponding properties in
macroscopic systems and will be used here as well, follow-
ing the definition of Ref. [6]. From the existence of phase-
like states in very small systems arises the fundamental
question of how to characterize phase changes and, further,
how many particles it takes at least to observe a phase
transition.

In macroscopic systems a solid-liquid transition can be
verified by a variety of quantities including free energy
differences, order parameters, specific heat, transport prop-
erties, structure factors, correlation functions and so on,
e.g., [6,8,9], which yield more or less equivalent results for
the melting point. A particularly simple and transparent
quantity is magnitude of the particle position fluctuations
normalized to the interparticle distance (Lindemann ratio
up); for an overview see [9]. But when applied to two-
dimensional (2D) systems, u; shows a logarithmic diver-
gence with system size [10]. This led to modified defini-
tions, including the relative interparticle distance
fluctuations (IDF) [11-13]

2 Yoo
=——— N -5 1
el TNV - 1) &=\ )

which are also well behaved in macroscopic 2D and 1D
systems. Here r;; = [r; — r;| is the distance between two
particles and (...) denotes thermal averaging. In macro-
sopic systems u,, shows a jump at the melting point, which
clearly reflects the increased delocalization of particles in
the liquid phase compared to a crystal.

However, when applied to small systems, N << 100,
neither uy nor u,, exhibit a jump upon classical or quan-

0031-9007/08/100(11)/113401(4)
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tum melting, but rather a continuous increase over some
finite temperature or density interval—a familiar finite
size effect [2,5]. Thus, it is problematic to determine a
transition point and the critical magnitude of the fluctua-
tions ufg‘. Even worse, the results for u, and the melting
point depend crucially on the method of calculation and on
its duration. Increasing the length of a simulation (and the
expected accuracy) may lead to growing systematic errors
predicting a too low melting temperature, as was noted by
Frantz [5]. This is, of course, critical for reliable computer
simulation of phase transitions in finite systems. In this
Letter, we analyze the reasons for this behavior and present
a solution. We propose a novel quantity, the variance of the
block averaged interparticle distance fluctuations, which is
sensitive to melting transitions and does not exhibit the
convergence problems of u,;. We demonstrate the behav-
ior of this quantity for both classical and quantum melting
by performing classical Monte Carlo (MC) and path inte-
gral Monte Carlo (PIMC) simulations, respectively.

Model and parameters.—While our approach is gener-
ally applicable, we concentrate on strongly correlated clas-
sical or quantum particles in a parabolic trap in 2D and 3D
described by the Hamiltonian

R N f)2 N m N 62
A=Y "1+SZ0?+ Y ——.
;2”” ;2 l IZK'lri_rjl ?
=)

The system is in a heat bath with temperature 7 and has a
fixed particle number N (canonical ensemble). Below we
use the dimensionless temperature kgT'ry/e’> — T where
ro denotes the ground state interparticle distance in the
N =2 case, r; =2¢*/mw?. For quantum systems, the
coupling parameter is A = e%>/(lyhw) where [, is the os-
cillator length I3 = h/(mw). The ground state of this sys-
tem consists of concentric spherical rings (2D) (cf. Fig. 1)
or shells (3D) [3.,4]. This model has the advantage that
classical melting (by temperature increase) and quantum
melting (via compression by increasing ), including spin
effects, can be analyzed on equal footing [2,14].

Liquid and solid phases.—The potential energy land-
scape of the system (2) has numerous local minima but, in
contrast to other finite systems such as atomic clusters
[6,7], they are not associated with phases but rather corre-

© 2008 The American Physical Society
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FIG. 1. Configuration of a 2D trapped quantum system _ “ .
[Eq. (2)] of N = 8 spin-polarized bosons at a temperature close & Transition 7 é
to the ground state. (a),(b) The liquidlike (A = 14) and solidlike | 5
(A = 30) states, respectively. (c) The corresponding radial den- <
sity profiles p(r). =
spond to the ground state and metastable states (e.g., differ-

ent shell configurations), which often are energetically
very close, e.g., [15]. With increasing temperature, an
increasing number of these states becomes occupied. Melt-
ing proceeds as an isomerization transition with the system
switching rapidly between a fast growing number of differ-
ent configurations above some threshold temperature [16].

However, with reduction of N the number of stationary
states decreases until only the ground state remains. This is
the case for N = 4 in 2D, which, due to its simplicity,
allows for a transparent analysis of melting processes in the
system (2). The pair distances show a characteristic behav-
ior as a function of simulation time (MC step) k;
cf. Fig. 2(a): oscillations around some average value fol-
lowed by a jump to a different value and again oscillations
around a different mean and so on. This is readily under-
stood: in its ground state the particles occupy the corners of
a square of length a, so there exist two possible values for
the six pair distances, a and the diagonal b = \/ia, which
are the mean values around which the distances fluctuate.
A jump occurs whenever two particles, i and j, exchange
their positions. Then the distances r; and rj to the re-
maining particles will change. While this leads to the same
ground state (permutational isomer) this process costs en-
ergy associated with overcoming of a potential energy bar-
rier. With increasing temperature, the frequency v; of these
jumps grows steadily until around T = T, a rapid growth
of v; is observed. Finally, at T = T}, pair exchanges occur
constantly [bottom of Fig. 2(a)], and particles are practi-
cally delocalized. This behavior of v; clearly resembles a
“phase transition’” with the melting point being located in
between the two limits 7' (solid) and T, (liquid).

We verify this hypothesis by computing the IDF, Eq. (1);
cf. Fig. 2(b). At low temperatures, u,, is small, slowly
increasing with 7. Around T = T, the increase steepens
slightly (rightmost curve). Aiming for a higher accuracy,
we repeated the calculations by subsequently increasing
the simulation length L (MC steps) by factors 10, 100,
1000. With no evident convergence, this effectively shifts
u, towards smaller temperatures and deeper into the solid-
like regime where jumps are very rare. Thus, the results for
U, are ambiguous and unreliable. The reason is that even

Ce

MC steps

FIG. 2. (a) Distance of an arbitrary pair of N =4 classical
particles in 2D as a function of the MC step. From top to bottom:
T, = 0.02 (solidlike), T, = 0.06 and 73 = 0.09 (transition re-
gion), and T, = 0.5 (liquidlike). @ and b = \2a denote the two
possible interparticle distances in the ground state.
(b) Temperature dependence of the mean block averaged IDF
i), for different block lengths M = 10°, 10*, 10°, 10° (right to
left) [equivalent to computing u,, Eq. (1), from multiple simu-
lations of length L = M]. (c) The corresponding second moment
oy,» Eq. (3). (d) Specific heat C, and energy correlation time
keor- (€) Total energy autocorrelation function Cr, Eq. (4), for
three temperatures.

rare jumps will be eventually captured if L is sufficiently
long. This immediately leads to a significant increase of
U, emulating liquidlike behavior [17]. Similar observa-
tions were made for clusters [5].

Solution of the convergence problem of u,;.—We solve
this problem by subdividing the time sequence in K blocks
of equal length M (L = KM) and compute the block
averaged IDF u,,(s) according to Eq. (1) for each block
[18,19] and its mean it = K~ ' 3K | u1(s). To suppress
the influence of jumps to i, in the solid regime, M must be
chosen small enough to restrict jump-related contributions
to a small number of blocks and, at the same time, large
enough to allow for convergence of contributions related to
local vibrations. This choice does not influence the con-
vergence of i in the liquid regime, which is dominated
by frequent jumps on a time scale comparable to that of
local vibrations and, hence, well below M. We demonstrate
the behavior of u.(s) for a quantum phase transition of
N = 8 bosons in 2D; cf. Fig. 3. In the solid regime the rare
spikes of u.;(s) in the otherwise flat curve indicate blocks
containing one jump resulting in a sharply peaked proba-
bility distribution P(u,). In the transition region, each
block may ‘“catch” from zero to a few jumps, so the
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FIG. 3. Left: Typical behavior of the block averaged IDF vs
block number s for N = 8 charged bosons in 2D (cf. Fig. 1) for
different coupling strengths: A; = 14, A, = 22, A; = 26, and
A4 = 30. Each point is an average over a block of length M =
1000. Right: Histograms show the probability P of different
values u, averaged over a total of 9,000 blocks. Results are
from PIMC simulations of system (2).

fluctuations of u.(s) increase and P(u,) broadens.
Finally, in the liquid regime, jumps occur with an almost
constant rate in every block, so the fluctuations of u,(s)
are small, though its mean is shifted to a higher value above
0.3.

Consequently, the width of the distribution P(u)
reaches a maximum in the vicinity of the melting transi-
tion. This behavior is well captured by the second moment
of u,(s), i.e., the variance of the block averaged interpar-
ticle distance fluctuations (VIDF)

K
Or = S AR~ P O
s=1

This allows us to obtain a reasonable estimate of the
melting temperature 75" from the peak of o, (T) [20].
Note that i, is sensitive to the jump frequency »;, in
contrast to u, of Eq. (1). The sensitivity does depend on
the block length M: larger M cause an increase of i, (as
discussed before) and shift the maximum of o, , to lower
temperatures; cf. Figs. 2(b) and 2(c).

Hence, to properly choose M, an independent quantity is
needed that should not require block averaging and be
invariant with respect to particle exchanges and pair dis-
tance jumps. A quantity fulfilling these requirements is the
total energy E and its autocorrelation function,

LME o — (ENE; — (E))
(L — k(E*) —(E))

We found that the decay rate of Cr(k) varies nonmonotoni-
cally with temperature where the slowest decay is observed
just in the transition region; cf. the example shown in
Fig. 2(e). This suggests that the correlation time, k... (T) =
> «Ce(k, T) (cf. Fig. 2(d)), is sensitive to thermal melting,

CE(k) =

“

allowing us to identify the melting temperature T¢t from
the maximum of k.. Comparing the values T¢ and
T¢Y(M) provides a straightforward way to identify the
proper block length M. In all cases of thermal melting
we investigated that agreement is found for M in the range
of 1000,...,10000, where the common definition of a
Monte Carlo step is used [21].

We mention that in the case of quantum melting the
situation is more complex. Nevertheless, we found that the
same range of M seems appropriate as well; however, the
analysis requires us to use a combination of different
quantities such as the pair distribution or bond angular
symmetry parameters, etc.

Applications.—We have verified the behavior of the
VIDE, o, , for a large variety of classical and quantum
systems described by Eq. (2) of various sizes and dimen-
sionality. As a first illustration we show in Fig. 4 (left side)
MC results for a classical 3D system of N =4,...,20
particles, the state of which is completely characterized
by the temperature 7. One clearly sees that in all cases i
increases with 7', but for small N the reduction is very
gradual, not allowing us to single out a ““melting tempera-
ture” from i . At the same time, in all but one case o,
has a well pronounced peak at a certain 7, which is
identified as T<'t, Also, the critical value of the fluctuations
may be deduced from the peak position of o, , yielding
usit = 0.08, ..., 0.16, which is in good agreement with
macroscopic classical Coulomb systems. Note the special
case of N = 5 showing a low value of T°t, which is well
known and explained by the low symmetry of this cluster
[15]. While this behavior is hardly visible in i, it is
clearly detected by o, .

0.3 w7 0.4
- N=5
|— N=6 [/ A
E’ 02 I N:20//' ’03
1S
0.1 X 10.2
O] fofn s et
£0.01
0% ‘ L 01
0.001 0.01 01 25 30 35
T A

FIG. 4. Mean value i, (top) and second moment o, (bot-
tom) of the block averaged IDF for different particle numbers N.
Left: temperature dependence of a classical 3D system (classical
melting, classical MC simulations). Right: 2D quantum system,
dependence on the quantum coupling parameter A (quantum
melting, PIMC results). In both cases the block length equals

M = 1000. Dashed lines locate the critical values of T (or A) and
gt
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As a second example we consider quantum melting upon
compression in a 2D system of spin-polarized charged
bosons at very low temperature. Calculations for N up to
60 were done using PIMC simulations; for details see, e.g.,
[22]. The right-hand side of Fig. 4 shows results for three
cases, N =19, 20, 21, and more examples are given in
Ref. [14]. For large A, the particles are localized resem-
bling a crystal as seen in Fig. 1. Decrease of A is associated
with increasing wave function overlap and eventually
quantum melting by tunneling of particles between lattice
sites. Again we observe a gradual reduction of i,; when A
is increased. In contrast, o,  has a pronounced peak that
allows us to determine the critical value of A to A=
25, ..., 30 depending on the particle number. The corre-
sponding critical fluctuations, uﬁtfj‘ = 0.22,...,0.25, are
again close to the value known from simulations of macro-
scopic Bose systems.

These two examples are representative for the classical
and quantum melting behavior of the system (2), also for
other pair potentials. All our calculations have confirmed
the robustness and efficiency of the VIDF for the analysis
of melting in small systems. The criterion works also for
macroscopic systems as will be shown elsewhere. We can
now proceed and analyze the question, what is the mini-
mum system size to observe crystallization or melting?
Our simulations have revealed that o,  has a maximum
for particle numbers as small as 4 in 2D and 5 in 3D. In
contrast, for 4 particles in 3D, o,  shows a monotonic
increase; see Fig. 4 (top left). This is easily understood.
The ground state of 4 (3) particles in 3D (2D) resembles a
unilateral tetraeder (triangle) with only a single pair dis-
tance. Thus, a jump does not alter the distribution of pair
distances, and o, has no maximum.

In summary, we have proposed a novel quantity—the
variance of the block averaged interparticle distance fluc-
tuations. A maximum of o, allows one to reliably detect
the existence of structural changes that are analogous to
solid-liquid phase transitions in macroscopic systems. It
further directly yields a consistent estimate of the melting
point [20] and the critical fluctuations it in classical and
quantum systems, thereby curing the sensitivity and con-
vergence problems of the conventional distance fluctuation
parameters. While for classical systems the energy auto-
correlation function Cg allows for a calibration of the
block length, this does not work for quantum melting
where further analysis is required. Also, it remains an
interesting question to analyze the behavior of o,  in other
finite systems, including atomic clusters or homopolymers,
etc., as well as in time-dependent simulations (such as

molecular dynamics). Finally, in the case of large inhomo-
geneous systems where melting may proceed via a se-
quence of different processes, the VIDF should allow for
a deeper insight and a space-resolved analysis of the
fluctuations.

We thank Ch. Henning for helpful discussions. This
work is supported by the Deutsche Forschungsgemein-
schaft via No. SFB-TR 24.

[1] F. Mezzacapo and M. Boninsegni, Phys. Rev. A 75,
033201 (2007).

[2] A. Filinov, M. Bonitz, and Yu. Lozovik, Phys. Rev. Lett.
86, 3851 (2001).

[3] D.J. Wineland et al., Phys. Rev. Lett. 59, 2935 (1987).

[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006).

[5] D.D. Frantz, J. Chem. Phys. 115, 6136 (2001).

[6] A.Proykova and R.S. Berry, J. Phys. B 39, R167 (2006).

[71 Y. Zhou et al., J. Chem. Phys. 116, 2323 (2002).

[8] K. Binder and D. W. Heermann, Monte Carlo Simulation
in Statistical Physics (Springer, New York, 2002), 4th ed.

[9] H. Lowen, Phys. Rep. 237, 249 (1994); E.J. Meijer and
D. Frenkel, J. Chem. Phys. 94, 2269 (1991).

[10] N.D. Mermin, Phys. Rev. 176, 250 (1968).

[11] V.M. Bedanov, G. V. Gadiyak, and Yu. E. Lozovik, Phys.
Lett. 109A, 289 (1985).

[12] R.D. Etters and J. Kaelberer, Phys. Rev. A 11, 1068
(1975).

[13] R.S. Berry et al., Adv. Chem. Phys. B 70, 75 (1988).

[14] A. Filinov, J. Boning, M. Bonitz, and Yu. Lozovik,
arXiv:0711.1255 (to be published).

[15] P. Ludwig, S. Kosse, and M. Bonitz, Phys. Rev. E 71,
046403 (2005).

[16] F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371
(2005).

[17] uy accounts only for the distribution of pair distances and
not the jump frequency.

[18] A similar idea has been used by R.E. Kunz and R.S.
Berry, Phys. Rev. Lett. 71, 3987 (1993).

[19] Another solution is the exclusion of jump-related contri-
butions to u,;. However, for the system (2), this would
erase the “phase’ information and is, therefore, not used.

[20] By “melting point” it is understood that T¢"" is located in
the center of the finite melting interval.

[21] A Monte Carlo step is defined as N displacement attempts
in a N-particle system. Additional move types like bisec-
tioning or end-point permutation occur in PIMC simula-
tions; cf. [8,22]

[22] Introduction to Computational Methods for Many-body
Systems, edited by M. Bonitz and D. Semkat (Rinton
Press, Princeton, 2006).

113401-4



5 Spatially Indirect Electron-Hole Systems
in Mesoscopic Traps

In this chapter we consider small ensembles of optically excited (spatially) indirect ex-
citons especially in a single semiconductor quantum well. After a brief introduction in
section 5.1, we start with the investigation of the quantum Stark effect on excitonic
complexes in a homogeneous electric field (section 5.2). Using the path integral Monte
Carlo method, we compute from first principles the field dependence of the energies and
the spatial separation of electrons and holes (the effective exciton dipole moment) for
different quantum well widths. Discussing two different semiconductor quantum well
heterostructures (GaAs/AlGaAs and ZnSe/ZnSSe) we propose a possible experimental
setup for a harmonic exciton confinement, which is produced by the strong inhomoge-
neous electric field of a single tip electrode. The lateral confinement of the excitons in
the quantum well thereby arises from the quantum-confined Stark effect. On the basis
of this specific trap, we discuss the influence of the electric field strength, the tip-to-
sample distance, the excitation intensity (related to the exciton population of the trap),
the exciton density, and the temperature on the confined N-exciton system. Our theo-
retical results allow us to predict the parameter range where interesting many-particle

phenomena, including exciton Wigner crystallization, are expected to occur.

In section 5.3, we consider electrons and holes in a bilayer system. Performing quan-
tum Monte Carlo simulations, we vary the mass ratio M of holes and electrons between
1 and 100 for a fixed layer separation and analyze structural changes in the system.
While, for the chosen density, the electrons remain nearly homogeneously distributed,
with increasing M, the holes undergo a transition from a quantum liquid to a crystalline
(quasi-classical) state with a spatially ordered structure. This is verified for both, meso-
scopic bilayers in a parabolic trap and for a macroscopic system. In section 5.4, we
focus on the Coulomb-to-dipole transition, which occurs when the separation d of an

electron-hole bilayer system is varied with respect to the in-layer particle density. An
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5 Spatially Indirect Electron-Hole Systems in Mesoscopic Traps

analysis of the classical ground state configurations for clusters with N < 30 electron-
hole pairs reveals that the energetically most favorable state can differ from that of
two-dimensional pure dipole or Coulomb systems. Performing a normal mode analysis
for the “magic” N = 19 cluster it is found that the lowest mode frequencies exhibit
drastic changes when d is varied. Furthermore, we investigate the quantum mechani-
cal ground states for N = 6, 10 and 12 electrons and holes. The results include the
single-particle ground state energies and orbitals for a broad range of layer separations
and coupling strengths between the limits of the ideal Fermi gas and the Wigner crystal
phase. The results in this section are based upon a combination of extensive molecu-
lar dynamics and self-consistent Hartree-Fock calculations. An overview and detailed
description of the current status of research is postponed until section 5.5 in order to

allow for a discussion in conjunction with the research results presented in this chapter.

5.1 Introduction and Overview

Dynamics and Interaction of Electrons and Holes

In the present work we use the notation of electrons and holes, instead of considering
electrons in different states (energy bands) and limit ourselves to a two-band model. In
the electron-hole picture, holes are defined as missing electrons in the valence band and
their charge is just opposite to that of the electrons, i.e., ¢, = —e. In a semiconductor at
low temperature the upper conduction band (CB) is unoccupied and the lower valence
band (VB) is completely filled by electrons. Hence, it is convenient to describe excited
states, where electrons have moved from the valence band to the conduction band, by
counting the conduction electrons N, and holes N. The excited electrons can freely
move in the sparsely populated conduction band and likewise the holes left behind in
the valence band are free to move. In the vicinity of the CB minimum (VB maximum),
i.e., at the I' point (k=0) in the first Brillouin zone, the band structure can in many

cases be well described by a parabola with an effective mass

h?k?

e(h e(h
By (k) = B(0) + 5
e(

, (5.1)
h)

where Ep(k) denotes the electronic band energy and k = p/h the wave vector. In the
effective mass approximation electrons and holes can be treated as quasi-free particles

with an effective mass m:(h) and a quasi-momentum p. A low (large) curvature of
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5.1 Introduction and Overview

the band corresponds to a large (low) effective mass.! A negative electron in the CB
and a positive hole in the VB attract each other via Coulomb interaction and can
minimize their total energy (at low temperature and low density) if they form a bound
state, which is known as an exciton [123, 124]. However, the electron-hole binding
energy is comparatively weak, and the exciton state is much more fragile than its atomic
counterpart — the hydrogen atom. This is due to the dense solid matrix of many
other electrons and nuclei that occupy the same space and which effectively screen the
attractive Coulomb interaction. The electron-hole interaction potential is approximately

given by

Ven'(re —1p) =

- 5.2
5|I'e*rh| ( )

where ¢ is the dielectric constant of the semiconductor.

Excitonic Effects

Excitons are currently of exceptionally high scientific interest due to their bosonic char-
acter in view of the possible realization of a collective, coherent many-particle state
of matter — the Bose-Einstein condensate (BEC) [125]-[128]. As the (quantum) de-
generacy temperature scales inversely with mass [129] and in view of the exceptionally
low effective mass of excitons (which is even below the electron rest mass) the critical
temperature for the BEC is expected to be in the temperature regime of liquid He-
lium, i.e., at several orders of magnitude higher temperatures than in cold atom gases.
Exciting experimental findings are the observed signatures of BECs in semiconductor
heterostructures [18, 130, 131, 132, 133, 134] and bulk semiconductors [135, 136, 137] in
recent years. Besides this fundamental research issue, there are further practical moti-
vations for the investigation of excitonic matter, because excitons are directly connected
to the optical properties of semiconductors. Technological potential of these single pho-
ton sources arises particularly with regard to the development of novel optoelectronic
micro-devices [138], which may allow for the realization of novel computing methods
such as “photon computing” or “quantum computing”. Additional interest is given
by the possibility to observe new (quantum) states of matter such as exciton Wigner
crystallization [43, 86, 139, 140, 141, 142, 143], excitonic superfluidity (allowing for fric-
tionless transport of electronic energy through the crystal) [144, 145] or even the Wigner
supersolid of excitons. In this speculative quantum phase the excitons are required to

be phase coherent and to form a Wigner crystal at the same time [146, 147].

!The effect of mass-asymmetry in electron-hole bilayers is subject of investigation in section 5.3.
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5 Spatially Indirect Electron-Hole Systems in Mesoscopic Traps

Spatially Indirect Excitons

Excitons possess a finite lifetime. The electron-hole pairs typically annihilate (recom-
bine) radiatively on the time scale of a nanosecond (or even below) in direct band-gap
semiconductors. In order to study correlation effects, the initially photogenerated hot
excitons are required at least to thermalize down to lattice (helium bath) temperature
and to reach a quasi-equilibrium state in a time that is considerably shorter than their
radiative decay. One possibility to lower the spontaneous recombination probability of
excitons is to reduce the electron-hole wave function overlap by spatial separation of
electrons and holes. Considering a quasi 2D single quantum well? the spatial separation
of electrons and holes can be achieved by a strong electric field, which is applied per-
pendicular to the quantum well plane (i.e. in z-direction), see figure 5.1. These spatially
indirect excitons possess several unique features (all values are given for GaAs/AlGaAs

samples):

e The spatial separation of electrons and holes in the z-direction results in a greatly
enhanced exciton lifetime that may be more than three orders of magnitude longer
than that of spatially direct excitons. (In wide single QWs [149] and double QWs

[150] lifetimes of tens of microseconds have been recorded).

e The quantum well confinement leads to a relaxation of the momentum conser-
vation in z-direction. Therefore, thermalization down to the lattice temperature
via emission of bulk longitudinal acoustic phonons is about 10% times faster for
excitons in dimensionality reduced QWs than in 3D bulk structures [151]. (In
agreement to [152], indirect excitons were reported to cool down to 400 mK in
about 5ns [153]. This time is much shorter than their lifetime. We note that a
recent experiment gives “evidence for equilibration” to 5 K lattice temperature of
the harmonically confined gas of indirect excitons, however, within a considerably

larger time of a few microseconds [150, 154].3)

e The spatial separation of electrons and holes leads to a strong (cross-well) perma-
nent dipole moment giving rise to a repulsive exciton-exciton interaction, which
results in an effective screening of the in-plane disorder potential (caused by QW

interface fluctuations, impurities, etc.).

2The advantages of a wide single well over a double well are discussed in section 5.2.2. Further
arguments, which are related to the creation and investigation of indirect recombination, are to be
found in reference [148].

$We expect a longer radiative lifetime of indirect excitons in ZnSe based QWs (see section 5.2.2).
Therefore, we will consider the exciton system to be thermalized and study its equilibrium properties.
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Figure 5.1: Effect of a strong electric field on the excitonic states in a GaAs/AlGaAs quantum
well (QW) of width L = 30nm = 3ap. Shown are schematic band structure diagrams (top) and
the corresponding probability densities in (growth) z-direction (bottom) of free charge carriers
(electron e, hole h) and particles in excitonic bound states: the exciton X and excitonic com-
plezes (positive trions X, negative trions X~ ).

Left panel: Electrons are promoted into the conduction band (CB) and the defect electrons (pos-
itively charged holes) remain in the valence band (VB). The energy scale for the pair production
is the material-specific band gap energy E, ~ 1 eV, which separates the CB with the lower band
edge from the VB with the upper band edge. In absence of the electric field all (quasi-) particles
are symmetrically distributed in the z-direction of the QW. Due to the attractive electron-hole
Coulomb interaction, the (spatially direct) exciton is stronger localized than a free electron or
free hole in the same z-confinement.

Right panel: Application of a homogeneous electric field E, in growth direction of the QW leads
to a tilting of the energy bands (Stark shift) and a separation of the charge carriers at different
sides of the QW. This leads (at low temperatures) to formation of stable spatially indirect exci-
tons with a finite permanent dipole moment in z-direction. Note that the hole is more strongly
localized than the electron due to its higher effective mass. The Stark effect allows for a flexi-
ble band-structure design and thus adjustable electrostatic trap geometries giving rise to a broad
range of accessible exciton parameters and correlation effects (see section 5.2).
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5 Spatially Indirect Electron-Hole Systems in Mesoscopic Traps

e The repulsive exciton-exciton interaction shifts the peak of the pair correlation
function to larger exciton-exciton distances and masks the fermionic character of

the exciton constituents (at moderate densities, see section 5.2.3).

e A strong repulsion between the “dipole”-like excitons prevents further binding of
excitons into larger complexes, such as biexcitons or electron-hole droplets (see
section 5.2.1).

e The mutual repulsive interaction reduces thermal fluctuations and stabilizes the
exciton state. (Note that the reduction of the binding energy Ey(X) = E. + Ej, —
E, by the electric field is relatively modest due to the QW confinement, which

naturally limits the charge separation; see section 5.2.1 for details.)

e The separation of electrons and holes leads at low temperature to a spontaneous
spin polarization of the indirect exciton, i.e., a transition to a ferromagnetic exciton
phase [155]. (In our PIMC simulations we will consider spin-polarized exciton
systems, where all excitons are identical. This means that the degeneracy is higher

than in an unpolarized system.)

In turn, to bring correlation effects into play an external confinement within the quantum
well plane is required, which balances the repulsive exciton-exciton interaction. As will
be discussed in section 5.2, a suitable lateral (harmonic) trap can be generated by means
of an inhomogeneous electrostatic z-field of a fine tip electrode due to the gquantum-
confined Stark effect. The resulting occupied trap region below the tip is on the micron
scale. The proposed electrostatic harmonic exciton confinement in the 2D quantum
well structure permits for a voltage-controlled transition from the direct to the indirect
exciton regime and a high flexibility with regard to the exciton parameters (dipole
moment, lifetime etc.). The vertical tip position relative to the sample provides an
additional degree of freedom and allows for a flexible control of the lateral confinement
strength (exciton density) and a broad accessible range of exciton-exciton correlation
effects. Furthermore, the number of excitons can be tuned with the intensity of the
(pulsed) laser used to generate the excitons?. The mentioned features make indirect
excitons a very suitable system for the exploration of collective quantum states and
many-body phenomena of cold bosons. Our numerical PIMC studies, section 5.2.3,
support theoretical predictions of the possibility of exciton condensation and should
give the motivation for ongoing efforts in the preparation of experiments for example

those currently set up at Rostock University [156].

4By collecting the excitons in a trap, a lower flux of excitons allows for a low photoexcitation intensity,
which reduces the heat input into the system.
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Wigner Crystallization of Indirect Excitons

The idea of Coulomb correlation induced crystallization of the electron gas in metals
was first considered by E. P. Wigner in 1934 [157]. Following his ideas, at low densities
(considerably lower than the electron density in atoms or metals) and low temperatures
the system of electrons spontaneously crystallizes into a regular lattice structure if the
mutual electron wave function overlap is strongly reduced and thus the formation of

energy bands with delocalized electrons suppressed, e.g. [2, 158, 159].

In the following we will use quantum Monte Carlo simulations to give a first principle
thermodynamic description of indirect excitons in the moderate density regime, where
the composite quasi-particles show strong bosonic many-particle features. In this con-
nection, we will address the issue of whether the dipole-like exciton-exciton interaction
in the “bosonic density regime” is strong enough to suppress the quantum fluctuations,
so that a Wigner crystal phase of spatially indirect excitons can be established, and, if

at all, for which realistic parameters.

Model system. The results presented below apply particularly to semiconductor
single QWs, but can be generalized to coupled QW heterostructures as well. The well-
accepted N-particle Hamiltonian based on the equations (5.1) and (5.2) captures many
qualitative features of semiconductors and includes all Coulomb correlation contribu-

tions without simplification. It reads

N N

; ; ; qiq;

H=H,+H,+ E E , (5.3)
=1 jeitl E\/(ri — rj)2 + (zZ — zj)Q

where the N = N, + N}, single particle contributions are given by

Ne(h) *
If] _ Z o h? VZ + me(h) 2 2+Vemt( ) (5 4)
e(h) - 2 * r; 2 w(]rz' e(h) Zi 9 .
i=1 Mhe(n)

which consists of the kinetic (band) energy, the lateral electron (hole) harmonic confine-

ment potential and an additional external potential

t QiEZZia |Z’ < L/2
Veiny(zi) = (5.5)
Vio +qiE.zi;, |z2|>L/2.

The external potential V:(%(zl) combines thereby the effect of the QW confinement

(presented as a square well, see figure 5.1) and the applied electric field in z-direction.
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Within this model g; is the particle’s charge, € the static permittivity, m:( n) the electron
(hole) effective mass, wy the in-plane trap frequency, L the QW width, and E, the
electric field applied perpendicular to the quantum well plane. The vectors r; describe

the in-plane particle positions.

Reduced bosonic model of indirect excitons. At low temperatures (well below
the exciton binding energy) and small electron-hole separations the electrons and holes
form stable spatially indirect excitons (see section 5.2.1). The results of section 5.2.3,
where the Fermi statistics of the exciton constituents is taken fully into account, allow us
to treat indirect excitons in the moderate density regime, i.e., for A > 15, approximately
as composite Bose particles. At higher densities the fermionic nature of the exciton
constituents becomes unmasked and the treatment of a two-component fermion system

consisting of electrons and holes becomes indispensable.?

In the following we consider the representative example of a mesoscopic system consisting
of 56 spin-polarized indirect excitons with an effective electron-hole pair separation of
d = 20nm = 6.6ap. This carrier separation can be produced by an electric field of
strength E, = 20 kV/cm in a single ZnSe-based quantum well of L = 30 nm width
(see section 5.2.2). In the strong coupling regime, A = 17, i.e., at a moderate in-
plane density of 1.5 - 10'°/cm?, the effective electron-hole separation d is much smaller
than the exciton-exciton distance within the layer. Consequently, the electron-hole
binding energy of an individual exciton is much larger than the repulsive exciton-exciton
interaction Ugp, > U,,. This allows for a separation of the z-problem by averaging over
the QW thickness by solving the single exciton problem (in a homogeneous field) and an
introduction of relative and center of mass (COM) coordinates of the composite excitons
(see section 5.2.1). The relative problem describes the inner exciton structure (exciton
wave function) giving rise to the effective dipole moment p = ed, which is characterized

by the effective e-h separation

d = (Ze = Zh)p. (ze.D)pn(n.) (5.6)

Furthermore, the COM coordinate R; describes the position of the i-th exciton in the
external potential. In the considered model, the N-particle problem reduces to an

effective 2D-Hamiltonian of N, = N/2 composite bosonic excitons. These are confined

5The structural ground state properties of an electron-hole bilayer system in the regime A\ < 15 (where
Fermi exchange effects become essential) are considered in section 5.4.
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in the QW plane and interact via a repulsive dipole interaction potential

N, N,
A - h? m; ~ u(Ry)p(Ry)
H, = — V& + —Zw2R? Lk A A 5.7

where the trap frequency wq arises from the effective lateral quantum Stark confinement
potential (see section 5.2 for details). This effective 2D problem of N, indirect excitons,
which obey Bose statistics, is solved by path integral Monte Carlo (PIMC) simulations.
These simulations allow for a first principle treatment of the many-particle Coulomb
correlation and bosonic exchange effects (details on the PIMC technique are given in

section 2.3).

PIMC simulation results. Quantitative predictions on the excitonic states of the
considered exciton cluster for three specific temperatures are shown in figure 5.2. The
simulations point out that the particles become highly correlated and can stabilize in
spatially periodic structure when the temperature is decreased below a critical value
of T, < 1.2 K. Similar to the mesoscopic electron systems [2], a two-stage Wigner

crystallization process is observed:

1. At the temperature 71 = 3.35K, i.e., slightly above the finite melting interval (see
section 4.3), the indirect excitons are in a Bose fluid state and delocalized within
the trap due to thermal fluctuations as well as quantum fluctuations and bosonic

exchange.

2. When the temperature is decreased to To = 830 mK the indirect excitons become
strongly correlated and enter a partially ordered state. The 56 indirect excitons
arrange themselves on four distinct rings (a single particle is located in the trap
center). Note that the concentric shell structure reflects the radial symmetry of

the external confinement.

3. Further lowering of temperature to T3 = 210 mK leads to a full freeze-out of the
thermal fluctuations, whereby the (zero-point) quantum fluctuations prevail. The
PIMC simulations show that the repulsive inter-exciton interaction is capable of
governing the strong quantum fluctuations and establish an intrashell localization
of the quasi-particles. Moreover, a highly ordered quantum state with a regular 2D
Wigner lattice is observed in the center region of the trap (where the geometrical

constraints of the external confinement are reduced).

The two-stage transition process is a well-known phenomenon in confined few-particle

systems, e.g. [2, 159]. This is due to the fact that the confinement induced radial
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energy barriers are considerably higher than the intrashell energy barriers separating
the repelling particles [70]. Because of the short range of the dipole potential, the
mesoscopic quantum crystal of indirect excitons appears at higher densities than the
electron (Coulomb) Wigner crystal, i.e. the crystal is stabilized. Previous numerical
work predicts a transition from the Fermi liquid state to the electron Wigner crystal
phase for around r¢ ~ 35 (see [2, 159] and references therein), whereas in the present

simulations the exciton Bose-nano-crystal is already found at r? ~ 25.°

A deeper insight into the structure of the different exciton phases can be obtained from
the diffraction picture. Current experiments allow for the measurement of both the real
luminescence pattern with a resolution up to 1um and also the distribution of exciton
luminescence in the far-zone, i.e., the optical Fourier transform of the real image [18,
160]. This motivates us to consider the diffraction pattern of the observed exciton
structures, with the objective that it can give a clear evidence for a phase transition in
the mesoscopic system. The classification will be in conformity with the International
Union of Crystallography (IUC) which decided to redefine the term “crystal” to mean

“any solid having an essentially discrete diffraction diagram” in 1991 [161].

The static structure factor is obtained from the spatial 2D Fourier transform of the
(time averaged) exciton density distribution p(r)

+00 .
F(h) = / p(x)e?™xg2g (5.8)
—0o0
and is parametrized by the in-plane (momentum transfer) vector h (in analogy to a
X-ray scattering process). The structure factor F' describes the Fourier components of
the density fluctuations and diverges as |h| — 0 indicating long-wavelength fluctuations.

The modulus squared of the structure factor provides the diffraction intensity
I(h) = [F()*. (5.9)

The peaks of the function I(h) are closely associated with the structural features of
the crystal. If the diffraction vector h coincides with a reciprocal lattice vector, the
function F'(h) becomes non-zero, and the diffraction pattern consisting of sharp and

intense “Bragg” reflections of the crystal occur.

5Tt should be noted that in a recent study of the zero-temperature phase diagram of a unconfined 2D
Bose system with dipole-dipole interaction, the critical Lindemann ratio (at the transition density)
for the quantum phase transition from the gas to the solid phase has been estimated as ucrir = 0.23
[43]. This critical value is in full agreement with our simulations of confined small exciton clusters
(we used the VIDF with blocksize M = 1000, see section 4.3 for details).
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Figure 5.2: Quantum Monte-Carlo results for a ZnSe-based quantum well with N = 56 har-
monically trapped indirect excitons obeying Bose statistics. Top row: Density plots of the indirect
excitons for the three temperatures: 3.35 K, 830 mK and 210 mK (from left to right). Due to
strong inter-exciton correlations highly ordered quantum states are observed; reducing tempera-
ture initiates a two-stage crystallization process: (1) radial ordering of the excitons on shells,
(2) formation of a bosonic Wigner nano-crystal with a hexagonal lattice structure. Partial ex-
citon delocalization is a result of quantum fluctuations and Bose statistics (“cold” melting).
Bottom row: Corresponding Bragg diffraction patterns exhibiting the degree of order in a sys-
tem by measuring the density-density correlations. The patterns are used as an indicator of a
phase transition. (Diffraction intensity is logarithmically scaled.) Simulation parameters: Ef-
fective spatial electron-hole z-separation d = 20 nm (6.6ap ), coupling parameter A\ = 17.0. The
probability density plots are averaged over L = 10000 Monte Carlo steps (plus Leq = 10000 steps
for the equilibration), number of high temperature factors M = 362 (PIMC, see section 2.3).
Effective Hartree energy 1Ha = q*/cap = 53.93 meV (625.8 K) for ZnSe.

Let us now study the diffraction diagram of an exciton cloud for the three characteristic
temperatures displayed in figure 5.2. The leftmost diagram, corresponding to T = 3.35
K, reveals (beside the central spot) five weak circular symmetric side maxima. These
are a first signature of the growing inter-exciton correlations, which give rise to a radial
density modulation, i.e., the onset of the formation of shells. Lowering the temperature
to To = 830 mK leads to pronounced circular main maxima in the diffraction intensity

I(h). The value of the wavenumber h = 0.04/ap corresponds to the almost equidistant
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radial density modulation (resp. intershell spacing) of 25ap. On the contrary the main
peaks, which are also found in large clusters, the number of side maxima is affected by
the finite size of the cluster. More specifically, the observed Laue oscillations consisting
of n—2 =17 subsidiary maxima and n—1 = 8 subsidiary minima are due to the n =19

density peaks in the center cross section of the shell structure.

However, the most interesting and richest diffraction pattern is found at 75 = 210 mK.
At this temperature, the inner part of the mesoscopic exciton Wigner crystal presents
a hexagonal lattice in real space with spacing a = 25ap. The hexagonal lattice is
actually the two-dimensional lattice with the highest symmetry and the lowest energy
(in the unconfined case). This configuration gives rise to six distinct intensity peaks
in the diffraction image.” Each symmetry axis of the exciton crystal shows up as two
symmetry lines in the diffraction pattern. Here the Brillouin zone appears as a hexagon
with a nearly circular shape. Moreover, the discrete diffraction picture bears out a
strict phase transition of the mesoscopic exciton plasma into a crystalline state (i.e. a

2D crystal without conventional long-range order).

The existence of the exciton Wigner crystal raises the intriguing question about the
coherence of this quantum state, which, however, cannot be directly clarified with the
present PIMC simulations (see discussion in section 2.4). However, at the considered
spatial scale of the 2D micron-scale lateral confinement the phase coherence of the
excitons cannot be ruled out. In particular the finite size of the system may allow for a
fully coherent state of indirect excitons even in 2D, where the coherence length cannot be
infinite. Furthermore, in section 5.4 we show that even in the Wigner crystal phase single
density peaks do not one-to-one correspond to single particles, but rather the single-
particle orbitals extend over the entire cluster. This means with respect to the Wigner
crystal in figure 5.2 that the identification of single excitons (individual exciton wave
packets) is not obvious and may lead to misinterpretations due to “matter wave overlap”.
The question about the quantum properties of the Wigner state (including features
such as superfluidity) is a very exciting question and requires for further theoretical and

experimental work.

"Note that increasing the cluster size will just decrease the FWHM and increase the intensity of the
Bragg peaks, whereas imperfections in the spatially periodic structure cause broadening of the peaks.
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5.2 Strongly Correlated Indirect Excitons in Quantum Wells

We consider a finite number of photogenerated indirect excitons in a single quantum
well (QW), where the spatial separation of electrons and holes is due to a strong electric
field from a tip electrode. A lateral confinement of the indirect excitons in the QW
arises from the quantum-confined Stark effect with a typical trap size being on the
order of several micrometers. Using path integral Monte Carlo simulations, electrons
and holes are shown to form permanent dipoles with a strong repulsion, which prevents
formation of biexcitons and electron-hole droplets. At the same time, the repulsion
masks the fermionic character of the indirect exciton constituents, so that the excitons
are approximately of bosonic nature. By changing the field strength and geometry, the
excitation intensity (exciton number) and temperature, the indirect exciton properties
as well as the exciton-exciton correlations can be varied in broad ranges giving rise to

interesting many-particle correlation and quantum effects.

The results were published as refereed journal publications:

5.2.1 Strongly Correlated Indirect Excitons in Quantum Wells in High Elec-
tric Fields, A. Filinov, P. Ludwig, Yu.E. Lozovik, M. Bonitz, and H. Stolz,
J. Phys: Conf. Series 35, 197 (2006)

5.2.2 Quantum Stark Confined Strongly Correlated Indirect Fxcitons in
Quantum Wells, P. Ludwig, A. Filinov, M. Bonitz, and H. Stolz, phys. stat.
sol. (b) 243, No. 10, 2363 (2006)

5.2.3 Path Integral Monte Carlo Results for Bose Condensation of Meso-
scopic Indirect Excitons, A. Filinov, M. Bonitz, P. Ludwig, and Yu.E. Lo-
zovik, phys. stat. sol. (c¢) 3, No. 7, 2457 (2006)
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Abstract.

We study the Stark effect on excitonic complexes confined in a GaAs-based single quantum
well. We approach this problem using Path Integral Monte Carlo methods to compute the
many-body density matrix. The developed method is applied for investigation of the electric
field-dependence of energies, particle distribution and effective exciton dipole moment.

Using these results as an input we apply thermodynamical Monte Carlo methods to
investigate systems of several tens to thousands indirect excitons in a 2D quantum well with
a lateral confinement arising from the quantum confined Stark effect. Depending on the field
strength, exciton density and temperature different phases (gas, liquid and solid) of indirect
excitons are predicted.

1. Introduction

In the present work we aim to study equilibrium properties of excitons, charged excitons (trions)
and biexcitons under the influence of a quantum well confinement and an external electric field
produced by electrostatic contacts.

The field applied along the growth direction separates electrons and holes at different sides of
the quantum well (QW) and leads to formation of spatially indirect excitons. This system can
be a promising candidate for the observation of Bose condensation [1, 2, 3, 4] or crystallization of
excitons in heterostructures. While in many experimental realizations a system of two coupled
QWs is considered, here we show that a single QW can also be suitable for this purpose. At
high electric fields excitons can be considered as dipoles oriented perpendicular to the QW plane
with a repulsive, dipole-dipole like, interaction preventing formation of other bound states, such
as biexcitons. If the temperature is low enough the excitons can create bound states with
the excess carriers (free electrons or holes) and form positively or negatively charged excitonic
complex, i.e. trions, with a binding energy ranging from 2K to 11K (in GaAs-based QWs)
depending on the strength of the applied electric field. Hence, the question about the ground
state of indirect excitons and dissociation of trions and biexcitons in high electric fields has

! Based on a talk and a poster presented at the conference “Progress in Nonequilibrium Green’s Functions II1,
Kiel, Germany, 22. — 25. August 2005”

© 2006 IOP Publishing Ltd 197
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an important implication for possibility to have favorable conditions for Bose condensation or
crystallization.

In section II we shortly discuss the basic ideas of our first principle Path integral Monte Carlo
(PIMC) technique. In section III we look in detail at the Stark effect and the dependence of
the exciton energy on the electric field. Further in Section IV, the obtained results (e.g. the
Stark shift and the effective dipole moment of indirect excitons) will be used as an input for
thermodynamical Monte Carlo simulations of several thousands of trapped excitons.

2. Path Integral Monte Carlo

The results presented in the next section have been obtained with the Path Integral Monte Carlo

technique based on presentation of the many-body density matrix in the terms of Feynman

trajectories [5]. The details on theoretical aspects and the practical implementation can be

found in the review [6] and Refs. [7, 8]. Below we give a brief overview of the applied technique.
In PIMC calculations we start from the following representation of the N-particle non-diagonal

thermal density matrix

p(R.R:0) = /V R /v R p(R,R': 58)p(RLR% 68) ... p(R™ ' R':58), (1)

where R = (ry,ra,...,ry) are the particle coordinates, and the integrations are performed in
the whole coordinate space over additional intermediate varibles on the n — 1 “imaginary time”
slices of a path, which starts at R(0) = R and ends at R(3) = R’/. Here, the parameter
B = 1/kpT denotes the inverse temperature. The main advantage of this representation, as
was first recognozed by Feynman, is the fact that a low-temperature density matrix can be
expressed through high-temperature density matrices at an n-times higher temperature, i.e.
0 = B/n = 1/nkgT. This expression is very useful for practical calculations if we write down
the high temperature approximation for each of the non-diagonal N-particle density matrices
pr = p(R¥ R¥*1:63). Hence, the two main problems treated in PIMC calculations are, first, the
construction of the best approximation for p; and, second, development of an efficient Metropolis
Monte Carlo integration procedure to sample the density matrix directly from Eq. (1).

For the simulations of particles with Fermi or Bose statistics we should place additional
symmetry restrictions on the density matrix in Eq. (1). One of the simple and widely used high-
temperature approximations to take into account the antisymmetry property of the fermion
density matrix is to express it through the Slater determinants of free-particle propagators for
each species of particles with the same spin projection

1 1
p(RF RFFL 65) = <NT'> det A(k, k + 1)17 - <NU> det Ak, k + 1)) x (2)

N N
exp [ =08 | D VIEh) + > Viuh)| |
=1

i<j

where V! is the external potential, and Vi;j is the pair potential for particles ¢ and j. The
(I,m) element of the Ny () x Ny(jy matrix A(k, k + 1) is defined as

a(k);m = exp (—thgﬁ(rf — ran)Q) . (3)

To sample the density matrix from Eq. (1) we use in the Metropolis algorithm the modulus
of the short-time propagators ‘ p(RE, RF; 6ﬁ)| as probability density. For fermions, the non-
diagonal short-time density matrix is not positive defined, and hence its sign should be taken
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into account by an additional weight function with the values, W(k,k + 1) = +1, depending
on the parity of a permutation Then the total sign coming from all “imaginary time” slices is

defined as W = H W (k,k + 1). For low temperatures and large systems the sign of each term

in the product changes independently, and as a result the total sign strongly oscillates which
leads to the so called “fermion sign problem”. In the present PIMC calculations, where the
maximum number of exchanged particles was two, e.g. in the biexciton - two electrons and two
holes, Eq. (3), can be used without modifications. The results presented below are for the singlet
state of two electrons or two holes. For zero magnetic field this corresponds to the ground state
of the system [9, 10].

For excitonic complexes in the QW in the presence of a homogenous electric field applied
normal to the QW plane we consider the hamiltonian of N = N, 4+ N, particles

~ . 616]
H = H+Hh+zzg|ﬁrj| (4)

=1 j=1+1
2 w - ¢
Heypy = ; <— Do Vit Ve(h)(zi)) (5)

where V®%(2) is the external potential which combines the effect of the QW confinement
(presented as a square well) and the applied electric field

yest(y) = ek, -z, |z| < L/2 (©)
VO+eE, z, |2|>1L/2

Our simulations have shown that use of the classical square well potential (6) leads to a
discontinuity of the density distribution at the QW edges. This discontinuity comes from the
infinite first derivative of the classical potential and is very slowly converging with the number
of time slices n in Eq. (1). This problem, however, can be easily overcome by using an effective
temperature-dependent potential (see the detailed discussion in Ref. [11]). We have precomputed
for every QW width, L, strength of electric field, F,, and several inverse temperatures 03 the 1D
density matrix of electrons and holes in the z-direction. The effective potential V;f ! can be then
obtained from the following definition using the pair density matrix in relative coordinates [6, 12]

3/2

p(rij, vl 08) = exp (rij — ;)2 | exp[-0BV (i), (7)

s Mg
(27hd63)3/2 21263
where 7 and j can be any pair of particles, or a particle and the quantum well potential
(represented as an effective particle with the infinite mass; in this case the reduced mass coincides
with the particle mass ;5 = m;).

In the calculations of excitonic states presented below the temperature was varied in the range
T =1/400...1/80 Ha (for GaAs heterostructure with 1Ha = 2Ry ~ 133 K this corresponds to
temperatures 0.33...1.66 K) depending on the binding energy, Ep, of the excitonic complex.
Usually we choose T ~ 1/10 Ep and our calculations correspond practically to the ground
state. We discretize our density matrix in Eq. (1) into n = 120...1200 time slices, hence
we use the high-temperature density matrices at temperatures 1/03 = 1.5Ha (199.5 K) or
3Ha (399 K) and for the QW we use the effective potentials V:(];LJ; for electrons and holes
respectively. All interparticle interactions and the external confinement have been treated in
the pair approximation [6] using the off-diagonal pair potentials. More details can be found in
Ref. [12].
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Figure 1. (Color online) Probability density p of free particles (electron and hole) and the
particles in the bound states (exciton, positive and negative exciton) in a homogeneous electric
field of different strength [0, 4, and 20 kV /cm] applied in the growth direction of a QW of the
width L = 30 nm. In Figs. b) and c), the positive (negative) electrode is at the right (left),
therefore, electrons (holes) are shifted to the right (left). Due to the higher mass the hole is
stronger localized than the electron (my/me = 2.27).

3. PIMC results for excitonic complexes in a homogeneous electric field

As discussed the electric field modifies the confinement potential and leads to a separation of
electrons and holes, which leads at sufficiently low temperatures to formation of spatially indirect
excitons, positive/negative trions and biexcitons. Consequently the spontaneous recombination
time of the excitonic states can be increased from tens of picoseconds to the 100ns-order and
allows for equilibration, i.e. at sufficient low temperatures relaxation to the ground state.

We start our considerations from single excitonic states in GaAs/AlGaAs QWs. With the
increase of the homogenous electric field applied perpendicular to the QW plane the probability
density for electrons and holes becomes shifted to different edges of the 30 nm wide QW (see
Fig. 1). For three different electric field strengths presented in Fig. 1 we calculate the probability
density of free carriers (an electron and a hole) as well as the electron and the hole probability
density (PD) inside the exciton and the positive and negative trions, X*. At zero and weak
fields, Fig. 1 (a),(b), the probability density in each excitonic state depends on the relative
strength of electron-electron repulsion and electron-hole attraction. For the exciton the peaks
of electron and hole PD have the smallest separation reflecting the fact that the exciton is the
most strongly bound complex.

However, if we now move to high electric fields of about 20 kV/cm and above, the correlation
effects in the growth direction of the QW practically vanish. Now only the electric field plus QW
confinement plays a dominant role and determines the profile of the PD. In this case, as shows
Fig. 1(c), the PD of free particles coincides with that of the exciton and the trions in the same
electric field. This result allows us to conclude that in the QWs at high electric fields for both
numerical and analytical considerations the usage of the adiabatic approximation in z-direction
is resonable and the problem can be effectively reduced to a 2D system similar to the approach
used in Ref. [8]. The validity of the adiabatic approximation can be also independently checked
by comparing the binding energy of the excitonic complexes vs electric field for the effective 2D
and 3D systems [11].

In our calculations we have considered three GaAs/Aly3Gag7As QWs of the widths, L =
10,20 and 30 nm, which are typical for experimental samples. As we can see, from Fig. 2(a), in
the narrow 10 nm QW, excitonic states are practically not influenced by the field and the total
energy stays practically constant. In this case the carriers do not become separated, at least for
fields up to 20 kV/cm, due to the dominant effect of the QW confinement, therefore £ > 0 in
Fig. 2(a). In contrast, for the wide 30 nm QW the field dependence of the total energy is strong
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Figure 2. Energy of the exciton, trions and biexciton vs the strength of electric field a)
for a 10 nm and b) for a 30 nm wide QW. In weak fields the total energy show a quadratic
dependence on the field strength, E,, (quadratic Stark effect). In the opposite limit of high
fields, the dependence becomes similar to the linear Stark effect.

and hence E < 0, see Fig. 2(b). First, the energy shows quadratic and then linear dependence
on the field strength. The Stark shift, in this case, can be obtained by subtracting the energy
at zero-field. Our preliminary investigations of the binding energies of excitonic complexes in
a 30 nm QW at field 20 kV/cm shows that the trions can still exist at these fields, while the
biexciton becomes unstable already at fields 10 — 12 kV/cm. Hence, at these conditions both
the indirect excitons and trions (for temperatures below 1.1 — 2.2 K) can exist. In comparison,
the biexciton becomes ionized into two excitons at the field E, ~ 10 kV/cm when the induced
dipole moment of two coupled excitons becomes sufficiently large, and the repulsive dipole-dipole
interaction prevents formation of a bound state.

Now we analyze the field dependence of the induced dipole moment, see Fig. 3. The dipole
moment can be obtained directly from the electron and hole density distributions calculated
for different field strengths as shown in Fig. 1 (the exciton case). To get the dipole moment,
u = e-d, we use the expression

d=(ze) — (z1) = \Nmbmmwmv&um — \N@biwwvgw? (8)

which is the difference between the average positions of the electron and the hole inside the
QW, see Fig. 3(right panel). The separation d starts from zero at E, = 0 kV/cm when
the PD is completely symmetric, and increases monotonically to the value d = 15.78 nm at
E, = 20 kV/cm. At weak fields, E, < 10 kV/cm, the dependence is linear, and it starts to
saturate at F, > 20 kV /cm.

In the next section we discuss a possible realization of an external lateral confinement for
excitons in the QW plane and show how the above results from quantum simulations in the
homogenous field can be applied to thermodynamic simulation of many-exciton systems in
arbitrary (also inhomogeneous) fields. The excitons get confined in all three spatial dimensions
and their density becomes a controllable parameter through the strength of the external field.
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Figure 3. Left: Electric field dependence of the average electron (hole) position in a 30 nm
wide QW. Right: The induced average electron-hole separation giving rise to a dipole moment.

4. Realization of quantum Stark confinement
To realize an electrostatic trap potential for optically created excitons in a single QW we have
to put the following constraints on the external potential:

(i) As excitons are quasi particles with a short lifetime we have to assure that they can
thermalize to a quasi-equilibrium. By spatial separation of electrons and holes in an electric
field perpendicular to the QW plane the exciton radiative lifetime can be extended by more
than three orders of magnitude.

(ii) In addition to the spatial separation of electron and holes, a lateral confinement for the
excitons arises from the quantum-confined Stark effect, which depends only on the z-
component of the electric field. The size of the resulting trap is of the order of several

micrometers. A similar trap size has been recently realized by applying deformation stress
on the QW surface [13].

(iii) The radial component of the field leads to destabilization of the excitons due to the opposite
direction of the external forces acting on the electrons and holes. Hence the radial field has
to be minimized by a proper choice of the geometry of the electrostatic contacts.

(iv) Further the applicable field strength is limited as it should not result in ionization of the
excitons by tunneling of particles out of the quantum well.

To produce a suitable (inhomogeneous) electrostatic field F, in the quantum well plane
satisfying the above requirements, we consider a single tip electrode placed above the substrate.
Thus the in-plane exciton-exciton coupling strength can be adjusted independently by the
strength of the external confinement, as well as by the exciton-exciton repulsion strength.
While controlling the tip-substrate distance allows to specify the geometry of the quantum
Stark confinement and with it the exciton density, changing the tip voltage gives direct access
to E, and the corresponding exciton dipole moment, see Fig. 3 (right panel).

In the following we consider a single QW of the width L = 30 nm which provides a sufficient
strong Stark shift (see section IIT). The distance between electrode and sample is 50pum and the
(non-critical) width of the bufferlayer is 300 nm. Due to the symmetry, the radial field E, below
the electrode is zero and increases linearly with the distance from the trap center, see Fig. 4(a).
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Figure 4. a) Radial, E,, and vertical, F,, field component below the electrode. b) Exciton
energy as a function of the exciton in-plane position (quantum Stark confinement potential),
which can be approximated as parabolic in the central region of the trap. Right Figure is an
enlargement of the dottet region in part b).

This provides an effective “evaporative” cooling mechanism, because with increased distance
from the trap center ionization is enhanced and energetic free electrons and holes leave the trap.
In contrast, according to the large tip to sample distance, the radial field in the central region
of the trap is negligible.

To avoid formation of other bound states except excitons (biexcitons and trions) the applied
field should not be less than E, = 20 kV/cm. On the other hand stronger fields introduce
high demands on the experimental realization and lead, as mentioned above, to ionization and
tunneling out of the QW. Hence we consider, in the following, an inhomogeneous field induced by
a tip electrode, which below the electrode in the QW plane equals 20 kV /cm and causes a Stark
shift of 20 meV, see Fig. 2(b). In the relevant central region of the QW, i.e. R < 15 um, the
effective lateral confinement of the excitons, as derived in the next section, can be approximated
by a harmonic trap, F, = %mgcw%R2 (where m, = me + my = 0.41my is the total exciton mass
in the GaAs QW) with the frequency wy = 3.8 GHz, see Fig 4(b).

By changing the field strength and geometry, the laser intensity (exciton number) and
temperature, the exciton-exciton correlations can be varied in broad ranges giving rise to gas-like,
liquid-like and solid-like behavior.

5. Model of indirect excitons in the trap

At temperatures much less than the exciton binding energy, i.e. T < Ep(X) ~ 133 K, and
moderate densities, scattering states, i.e. free (unbound) electrons and holes, can be neglected.
Further, the strong electric field prevents formation of biexcitons. Due to the strong electron-hole
binding indirect excitons are formed. Hence we will now transform the Hamiltonian, Eq. (4),
into a Hamiltonian of NV, bound electron hole pairs (N, = N, = N,)

Ne Np, No  Na
H:He+Hh+Z § ‘/eh(reiazeiyrhjazhj)“_ § Z Z Vaa(raiazaiarajyzaj) (9)
i=1 j—1 a=eh i=1 j=it1

where from now on vectors r denote 2d vectors in the QW plane. The Hamiltonian of non-
interacting electrons (holes) reads

Nen)

2 n? 2 QW F
By = 3 |~ g Vi, + Vi () 4 Vi Bt 201 (10
i=1 e

where V@W is the QW confinement and V' is the electrostatic potential due to the electric field.
Now we want to distinguish the interaction between the electron ¢ and the hole 7 bound in the
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exciton, V;h: J , and the electron-hole interaction of the particles ¢, j from two different excitons,

V;Zé 7. We call these two types of interactions intra- and inter-exciton electron-hole correlation

terms, respectively. The general expression for all types of interactions is given by
eiej

ev/|rai — r;2 + (2ai — 23;)?

(11)

Vaﬂ (rozia Zaiy TBj, Zﬁj) =

where a« = e, h and 3 = e, h.

5.1. Lateral confinement potential for excitons

Using the results obtained for the single exciton problem from PIMC simulations (Sec. III)
allows us to obtain the quantum Stark confinement in the limit d < 7, where 7 is the average
exciton-exciton separation., i.e. the exciton binding energy is much stronger than all other
Coulomb interaction terms. Then the Hamiltonian (9) can be written as

Ny Nz Nz
Zﬁ' YD U (12)

i=1 j=1+1

with the single exciton Hamiltonian given by

. h2 h2
B = = Ve = 5 Vi, + VE (e 200) + Vi (s ) o+ Ven (et e onis 2n) 5 (13)
where
V:{%( e(h)i> Ze(h);) = V(h) (2i) + V(h {E.(ri, 2i)} (14)

is the effective external potential due to the external field and the QW. Introducing relative and
center of mass coordinates of an electron hole pair

R’i - (mErEi + mhrhi)/ml’a r, = rei - rhl‘ 9
Zi = (Meze; + Mp2n,)/May 2 = Ze; — Zh; s (16

=motm (17

My = Me +Mp, M,

the relative coordinates {r;, z;} describe the internal exciton structure (exciton wave function
whereas the center of mass coordinates {R;, Z;} describe the position of the exciton in the
external potential.

Using the adiabatic approximation discussed in Sec. III we can separate the z-direction and
average the 3D Hamiltonian over the QW thickness using the PD functions of the single electron
and hole for the corresponding electric field, see Fig. 1. This reduces the problem to an effective
2D-system of dipoles moving in the QW plane. For our calculations we assume that the field is
constant over the (narrow) QW width, i.e. E,(r;,2;) = E.(r;). Knowing the electron and hole
probability distributions pe, pp, for a given external field, see Fig. 4(a), we compute the effective
electron-hole separation as a function of the exciton center of mass coordinate

d(R;) = (2e; — Zhi>pe(rei,zei),ph(rhi,zhi) ) (18)

as well as the average intra exciton correlation

h2
Uen(Ri) = (Ven(Teis Zeis Thiy 2hi)) pe,pn + 4 (19)
2mr Pe;Ph
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plus the effective confinement potential
U™ (Ri) 2 (VE™ (v, 2e)) pe + (V™ (Tng 2n))on - (20)

The total energy of the exciton depending on its position in the trap, see Fig. 4(b), is obtained
using the results for Stark shift of the exciton energy (Fig. 2) taken for the z-components of
electric field produced by the electrode, see Fig. 4(a). After separation of the relative problem
which gives rise to a single exciton Coulomb energy contribution Ug,(R;), the single exciton
Hamiltonian becomes

2

B 2myg

(Ri) + Uen(Ry) . (21)

Due to the quantum confined Stark effect, the exciton total energy has a minimum below the
electrode where the F,-field is the strongest and produces an effective almost parabolic lateral
confinement acting in plane of the QW, see Fig. 4(b).

5.2. Effective exciton-exciton interaction

As mentioned above we consider low exciton densities, that means for the considered trap on
the micrometer scale the exciton-exciton distances exceed 10ap (we use as length unit the
effective Bohr radius ag = h2e/mee2 =9.98 nm), i.e. 75 =7/ap > 10. Furthermore, our PIMC
calculations of the effective exciton-exciton interaction U, (R;, R;) in the low density limit show
that for exciton-exciton distances larger than 3.5 ap the classical dipole interaction is a good
approximation [14]. This means that all pair interactions in the electron hole system (except
the electron-hole interaction inside each exciton, i.e. terms Vi with i = j) can be reduced to
dipole-dipole interactions between (center of masses of) excitons

i Z Vveh—i_iivee—i_iivhh”iiUxwaR (22)

=1 j=1,j%#1 i=1 j=1+1 i=1 j=i+1 i=1 j=1+1

where Uy, (Ri, R;) = pu(Ri)p(R;)/(e|R; — R;|?). The dipole moment depends on the position
of the exciton relative to the trap center u(R) = o - d(R) = eg - [15.78 — 3.8 - 107? R?] nm. Here
we have neglected all quantum properties of the center of mass motion and the spin statistics
of electrons and holes. This is well justified in the low-density regime where the overlap of two
electrons (holes) is negligible.

Finally, the problem reduces to a 2D-system of N, = N/2 classical particles in an effective
external confinement interacting via dipole-dipole repulsion with the N -particle Hamiltonian

Ny Nz Ny
H = Z} +z; > £ €|R R|3 (23)
1= =1 j=1+1

which can be efficiently used in classical thermodynamic Monte Carlo simulations discussed in
the next section, where we analyze spatial configuration of N, excitons at different temperatures
and densities.

6. Simulation results

In our simulations the control parameters are the temperature kg7 and number of particles, N,.
How many excitons can be created in the trap depends on the laser intensity and recombination
rates.
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Figure 5. Typical snapshots of thermodynamic Monte Carlo simulations for various numbers
of excitons N, and temperatures T'.

Fig. 5 shows typical particle configurations observed in our simulations. First, we find that the
size of the exciton cloud and the exciton density in the trap center increase with the number of
excitons. Second, with decreasing temperature the cold excitons become localized. The typical
size of the exciton cloud, Ry, strongly depends on temperature. For N, = 3000 excitons,
Rz = 10um for T'= 4 K and R4 =~ 3um for temperatures around 40 mK.

Fig. 6 shows that, for 7' = 4K, the excitons are in the gas phase. In the fluid state (at
T = 40 mK) the excitons are localized in the trap center with the diameter D ~ 3 uym. At T =
0.4 mK the radial distribution clearly shows a shell structure. This behavior is validated by the
temperature dependence of the classical coupling parameter I' = (U, )/kpT = (e*d?/ eR?J) JkBT,
see Fig. 7. When we observe formation of shells, the coupling parameter reaches values I' > 100.
This qualitatively agrees with the well known results for a pure classical 2D Coulomb systems,
where the formation of a Wigner lattice has been found for I'" ~ 137.

On the other hand, if we look at the density in the trap center (see inset of Fig. 6), it
increases strongly with the exciton number, and a more accurate discription is required. Typical
parameters characterizing the “quantum” system are the Brueckner parameter, rs = 7/ap, and
the dipole parameter, v = 7/d, where 7 is the nearest neighbor distance (first peak of the pair
correlation function). Performed estimations of these parameters in the trap center give us the
following values (depending on the exciton number N.): i) for N, = 2 we get rs = 35 and
~v = 23; ii) for N, = 3000 we get s = 11 and v = 8. These estimates show that our classical
treatment of the center of mass motion of the excitons is justified. On the other hand, with
further increase of N,, rs; will approach unity, and a full quantum treatment will be necessary.
These calculations are under way [14].
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Figure 6. Radial density distribution of N, = 30 excitons for three temperatures. Due to

the parabolic trap the highest exciton density is reached in the trap center. Inset: trap center
density as a function of exciton number.
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7. Conclusions

We have considered optically excited indirect excitons in a single QW where the electrostatic
field of a tip electrode leads to spatial separation of electrons and holes. The harmonic lateral
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confinement of the indirect excitons in the QW plane is due to the quantum confined Stark
effect and creates an exciton trap of micrometer size which is much larger than the exciton Bohr
radius. In the considered low density regime a strong dipole-dipole repulsion allows for strong
localization of the exciton wave functions.

Using Path Integral Monte Carlo we computed the PD and the energy Stark shift for different
excitonic complexes influenced by the electric field. We obtained an effective exciton lateral
confinement and the dipole moment of indirect excitons depending on the strength of the electric
field. We discussed the influence of field strength, QW width, excitation intensity (directly
related to the exciton population of the trap) and temperature. Our theoretical results allowed
us to predict the parameter range where interesting many-particle states, including exciton
crystallization, are expected to exist. With these predictions experimental realization of these
effects should be possible.

] Lozovik Yu E, Yudson V 11976 JETP Lett. 22 274; Lozovik Yu E and Berman O L 1997 JETP 84 1027
| Bayer M, Timofeev V B, Faller F, Gutbrod V, and Forchel A 1996 Phys. Rev. B 54 008799
[3] Negoita V, Snoke D W, Eberl K, 1999 Phys. Rev. B 60 2661
] Butov L V, Ivanov A L, Imamoglu A, Littlewood P B, et al 2001 Phys. Rev. Lett. 86 5608 and references
therein.
[5] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals McGraw Hill, New York
[6] Ceperley D M 1995 Rev. Mod. Phys. 65 279
[7] Filinov A V, and Bonitz M in 2006 Introduction to Computational Methods in Many Body Physics, Bonitz
M and Semkat D (eds.) Rinton Press, Princeton
| Filinov A V, Riva C, Peeters F M, Lozovik Yu E, and Bonitz M 2004 Phys. Rev. B 70 35323
| Riva C, Peeters F M, and Varga K 2001 Phys. Rev. B 64 235301
| Riva C, Peeters F M, and Varga K 2001 Phys. Rev. B 63 115302
| Filinov A V, Ludwig P, Bonitz M, Lozovik Yu E, and Stolz H in preparation
| Filinov A V, Golubnychiy V O, Bonitz M, Ebeling W, and Dufty J W 2004 Phys. Rev. E 70 046411
] Snoke D W, Liu Y, Voros Z, Pfeiffer L, West K 2004 arXiv: cond-mat/0410298
] An analysis of improved pair potentials, valid also for high densities, is in progress.
| Filinov A, Bonitz M and Lozovik Yu E 2001 Phys. Rev. Lett. 86 3851
| Filinov A, Bonitz M, and Lozovik Yu E 2003 J. Phys. A: Math. Gen. 36 5899
] Filinov A, Ludwig P, Golubnychyi V, Bonitz M and Lozovik Yu E 2003 Phys. Stat. Sol. (¢) 0, No. 5, 1518
| Ludwig P, Filinov A, Bonitz M and Lozovik Yu E 2003 Contrib. Plasma Phys. 43 285



Origirul
Fapar

bl i acd B I P T AL L% et D0 DL | i NN

Quanium Stark canlined strangly camelated indirslexcilans
inquanium el

F Ludwig™™% 4 ¥, Flloav M. Gxks’, and H. Sak”
' Crealra o Thearale d P ca ared damopbvales, CALHECL Ed bl nardie 14 508 Pl Somung
* Craliea Wbl cd, Lind vl e T cateadr, Lindcra wapd i | 160 et Sormaarys

Bechoed 0 Pebreany R, rad acd AR SO0 Jcequed t A ) e
Febd e ondl U1 ks ais

PACE (8 10En, 7LLALY, 7L R 7D

Th il s conriboon we conkeranu l qucnbcs o qukdlorekad ndrea codiondIn. dngke grncn
L L Path Erupr | Idone Sl .o poac. Ghon dra princilar the sl aquoudonad dacrone
ol o ared he Likcal quumons Sk condremeneof e crckont in e gu e wd| which i o=
cheaad by v o eleark Fddof s drgle dpckean Brchirgog the feld arcrghy he s  an-
B dras, Ue crelaken g £ the

P b ket Wy B f P D el U IR e iorakadaT it wdl hadidmonrid
FE AANG L0 T 0 2| W, gl bl H 2 e it i AW Liibbe. b ot
T Ircraalry; nurwpanic pharemen,

1L M A ok M B, Wi

L Inlradwelinn
T L B L s e incramingly ik caasach afiats b basn devalad L indead watam i

Pty
e i fareione dnouds of ha eakon combiunts, 5 Und U Ui &40 S0 3Tl
adba s |21
Fax umwaluplion of woaln camshlion phanaarm, L b st kg capling of 3 neanope
bl

‘At U Jminl 3qnalon o slacieam ond holat 11 paducd by 31 SAATRIgACAn Aidenials
aarg b {]% geawih duesdion. Tha blasd cordineant aowa fare Lhe quonlure cordined Sad: wffud.
ST wh 3 ol op 1ms bang an the e of ol mur amalen. AN sledeniles ol log
b an T (P E whh b ) lorn, haa b
ol by Zurareann el ol [3] Sadeg upon fuld nduced badgxn angrasang, el arabe
2L I hav b g wf. [9-& | I conloal, Lhalop onaudid hick poos s
btia st conieal ruoutilary i Sk wallage 3, 3l mlly, U slitratl empls ddans
g Lx tugh duatally capodng i diplhand o
T Cmmpi S oG w ol Rk gl Ll e, a1 165 1 54D, P 1 e 1 HE

1 M A g o B

*

A s sl B HL M Oraae]

Forcn cfthe 8dd f2, = Lirn, 3, = S
e e e on der opbaicon Lorw i

ciolon propadun dx bva deacenl ¥ hdacokuducs
B Loy Paih nlagod Banks il wia coopuls o S0l
PEAapLAT Lhie Aladean —hold Mo 3 AAll 3 Ui wialian Lalad sney 3 % fndun o e apled
Sl drarggn, Flg 3 Thaowd amalalion Lah mqus i da o e in Bl 193 Tha findumantal Bals-
L

PRI X . SR S | (e ]
AL LA A ;[ i bl m
whacs W W 4 ¥, 13 Lha rarshaca faladron andhola and K=(3) 1 L sclonl polankal wheeh oo

bna U sl o ha gonium cadinemint of Lhe onlur wall (Al 33 5 Saock will] and thi
ki dacios >4l

- . 3, [EERT-
o {"."-i-fn. a1 Lz ra

Uang Lha Btsmalloman (4] ws clodskd b slsdoon 3nd hols demly dokbukan o dofand fud

TI0y Lhus g e it 3nd ol o i na | 10, U slaciean 3nd daa L holsLasdrdon i
2n % o aleangar Lron un LSl s O, Fancan 28 a s alicean-hos = wsll 3 Lhe dedean-
duckan & el 13 g i adicad & Liad3 b 3 pdticid 3 panlanaa
eacomiarnlianyanh xwcad woalon Lo rea) i bile cackicas pdaca, ALlhad e kalhe
walan wnh&rﬂ-ﬂmﬁ]ummqmnmnw,& = 57y allowng
Ix o g aladeon-hoe 4zl o3 g Weaole Tha pards ol onads o
InZutind e akg ke quoniom wall, whats s sblodron -h ol Wm0 Lo by L sedns fud
rarggh Tha ead st rurchur of ) % baunhos. o 1 3 dasnle (%, s e o of unde-
warsblaquanlurs wall ckruaa dudislian.

——p——— 1AL I T 1A o B Bt WAl

e . Coctwl AL iy S carfred card acd | rdres crekara

d2 v mrn
-

dde BN

i

Vi | ferdee ke s wwpitcon) The claraaui
(B w werceringthe poacrd d. grader, Le 8dd,

b ey W, therafore Hghidelds e neodad b
anthe =0 a3l heradd ddderponcn. X

Elwelragklic lrap palenlil

_ R T ——
Danam®s aquaion P% = mpic, bx 3

2, 1" w2 =" e " 10 L ol and 3
ik la Tochiad andy condlon
bty Layac 3 = it hkaladnsd palanlal,
alacin: daphcarant fdd
=]

b gvan by K (7] upia, hal an wopeorcanial ealine
4 LT e e 2 - WATTE P L i Lnds v

card acd | radrees crekara

[P

i L[andin ol oor a0 v b o] ) ol i Surk e Srekaniaul craygy e
R did P P L & B gt ] B BRI o Gl o & A mLkon, 17 e perading:
o X Dl 2 Moo, R i L e corabdl ke by churging e Bed arergah,

#a shawn un B, 3 Lnng tha Juld deangth in ] T, which o peopadiaml Lalha Lp walage. L
dupola ek jand L e alcangth o wialon- e alan ceaulaan and sl Lhe sk W, whch
12 umwac dy propatkaml L b alacloon hale warss fncluan v, cn balund 42 Lha S thawa,
e La L 2kean  lundng gy n 2nda, a Rkt of sppezarmalds ORI 13 Middiad b Szl L
e cman, 3wk quonlure, il and 3 Luge dipals rareanl W = 5,37 2, whuch
it diun i an L #alan Lo b, 13 advanagean 3 th gradun of e b e, Ls L an-
Anwnan doagih , a hgh fuld, popado ol b he deok ek of = £ 61 00 e Sk
acact). Thusa Lo L g Lacadrralian f dactrorn and halaa, 1 Sn2 dipol manmn Loacha
valuan fon n Cada ond nlucle ol Lraes fuld drangth, s R S Futhe o of e
Jkangih ma Labe 3wiadid 3 n & L wll Suns bnnd Ll g e % pane

Dk g Lacraadtyn i Bdanba Cacla arratdian of sl Lam La thamnd of indead, waolan
i 3 Sadodoasd %, el shawn |0] e o3 sy aholaw pasbais Lkl codnaranl
[, =33 3 carmaap andurg ba Law daraikaa 4, U 1Y, hacas of 3 L mdics nurshas ndlaw

deang &alan-kaln upkng [0 =8 T 0] SN b sached Tha . Lo
‘wilh W ok of ns ol o . ahald dlosdica fetha i ol
ok af ha wealan s Encam and ok wsalon oo oo o rtdnlally o bl

Ackrcsd Wk the Dunwache drachutl for Arunclil g of e profa In he.
o i

Fek e

11170 B Conoede and W, . Sockaon KLTF Cea 1) 27419

121 APl ince K Bloris, 7. Codw g, and o, B Lok phy il b (i) d, 000k,

141 5. 2 racrrunn, A O Goronay, W, Bracry L . Eouhucs, kil Blchlar, Jrd W, Wegs dnd o, P B @
S, ILHE19)

141 T Bkcr, AL Zravar, M. W cgachokdor, b, Rbchicr, st e s (4] 182, B30 | %6

181 4. T. Erwruck, M4 Cpeks G0 Andrcy, C O Boce, MBI, ard 4 CSuard, s Cond

S [0
181 8. Bpapan, S Chery 5 Srn, O ke, L H REEET, ad P A PURnun, P, Gan B 70, GkE
[ d

171 A b radtaal an U fefan 8 d et i b Jd e whh g ardoadl g LT ks th QW o
dacoiwd In|3, B}

18| Dz sahe awbr dekeark B SRV e S IR red arulr cncmd 84l
aomdan

1%] A Alincen P Lok, o @ Covab, bl Borks, ard B Sl3, L P Cord S, 15 1972005

1101 Witk by =01y, b = 00T, by = OBy, b SO0y by, S0, Pha b 1
the i dimnmud

1 A L g ki 3 . s Wb [ -






phue. mLEd. (A T, 2T - 0 0 T L | e VSR

Fath integral Monte Carle resulls for Bose condensation of
s cscopic indirect excitons

A AoV B ool T Luchly’,and % T Lmmdl?

! s of Trwowi | Brpckcc and Anphpckcr, .40 @1, Ca bk oo 14, 34000, Camary
* i o S o o, LA, by g, Trokeks, W 2150, o

ol d 0Pa by AT, redemd 1% 4| 08, x ape B oAl a0
Pubich i 4 Ly A8 i P A

FACS AL I0Cn, 11 B4 10 TRE

I prindpl ke BT arct g crmdam i s e 3t arfrean
;—m::-p-m 4 lur aremaim S Wonk varifed The oo Ercion i
T ety 2 Cons T e cf 2 orma i ot | a3l cednaer:
T

1 AU g Cl 3 . Tl

1 JohriucHon OvecHw Lat hem deadc Grbme of iy opohd (o) s 0]
Forv atizxbad I g athnion e ko Hals oo U G aloabg b ek o oach agack
aqulixium dab dn ot yeaz sk el o b e peienilly oaludhy ool .,
g [57, boc ok Hmoorb el ol B sl cleal Bl Hmdllpﬂmﬂlhm ard halac, cE
nn[ﬂ..n.«rug ol b pex B Rndain
ncatLon 79"y ook ¢ b Lo b Huc cpc b mun-umun-puumcxmmg-
wpu-ruygrunwuuu-uunyun:m Tha oz cholargs b s okt pock Hom
chauid ot dependon spponroalonc., oich = he acuroplon of o dalcler of ndbddol svellonc.
In thic pope, 0 pram kB od-prinlpls ool v e slackore and holc o bl xuchly ol
otk Lac. Boc coropacd.on, wa alm porvki ool om a”bomnk ool W wllnotus aclph g
which oiptacec M Lot wchonho ke by M v dione o n 2 T
o Lc Huk ver hores Bund bk e oot of e bo gty ud ol xo ey mnclle o b ud
avelbonea v Lion inbacaclon, which Ln Bxctls vacy dffscan Boro 2 dropls dpok LniscxHon, an g [5
3 ocdec ko B on b ofact of Peool v T dolrbee, v conckde x ofmance cxe be o beg
Lay i cyc b of ek brore and holac (i B e vacbbwopadicn Incaclonbutinke B -dicls dercky
okt (o W Bunchion | o bk oum LA i comeks puomubton, Le. T e omubon of 1 b
I x cropnad by b coe prrmuabioncE holac.

? BModel T Pteolbonian ofthe cperoot Y, = My = M indod sleckon-hols poloe ooade
» ¥ »~
- - sy - L -
F o= FutFat . H= 3 [- J +—o~h’:] m
e e e

whEa a = £,A, dackoe d holec 3 Loced In b by oot by 3 didncs d and badape
unmsuzmunm Takra, Al Langhe Al e glvaninunis of B sEsta e s oy =
Fa e’ and v un ZrfSe pEcrcie wkh i b = 297w 4 = ATiH ool lna g = 107 )
Tha ety k <ot by e lop Exgancyian u mid =

[ p—

gL el ot dud by b cupling

i s B oy i, i T T s 4o (T T

Lokt ance M g 2

o b Braci on o oo concnosdard of copeniol d
g < coping, & = 13 Barole ofihy booonk: reoe |

Mc L b Tocw condarcaia, e g (83 g
concnoty ExHon, Pl S ahkhoxiec

Lid o] derdly 3 = 27 GE§vdmE
g dol ;dgunkem ot L, 5 ad
Iymcomngl T = 1- § . Thgd Ln;—-nnmy‘mummcm
o He amaancload by tw Fathlt A urg bw B, 2, = AT TS g e T
mdﬂn:u-:mhph:ﬂdhm!kh

sy
~whkh, wlhin be bao-fuld oo Lic S

4 Fecnbocreulc L noa onddc e ook of b nack ool alouoe, k]
chowc acuks Poc M = d slackon hole ke 3 e Wopeohuo £ = TL3miC Pat s chowe e Backo
Hu Pl s e on b ol ek bt 0 (RCE okt ala dmone. Sy b Pl o puldon bekamn
v alackone (an o, analogau by, b holac | B an Lncoocd Localuation oftndiddol prlele. This
Ic canrn, Ln pcticulae, oo H nco o lo alltion of be canlec pctels (B patiche boos qhwdeal.
chu L) and B Hw dlghtly cvckcnd dardby L bebvan B airac pdkls and b dwll Allough Bic
s cra b bann P omland Boce chilot oiculk Eore fila didd o no i e 3o o
bm ool L frac 3 Lagn e on B ool Etion, cE Blg T AEkma Indwe daclly g 4,
both i agn lthin He chiiod son, This & oty i oo, dnes 2k Lag <oupllng o
Hu vore Buncon madap it ool ¢ooabion iB T da b b Couomh opudon @ mh o e
Hon quantum v dongs aBack. Homvec s 3 cdicalvale of o N1, he dENonce of te b
3 ulalon o Coploly Fhile B boronl: modeL. bz 3 ¢ontruour g Hho? B cugs o Bclon
Rt vk caladaton oools 3 moctomar ok n of % B ol valec of A, oty
Huo highc cndite B olrvancs of Coulorsh <om LHos decoaa ¢ompad b ha B e opuldon
inevchon g of ko acenk ake s o holac, The e bard aenln g, Yale goralng Bethe e Baool
ke ot He radapct iFm abomnk: o A

Hw wvclon opacudPox Hond o aoc.

3 Dlmsdm cuormxy v hae poorisd bot pondpls path niegel Monk Calo ook b ik
octavekone confired In 2 hermnk top. T droutslons concantoind on e oglon of dong Coulerch
coupling, Ls. Lo kromohuc ad coopraily ke Indxpc darcky of slbors wd hole. Baom
o po o L ctig Hore [8.7] e kna ok i oormbsce g s com on b te cocalad Wgne

ke fasnd o 1 A UM kg Cd 3 . Tl Wb

L) A Alm mal:
=
LIL] — WML
M, oas| -
3 }’ Zod
il.ll i
h |
i i :
It !u:
4
N v
L%
" T
O, rin ] Ol r ]
31 Pdrciodboim () reieda dencydon o on ) B rog oopiing 4w 13 Br

m i pra o Qe et e o e o |
o b ey of M el dmone and

Lo, &g, [} Thice vaskpom: s du Lo ¢ e ot Ln
k rmdel,cm s conkske Lot ad, only
[ 3

Lring Hu [th Nl Bt Cxin (R C) e

FACn Hr crhm, mo Auttes dmpllfcalo: (fwh x

v P CItLy ol o Bormlonls calculatont i st 10

8 apEx ooty b L0 Y o (¥ adnclee t Btz e n gy, Ak

. g
mractalcr chaly sonfomthic kamd The Lngh of He plaau

[rera—y

E] A AIn mal

Pt st 471

I EEEREREERE]

11111711

Bty bl ety prmieg 2
Jig 3 Core ricon ofhe oo rodsd 3nd e o3 Brmlonk: drola konBor é e hoe ol () Bl dindp
ol aloe oA (o corar) rdhoh (G mAEr A m B HISGEN odon Bakn amx
coningerargha T m 3123

ool s chats “hich Lt ol b Py ool L bitords: na rocos: ople cpcam This lehordocles Bt
alm Ln Hw paont dmuslon,in petada L Be ol 3 pols ddr o of aldmne and holac ln
Hulc oope e Lypee. Bovmvar, dos b B pimng inbeday e oo Ltore ocubing Lnoombon of Lehtly
Bourd Indeack Lo, e pacint ot teac, in addon,, dong ool oyl bchac To
anlyu b Lathc, v b compuad e Eodlon of B coderced rilon x il a e opeud
Eox Hono £ v ko and oo vad kb by Lagn vk,

The paacrkcydarn of shcbon-ols ke B Eaqumntiy roodelad by achgh Ly cydaroc of s vcloc
*Ahlch o taatad ¥ bom 0 o dmualone, A Yo 3bls b b e oL gt e vk b
«oroponant B crolon oy Ln e plvn oo b cnge. W have Bound ot e boonk ool wadee
“anL akcong oo coupling, L. B b = 18, Hovec, b ool v of B coupllng o,
Hw boconks ool e Lok qualiHaly wong ook boc B apeoukd bxcion and k notappllebls. Sn
tw mxll'll'l.vlll\rpdﬁﬂh:m.lkhhswﬂmthhnnuhlk:mﬂyﬁﬂdh}h
chols,

mu.mmmh ok cyct oo cho gty couplad indioacbavellone k s vpechd b mhibE
ancitwr cirt by quon ko rony-precLs Ls phe nors non - Fie Bocrootion of acupeomild whih e porddad
by Ancicm v and LU [ 107, Cagmit [11] and ofwo and which voc canly ohacad b helluo 173
Th ot cycamt ave Lo evhible coptalivtion 3 dig iy Lagec vl of & Hon paonad o
Fololmcy oot rndlots ok ren stHe o pecrobie, beo Wil ormin 38 ks opoludtocion of
nwelbre

Eifirex o
Bt S i B,
5 i n"r.d?‘fwu T o, hd Barin e Sol3 xapedEx i kalm il Phe
P Lop A R M Bonio, axid Sida, b oo
] 5 et e el Lol Py Be. Lo D, 21 (200
B 4 B B 4 M cam g a0y
2 Rl 3 e ekt s i s 1 ombock B by iy Sycmne, hd Borlia i Sarkn
mdgmnn,m o, 2008
el Aﬂuu:uumgm%ana(nﬂ

-]
L AR
B & o Bk TR P ey ot o

1 A AU H g C T, Wb ke fram e






5.3 Crystallization in Mass-Asymmetric Electron-Hole Bilayers

5.3 Crystallization in Mass-Asymmetric Electron-Hole Bilayers

We consider a mass-asymmetric electron-hole bilayer. Electron and hole Coulomb cor-
relations and electron and hole quantum effects are treated on first principles by path
integral Monte Carlo methods. For a fixed layer separation we vary the mass ratio M
of holes and electrons between 1 and 100 and analyze the structural changes in the sys-
tem. While, for the chosen density, the electrons are in a nearly homogeneous state, the
hole arrangement changes from homogeneous to localized, with increasing M which is

verified for both, mesoscopic bilayers in a parabolic trap and for a macroscopic system.

The results were published as refereed journal publication:

5.3.1 Crystallization in Mass-Asymmetric Electron-Hole Bilayers,
P. Ludwig, A. Filinov, Yu.E. Lozovik, H. Stolz, and M. Bonitz,
Contrib. Plasma Phys. 47, 335-344 (2007)
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1 Introduction

Strongly correlated Coulomb systems are of growing intaremany fields, including plasmas and condensed
matter, see e.g. [1] for an overview. In particular, Wignssstal formation is one of the most prominent correla-
tion phenomena observed in ultracold ions [2], dusty plas[8&], quantum dots, e.d.|[5], 6] and other confined
(non-neutral) systems. Recently crystal formation in meoaponent (neutral) quantum plasmas was demon-
strated by simulation§ [7] confirming early predictions oféhcrystallization in semiconductors by Halperin and
Rice [8], Abrikosov [9] and others. Interstingly, this issestially the same physical phenomenon as crystalliza-
tion of nuclei in White Dwarf stars [10].

A different type of two-component system, standing in betwihe neutral and non-neutral Coulomb systems,
are bilayer containing spatially separated positive arghtiee charges which are most easily to realize in semi-
conductors by means of doping (electron-hole bilayersgséhsystems are of high interest because the strength
of the correlations can be tuned by varying the layer sejpardt The interplay of intra-layer and inter-layer
correlations in classical bilayers has been studied inildetamacroscopic, e.g.[[11] and mesoscopicl[12, 13]
systems. Quantum bilayers have been treated much less,gsdd4[15) 16, 1i7] and are much poorer under-
stood. In particular, most investigations have considsyaametric bilayers, where the hole to electron mass ratio
M = my/m. equals one. However, the typical mass ratio in semicondsictmn the order ol = 3...10,
and even exotic materials exist whévereachesl0 [18] or even higher values.

For this reason, in this paper we concentrate on the effettteoiass ratio on crystal formation in quantum
electron-hole bilayers. Varying/ from 1 to 100 at low temperature and high density, we can tune the hole
behavior from delocalized (quantum) to localized (qudassical) while the electrons remain delocalized all the
time. As was recently observed for bulk semiconductorstidles undergo a phase transition to a crystalline
state if the mass ratio exceeds a critical value\f. ~ 80. Here, we extend this analysis to bilayers where
M., depends ol and the in-layer particle density. To reduce the complexitthe problem, here we will keep
d fixed. The complicated overlap of correlation and quantuf@cts of both, electrons and holes, is fully taken
care of by performing first-principle path integral simidats. We present results for two types of e-h bilayers: a
mesocsopic system &f = 36 particles in a parabolic trap and for a macroscopic systethheo$ame density.

* Corresponding author: e-maludwig@theo-physik.uni-kiel.de, Phone: +49 (0)431 8804732, Fax: +49 (0)431 880 4094
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2 Mode and Parameters

The physical realization of the mass asymmetric bilayensitered here can be a system of two coupled quan-
tum wells filled with electrons and holes, respectively. Aldigional in-plane potential can produce the lateral
confinement of the carriers leading to a system of two couglechtum dots. Recently, we have analyzed in de-
tail a possible realization of a parabolic in-plane potnising the idea of the quantum Stark confinement [19].
An inhomogenous electric field applied perpendicular to@w plane changes the energy of a particle in the
guantum well because the penetration of a particle insie@dnrier material depends on the strength of the elec-
tric field. For example, in GaAs and ZnSe based QW one canaeh@monic trap frequencies fronGHz to

1 THz for typical electric field strengths af) — 20 kV/cm.

In this paper, we approximate two coupled QWs by a model of ventically separated 2D layers popu-
lated with NV, electrons andV;, holes (we consider the ca$é, = N, = N/2). The charges interact via the
Coulomb potential. The underlying Hamiltonian is well defirand is of practical importance for semiconductor
heterostructures

N N N, )
H=H,+H, + E E €i€j i Z h v m*

’ " 7 ’ “ ( * Ez S 37’12) Y (1)
i1 jit1 6\/(1‘1' I‘j)2 + (2 zj)2 P 2m# 2

where the electrons (e) are confined to the plare 0 and the holes (h) to the plane= d; alsor; andr; are
the in-plane 2D radius vectors describing the particle dmates in each layer. In the following all lenghts will
be given in units of the effective Bohr radiug = h%¢/m*e?. For example, for GaAs and ZnSe quantum wells
this results in the length unitsg (GaAs) = 9.98 nm andap(ZnSe) = 3.07 nm. Energies and temperatures are
measured in Hartree unitsH a(GaAs) = 11.47meV (133.1 K) and1 Ha(ZnSe) = 53.93meV (625.8 K).

For the mesoscopic trapped system the density is contrioyiéde harmonic trap frequency (we usgw? =
mjw3) and is characterized by the coupling paramater (e?/ely)/(fw.) = lo/ap With I3 = /m’w.. In this
case, the coupling parameter for the holes is related tolégren coupling as\, = A(mj,/m:)3/4. Also for
Coulomb systems in a parabolic trap one can find the followisefull relations. For two classical particles in
a parabolic trap their separation distangen the ground state is given by?/erq = m.w?r3 /2. Now we can
define the density parameteér (in analogy to the Brueckner parameter= (r)/ap for macroscopic systems)
as follows: 7, = ro/ap = (2¢?/emw?)/3 Jap = 2/3)\*/3. We will use this formula to obtain approximate
relations between the densities in the mesoscopic and sw@@ system by relating < 75 < 7.

2.1 Numerical details

To solve the problem oWV interacting particles described by the Hamiltonian (1) we the path integral Monte
Carlo (PIMC) method. The applied PIMC simulation technigues described in detail in Ref. [20]. The effective
interaction potentials used in the expressions for the-téghperature pair density matrices were obtained by
using the matrix squaring technique [21] 22].

One of the main obstacles that limit applicability of the R3Mhethod for systems of particles obeing Fermi
statistics is the so callefdermion sign problem. Without additional approximations the direct fermionid/iC
simulations are only limited to problems where the degeneisnot very high. This, certainly depends on the
physical situation and is related to the particle densitigriaction strength and temperature. Full inclusion of
the quantum exchange effects for the number of particlesidered here, i.€V.,) ~ 36 — 64, will not be
possible without neglecting the spin statistics and peatiris in the electron and hole subsystems. However,
direct comparison of the PIMC simulations without spin|[28th the results of Ref[[25] which include spin
effects show, that the errors introduced by neglecting five statistics are of the order of few percents and are
completely negligible foin > 10. The considered here electron densitiesrj.ez 18, are sufficiently low (for
the holes the corresponding paramei@ is even larger due to their larger mass) and the dominanttdtie
the interparticle correlations (and in particular for thadds) are driven mainly by the strength of the Coulomb
interaction and not by quantum statistics effects. Alsere¢his no doubt that the spin will have a negligible
effect on the localized states of the holes when they form da#tise. Hence, we expect, that the solid-liquid
transition investigated in this paper will not be sensitiv¢he particle spin. Nevertheless, the question about the
true ground state of the electron liquid (i.e. spin polatine unpolarized), just after the solid-liquid transiti@n i
currently under active discussidn [26] and requires furiimeestigation.

Copyright line will be provided by the publisher
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In the simulations presented below we assume that the etescémd holes can reach thermal equilibrium and
are cooled down by using, e.g.He/*He dilution refrigeration to a temperature 67 = 1/3000 Ha. For
ZnSe (GaAs) this corresponds to an absolute valui@ ef208.6(44.37) mK. At these low temperatures thermal
fluctuations are negligible and the system is practicalthanground state.

In the PIMC representation of the density matrix appliedun simulations([20], we have us@d6 (in some
cases 128) beads (high temperature factors). This wasienffto reache convergence for the full energy better
than1% and an even better accuracy for the pair distribution fumsti The use of such a moderate number
of beads was only possible by using pre-computed tablesegbdiir density matrices for all types of Coulomb
interactions, i.e. for the intra-layer and inter-layeeiratction terms in the hamiltonial (1), and for the external
parabolic confinement for both electrons and holes. To retheeenormous computational effort for a simulation
of fermions, here we used Boltzmann statistics for bothtedes and holes, and the spin effects are omitted. For
reasons discussed above we expect that this will not infRifreeresults of this paper significantly.

Both layers are treated as pure 2D layers of zero thickneesasi@ering that the thickness of real physical
QWs is of the order of few Bohr radii, this approximation seetm be reasonable for the range of densities
considered here, i.er; = (r)/ap > 10, and an inter-layer distance df = 20ap. [The case wher and
(r) become comparable to the well width would require esséptiabre computationally costly 3D simulations
and inclusion additional terms related to the QW potentighe hamiltonian[{1)]. For quite narrow QWs with a
thickness of abouta g and less, the addiabatic approximation can be succestaly with the 2D hamiltoniafnl1)
with slightly changed interaction terms (see Ref][27]).

For the chosen inter-layer distanee= 20a g, our system represents essentiall a 3D structure, as tt@ int
layer and inter-layer correlations are on the same lengthearergy scales. For small ratidgr, < 1 the
system approaches the single layer limit, whereag fog >> 1, it behaves like two uncoupled layers. Also, for
d = 20ap we can completely neglect the inter-layer tunneling, ardife time of electrons and holes can reach
a few microseconds which is much larger than their equilibretime.

The mass ratio of the electrons and holes is varied in theerafig < m} /m} < 100 which covers practically
all semiconductor materials. In our simulations we haventbtihat the initial equilibration time needed to bring
the system from an initial randomly chosen configuratiorh® thermodynamic one, depends on the electron-
hole mass ratio and the strength of the external confinersaially we skip the first0 000 — 100 000 MC-steps
and only then start to accumulate thermodynamic averages.

2.2 Calculated quantities
2.2.1 Pair and radial distribution functions

The physically relevant quantities to investigate a phasesttion are theadial, n(r), andpair distribution
function, g(r). Both functions are a good probe of the short and long-ramderdn the system and yield
information on the importance of correlation effects. lattical Mechanics these quantities are given by the
expressions

No N Naw)

gua(r) = 3z D0 30l =), () = o S (o] o) @

i=1 j=1 ) =1

wherea andb are two particle speciesy is the reference point for the radial density (e.g the ceotahe
parabolic potential as used here), and.) denotes the thermodynamic average. In the PIMC approach the
averaging is performed with th¥ —particle density matrix, i.e

(...)= %//drldrg...dr]v (...) p(r1,re,...,rN; 0). 3)

After the high-temperature decomposition this integraludes also additional integrations over the particle
coordinates on the intermediate “time-slices” and, asw@t,¢be particle images on each time slice also contribute
to the distribution function which significantly improvesetconvergence of the simulations.
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2.2.2 Lindemann parameter

One of the criteria to investigate structural phase traorst(e.g., solid-liquid phase transition) was proposed
by Lindemann[[28], who used vibration of atoms in the crystaéxplain the melting transition. The average
amplitude of thermal vibrations increases with tempemtfrthe solid. At some point the amplitude of the
vibrations becomes so large that the atoms start to occgpsptace of their nearest neighbors and disturb them,
and the melting process is initiated. According to Lindemahe melting might be expected when the root mean
vibration amplitude,/(5u2) /a2 exceeds a certain threshold valyé?) is the particle fluctuation from a lattice
site,a = 1/y/7n, n is the density). Namely, when the amplitude reaches at lé#stof the nearest neighbor
distance, this quantity exhibits a rapid growth when thegerature becomes close to the melting temperature
of the solid phase. While for 3D systems this criterion carsbecessfully used, in 2D this quantity shows a
logarithmic divergencdn(L/a), with the increase of the system size Instead, to indicate the phase transiton
from a liquid to a crystal, in 2D, one should apply the modifig@demann criterion and use the relative distance
fluctuations([29]

LoQaes ()

Ugb - Ny Ny Z Z <Tij>2 —b @

i=1 j=1

wherer;; is the distance between the particteandj. To reduce the effect of particle diffusion through the
cluster (in a finite system) or through the simulation cedk @ macroscopic system), which leads to very slow
convergence with the increase of the system size, in theledion of [4) we have performed partial averaging
over1 000 MC-steps (one block). After the current block has been ceteplwe proceed to a new one and the
MC averaging was repeated for the n&éx00 MC-steps. The difference in the fluctuations measured frimtid

to block can characterize the ordering in the system and e efective for large systems.

2.2.3 Nature of the phase transition in 2D systems

Strictly speaking, in classical macroscopic 2D systenis #t0 a true crystal state does not exist. The absence of
off-diagonal long range order in the system manifestsfits¢he existance of two disordered phases characterized
by different asymptotic behavours of the pair correlationdtiong(r, 7). The system undergoes a transition at
a finite temperatur@xr (Kosterlitz-Thouless transition) when the asymptates )., |—... changes from

exp(=|r — r'|/{(T)) 1

g(r,r') = I — v/ [o(T) (T'=2Tkr) to g(rr') =~ G (T <Txr). )

The important question of the relevence of the standarddflitzt Thouless theory also for 2uantum systems
has been disscussed in Réf.[[32] for the two-dimensional Xodeh A generalization for Coulomb systems is
subject of ongoing work [33]. Concerning the interpretatad the results of the present publication we indeed
find a abrupt transition in the decay of the maxima and mimifng @ ') (see the discussion below) which can
be approximated by the asymptotes in Eg. (5).

3 Numerical results: Mesoscopic system

In the following we consider a bilayer system populated witihhesoscopic number &f. = N;, = 36 electrons
and holes. The results of our simulations are presentedys[B3. In our simulations two different densities are
analyzed, given by = 5 and\ = 10.5 which corresponds to the first maxima of the pair distribufionction
gmt® = 8.7 andgp® = 19, respectively. These densities are chosen such that, giviie temperature, hole
crystallization is expected to occure, at least for largeswatiosM = my, /m.. If the density is chosen too low,
the Coulomb coupling would to weak for crystallization. @ ther hand, if the density is too high, the crystal
vanishes due to quantum melting. At the chosen densitiesldwtrons are always in the quantum liquid-like
state, while the state of the holes can be changed by vafying

At the chosen densities the total cluster radiu®js.s = 70ap (Rx=10.5 = 150ap). That means that the
average densities (in a single layer) are for GaAss = 9.4 - 109 /em? andny—10.5 = 2.0 - 10°/cm?, and for
ZnSeny—s = 9.9-10*°/cm? andn—10.5 = 2.2-10'%/em?. These values are for the electrons, for the holes the
radius slightly decreases whaff is increased.
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Fig. 1 (Color online) Path integral Monte Carlo configuration ofd®(blue points) and electrons (red dots) in a bilayer
system with distancéd = 20a s, temperaturd’ = Ha /3000 and different mass ratiosd/ = 5 (left column), M = 20
(center) and\/ = 100 (right). Each particle is represented §%6 dots (path integral) which, for the electrons, are mutually
penetrating. First two rows; 36 electrons and holes in a harmonic trap with coupling sttengt= 5 (upper panel) and

A = 10.5 (second panel). Shown is a typical snapshot (without sizisaveraging). Note the different axis scales in the
two panels.Row 3: Simulation snapshots of a macroscopic bilay®t (= N;, = 64 electrons and holes in the simulation
cell with periodic boundary conditions, the borders mask shmulation cell. Each particle is shown only once). Thesign
matches the one in the confined system of the second row. Bhestructural defects as the triangular lettice is notannif

Consider first Figl 11 which gives an overview on the obsenathlsior for the two densities (first two rows)
when the mass ratio is varied in the range frono 100. The first observation is that, in all cases, the electrons
are distributed almost continuously, whereas the holesrhedocalized whe/ exceeds 20 (5) at = 5 (10.5).
Due to the rotational symmetry of the trap, the holes arenged in concentric shells.

The main difference between the mesoscopic system with @phec inplane confinement and an infinite
system are well-known finite size effects, see e.dl [34] Wwiie related to the rotational symmetry instead of
translational symmetry. Further, even when averaged treemtodulation caused by the shells the density is not
constant over the entire system, cf. left part of Elg. 2. TWerage density is highest in the center and decreases
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Fig. 2 (Color online) Hole radial distribution (left fig.) and hel®le pair distribution (right) fol = 5 and five mass ratios
(see inset) for a mesoscopic confined bilayer \th= N}, = 36.

towards the cluster surface. Fig. 2 also clearly shows tfexedf the mass ratio. With increasirdg the hole-
hole correlations increase leading to increased holeitzzlon [5,[6]. This is accompanied by a pronounced
modulation of the radial density(R) and the pair distribution (PDFg;, see Fig[R. The reduction of the zero
point fluctuation with increase of the particle magsleads to a hole localization and crystal formation. It is
found that the shell radii in the radial density profiléR) in Fig.[d, as well as the peak positons in the hole-
hole pair correlation functiog,,, of the mesoscopic clustei (= 5) are independent from mass rafié. For

M = 100 we find that the holes are arranged3irshells populated with6, 12, 7 and a single particle in the
center, see Fif]1.

Fig.[d shows, that by changing the mass ratio from 100 the holes exhibit a transiton form a delocalized
guantum state with wave function overlap to a highly ordeyedsi classical state, while the electrons stay in
a quantum fluid state and their correlations change onlg kitith M for the present parameters. We note that
the classical Coulomb coupling parameter idr= 100 isTx—5 = (Ucorr)/(Ukin) = 345 @andT'y—19.5 = 158,
which is beyond the critical value for the macroscopic (O€@fy¥tallizationl’,.,.;; = 137.

Let us now consider the response of the electrons to the tamaf the hole crystal. While the electron
density is almost structurelss, some details can be sedreieléctron-hole PDF, Figl 3. This function has a
distinct peak at zero (in-plane) distance showing the mlastand hole are pairwise vertically aligned for all
values ofM . Also, the next peaks of the e-e PDF are aligned with thogg of The small shift in the peaks of
the two functions is due to the normalization. In order to pane the details of the cluster arrangements with
the macroscopic system below, in Hi§j. 3 we have divigggdandg.;, by the corresponding functions sbf = 1
where they are structureless. This allows to largely elatérhe effect of the trap (but slightly shifts the extrema).

4 Numerical results: Macroscopic system

To understand the relevance of our above mesoscopic résulésger systems contaning hundreds or thousands
of particles we performed additional simulations for a neacopic e-h bilayer without confinement potential. We
have considered/. = N}, = 64 electrons and holes in a simulation cell of the siZg x L,} = {76.185ap5 X
65.978a } with periodic boundary conditions (PBC). This correspotuds density parameteg ~ 10 (average
particle distance in units of the electron Bohr radius).sTdensity was chosen to be comparable to the average
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Fig. 3 Hole-hole (upper fig.) and electron-hole (lower fig.) paistdbution functions for themesoscopic bilayer with
N. = N, = 36 and\ = 10.5 for four values ofM (see inset). The curves are normalized to the corresporiridigfor
the caseM = 1 to eliminate the influence of the decay of the average deirsitiye trapped system, cf. Figl 2. Note that
electrons and holes are always pairwise aligned verticahg plot includes distances up to two times the radius wtéalses
the increase of the PDF for large distances.

density in the finite system (see SEE. 3) for the case of cogiplarameteA = 10.5. The mass ratid/ was
varied betweerl and 100, the temperature was fixed " = 1/3000Ha. The number of particles and the
dimensions of the cell, i.&, = v/3L,./2, were choosen to best fit the symmetry of a triangular lattidgich is
expected to be formed by the holes. We note that finite sisesfare of the order of few percents, a systematic
analysis with larger particle numbers is beyond the scoplei®paper.

Let us now consider the results for the macroscopic bilayidree typical shapshots favl = 5,20, 100
are shown in the lower row of Fi§] 1. As in the mesoscopic sysfer all cases the electrons are completely
delocalized. In contrast, the hole localization incredses M = 5 to M = 100. Also, we confirm that the
density of the mesoscopic system (second row) is well mdtcthe average distance between two holes as well
as their extension (given by the size of the blue dots) is ekrse to the trapped case.

Consider now the pair distributions. In Fig. 4 (upper fig.) shew the hole-hole PDF for different mass ratios
1 < M < 20. Since the particle number and box size is fixed, the averagele density stays constant and
the position of the first peak of the PDF are practically iretegent ofA/. However, the general behavior of the
PDF changes drastically. F&¢ > 4 we observe clear oscillations typical for the solid phaser&he third and
fourth peaks are well resolved (the scale exceeds half ofiourlation box). These oscillations become rapidly
damped by changing/ to 3 and below, here the PDF show liquid-like features. The thadk is now strongly
suppressed. This transition can be quantified by computiagatio of the (magnitude of the) first minimum to
the first maximum which is; = 0.48, for M = 4, andy; = 0.65, for M = 3. Similarly, for the third peak this
ratio becomess; = 0.76 andvys; = 0.96, respectively. The ratig, is frequently used as an empirical criterion for
the solid-liquid transition in classical systems; in a @moerponent 3D system the critical value is known to be
~vi = 1/3. If a universal values exists also in the present two-corepd®D quantum system where the transition
is expected to be of the Kosterlitz-Thouless type is an @siing question which deserves further analysis.
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Fig. 4 Hole-hole (upper fig.) and electron-hole (lower fig.) paistdbution functions for themacroscopic bilayer with
N. = N, = 64 (with periodic boundary conditions) for the mass ratids= 1, 3,4, 5, 10, 20 (the maxima increase with
increasingM). Note the alternating location of maxima and minimagf andge, -

Let us now compare the pair distributions with those in theasepic system at the same density={ 10.5),
Figs.[4 and B. Interestingly, we find that the first peakggf have approximately the same height, and also
the peak positons are very close, see upper parts of the twefigFurther we observe that the minimaygf
are significantly deeper in the macroscopic case. This itagqd by intershell rotations which occur in the
mesoscopic systern|[5] and wash out the correlations. Theepteesults are at temperatures above the freezout
of these rotations.

Consider now the relative importance of the inter-layer@ations for the stability of the hole crystal. To this
end, we have plotted the e-h PDF in Hi§. 4 (lower fig.). For fmarsetric caseM = 1, and also foM/ = 3 we
observe similar behavior: the highest probability has thefiguration where the electrons reside (in their own
layer) just below the holes, as was observed in the mesassggiem, lower part of Figl 3. Obviously, the height
of this peak is small, the modulation depth is aro@fidbecause of the high electron degeneracy (delocalization).
This means that these peaks cannot be associated with batesl (ndirect excitons) since the electron density is
well above the Mott densityoty fOr this system where excitons break up because the repuéiwvo excitons
exceeds the electron-hole binding. Note that,.; depends on the layer separatibwhich governs the binding
energy and the typical size; of an indirect exciton which is of the order @f Hence, for the present parameters,
d/ap = 20 andr, =~ 10, the in-plane exciton size exceeds the separation of twghbering electrons which
causes exciton ionization. On the other hand, redudibglow 10, excitons become stable (for temperatures
below the exciton binding energy) which is confirmed by ouviBIsimulations.

For larger mass ratiosy/ > 4, a completely different behavior a@f; emerges. From our analysis of the
hole-hole correlations we know that the holes are now in adéted state” (or, in the terms of the Kosterlitz-
Thouless theory, in a “less disordered state” with a powerdecay of off-diagonal long-range order). Now,
there is no maximum of.;, at zero distance, and the function exhibits oscillationfie Explanation is that
the electron density is modulated due to the presence ofdheednystal with maxima located in between the
holes. While the amplitude of the oscillations is small,dabl % modulation depth) they are clearly visible
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Fig. 5 (Color online) Left Fig.: Relative distance fluctuationstbé holesu"", (Eq.[2), as a function of the mass rafi6

for a macroscopic (black solid line) and mesoscopic bilaystem for two densities (see inset). Right Fig.: Decay ef th
amplitude of the maxima and minima of the hole correlatiggs,(— 1) in the macroscopic system, cf. Fig. 4, for the seven
mass ratios — from bottom to top7 = 1, 2, 3,4, 5, 10, 20. Note the change from an exponential (far < 3) to a power law
decay (forM > 4) which signals the Kosterlitz-Thouless transition.

and become systematically more pronounced wheincreases, see Figl 4 (lower part). We, therefore, expect
that appearance (disappearance) of these oscillationg @ an additional indicator of a phase transition in the
present asymmetric bilayer system.

Finally, as another quantity sensitive to phase trangtiore consider the relative distance fluctuatiofi%
of the holes, Ed.14, as a function &f, Fig.[8 (right part). This quantity exhibits a rapid dropweenM = 3
and M = 4 which is related to a localization transition. We can tratesfrom the critical mass ratio (which is
expected to be between three and four) to the hole densiw'rmierrgh), usingrﬁh) = r§e>mh/me, and the
position of the first peak of the hole-hole PDFTé?) ~ 10. As a result, we obtain that the phase transition in
the hole layer occurs at a critical density in the raBge< rz™ < 40. This result is close to the valué¢ ~ 37
known as the critical density of solid-liquid transitiontime one-component quantum 2D systerfi'at 0 [24].
Compared to this value, in our bilayer system, we observieatidns of stabilization of the “ordered state” of
the holes due to presence of the electron layer.

We note that, at smaller values éf(e.g. d = 5ap andd = 10ag) no hole crystal is found. Instead we
observe formation of indirect excitons which form a solichpé of composite particles. At the same time, the
interparticle interaction changes from Coulomb to dipidte-which reduces the value of the classical coupling
parameter td' = ?i—‘fﬁ/l@BT. Similar tendencies have also been also in simulatiorsyrafnetric classical and
guantum e-h-bilayer§ [11, 14].

5 Discussion

Analyzing the peak height (amplitude) of thg, in the macroscopic system (FId. 4) in dependence on the peak
positonr,;, we can deduce to the correlation decay law and compare tosgtmepdotics[(5). In the disordered
phase of small mass ratidd = 1...3 we find an exponential correlation decayqf,, see right part of Fid.15.
From mass ratid/ = 1 to M = 3 disordering is lowered and the correlation length incredsem¢ = 6.5 to
& = 13. Increasing the mass ratio above the critical mass ra¢io)d. > 4, we find a topological transition to the
Kosterlitz-Thouless phase with power law correlation-tfl

We may now obtain a critical mass ratio at which quantum meglaf the hole crystal takes place. Using as a
criterion a critical value ofi,, = 0.15 of the relative hole-hole distance fluctuations we obfdin;(A = 5) = 5

Copyright line will be provided by the publisher
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andM.,.;;(A = 10.5) ~ 2.8, in the mesoscopic system, afd...;(rs = 10) =~ 3.1, in the macroscopic system
(recall that it corresponds tv ~ 10.5). Obviously, the absolute numbers are somewhat arbitbaitythe allow

for an analysis of the dominant trends.M).,..; depends on density. It decreases when the coupling strength
increases in agreement with earlier observations for seall€lusters [23]. ii), there is good agreement between
the critical mass ratios of the mesoscopic and the macrassgptem (within10%). iii) the critical values are
much smaller than the value 8f.,.;; ~ 80 in a 3D bulk system [7] which underlines the remarkable aciaitl
control of physical behaviors existing in a bilayer systeyrabvariation of the layer separatiahn It is expected
that further reduction off will allow to further reduceM.,.;; and to increase the maximum density of the hole
crystal to values below!™ = 20 [15].
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5.4 On the Coulomb-Dipole Transition in Mesoscopic

Electron-Hole Bilayers

We study the Coulomb-to-dipole transition which occurs when the separation d of an
electron-hole bilayer system is varied with respect to the characteristic in-layer distances.
An analysis of the classical ground state configurations for harmonically confined clusters
with N < 30 electron-hole pairs reveals that the energetically most favorable state can
differ from that of two-dimensional pure dipole or Coulomb systems. Performing a
normal mode analysis for the N = 19 cluster it is found that the lowest mode frequencies
exhibit drastic changes when d is varied. Furthermore, we present quantum-mechanical
ground states for N = 6, 10 and 12 spin-polarized electrons and holes. We compute the
single-particle energies and orbitals in self-consistent Hartree-Fock approximation over
a broad range of layer separations and coupling strengths between the limits of the ideal

Fermi gas and the Wigner crystal.

The results were published as refereed journal publication:
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1. Introduction

Self-organized structure formation, in particular Coulomb crystallization [1], is among the
most exciting cooperative phenomena in the field of charged many-particle systems. In the
case of finite, parabolically confined systems, extensive experimental and theoretical work
on various types of two- and three-dimensional (2D and 3D) systems has revealed that
in the strong coupling limit charged particles can arrange themselves in a highly ordered
crystalline state with a nested shell structure. Examples are ions in Paul and Penning
traps [2, 3], dusty plasmas [4]-[11] and electrons in quantum dots and wells [12]-[18].
For these so-called ‘artificial atoms’, Mendeleev-type periodic tables were found including
characteristic occupation numbers, shell closures and unusually stable magic configurations.
For a recent overview see [1]. Recently, there has been growing interest in 2D dipolar
macroscopic systems [19]-[24] as well as finite size dipolar (quantum) clusters in small-scale
confinement potentials [25]-[32]. While in particular the ground state and dynamical properties
of 2D mesoscopic pure Coulomb and pure dipole interacting particle ensembles in parabolic
confinement potentials are well understood, the behaviour of real 3D electron—hole double layer
systems, where the dipole approximation is not valid, is still poorly investigated. This is despite
the fact that the additional degree of freedom, i.e. the layer separation d, is expected to allow
for a variety of interesting new effects which are due to the possibility of tuning the effective
in-layer interaction potential.

The results presented in this paper are applicable to semiconductor heterostructures and
coupled quantum dots as well as to molecular systems, where the dipole moment of the charge
carriers and thus the interaction strength is tunable, e.g. [32, 33]*. For a consistent formulation,

4 Another natural source of confinement arises in low-dimensional semiconductor structures from defects and
well width fluctuations. This leads to local potential minima for the charge carriers causing localization of free and
bound charges (excitons, biexcitons and trions), e.g. [34]-[36].
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we concentrate on the problem of two vertically coupled symmetric layers containing
parabolically confined, spin-polarized electrons and holes of identical particle number N, =
Ny = N and effective masses m; = mj, = m*, respectively. The underlying Hamiltonian is

H = Ho+ Hy — H. o, ()
with the intra- and interlayer contributions

Ne(n) 72 * Ne 2

r 2 Memy 5 o €
Hemy = Z —2m*(h) Vi + 5 wyr; + Z 4n8\/m , (2)
e 1 J

i=1 j=i+l

Ne Ny

ZZ 4mm

where the electrons (e) and holes (h) are confined to planes of zero thickness which are at a
distance d apart. The 2D vectors r;(;) are the in-plane projections of the particle coordinates,
e the elementary charge and ¢ the static permittivity. The strength of the confinement is
controllable by the trap frequency w.

The most fascinating property of this system is that the effective in-layer particle interaction
changes with the interlayer separation d: from Coulomb interaction at large d, where both layers
are decoupled, to dipole interaction at small d — 0, where the attractive interlayer interaction
leads at low temperature to vertical electron—hole coupling and formation of vertically aligned
dipoles—excitons. On the other hand, at intermediate values of d, when the repulsive intra-
and attractive interlayer interaction energies according to equations (2) and (3) are comparable,
the system shows a real 3D behaviour. In [28], it was reported that, as a consequence of the
Coulomb—dipole transition, the considered system can exhibit structural changes of its ground
state shell configuration when d is varied.

In section 2, we extend these results and present a systematic study of the classical ground
states, varying d for mesoscopic clusters with N < 30 particles in each layer. Further, we extract
the fundamental dynamical features in the case of weak excitation by solving the dynamical
(Hessian) matrix for the ground state configurations found in section 2. Doing this, in section 3,
we discuss the d-dependence of the collective N-particle modes for the N = 19 cluster. Here, we
highlight the close relationship between structural and collective dynamical cluster properties
as rotation of shells and vortices. In section 4, we extend the analysis to fermionic e-h quantum
bilayers utilizing a self-consistent Hartree—Fock (SCHF) ansatz. In particular, Coulomb-to-
dipole transition-induced (critical) quantum phenomena are presented for the clusters with
N =6, 10 and 12 electrons and holes. The results include the N-particle densities and the single-
particle spectrum and orbitals as functions of coupling strength A and layer separation d.

€)

2. Classical ground state transitions

The classical ground state corresponding to the equations (1)—(3) is described by the
Hamiltonian H = H. + H;, — H._, without the kinetic energy, i.e.

Ne Ny

1
Hewy = Z r;+ ; )2_ He = ; ]221: CETAETE SR .
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This dimensionless form is obtained by applying the transformation rules {r — r/r¢, E —
E/Eo, d — d/ry} with the characteristic length ry = (e*/2memw?)!? and energy E, =
(mwie*/32m2e?)!/3. Note that model (4) contains no explicit dependence on the trap frequency
wy. The considered classical model system in its ground state is completely defined by only two
parameters: the particle number N and the layer separation d, which also influences the in-layer
density.

At low temperatures, it is found that the electrons and holes arrange themselves pairwise
on nested concentric rings with characteristic occupation numbers (N;, N;,...), where N;
denotes the number of electrons (holes) on the ith ring starting from the centre. The
ground state configuration is the energetically lowest of all possible stable states, whose
number rapidly increases with N, and all these have to be found and checked. This task is
complicated, since many of the different stable states are energetically close, requiring high-
accuracy computations. A systematic search for the global minimum-energy structure in the
4 N-dimensional configuration space was performed by means of an optimized molecular
dynamics annealing technique utilizing an adaptive step size control [8, 28]. For each value
of N and d, the annealing process was repeated for a large (N- and d-dependent) number of
times. This slow (long) annealing process ensures that the lowest-energy state is found with high
probability. The critical points of structural transitions d., were identified as crossing points of
the energies of the lowest-energy states as functions of layer separation d.

Extending the analysis of [28], we obtained a periodic table for the particle numbers
N < 30 including all structural transitions occurring when d is changed, see table 1. In the
limits of pure dipole and Coulomb interaction our results are in full agreement with those
of [25] and [12, 16], respectively®. Analysing the clusters N < 18, only transitions for N = 10
and 12 reported in [28] are found. Due to the much larger configurational space, and thus
accordingly higher number of low-energy metastable states, for the clusters N =19, ..., 30
in total 6 particle numbers reveal Coulomb—dipole transitions: N = 19, 21, 23, 26, 29 and 30.
In particular, two transition types are identified:

(A) While for the majority of the investigated clusters the ground state shell configuration of
the single layer Coulomb and dipole case are identical, for N = 10, 21, 23, 26 and 29
this is not the case. When changing from a long-range Coulomb to a short-range dipole
interaction a higher particle number on the inner shell becomes favourable. A similar trend
is also known from 2D [5, 6] and 3D [9, 10] Yukawa-clusters when the screening strength
is increased®.

(B) A second type of transition is found for N = 12, 19 and 30 that cannot be concluded from
different shell occupations in both limits of d: at large values of d again a transition
of type (A) takes place, which increases (decreases) the particle number on the inner
(outer) shell when d is reduced. But interestingly, at small values of d a second kind of
transition to a six-fold-coordinated, commensurate particle configuration is found allowing
for an energetically more favourable closed packing of the composite dipoles. Such
symmetry-induced re-entrant configuration changes are only observed in cases where
highly symmetric, ‘magic’ configurations with a bulk-like triangular structure are involved.

3 In[12], the ground state for N = 29 was erroneously given as (5, 10, 14). This was corrected in [16].

® The effect is due to the radial balance of total internal F™ and external F°* forces on each particle. In contrast
to Coulomb, short-range (dipole or Yukawa) forces do contribute to F*** which requires a higher density towards
the centre to stabilize the cluster matching F™ = F®!_ For details see [10].
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Table 1. Ground state shell structures for 2D Coulomb, bilayer and dipole
clusters of N particles in a parabolic confinement. The arrows indicate the
direction of the ground state transition from large to small values of d. Magic
(commensurate) shell configurations are underlined. For N < 5, only a single
shell is populated for all values of d. For all configurational transitions, the
critical layer separation d. as well as the corresponding total energy per
composite dipole E. /N is given. Note that the binding energy 1/d which
ensures the exact vertical alignment of the electron—hole pairs is excluded from
the energy values as it is independent of the cluster configuration.

N  Coulomb Bilayer der E./N Dipole
5 5 No transition 5

6 (1,5) No transition (1,5)
7 (1,6) No transition (1,6)
8 1,7 No transition 1,7
9 2,7 No transition 2,7
10 (2,8) (2,8) — (3,7) 1.0116  3.9167 (3,7)
11 (3,8) No transition (3.,8)
12 3.9 3,9 — 4.8) 0.9528  4.3463 3,9

4.8 — (3,9 0.3253  2.1293

13 4,9) No transition 4,9)
14 (4,10) No transition (4,10)
15 (5,10) No transition (5,10)
16  (1,5,10) No transition (1,5,10)
17 (1,6,10) No transition (1,6,10)
18 (1,6,11) No transition (1,6,11)

19 (1,6,12) (1,6,12) — (1,7,11) 2182 9.1882  (1,6,12)
(1,7,11) — (1,6,12) 0417  3.5697

20 (1,7,12) No transition (1,7,12)
21 (1,7,13) 1,7,13) —» (2,7,12) 3429 11.6283 (2,7,12)
22 (2,8,12) No transition (2,8,12)
23 (2,8,13) (2,8,13) — (3,8,12) 2436 109959 (3,8,12)
24 (3,8,13) No transition (3,8,13)
25 (3,9,13) No transition (3,9,13)
26 (3,9,14) (3,9,14) — (4,9,13) 2.173 114266 (4,9,13)
27 (4,9,14) No transition (4,9,14)
28  (4,10,14) No transition (4,10,14)

29 (4,10,15)  (4,10,15) — (5,10,14)  2.142  12.2357 (5,10,14)
30 (5,10,15) (5,10,15) — (1,5,10,14)  0.616 63934  (5,10,15)
(1,5,10,14) — (5,10,15)  0.243  3.3410

These findings coincide with those for single layer statically screened Coulomb systems. Here a
change from the long-range Coulomb towards a short-range Yukawa potential by variation of the
screening length leads to analogue ground state transitions for the particle numbers N = 10, 12,
19 and N =21, 23, 26, 29 as reported in [5] and [6], respectively. Further, a comparison of the
ground and metastable states of the single layer Coulomb system (cf table 1 in [16] for N < 30)
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shows that if and only if an energetically close metastable configuration with higher centre
particle number than in the ground state exists, in fact, a transition of type (A) in the
corresponding bilayer system is found. This underlines the Coulomb-to-dipole transition-
induced density change effecting configurational transitions of type (A). In contrast, transitions
of type (B) are geometry-induced supporting an equally distant, closed packed particle
arrangement.

Among all transitions, the most interesting are those of type (B). As an example, we
study the N =19 cluster. Here, between d =0.417 and 2.182, the ‘magic’ configuration
(1,6,12) is replaced by the configuration (1,7,11) which possesses a much lower orientational
order [37]. Therefore, it is interesting to analyse the normal modes of this cluster and their
dependence on d.

3. Collective N-particle modes

Starting from the ground state configurations given in section 2, we are interested in the
collective excitation behaviour in dependence on d. Here, we will focus on the cluster with
N =19 where, upon changing d, finite size effects are expected to play a key role as the ground
state structure changes between the hexagonally ordered (1,6,12) configuration and the (1,7,11)
circular ring structure as discussed in section 2.

To derive the dynamical properties in the limit of weak excitations, we perform a normal
mode analysis [27], [37]-[39]. For small particle displacements u(¢) = r(¢) — R around their
ground state position R, expansion of the potential energy U, equation (1), around R leads to

2N 2N
oUu 1 32U
U(r)=U0+§ ™ ut 3 Ujthj+---, (5)
- i IR 2 — 8r,-81”j R
P oe—— b —
=0 ::Hij

where U is the minimum potential energy and r = (xy, y1, X2, 2, . ..) comprises the in-plane
coordinates of all particles. In the stationary states, the linear (force) term vanishes and the
second-order partial derivatives provide the elements #;; of the 2 x 2N Hessian matrix. In the
frame of the harmonic approximation, the resulting cluster dynamics is given as a superposition
of these collective (normal) modes statistically weighted according to the eigenvalues of H
which are proportional to the squared mode oscillation frequencies w?. In the following, these

eigenfrequencies will be given in units of w/+/2.

3.1. Classification of normal modes

As aresult of the eigenmode computation, we obtain for each stable configuration of the N = 19
cluster a complete set of 76 eigenvalues and eigenvectors. A selection of characteristic and
energetically low-lying eigenvectors for d = d., = 2.182, i.e. intermediate between Coulomb
and dipole regime, is given in figure 1. As shown in [27], in dipolar bilayer systems the total
number of modes can be divided in two types which will be distinguished by the following
nomenclature:

(") labels modes with in-phase collective particle motion in both layers, see figures 1(a),
(d)i (e)’ (h)—(O), and
(7) labels modes with anti-phase motion of both layers, see figures 1(b), (¢), (f) and (g).
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Selected normal modes of the (1,7,11) configuration
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Figure 1. Top view of the eigenvectors of selected characteristic and low-
energetic normal modes for the N =19 cluster at d =d,, =2.182 (ordered
by frequency, cf numbers above the figures). The points mark the particle
positions. The differently shaped (and coloured) arrow heads are assigned to the
normal mode eigenvectors in the two different layers and indicate direction and
amplitude of particle motion. Modes with in-/anti-phase motion of both layers
are labelled with a /= sign, respectively. Top rows: eigenvectors of the (1,7,11)
configuration: (a) inter-shell rotation (SR"), (b) anti-phase layer rotation (LR™),
(c) anti-phase inter-shell rotation (SR™), (d) and (e) in-phase vortex pairs (V2"),
(f) and (g) anti-phase vortex pairs (V27), (h) asymmetric in-phase 4-vortex mode
(V47), (i) sloshing mode (S*), (j) breathing mode (B"). Bottom row: eigenvectors
of the (1,6,12) configuration: (k) in-phase vortex pair (V2"), (1) in-phase inter-
shell rotation (SR"), (m) in-phase 4-vortex mode (V4"), (n) in-phase transverse
surface wave (SW"), (o) breathing mode (B*).

Consider first the top rows of figure 1 which show the eigenvectors of the normal modes of
the (1,7,11) configuration. The energetically lowest collective particle motion is in all cases the
centre of mass cluster rotation mode—the in-phase layer rotation LR". The eigenfrequency of
this directed rotation is w = 0 as for this motion there is no restoring force. Beside this (trivial)
mode there are three additional rotational modes: (a) inner versus outer inter-shell rotation SR”,
(b) the anti-phase rotation of both layers LR™ and (c) anti-phase inter-shell rotation SR™.
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Another set of low frequency modes are four vortex pair modes: (d) in-phase vortex
pair V2" and (e) (almost) perpendicular oriented vortex pair V2*,” (f) and (g) two anti-phase
vortex pairs. In the present isotropically confined 2D system, rotationally asymmetric modes
are typically two-fold degenerate with respect to the spatial alignment of the vectors, cf (d),
(e) and (f), (g), respectively. This leads to the fact that, taking into account the two possible
phasings of relative particle motion in both layers, the majority of mode types occur as a set
of four. Considering this, in the following only one mode per set of four is shown as for the
rotational asymmetric, low-energy mode (h) which has the interesting feature that it supports a
single-particle exchange between the inner and outer shell, i.e. a transition from the (1,7,11) to
the (1,6,12) configuration.

In the case of pure radial eigenvectors, such as the (in-phase) breathing mode (j) as coherent
radial motion (compression/expansion) of all particles, there exists one pair of modes only. In
addition to (j) there is an anti-phase breathing mode B~ with frequency w3 = 7.9522. Another
‘universal mode’ that is independent of particle number and configuration is the centre of mass
sloshing mode S* (i) with trap frequency w,. This mode has a corresponding anti-phase shear
or dipole oscillation mode S~. Both modes are two-fold degenerate.

For all these modes a corresponding mode of the (1,6,12) configuration is found. In
particular: (k) the V2*-mode, (I) the mode of inter-shell rotation SR", (m) an energetically low
V4"-mode, here supporting a centre directed transition of a particle on the outer shell, and two
further examples of radial modes, (n) a transverse surface wave and (o) the breathing mode.

3.2. Change of normal mode spectrum with layer separation

After the classification of the collective modes, we now consider the oscillation frequency
dependence on the layer separation d of the N = 19 cluster, see figure 2. Of special interest
are thereby the two configuration changes of the ground state and their effect on the collective
dynamical cluster properties.

Starting at small values of d, an increase of the e—h separation leads to a growing
cluster size due to a stronger in-layer particle repulsion resulting from a change of the
effective interaction from dipole to Coulomb. This implicates a gradual decrease of the mode
eigenfrequencies with d since the coupling of all 2N particles becomes less rigid and the
restoring forces weaken. Only the two-fold degenerate centre of mass oscillations are found
to be constant at w§. = 2, independent of the interlayer coupling strength or even configuration
changes. Confirming [27], the breathing frequency gradually proceeds from w3, = 10 in the
limit of dipoles (d — 0), to a value of w3. =6 in the limit of decoupled layers (d — 00).
Moreover, modes supporting a transition from the (1,6,12) to the (1,7,11) state and vice versa,
i.e. the eigenmodes (h) and (m) in figure 1, are found at low frequencies, i.e. at low excitation
energies.

As discussed in section 2, the ground state transitions for the N = 19 cluster occur at
the critical values of d{) = 0.417 and d? = 2.182 and are accompanied by abrupt spectrum
transformations. The strongest effect is observed for the in-phase inter-shell rotation SR™ with
a remarkable jump of the mode frequency wd,. by more than four orders of magnitude. This
decrease can be explained by comparing the SR mode eigenvectors of the (1,7,11) and (1,6,12)

7 The difference of the two in-phase vortex pair modes (d) and (e) lies, besides rotation of the whole vortex pair by
~g /2, in the alignment of the eigenvectors, which is slightly different. This is due to the non-commensurability of
the (1,7,11) configuration leading to symmetry breaking. As a result the frequencies differ by about Aa)%,2+ =10"*%
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Figure 2. Complete normal mode spectrum for N = 19 as function of layer
separation d. At d{” =0.417, the ground state configuration changes from
(1,6,12) to (1,7,11) and at d'» = 2.182 from (1,7,11) to (1,6,12) resulting in a
qualitative change of the mode frequencies. The eigenvectors of the selected
modes are visualized in figure 1. Modes with in-phase (anti-phase) oscillation
of both layers are plotted with dashed (solid) lines. Note that the SR" mode
continues in the range 1 < d < 2.182 with a value smaller than 5 x 10~". For
notation of modes, see figure 1. The black dash-dotted line corresponds to the
shear oscillation S~ of a single dipole (see text).
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configurations, see figures 1(a) and (I). In the latter case, the oscillation vectors of all particles
on the inner shell are directed towards particle positions on the outer shell which strongly
increases the restoring forces in the case of the (1,6,12) configuration resulting in a much higher
frequency a)g{’f’lz) than a)élliZ’“). The exceptional low frequency a)g{’Z’“) agrees with results for
single layer Coulomb crystals. In [37], the minimal (nonzero) excitation frequency for (1,7,11)
and the comparable, non-magic (1,7,12) configuration was reported to be that of the inter-shell
rotation with w3, ~ 10~%. Confirming this, quantum Monte Carlo simulations [14] revealed that
the orientational inter-shell melting temperature of the incommensurate (1,7,12) configuration
is much lower than for the highly symmetric (1,6,12) structure. In particular, a 9 (!) orders of
magnitude difference of the orientational melting temperatures and critical densities of both
configurations was found. This shows that the given classical results are of practical relevance
also for quantum systems at moderate densities.

Moreover, with respect to the dipole-to-Coulomb transition we found that in the dipole
regime at small d the corresponding modes with in-phase and anti-phase oscillation of both
layers are energetically clearly separated, cf SR* and V2% in figure 2. Energetically lowest
are the two (degenerate) in-phase vortex pair oscillations V2*. With a gradual transition to
the limit of uncoupled layers, the e-h attraction and thus the oscillation frequencies of the
anti-phase modes are strongly reduced and converge towards the values of the corresponding
in-phase modes. This is found for the V2~ and V2" modes around d =2 and for the SR™
and SR" modes for d > 2.182. As a consequence of the layer decoupling, the LR~ anti-phase
layer rotation becomes the energetically lowest of the anti-phase modes. This indicates that the
primary mechanism of decoupling of the electron and hole layers is the interlayer rotation LR™.

We note that the (anti-phase) shear mode S~ of a single trapped dipole has the
frequency wi- =2+2/d* (see black dash-dotted line in figure 2). This arises by expanding
the electron—hole attraction H, y, of equation (4) for small displacements u(#) around the ground
state position R. Thereby, the first term in ws-, being independent of the layer separation d, is
due to the harmonic confinement. In a spatially infinite bilayer system [24], its value depends
on the local potential energy around R and is proportional to the Einstein frequency. The second
term, which is leading for layer separations d < 1, corresponds to the shear oscillation of the
free (unconfined) dipole.

4. Ground states and single-particle spectrum of quantum bilayers

In this section, we present an extension of the classical results of section 2 to quantum bilayers.
Here, in contrast to the classical simulations, the ground state kinetic energy does not vanish
even in the limit of temperatures 7" — 0 resulting in a finite spatial extension of the particle
orbitals on the scale of the whole N-particle cluster. Hence, fermionic quantum features such as
exchange effects (Pauli exclusion principle) must be included.

In order to treat the e—h bilayer system of equations (1)—~(3) quantum mechanically,
we introduce the dimensionless coupling parameter A of a harmonically confined quantum
system which relates the characteristic Coulomb energy Ec = e?/(4mex,) to the characteristic
confinement energy E; = hwy

Ec e’ X0

) : (6)

E;  4mexohwy ap
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where xy = +/h/(mw,y) denotes the oscillator length and ag = A7 eh? /(me?) is the effective
electron (hole) Bohr radius. Thus, Hamiltonian (4) including the kinetic energy can be rewritten
in dimensionless form

e(h)— Z( V2+1')+Z\/T)2 (7)

i<j

Ne Ny A
o=l 2 Jamnrra ®

using the transformation {r — r/xo, E — E/E{, d* — d/x,}. Note that » and d* are measured
in units of x, and thus explicitly depend on the confinement frequency w,. The characteristic
energies and length scales of the classical (section 2) and quantum system are related by

Zo_wn, Roann 9)
E EF X0
so that the layer separations used in the Hamiltonians (3) and (8), respectively, are related by
d*= Q21" d.

In the limit A — 0, both electrons and holes behave as an ideal trapped Fermi gas
independent of the layer separation d*. For A — oo, it is x¢/ag > 1, and quantum effects
vanish. Thus, one recovers classical behaviour and shell configuration changes which coincide
with those in table 1. At finite A, however, intra- and interlayer interactions, together with the
parabolic confinement, give rise to a complex quantum many-body problem, which is the subject
of the following investigation. In the considered quantum case, ground state properties depend
on the two parameters d* and A. Therefore, the question of whether the additional degree of
freedom will induce additional structural changes arises. To answer this question, we performed
self-consistent Hartree—Fock (SCHF) calculations of two coupled electron and hole layers of
zero thickness, which are discussed in the next two subsections.

4.1. Second quantization formulation

In order to derive mean-field type equations for the e-h bllayer we rewrite the exact
Hamiltonian (7) and (8) in the second-quantized form H = H, + H, — H,, where

Hay = f Er T (0 ho(E) e ()

/ / TR AN BTN —— ﬁ Ve ® Pe®.  (10)

Hey = f f &*r & Yl o) @) () Y () Pe (1), (11)

A
V(r—r)2+d*
with h(r) = 3(—=V?+r?) denoting the single-particle energy. Further, 1%8) (r) is the
annihilation (creation) operator of spin-polarized electrons and holes at space point r
which satisfy the fermionic anti-commutation relations [Yem) (T), Wg(h)(f')L =46(r—r) and

[0 @), ¥ (1. = 0, where [4, B]. = AB+BA. In a Hartree-Fock (HF) approach [40],
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the four field operator products entering equations (10) and (11) are approximated by
sums over double products l/fé(h)‘ﬁe(h) weighted by the generalized electron (hole) density
matrix pem)(r, r) = (&j(h) (r)@e(h) (r))em), where the expectation value (ensemble average) is

defined as (/i)e(h) =Tr ﬁe(h)le. More precisely, with n, & € {e, h}, the 4-operator products are
approximated as

U ) UL E) Ye @ Uy (1) & + p, (0, 1) YL (E) e (B) + ps(F, F) ¥ () ¥, ()
=3¢ | o DL Fe0) + e F0) B @) 1,
(12)
Here, the first two terms constitute the Hartree term, whereas the last two denote the Fock
(exchange) contribution. The Kronecker delta §,: assures that there is no exchange between
electrons and holes which is due to the different physical nature of electrons and holes (different

energy bands). Inserting the approximate expression (12) into (10) and (11) allows for an
effective one-particle description according to

e(h) = // d’r &7 We(h) (r) { o(r)d(r—r)+ Ee(h) (r, f')} &e(h) (r), (13)

Floy = / / & &7 Y1) [SHE e, B+ SEE (e, B} P (), (14)
with the HF self-energies

Tt (T f’):)\/dz 2 @, r)S(r—f)—Aw 15)

V(@ —r)? \/(r—f')z’

PO T) _ se_ ). (16)

For computational reasons, it is convenient to introduce a basis representation for the electron
(hole) field operators

E o @) =4 [ &

where the one-particle orbltals or wave functions ¢; (r) form an orthonormal complete set and
&ézﬁ),i is the annihilation (creation) operator of a particle on the level i. Applying the basis
expansion (17) to the equations (13) and (14) leads to the matrix representation of the bilayer

Hamiltonian (1) which will be given in the following section, cf equations (18)—(20).

4.2. SCHF simulation technique

In matrix representation, the mean-field Hamiltonian for the bilayer system corresponding to
the initial equations (1)—(3) reads

hfgh) :hO + h?je(h—h) . h?j_h(h_e), (18)
h-h h-h hh h
h?/_e( ):)‘Z(wﬁ(l )_wfl—flg )) p;l()’ (19)
kl
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eh(h—e eh(h—<) h
S Dl 2

with the single-particle (orbital) quantum numbers i and j (k and /), he( ) being the electron

(hole) total energy, ho the single-particle (kinetic and confinement) energy and he_e(h_h) (h ?_.h(h_e))

the intra (inter) layer interactions in mean-field approximation. Further, ,oe(h) =(a Z(h)yl. ehy,j)
denotes the zero-temperature density matrix of electrons and holes W1th respect to the
one-particle basis ¢;(r). In equation (19), both the Hartree and the Fock contribution appear,
whereas in equation (20) only the Hartree term enters.

The explicit expression for the single-electron (-hole) integral is

1
h; = 3 / d’r @ (r) (= V> +1?)e; (1), (21)
and the two-electron (two-hole) and electron—hole integrals are given by
W @ (r) gp (Ng; (r)@;(r)
1] k(lh_h) /:/ d2 d2 k J ’ (22)
V=2 +a?

oo 2 o= 0 () @i (r) @;(r) ¢ (r)
Wy ki //drdr m , (23)

where o* — 0 is utilized to avoid the Coulomb singularity for r — r. A small parameter of
a* < 0.01 has been found to show convergence for all quantities of interest. Details will be
given elsewhere [41].

For numerical implementation of the SCHF procedure yielding the eigenfunctions ¢>f(h) (r)
(HF orbitals) and eigenenergies €; ® (HF energies) of Hamiltonian (18), we have chosen the
orthonormal Cartesian (2D) harmonic oscillator states

—(x*+)%)/2

V2" mnl
with single-particle quantum numbers i = (m, n), r = (x, ), the Hermite polynomials #,,(x)
and (m +1)-fold degenerate energy eigenvalues €,,, =m+n+1, where m,n € {0,1,2,...}.
The HF orbitals, expanded in the form

Pm,n (l‘) = Hm (x) Hn (y) s (24)

np—1
V) =" ), (25)
Jj=0

e(h) e(h)

with coefficients ¢;; € R and respective energies ¢;
self-consistent Roothaan—Hall equations [42]

, are obtained by iteratively solving the

np—1
Z R e — e e =0, (26)
at fixed dimensmn nyxny, (i=0,1,...,n,— 1) according to standard techniques, for details

see e.g. [40] and references therein. The resulting electron (hole) density ,o;(hi (r) corresponding
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to given values of d* and A is defined as

N—1 N—1np—1
(h) (h) (h)
pe @ = "L, =" "l e, (27)
k=0 k=0 [=0

where each HF orbital & is occupied by a single particle only.

For the e-h bilayers with N < 10, we used n, = 50 of the energetically lowest oscillator
functions ¢,, ,(r) to expand the HF orbitals, for N = 12 we took n, = 55 which was sufficient
to obtain convergent results. Due to the electron—hole attraction the cluster size is reduced
compared to that of a single layer Coulomb cluster. This favours the use of a moderate number

of basis functions to ensure convergence®.

4.3. Transition from the ideal Fermi gas towards the classical limit

The aim of this part is to investigate the transition from a strongly degenerate quantum system,
i.e. A =0, to the classical limit A — oo. To give a reasonable estimate for the range at which
the classical ground state results become valid, we consider a system with N = 6 electrons and
holes at an intermediate layer separation of d* = 1.0. Of special interest will be the central spot
of the (1,5) configuration which can most directly be assigned to a classical particle position.

In contrast to the classical results the HF calculations fully take into account the wave
nature of electrons and holes. The quantum many-body effects are evident already at A = 0.
In the classical case, the total energy in the ground state is zero (all particles sit in the bottom
of the trap). In the quantum case, this is prevented by the Pauli principle. Orbital-resolved HF
calculations as function of coupling parameter A are displayed in figure 3. Here, the right panel
shows the N-particle density ,0:,93(1‘) and the six populated single-particle orbitals qb; (;*)’A(r)
for moderate (A; = 5.0), intermediate (1, = 15.0) and strong (13 = 35.0) coupling. The SCHF
results reveal that, in particular for small values of A, obviously several orbitals contribute
collectively to the different high-density spots which unambiguously determine the cluster
configuration.

Concerning the lowest orbital i =0, with an increase of A, the overlap with the higher
orbitals vanishes and the wave function becomes localized when A exceeds a value of 35. In
contrast, in the investigated range of A < 40 the other particles remain, independently of the
observed density modulation, delocalized as can be seen on the orbital pictures. The transition
towards the limit of strong correlations can be estimated from the e—h-interaction energy

(=0) y\ _ 2, 2= e 2 A h o2
€opn (M) = —// d°rdr |¢;_y(r)] Ja—trian ;o (I,

of the electron and hole in the lowest orbital. The upper diagram in the left panel of figure 3
displays the A-dependence for four different approximations. For the ideal system, A =0,
electron and hole are not bound and 5" vanishes. The black solid line shows the interaction
energy (28) obtained from the SCHF simulations which for A < 1 agrees with perturbation
theory (PT), where a linear A-dependence follows from substituting the ideal wave function

®0.0(r), see equation (24), for ¢f§3 (r) in equation (28).

(28)

8 Note that the additional centre particle in the case of N = 19 strongly increases the cluster size so that essentially
more basis functions (ny, = 90) are required to ensure convergence. As the problem determining the two-particle
integrals, equations (22) and (23), scales with O(n}}) a computation is limited by memory requirements.
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Figure 3. Ground state of the N = 6 cluster as function of interaction strength
A for fixed layer separation d* = 1.0. Right: accumulated N-particle density
,oj(hi (r), on top, and corresponding single-particle HF orbitals ¢; g’ﬁ,k(r) for
three different coupling parameters L. The different signs of the wave function
(blue and orange) are separated by white areas of zero amplitude, whereas
areas of maximum amplitude are black. Note that the six high-density spots
of the N-particle density do not necessarily correspond to the single particles
themselves as the configuration appears as a superposition of all orbitals. Left
(top): electron—hole interaction energy eg_:ho, equation (28), of the centre electron
and hole states for different approximations and (bottom) HF energy of occupied
levels €™ as function of A.
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For A > 1, a semi-classical result can be derived. Starting from the classical ground
state configuration (1,5) the outer particles, together with the confinement, create an effective
potential for both centre particles which can be harmonically approximated. The direct quantum
mechanical solution of the harmonic problem provides a finite Gaussian electron (hole)
extension of width o = 0. = 0y, Hence, the e—h-interaction energy (28) of the inner particles
can be computed in a semi-classical way using ¢S (r) = (o/m)"/* e~ /2 In the strongly
correlated regime, starting at A > 30, the semi-classical and SCHF solution coincide very well.

However, in an intermediate coupling range, A ~ 15, the e-h interaction energy is reduced
compared to the semi-classical solution which reflects the fact that the orbital i = 0 substantially
deviates from a Gaussian, cf the five side maxima of the orbital i = 0 for A, = 15 in figure 3.
With increase of A this Gaussian becomes more and more peaked describing the transition
to the classical limit |¢f§3 (r)|> = 8(r)°. Despite the good agreement with the semi-classical
approximation, in the whole investigated range of A < 40 the system is found to be essentially
non-classical. This becomes evident by comparing with the pure classical result eé'_zho) =—-\/d*
which neglects any finite particle extension. Concerning all populated HF orbitals the transition
towards the classical limit with increasing A is shown in the lower left diagram of figure 3 in
terms of the orbital energies efih()m,n). As mentioned in section 4.2, the harmonically confined
ideal Fermi gas (A = 0) is (m + 1)-fold degenerate with m, n € {0, 1, ...}. Around A > 15 the
energy of the outer particles converges towards a five-fold degenerate energy which is separated

from the (lower) energy of the centre particle.

4.4. Quantum ground state configurations and structural transitions for N = 10

Beside the higher numerical effort of a single SCHF computation compared to its classical
analogue, a complete study of the ground states requires, in addition to d and N, the exploration
of A as a third degree of freedom. To overcome this problem and to reduce the task, we limit
our investigation to the two-shell clusters N = 10 and N = 12 which were found to exhibit rich
ground state properties in the classical limit.

The analysis was done by systematically scanning the phase diagram for fixed values
of d* ranging from 0.1 to 10.0. For each of these d* values we start from the ideal system
at A =0 and increment the coupling parameter stepwise by 61 = 0.05. The convergence of
each step is ensured by an adaptive, precision controlled iteration number with up to 2500
iterations of the Roothaan—Hall equations (26) per increment §A. The described procedure
allows for a systematic investigation of the phase diagram by a gradual transition from the ideal
Fermi to the strongly coupled system. To verify the results obtained, the ground states with
respect to individual points in the phase diagram were recomputed by starting from a random
distribution as well as by decreasing the temperature of an initial (high temperature) thermal
distribution [41]. All procedures are found to yield the same HF orbitals (energies) and thus the
same N-particle densities and shell structures.

The results for the N = 10 cluster are presented in figure 4. The ground state phase diagram
can be divided into four domains (left panel of figure 4):

(1) Atsmall A a weakly correlated degenerate Fermi liquid is observed within each layer (blue
area in the left figure). The observed electron (hole) density is rotationally symmetric and

 In the mean-field Hamiltonian (13) and (14) the classical limit is obtained by replacing peq)(r, r') —
Nen

Sr—r) ) 2V 8(r—rp).
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Figure 4. Left: (\,d*)-phase diagram for the N =10 bilayer in HF
approximation. The configuration (R, 7) means delocalization of charges on
the inner ring R. The black solid line indicates the classical ground state
transition (3, 7) — (2, 8) which occurs at d., = 1.0116r( from left to right. The
red arrow points out an inverse transition compared to the classical (2, 8) —
(3, 7) crossing. The two dashed lines indicate the path when changing w, at
fixed layer separation d for a germanium (& = 16&9, m, = 0.25m.) quantum-
well structure, see equation (29); w; = 926 GHz, w, = 9.26 THz, w; = 98 GHz.
Right: electron (hole) density ,of,(h,)\ (r) at characteristic points marked (a) to (h) in
the phase diagram. The side length of the contour plots is 9x,. The open circles
mark the corresponding classical ground state particle positions. The rightmost
column displays the corresponding angle-averaged radial density profiles for
d*=0.5 (4.0), dashed (red) line.

exhibits non-monotonic radial modulations of an (nearly) ideal trapped Fermi gas. The
proper density distributions for df = 0.5 and dj = 4.0 are shown in figures 4(a) and (e),
respectively.

At higher A two shells separate, see points (b), (f) within the red area in the phase diagram
and the corresponding density profile (j). While on the inner ring the electron (hole) density
is still isotropic, the density on the outer shell becomes angle-modulated and reveals seven
high-density spots. The integrated position probability density on the inner and outer shells
is close to 3 and 7, respectively. The configuration will be referred to in the following as
(R, 7) as on the inner ring R no localized density peaks in ,oj(h,)\ (r) are present. Hence the
nomenclature does not indicate the particle numbers, but the number of distinct density
peaks, as the particle orbitals are delocalized over the entire cluster, see discussion in
sections 4.3 and 4.6.
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(i11) Further increase of the coupling parameter leads to more pronounced (concentric) shells.
In particular, the inner radial density decreases which is accompanied by the formation of
angular density modulation, see figures 4(c) and (g). The shell configuration is found to be
(3,7).

(iv) At a certain value A.(d*), the bilayer system jumps from the (3,7) into the (2,8) shell
configuration (green area in the phase diagram), see figures 4(g) and (h).

The general behaviour of (i)—(iii) is independent of the layer separation d*. The localized (3,7)
configuration (iii) emerges in two steps by rotational symmetry breaking from the Fermi liquid
(1) maintaining a higher density on the inner than on the outer ring. However, an increase of d*
beyond unity leads, by weakening of the interlayer attraction, to a repulsive intralayer and thus
Coulomb-dominated coupling. Consequently, the cluster size increases, compare the density
plots of figure 4(a) versus (e), 4(b) versus (f), etc. Moreover, for a fixed A > 1, the dipole-
to-Coulomb transition towards the strongly correlated Coulomb regime induces the (2,8) shell
configuration [28] which is observed when d* is increased from 0.5 to 4.0, see figure 4(d) versus
(h). This transition reduces the inner-shell density, see figure 4 right (red versus dashed lines).

Further, at a fixed d* > 2.0 an increase of A leads to a purely coupling-induced
configuration change (3,7) — (2,8), see details in section 4.6. For d* = 10, both layers are
already weakly coupled and become completely decoupled when d* is further increased.
Consequently, the critical (blue, red and green) curves in the phase diagram converge
towards horizontal lines. Note that d* is measured in units of x; and thus depends on the
confinement frequency wy. This implies for an experimental setup, e.g. a double quantum-well
heterostructure with fixed physical layer separation d, that one traces hyperbolas of the form
de*ml, 1

Are h? d*(wo)
when changing the trap frequency w,, see the dashed lines in the phase diagram of figure 4. The
larger the physical layer separation d (or effective particle mass mg,,), the more the hyperbola
shifts to larger values of d*. Interestingly, e.g. for a germanium based quantum well, at fixed
layer separation d = 1375 A, the ground state structure of the quantum bilayer can be externally
controlled by change of w, only.

A comparison of the classical particle positions (open circles in figures 4(a)—(h)), according
to equations (9), with the shells and high-density spots of the HF calculations plotted in
figure 4 reveals a good agreement. Larger cluster sizes compared to the classical case for
small A are explained by repulsive fermionic exchange interactions. Further, the bold black
line in the phase diagram indicates the classical transition from (3,7) to (2,8) which occurs at
d.; = 1.0116r; when crossing the line from left to right. It is found that the classical line gives
a reasonable estimate also for the transition in the quantum bilayer system. Hence the trend,
found in section 2 for the classical bilayer system, of centre density reduction with increasing
d also holds in the case of a strongly correlated quantum system, where the orbitals extend
over several classical particle positions. In the classical limit, i.e. at very large A (outside of
figure 4), the configuration boundary (3,7) <> (2,8) (green curve) and the classical result (black
curve) converge. Nevertheless, for intermediate values of A the red arrow indicates a remarkable
point in the phase diagram where the structural transition in the classical and quantum bilayer
proceeds in opposite direction. The single-particle orbitals for this transition will be analysed in
section 4.6.

A(d*) =

(29)
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Figure 5. (1, d*)-phase diagram showing the quantum shell structures found
for the N =12 bilayer in HF approximation. The shown electron (hole)
densities pf,gff\(r) corresponding to tuples (d) (d, A1) = (0.5, 5.9), (¢) (d5, X,) =
(0.75,3.95), (b) (d5, A3) =(1.25,2.35) and (a) (d}, A4) = (2.0,1.45). The
frequencies w; ; are as indicated in figure 4. The two black solid lines indicate the
classical configuration transitions (3,9) — (4, 8) and (4, 8) — (3,9) at 4V =
0.9528r¢ and d? = 0.3253r, respectively, from left to right. In the investigated
range A < 15 these transitions were not observed in the quantum bilayer. The
right two columns show the (radial) density of the four points (a)—(d) marked in
the phase diagram for d = 100 A.

Further, an unusual (2,8) configuration is shown for A4 = 12.0 and d; = 4.0 in figure 4(h),
where the particle arrangement differs from the classical system. Such a configuration was also
found in [28] for a classical single layer system with 1/7* pair interaction and o < 0.94. Thus,
the anomalous configuration underlines the effect of the Fermi repulsion in addition to the
intralayer Coulomb interaction. However, an increase of A leads to a reduction of the Fermi
effect and wave function overlap and a (2,8) configuration corresponding to the classical one is
found.

4.5. Quantum ground state configurations and structural transitions for N = 12

In figure 5, we present the (A, d*)-phase diagram for N = 12 electrons and holes analogous to
figure 4 for N = 10. At fixed (physical) layer separation d = 100 A, one passes through four
different domains of the phase diagram when the trap frequency is decreased from w, towards
w (see left panel of figure 5):

(1) Analogously tothe N = 10 cluster at small A, a weakly correlated circular symmetric Fermi
liquid exists within each layer, see point (a) in the blue area of the phase diagram.
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(i1) A decrease of the trap frequency to point (b) is accompanied by a structural change to a
six-fold rotational cluster symmetry with an outer shape exhibiting hexagonal symmetry.
This phase only establishes in the regime of a short-range in-layer potential, i.e. d* < 2. In
the Coulomb case of weakly coupled layers this liquid-like state is not found.

(iii) If the confinement strength is further reduced, see point (c), the cluster passes over to a
nine-fold rotational symmetry. While in the cluster core a ring R of delocalized density is
observed, the outer nine high-density spots are situated on a perfectly circular ring, which
reproduces the symmetry of the external confinement potential.

(iv) In the limit of small d* and A — oo, see figure 5(d), where the in-layer interaction becomes
extremely short-range, a commensurate closed packed structure with three-fold rotational
symmetry similar to that known from classical dipole systems [28] is found.

Consequently, during the coupling-induced transition from (i) to (iv) the cluster size decreases
slightly as the effective in-layer interaction becomes short-ranged. In analogy to N = 10, the
liquid-like state (i) as well as the (R, 9) configuration (iii) are found for all values of d*. The
additional configuration (ii), missing in the case of N = 10, is limited to a range of strong
interlayer attraction.

In contrast to N = 10, in total two transitions as function of d were found in the classical
N = 12 system, cf table 1. However, in the investigated quantum regime, A < 15, we observe no
configuration changes corresponding to the classical transitions (3,9) <> (4,8), see black lines
d) =0.9528ry and d? = 0.3253r, in figure 5 (left). Hence the two ground state transitions
(3,9) — (4,8) and (4,8) — (3,9) of type (A) and (B), introduced in section 2, are expected to
occur outside of figure 5 in the (semi-)classical region only.

4.6. Single-particle orbitals and single-particle spectrum

In both previous subsections, we discussed the phase diagram based on the N-particle densities.
In this part, we pursue the question of how the single-particle spectrum evolves during the
transition from (3,7) to (2,8) for the N = 10 cluster, see red arrow in figure 4 (left). At fixed
d* = 3.0, the configurational transition occurs when changing the coupling parameter from

A1 = 12 to A, = 13. For this transition, the spatially resolved orbitals d)i (;) ,(r) and the N-particle

density ,of;(hi (r) are collected in figure 6 together with the corresponding one-particle HF spectra

e(h) :
¢, for both coupling parameters A, and A,.

As mentioned in section 4.4, the configuration change (2,8);, <> (3,7);, is reversed along
the red arrow in figure 4 compared with the respective classical transition. Similar to the N =6
cluster discussed in figure 3, the HF orbitals generally extend over several classical particle
positions.

In situation (a), i.e. A; = 12, the energetically highest orbitals i =7, 8 and 9 contribute
most to the inner-shell density showing three high-density spots. On the other hand, in (b),
i.e. A, = 13, the orbitals are completely rearranged with the two inner-shell density spots being
now formed mainly from the orbitals 3 and 8, leading to embedded orbital energies eg(h) and
€g ® Wwithin the spectrum, cf the black circles in the energy term schemes. In addition, all orbital
energies of the (2,8) configuration are enclosed in a narrower energy interval compared to (3,7),
whereas the energy spectra do not reveal any degeneracy. However, for (2,8) the spectrum
separates into two parts of similar energetic substructure with orbital energies eg(h) to eZ(h)

and eg(h) to eg(h), respectively. Accompanying this fact, one clearly recognizes a change and an

New Journal of Physics 10 (2008) 083031 (http://www.njp.org/)


http://www.njp.org/

21 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[0 | 12 . °» ° 14 g ]
1 L e )
< S | B0 705 | T, 1 a1l B
S eeM2yg 08 [10.865, 1000 BT (g g8 W
[ T T T T T T T T T T T T T T T
?\5‘ 75 . . ”6. 777 - ”8 . ”9 |
S .
g —e—. 1. (% (a%s | s | 0
§§»e§<h>—.—j\ 17598 * oM st T |12308 | [12673
< N — ]
— = e(h) 4 T T T T T T T T T T T T T T T
= oF —.—_€8< E w [i=0 |1 12 g ° 13 14 |
st — 11 829k I M ’
%Oug: s ’ ] 5 - i | _ i . .
g0 _"‘,u"’_.__ee(h) = le™=10.901 [11.107 11.&2‘. 11395 | |11.579"
fa— _ : - T T T T T T T T T T T T T T T
i iy 1805 6 7 8 9
£ T ‘ 15 e | @8 e 1 o
s-F £5 . . 9 e o
L v 1< r i 3 ar + 3
SO I ° 1zl | ¢ % o, = |
af L E=30 1=, e B oM 12.139, e

h)

Figure 6. Lefi: HF energy eigenvalues €; ( corresponding to the spatial orbitals
e(h)

b; S?Yk(r). (a) Bilayer density p,. ; (r) and orbitals for N =10 at d* = 3.0 and
A1 =12.0, (b) A, = 13.0. The black dots denote the orbitals which contribute
most to the inner-shell high-density spots. While the inner shell of the (3,7)
configuration is essentially built up from the 3 highest orbitals 7, 8 and 9, the
inner shell of the (2,8) configuration is mostly formed from the orbitals 3 and
8. Right: single-particle orbitals ¢§ (;” , (r) for the cases (a) and (b). The different
signs of the wave function (blue and orange) are separated by white areas of zero
amplitude, whereas areas of maximum amplitude are black.

increase of the orbital symmetry when crossing over from the (3,7) to the (2,8) configuration.
In contrast to (a) the rotational and specular (mirror) symmetry of qbie, Sl) , (r) with respect to
perpendicular space axes in (b) is increased. Moreover, the structure of the nodes (white lines
with zero amplitude in figure 6 right) of the HF orbitals changes, making the symmetry axes
obvious. Particularly, inner and outer shell are clearly more separated by nodes in the (2,8)
configuration.

5. Discussion and outlook

In this paper, we have considered ground state and dynamical properties of mesoscopic
classical and quantum mass-symmetric electron—hole bilayers. In particular, we focused on the
dependence of the properties on the layer separation d. The main effect is the gradual transition
from systems with Coulomb interaction in the layers (at large d) to a system with short-range
dipole interaction (at small d). Based on extensive classical molecular dynamics calculations
we have shown that, with variation of d, several clusters show a sudden change of the ground
state shell configuration, including several cases of re-entrant configuration changes which are
related to symmetry properties. Furthermore, we have analysed the classical normal modes of
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these bilayers and studied the d-dependence of the spectrum for N = 19 as a representative
example.

A striking result is the energy jump of the inter-shell rotation mode frequency w?y. by
more than four orders of magnitude when the ‘magic’ ground state configuration (1,6,12) is
replaced by (1,7,11). This leads us to suggest a new possibility for external control of inter-shell
rotation by exerting strain on the bilayer system (or alternatively by changing the trap frequency
wp by an external electric field [33]), i.e. a scheme which does not require changing particle
number [43, 44]. Preparing a sample with d slightly above d.,, rapid compression initiates a
ground state transition and thus allows one to ‘turn on’ the inter-shell rotation of composite
dipoles—excitons. Combined with optical excitation this may have interesting applications
manipulating coherent emission.

In the second part of this paper, we performed a quantum many-body calculation of the
same system within the frame of a SCHF approach. In the low-density limit, where the particles
are well localized, classical properties are recovered. On the other hand, upon density increase
and growing particle overlap quantum diffraction and exchange effects become important. This
has significant consequences for the ground state phase diagram which is much richer than the
classical one. There appear new structural phases which are characterized by charge localization
on the outer shell coexisting with delocalization on the inner shell. Also, there exist parameter
ranges where the classical and quantum systems show opposite shell configuration changes.
The main advantage of the quantum many-body calculations is that they yield the complete
single-particle energy spectrum and orbital-resolved ground states. We have shown that, even in
the Wigner crystal phase where the density shows strong peaks, single peaks do not one-to-one
correspond to single particles. On the contrary, in general, several orbitals contribute to a single
density peak.

We note that the present quantum results correspond only to the simplest representation
of many-body theory—the HF approximation. Thereby all pair interactions have been self-
consistently included and direct and exchange terms are treated on the same footing. We
have performed several comparisons with first-principle path integral Monte Carlo (PIMC)
simulations where, however, the control of statistical fluctuations and the exact treatment of
fermions are computationally demanding, especially for temperatures 7 — 0. Nevertheless, the
result has shown that the correct shell configurations are observed and that the HF ground state
energies are in essential agreement with the PIMC simulations which fully include correlation
effects. This leads us to expect that the quantum results reported in this paper will not change
qualitatively when better approximations are considered. Naturally, the first improvement to
be made is the inclusion of scattering effects on the level of the second Born approximation
of nonequilibrium Green’s functions theory, as was done e.g. in [45]-[47]. We are presently
developing these calculations which will be reported elsewhere.
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I. INTRODUCTION

Coulomb crystals (CCs), a periodic arrangement of
charged particles, are omnipresent in nature, from astro-
physical systems (interior of dwarf stars, Refs. 1 and 2) to
laboratory systems (trapped ions, see, e.g., Refs. 3 and 4,
plasmas in storage rings, e.g., Refs. 5 and 6, or dusty plas-
mas, Refs. 7-9, to name a few examples; for an overview,
see Ref. 10). CCs add an interesting new species to the large
family of crystals in condensed matter, chemistry or biology,
for an (incomplete) list, see Table 1. We will distinguish CCs
from “traditional” crystals (including molecular or ion crys-
tals or metals) by 1. the governing role of the Coulomb in-
teraction (in contrast to crystals of neutral particles) and 2.
by the elementary character of the constituents (in contrast,
e.g., to the complex ions forming the lattice of a metal)."!
These two properties bring the CC into the area of plasma
physics rather than condensed matter physics, because it is
the strength and long range of the Coulomb interaction
which dominates the many-particle behavior in these sys-
tems, the crystal symmetry, stability, and melting properties.

The research on CC originates in solid state physics.
More than seven decades ago Wigner predicted, using the
jellium model, that electrons in metals would form, at low
density, a bcc lattice, see Ref. 12. A second line of research
grew out of the field of classical strongly coupled plasmas.
There it was predicted, by computer simulations, that a one-
component Coulomb or Yukawa model plasma (OCP) in
three and two dimensions would crystallize at sufficiently
high density and/or low temperature, e.g., Ref. 10. 3D Cou-
lomb crystals show a bcc symmetry, whereas Yukawa crys-
tals have a bcc and a fcc phase, Ref. 13. In contrast, the
ground state of 2D crystals has hexagonal symmetry. How-
ever, jellium and OCP are models assuming that the charge
species forming the crystal coexists with a second neutraliz-

a)Paper NI2 5, Bull. Am. Phys. Soc. 52, 190 (2007).
®nvited speaker. Electronic mail: bonitz@physik.uni-kiel.de.
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ing one which forms a static homogeneous background
which does not influence the crystal. Such systems do not
exist in nature. In real two-component plasmas, crystalliza-
tion is very different. One important effect is weakening of
the Coulomb interaction by dynamic screening. Moreover,
the attractive force between different species will favor re-
combination, i.e., formation of bound states. This will, obvi-
ously, strongly reduce the Coulomb coupling and may even
prevent crystal formation. Nevertheless, CC formation in a
two-component plasma [item AIIL (c) in Table I] is possible
and will be discussed below in Sec. VI.

But before we consider the second possibility to achieve
Coulomb crystallization: One-component (non-neutral) plas-
mas which are stabilized by an external “trap,” such as an
electric potential, cf. item BII in Table I. This principle has
been successfully used in experiments with ion crystals, e.g.,
Refs. 3 and 4 and dusty plasmas, e.g., Refs. 14-18, for an
overview, see Refs. 19 and 20, and is expected to function
also with electrons in semiconductor quantum dots, Ref. 21.
Naturally, the existence of the trap may have a strong influ-
ence on the crystal properties. For example, a spherically
symmetric trap will favor crystals forming concentric rings
(in 2D) or shells (in 3D). This gives rise to interesting sym-
metry effects, including magic (closed shell) configurations,
e.g., Refs. 22-25 familiar from atoms and nuclei and coex-
istence of shells and bulk behavior in larger systems, Ref. 26.

Coulomb crystals may not only consist of classical
“point particles” but also of quantum particles which have a
finite extension (electrons in quantum dots, ions in compact
stars, etc.) which is of relevance for the properties of CC and
is crucial for the phase diagram. Since the issue of quantum
plasmas has come into the focus of recent research again in
the context of laser plasmas27 and astrophysic:s28 we will
consider the influence of quantum effects in some detail. In
this paper we study some general properties of Coulomb
crystals. Starting from the theoretical description, in Sec. II,
we continue with two typical examples of classical and quan-

© 2008 American Institute of Physics
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TABLE I. Coulomb crystals (CC) in the world of crystals (incomplete list). CC variants are A.IILb, A.IIL (c),
B.IL (a), and B.IL (b). 1CS (2CS) denotes one (two) component systems, OCP, the one-component plasma
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model containing ions plus a homogeneous static neutralizing electron background.

A. Unconfined (macroscopic) crystals

L 1CS with attractive interactions
Neutral particles (e.g., Lennard-Jones,
Morse potentials),

“normal” solids, rare gas clusters, etc.

1. 1CS with repulsive interactions
a. Transient “Coulomb exploding” crystals

b. Charges on surfaces of finite systems
(e.g., electrons on helium droplets)

I 2CS

a. “Normal” crystals: ionic crystals, metals, etc.

b. OCP model (ion Coulomb or Yukawa crystal)
c. TCP crystals (electrons, nuclei, holes, positrons)

B. Confined crystals (1, 2 or 3D traps)

L. ICS with attractive interactions
Confinement not necessary, see A L.

1. 1CS with repulsive interactions
a. Classical: Ions, dust particles

b. Quantum: Electrons in quantum dots

II1. Periodic confinement
e.g., particles in optical lattices,
electrons in bilayers, superlattices, etc.

tum crystals in traps (Secs. Il and IV). This is followed by
an analysis of the melting point, Sec. V, after which the
special situation of CC in neutral plasmas (Sec. VI) is dis-
cussed.

Il. MODEL AND PARAMETERS

The Hamiltonian of a system of particles with mass m;
and charge e; interacting via a statically screened Coulomb (a
Yukawa) potential is given by

2 N e; ej e~ Kij

N

R h

H=D, —2—Vl-2+V(r,-)+ — , (1)
i=1 m

i Jj<i ij

where r;;=|r;—r;| and € denotes a static background dielec-
tric constant, which is of the order of 10 in the case of an
electron-hole plasma in a semiconductor; in a plasma, e=1.
The case of a pure Coulomb system follows in the limit of
zero screening, k— 0. In the case of trapped systems a con-
finement potential V(r) is included which will be assumed
isotropic and parabolic, i.e., V(r)=mw?r?/2. The limit of an
unconfined system is achieved by letting w— 0. In thermo-
dynamic equilibrium the system properties are determined by
the canonical probability distribution P or, in the quantum
case, by the density operator p,

1 A
P(E)=—ePE, p=—ePH, (2)

Z

N

where B=1/kgT is the inverse temperature, and E denotes
the total potential energy, i.e., the second plus third term of
Eq. (1).

Despite their different form of appearance, all Coulomb
(Yukawa) systems exhibit similar fundamental properties
governed by the strength of the Coulomb (Yukawa) interac-
tion which is measured by dimensionless control parameters:
The coupling parameters I',, r,,, and \, of particle species a
and the quantum degeneracy parameter ,. These parameters

are determined by the ratio of characteristic energy and
length scales:?*%

e Length scales: (i) 7, average interparticle distance, 7
~n~" (n and d=1,2,3 denote the density and dimension-
ality of the system, respectively). (ii) A, quantum-
mechanical extension of the particles. For free particles we
have A™=h/\2mm kT, (deBroglie wavelength), for
bound particles A is given by the extension of the ground
state wave function, A2°“nd=27m3. (iii) ap, relevant Bohr
radius az= €/ e e, h?/myy,, where m i =m_ " +m;'. (iv) ag,,
effective Bohr radius of an OCP: ag,= €/ efl h2/m,.

e Energy scales: (i) (K), mean Kinetic energy, which in a
classical system is given by (K,),=d/2kgT,, whereas in a
highly degenerate Fermi system (K,),,,=3/5Ep, holds
[Ep=t2(37°n)*3/2m denotes the Fermi energy]; (ii) (U*?),
mean Coulomb energy, given for free and bound particles
by (Uﬁb)fz eqep/dmel /7 and (U)g=e,e,/dmel/2ay
=FEr (Rydberg), respectively. Analogously, the mean
Yukawa interaction energy is estimated by (Uy),
= U,

* Dimensionless control parameters: The quantum degen-
eracy parameter x,=n,A%~(A,/7,)? divides many-body
systems into classical (y<<1) and quantum mechanical
ones (y=1). The Coulomb coupling parameter is the ratio
U] /{K). For classical systems I',=[U")|/kgT, re-
sults, whereas for quantum systems the role of ', is taken
over by the Brueckner parameter, r,,=7,/ag,
~U |/ Ep,. The relation to the parameter, r,=7/ag, fa-
miliar from atomic units is r,=r,[1—m,/m,+m,]. Simi-
larly one can introduce coupling parameters for Yukawa
systems and of different species.

In a two-component plasma different masses and charges
of the species may give rise to unequal coupling and
quantum degeneracy of the species. In particular, in a dense
electron-ion plasma classical ions and quantum electrons
may coexist. Analogously ions may be strongly coupled
while the electrons are only weakly coupled, see Sec. VI.
The ratio of the degeneracy parameters scales as x,/X;
=(my,/m,)"?, whereas the ratios of the coupling parameters
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FIG. 1. Radial particle distribution for N=190 particles given in cylindrical
coordinates. Left: Experiment. Right two figures: Simulation results with
Coulomb (k=0), and Yukawa (x=1) potential. The length unit in the right
two figures is r,., given by Eq. (4), from Ref. 24.

are given by T,/T,=(e,/ep)*> " and ry,/rg=(m,/my)
X (e,/e,)**V4, where local charge neutrality, n,e,=nye,, has
been assumed.

lll. CLASSICAL COULOMB AND YUKAWA CRYSTALS
IN TRAPS

Coulomb crystallization in a spherical 3D geometry was
first observed for ultracold ions in Penning or Paul traps.3 A
second candidate are ions created by ionization of cooled
trapped atoms. Recent simulations® also show that un-
trapped ions, expanding due to Coulomb repulsion, might
crystallize if they are properly laser cooled during the expan-
sion. Finally, so-called “Yukawa balls” have been observed
in dusty plasmas,”’32 see Fig. 1. Their theoretical description
is again based on the Hamiltonian (1) (for an overview on
earlier theoretical results and simulations, see Ref. 10). This
model has, in fact been shown to correctly describe the dusty
plasma measurement524’33; 3D concentric shells where the
populations N, are sensitive to the screening strength x. With
increasing « the reduced repulsion leads to an increased
population of the inner shells. The quality of the experiments
is so high that the shell populations can be measured accu-
rately, allowing for comparisons with the simulations. In
fact, very good agreement is found for xry=0.6, cf. Fig. 2,
which shows the relevance of screening effects in these con-
fined dusty plasma crystals. Furthermore, screening has an
important effect on the average radial density profile of these
crystals. In contrast to Coulomb crystals, where the density is
approximately constant, with increasing « there is an increas-
ingly rapid decay of the density towards the surface.’*%

As in the 2D case closed shell configurations and a
“Mendeleyev table” exist (see, e.g., Refs. 23, 24, and 36).
The dependence of the crystal stability on the number of
particles can be seen from their melting temperatures. For
example, the closure of the first spherical shell occurs at N
=12, which gives rise to a particularly high crystal stability
(high melting temperature), cf. Fig. 4 below.

Phys. Plasmas 15, 055704 (2008)
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FIG. 2. Number of particles N, on the shells of Yukawa balls with different
N and «. Table 1 contains experimental (last line) and theoretical shell con-
figurations for N=190. N;...N, denote the particle numbers on the ith shell
beginning in the center. The figure shows the shell populations for 40 ex-
perimentally observed Yukawa balls (symbols) and molecular dynamics
simulation results for several k values (Ref. 24). « is given in units of ral
defined by maw?ri=e>/r,, temperature is in units of Ey=e>/r,.

IV. QUANTUM COULOMB CRYSTALS IN TRAPS

When the trapped CC is cooled, eventually the deBroglie
wavelength A will exceed the interparticle distance and
quantum effects will become relevant. While for ion crystals
this may require sub-micro-Kelvin temperatures this regime
is easily accessible with (the much lighter) electrons in nano-
structures. At the same time, there quantum crystal formation
and detection is hampered by impurities and defects. There-
fore, the results shown below are obtained by means of com-
puter simulations. The density operator (2) with the 2D
Hamiltonian (1) is evaluated by performing first-principle
path integral Monte Carlo (PIMC) simulations; for details,
see Refs. 37 and 38. Results for the probability density of 19
electrons in a 2D harmonic trap are shown in Fig. 3. We
observe a shell structure similar as in the classical case.
However, the particles are now not pointlike but have a finite
extension and an elliptic shape which minimizes the total
energy. When the system is compressed by increasing w, the
wave functions of the electrons start to overlap—first within
each shell, cf. central part of Fig. 3, and finally also particles
on different shells overlap giving rise to a quantum liquid

FIG. 3. (Color) 19-electron quantum Wigner “crystal” (left), radially or-
dered crystal (center), and mesoscopic fermionic liquid (right). From left to
right quantum melting at constant temperature occurs. Dots correspond to
the probability density p of the electrons in the 2D plane which varies
between p,,« (pink) and zero (red).
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state. This process of quantum melting occurs even at zero
temperature, giving rise to an interesting phase diagram of
quantum CC,21 see also Sec. V.

V. CONDITIONS FOR CRYSTAL FORMATION

Phase coexistence is determined by the equality of the
thermodynamic potentials (such as the free energy) in the
two phases which often requires very accurate and expensive
calculations. In macroscopic plasmas there exist many alter-
native criteria for crystallization: Peaks of the specific heat,
sufficiently strong modulations of the pair distribution or the
static structure factor, and so on. These quantities yield prac-
tically the same melting point, for an analysis see, e.g., Ref.
39. In contrast, in trapped systems, in particular, when the
particle number is reduced, the results for the phase bound-
aries may strongly depend upon the chosen quantity and the
way it is computed. It turns out that, for the class of systems
described by Eq. (1), two quantities are particularly useful to
localize the melting point: Critical values of the coupling
parameter and of the distance fluctuations of the particles
around their equilibrium positions. We mention that, for very
small systems, recently a more appropriate quantity has been
proposed: the variance of the block-averaged interparticle
distance fluctuations, see Ref. 40.

A. Critical values of the coupling parameter

Let us start with the simplest case of Eq. (1): A macro-
scopic classical plasma (w=0) containing a single charge
component. We can rewrite the ratio of energy and tempera-
ture which determines the thermodynamic properties, cf. Eq.
(2), as

N kT ,
BE=fT,k)=T > —— with 7=

1=j<i Tij r

3)

For Coulomb systems (k=0) BE is characterized by a single
parameter, the coupling parameter I', i.e., different Coulomb
systems (containing different types of particles, having dif-
ferent temperature or density) are expected to show the same
behavior if they have the same values of I'. In particular, as
was revealed by simulations, CC occurs at I',,=175 in 3D
and I' ;=137 in 2D. In a Yukawa OCP (x>0) the effect of
screening suggests introducing I'y(k) — ['e™", however, this
does not correctly reproduce the x-dependence of the melt-
ing curve. The reason is that melting is not determined by the
absolute value of the energy but by the energy contribution
of particle fluctuations around their ground state positions
rio- Expanding Eq. (3) around ry, defining &;=7;~7;0.
and taking into account that the first derivatives vanish
we obtain  BAE=B(E-Ej—Eyy)= FE?;[ §?j/ F?]-O(l +KFjjo
+ KT/ 2)e 70+ -+ The dots denote terms with mixed de-
rivatives and higher order terms, and E, and E_,, are the
energy in the ground state and of center of mass excitations
(which are not relevant for the melting), respectively.

For the case of two particles, this expression can be writ-
ten in a Coulomb-type form, BFSAE =I"y(k)&, with the
Yukawa coupling parameter I'y(x)=Te 1+ ki+(k7)?/2].

Phys. Plasmas 15, 055704 (2008)

Assuming that, at the melting point, the critical coupling
parameter is universal (3D case), I'y,=175, the phase
boundary of the (bcc) crystal in the I'-k plane is approxi-
mated by T’ (k)=175-e“[1+«r+(x7)?/2]"". Interestingly,
simulations have shown that this result holds reasonably well
not just for small particle numbers but also in a macroscopic
system.

Consider now a classical crystal in a trap. Here the den-
sity is externally controlled by the trap frequency @ which
determines the mean interparticle distance. The basic prop-
erties are best illustrated for two particles. The ground state
is obtained from the minimum of the relative potential en-
ergy Eq. (1) with the result

Kro,3 2
e""ory e 3

=1y, (4)

l+krg m ,
2

Equation (4) yields the two-particle distance, ry(x), as a
function of the distance in an unscreened system, "0c~24 In
analogy to the macroscopic case we introduce a Coulomb
coupling parameter, I'y = e?/ (kyTr,). The corresponding cou-
pling parameter for Yukawa interaction, I',y, again follows
from expansion of the energy around the ground state,
BraAE=T,y(x)& with the result?  T,y=T,e *0(1+kr,
+K2V%/3) slightly differing from the above expression. In a
similar way, the ground state and effective coupling param-
eter can be defined for any particle number, but this has to be
done nu111<3rically.23’42 The results are strongly N-dependent
due to the importance of shell filling and finite size effects.
This leads to strong variations of the crystal stability with N
as can be seen in the melting temperatures, left part of Fig. 4;
see, e.g., Refs. 43 and 44.

Consider now a macroscopic quantum OCP. We rewrite
the Hamiltonian (1) in dimensionless units

A

—KTj

N
H
B =sr T=- 55V E S )

2Eg si=j<i Tij

which depends on the quantum coupling parameter r, and
temperature separately, leading to a more complex behavior
than in a classical OCP where only one parameter I" exists.
The existence of three energy scales, quantum kinetic energy
(first term), interaction energy (second), and thermal energy
has a direct consequence for the phase boundary T,(n) of
Coulomb crystals, cf. Fig. 4. While for a classical crystal, the
slope of the boundary is always positive, dT,(n)/dn>0,
given by a constant value of I', for quantum crystals, there
exists a maximum value of the temperature, 75", where the
slope changes sign. For densities to the left of the maximum
the phase boundary is dominated by “normal,” i.e., thermal
melting, whereas for densities exceeding the value of the
maximum, by a competition of quantum kinetic and interac-
tion energy. For sufficiently large densities (with decreasing
r,) quantum melting is observed, even at zero temperature,
cf. Fig. 4. The corresponding critical values of the Brueckner
parameter of a Coulomb OCP at 7=0 are r{' = 100(160) in
3D and r{'=37 in 2D for fermions (bosons),”* and refer-
ences therein. These values are still under investigation.
Also, generalization of the results to a quantum Yukawa OCP
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FIG. 4. Left: Melting temperature of small 3D spherical Yukawa crystals vs particle number. Right: Phase diagram of the mesoscopic 2D Wigner crystal for
different particle numbers N. OM (RM) denotes the boundary of orientational (radial) melting. Here the dimensionless density n and temperature T are defined
as n=\20/rt=(ag/ry) "> ~r;""? and T=kyT/Ey, where Z=h/(mw,),Ey=e/ €,ry with r, given by €?/ €,ry=mw?r3/2, from Refs. 21 and 43.

has only recently been attempted; see Ref. 46, and references
therein.

Finite trapped quantum plasmas show the same general
behavior as a macroscopic quantum OCP and, in addition,
finite size effects as in case of the classical crystals in traps.
As a consequence, the crystal phase boundary is strongly
N-dependent, as can be seen for the 2D case in Fig. 4. Fur-
ther, in 2D the competition of hexagonal (bulk) symmetry
and spherical symmetry induced by the trap leads to possible
additional phases, both in classical and quantum trapped
plasmas. The most prominent one is a partially ordered phase
where particle ordering occurs within each shell, but no order
of different shells with respect to each other exists. Only at
significantly larger values of the coupling parameter the ori-
entational fluctuations freeze out [orientational freezing or
melting (OM)] and the crystal enters the fully ordered phase,
cf. Fig. 4. The location of this phase boundary is strongly
dependent on the crystal symmetry and may vary with N by
many orders of magnitude.2"22 In 3D trapped plasmas no
radially melted phase is observed because there is generally a
much larger energy barrier for intershell rotations.

B. Critical values of the distance fluctuations

The appearance of different coupling parameters in the
case of classical and quantum plasmas makes it very difficult
to construct a joint phase diagram of Coulomb crystals. An
alternative approach to the crystal phase boundary uses, as
the starting point, the magnitude of the relative interparticle
distance fluctuations of the particles around their lattice po-
sitions. Expanding, as in Sec. V A, the total energy fluctua-
tions AE in a Taylor series up to second order and diagonal-
izing the result allows us to express AE as a superposition of
d-(N-2) relative normal modes. For this system of indepen-
dent 1D quantum harmonic oscillators with the phonon
modes w,(g) of polarization A all thermodynamic properties

at a given temperature 7 are known. For example, the ther-
modynamic average of the distance fluctuations {x?)=(x?)
—(x)? is given by2

(&)= —E 2 (@) M@ 7).
q A= m
(6)
with f,(q,T) = coth 2‘:‘(‘])
Bl

For a macroscopic classical OCP, f)(¢,T)— 2kzT/hiw\(q),
and the average over the phonon spectrum yields, in case of
a bee crystal, (6x?)=12.9737/T". The result for the relative
distance fluctuations u, = /(8x?)/ry normalized to the near-
est neighbor distance, ro=(377)"°7, is

y 12973 1
Ul = (3772)1/6F — 0.155, (7)

where the last number is the critical value obtained by using
'=17s.

Analogously, we obtain for a quantum OCP bcc crystal
at zero temperature, where fy(¢,7T)— 1,

2 37 32 2
(xy = 714 oy ABas (8)

with u_ 1—( /wx> denoting the moment of order minus
one of the phonon spectrum which equals 2.7986 for a bce

crystal.47 This yields for the relative distance fluctuations
0.783
uly =/~ — 0.28(0.249), )
T

N

where the last number is the critical value for fermions
(bosons), using ;' =100 (160). Note that these fluctuations
are mainly due to quantum diffraction effects, i.e., the finite
extension of the particle wave functions. Spin effects (quan-
tum exchange) play a minor role for the location of the crys-
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tal phase boundary which is clear since, in the crystal state,
the wave function overlap has to be small. Nevertheless, the
physical properties of crystals of bosons may be essentially
different from those of fermions. The reason is that interact-
ing bosons may show superfluid behavior which may even
persist in the crystal phase. This state is called a supersolid
and was predicted 30 years ago48_50 and was recently ob-
served in PIMC simulations of trapped bosonic plasma
crystals.5 !

Equations (7) and (9) are very useful as they establish
the relation between relative distance fluctuations and the
relevant coupling parameter in the two limiting cases of clas-
sical and quantum plasmas. To connect the two limits along
the whole phase boundary, cf. Fig. 4, one has to use the full
phonon spectrum, Eq. (6), without expansion of the function
f- The temperature and density dependence of u,; remains
an open question although some interpolations have been
attempted, see e.g., Ref. 2. Further improvements, in particu-
lar, in the quantum regime, may require to include anhar-
monic corrections, e.g., Ref. 52, since their finite extension
lets the particles explore ranges of the potential energy which
cannot be approximated by a parabola, e.g., Ref. 46.

VI. UNCONFINED TWO-COMPONENT COULOMB
CRYSTALS

As discussed in the Introduction, crystal formation in
two-component plasmas (TCP) competes with bound state
formation. One may, therefore, ask whether there exist pa-
rameters where CC exist and, at the same time, Coulomb
bound states are ionized. In comparison to an OCP, in a TCP,
we have at our disposal two additional parameters to realize
these two conditions: The mass ratio M =m,/m, and charge
ratio Z=e¢,/e, (in a nonequilibrium mass-asymmetric plasma
there is further the possibility of different temperatures of the
component553). The first requirement is obvious: The heavy
component (ions or holes) has to be sufficiently strongly cor-
related such that it can form an OCP Wigner crystal. The
second condition is that electrons have sufficiently high ki-
netic energy to escape the ionic binding potential. For clas-
sical electrons this requires a sufficiently high temperature
whereas in a quantum plasma ionization is possible when
electron wave functions of neighboring atoms start to over-
lap; this leads to tunnel ionization (Mott effect) which occurs
at a sufficiently high density. In summary, we find two alter-
native sets of conditions,

d
=T and EkBTe > Ep, classical case, (10)
ra=r" and  r, <rM quantum case, (11)

where in 3D r?g"“% 1.2. The phase boundary of the Coulomb

crystal of the heavy particles can be obtained using the har-
monic lattice theory results of Sec. V B. For the quantum
case, we may use, for (5xi>, Eq. (8) and express the nearest-
neighbor distance of the heavy particles, ry,, by that of the
electrons,
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FIG. 5. (Color) Snapshots of a Coulomb crystal of heavy particles (red
clouds) embedded into a Fermi gas of electrons (yellow) in a macroscopic
two-component (neutral) plasma (spin averaged results) for mass ratio M
=12 (top left), M=50 (top right), M =100 (bottom left), and M =400 (bottom
right). The density corresponds to r,,=0.64; the temperature is 7,=T)
=0.06Ey. First-principle two-component PIMC simulations.

2 172 32 2
. (o) 3"u_y ry ap, (12)
rel,h — 2 = 2 2/3.2 2°
Ton 200 Z7%ry, ag

where ay,.=(37)"?. Assuming that, at the phase boundary,
the critical value of the fluctuations is given by the OCP
result, Eq. (9), and rse=r§ﬁ°" we readily obtain the existence
conditions of a CC of fermionic (bosonic) ions in a two-
component plasma, M“Z*3=83.3 (132.8). This agrees with
the result of Ref. 53 where it was obtained from a different
derivation. Thus crystallization requires a minimum mass ra-
tio M between heavy and light particles. This condition is
fulfilled for compact dwarf stars where a crystal of carbon
and oxygen nuclei (fully ionized atoms) is expected to
exist."” Further candidates are crystals of protons which was
recently confirmed by PIMC simulations, cf. Refs. 46 and
54, or a-particles, see Ref. 53. Both systems might be acces-
sible in laboratory experiments in the near future. Another
area where such two-component CC should be observable
are electron-hole plasmas in intermediate valence semicon-
ductors, see Refs. 53 and 55 where one could also verify the
critical value of M experimentally, although values of M as
large 80 exists only in some special materials. Another prom-
ising candidate are charge asymmetric bilayers where hole
crystallization is expected to occur already for M =10,
which is due to the 2D confinement of the particles.

The analytical predictions of heavy particle crystalliza-
tion in a TCP have been verified by PIMC simulations where
both electrons and heavy particles have been treated fully
quantum mecharlically.5 39557 As can be seen in Fig. 5, with
increasing M, indeed hole localization becomes more pro-
nounced and, between M =50 and M =100, a transition to
crystal-like behavior is observed. A quantitative analysis
based on the relative distance fluctuations of the heavy par-
ticles, left part of Fig. 6, confirms that the liquid-solid tran-
sition takes place around M ~80. This is a novel kind of
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FIG. 6. (Color) Left: Mean-square relative heavy particle distance fluctuations vs mass ratio M for 7,=0.096 and r,,=0.63. Symbols are simulation results;
the line is the best fit (Ref. 55). [Reprinted with permission from Bonitz et al., J. Phys. A 39, 4717 (2006). Copyright (2006) by IOP Publishing Ltd.] Right:
Qualitative phase diagram of a Coulomb crystal of heavy particles (“holes”) in a macroscopic two-component (neutral) plasma. T,=[(3/2)kzT]/E; and K
=(M+1)/(M“+1). [Reprinted with permission from Bonitz ef al., Phys. Rev. Lett. 95, 235006 (2005). Copyright (2005) by the American Physical Society.]

quantum phase transition, where melting occurs at constant
temperature and density, by “changing” the heavy particle
mass. The phase diagram of the two-component CC is
sketched in Fig. 6 for the two values M =100 and M =200.
The larger M the more extended is the crystal phase in the
density-temperature plane. The crystal phase is bounded
from above by the (green dashed) line I',=I",, and from the
right (high densities) by the (vertical green dashed) line ry,
=r{". This is the simplest approximation where the influence
of the electrons on the heavy particle interaction has been
neglected. Improvements require the inclusion of screening
effects,46 as discussed above, this leads to a destabilization of
the crystal. At the same time, the heavy particle crystal also
influences the spatial distribution of the electrons which sta-
bilizes the crystal compared to the OCP case. Thus, there
exists two competing effects for the crystal stability. A de-
tailed comparison of the crystal phase diagram in an OCP
and a TCP, therefore, still remains an interesting open ques-
tion. Finally, it has been predicted by Abrikosov®® that, in the
presence of a hole crystal, the electrons should tend to form
Cooper pairs, i.e., exhibit superconductivity which yet re-
mains to be verified experimentally.

VIl. CONCLUSIONS

In this paper we have given an overview on strong cor-
relation effects in classical and quantum plasmas, in particu-
lar on Coulomb (Wigner) crystallization. We have discussed
the possible occurrences of Coulomb crystals, first, in
trapped one-component plasmas and, second, in two-
component neutral plasmas. The conditions for crystal for-
mation have been summarized in terms of known critical
values for the coupling parameters as well as in terms of
critical values of the relative interparticle distance fluctua-
tions. Using the data for the critical parameters it is possible
to construct the phase diagram of strongly coupled Coulomb
matter which was discussed for two cases: Mesoscopic clas-
sical and quantum plasmas in a parabolic 2D trap and two-
component mass-asymmetric plasmas.
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6 Summary and Discussion

The main focus of the present thesis has been devoted to the understanding of self-
organized structure formation of charged particles in traps as one of the most exciting
cooperative phenomena in many-body systems. In particular, the collective behavior of
confined few-particle systems is strongly governed by symmetry and surface effects as
well as the precise number of particles involved. A small ensemble of charged particles in
an isotropic trapping potential tends to form concentric shells. These “artificial atoms”
have unique features absent in real atoms: by controlling the confinement strength they
can be transformed from a weakly coupled state to a strongly coupled, crystal-like phase.
The aim of this thesis was to study the conditions and the principles of structure forma-
tion in confined few-particles systems, namely three-dimensional spherical dusty plasma
crystals and low-temperature electron-hole systems in quasi two-dimensional semicon-
ductor structures. In order to achieve a deeper understanding of structural transitions
under the influence of strong Coulomb interaction and, particularly, quantum statistical
and finite temperature effects, the author performed detailed numerical simulations by
means of molecular dynamics, classical and quantum Monte Carlo methods. The main

results of the thesis at hand can be summarized into the following five subtopics.

Ground states of Coulomb crystals. The first part of chapter 3 deals with the theoreti-
cal exploration of the structural ground state properties of spherically confined Coulomb
systems in the strong coupling regime. The classical periodic table of harmonically con-
fined 2D Coulomb systems is well-known by the work of [25, 26, 34, 36, 45, 46, 47] and
others and has been proven to be a valuable reference for experiments, e.g. [1, 6, §].
On the contrary, the ground states of spherical 3D Coulomb systems have not been
systematically studied yet or the data have been erroneous. Within the present thesis
a detailed study of the classical ground states of 3D spherical Coulomb clusters in the
range N < 160 was performed by extensive MD simulations with high accuracy. By

means of a topological 3D Voronoi analysis of the relative particle arrangement on the

87



6 Summary and Discussion

shell surfaces, “fine structure” states in the energy spectrum could be identified. This

topological feature is restricted to 3D clusters and not present in 2D systems.

The presented results are currently of strong interest, as 3D Coulomb crystals have been
recently generated in different physical systems, namely one-component ion plasmas [9,
27], and dusty plasmas [15, 90]. The ground state data are also expected to be important
for quantum 3D Coulomb clusters which may exist, e.g., in semiconductor quantum
dots in the strong coupling limit. It can be noted that recent work of other theoretical

research groups confirms the correctness of the presented data [42, 107, 108, 109].

Coulomb screening effects. In the second part of chapter 3 the author addresses the
question regarding the effect of Debye screening in view of the structural properties of
spherical plasma crystals (“Yukawa balls” [162]). Within the model of an isotropic,
statically-screened Coulomb interaction between the dust grains and a spherical exter-
nal parabolic confinement (which is independent of screening), excellent agreement with
dusty plasma experiments [15] was achieved without any free parameters in the simula-
tions. The most remarkable finding of the MD simulations is the high sensitivity of the

shell occupation numbers to the precise value of the inverse Debye screening length k.

The validity of the theoretical model, and in particular, the effect of the Coulomb
screening on the cluster configuration was demonstrated on the representative example
of the N = 190 cluster (which was measured first [15]). While the number of shell stays
constantly four, the inner (outer) shells become gradually higher (lower) populated
when the screening parameter x is increased. Therefore, the MD simulations allowed
to determine the Coulomb screening parameter ke, ~ 0.6 from the experimentally
measured shell configurations. The value agrees well with independent estimations based
on experimental parameters [111]. Thus the structural behavior gives rise to a novel
non-invasive diagnostic to determine the Debye screening length on the basis of the
observed shell occupation numbers measured in experiments. It should be noted that
an alternative theoretical model by H. Totsuju et al. [113] suggests approximately
screening-independent shell populations (which do not coincide with the experimental
findings [15, 32]).

The high sensitivity of the shell occupation numbers to the range of the interaction
potential raised the question of the generic ground state particle distribution of a con-
fined Yukawa plasma. The author investigates this issue in the first part of chapter 4
by considering the limit of large particle numbers within the model of discrete charges.

While the radial density profile of a harmonically confined (unscreened) Coulomb system
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is known to be constant, the numerical results reveal that a screened pair interaction
changes the charge distribution drastically. Approaching large clusters of N = 103 ...10%
charged particles, a finite screening parameter  (i.e. a transition from a pure Coulomb
to a Yukawa system) is found to induce a strong inhomogeneity in the shell-averaged
radial density profile with a strictly monotonic density increase towards the trap center
to establish a (local) force equilibrium. This essential Coulomb screening effect has been
neglected in previous investigations of trapped Yukawa systems [114]. Moreover, the
screening-induced radial density gradient explains the configurational rearrangement of
Yukawa crystals when « is changed by the plasma environment. The results are also
found to be of direct importance for the understanding of systematic structural transi-
tions in electron-hole bilayer systems. Here, a transition from a long-range Coulomb to

a short-range dipole interaction is induced by a decrease of the layer separation d.

Melting of classical and quantum few-particle systems. A key issue concerning few-
particle systems is the reliable and consistent quantification of melting transitions, which
emerge as a gradual process in finite clusters [2, 20, 21]. Due to the lack of a general
theory of melting and freezing in finite-size systems, empirical rules are frequently em-
ployed [19, 117]. A well-established criterion (often referred to as “Lindemann crite-
rion”) for defining phase transitions in finite systems is based on changes of the relative
Interparticle Distance Fluctuations (IDF) u,.;. In analogy to macroscopic systems, this
criterion rests upon the abrupt loss of spatial pair correlations, which is quantified by
a rapid increase of u, in the solid-liquid transition region. However, a careful in-
spection of u,.; revealed that the “Lindemann criterion” will suggest different melting
temperatures and densities depending on how the associated IDF value is computed.
In particular, the IDF was found to yield divergent and ambiguous results since it is
dominated by a few rare (particle exchange) events. To overcome these convergence
problems, the block-averaged IDF was introduced (first in section 5.3). This quantity
allows for a statistical suppression of exponentially rare events and a consistent quan-
titative analysis of crystal phase boundaries. Further systematic studies aiming at the
investigation of the precise details of the solid-liquid phase transition gave rise to the
introduction of the Variance of the block averaged IDF (VIDF) as a robust, conver-
gent and highly sensitive indicator. The VIDF is unambiguously peaked in the center
of the finite melting interval and allows to reliably detect the melting point and the
critical fluctuations ui’;}t Advantages of the VIDF as a fluctuation based quantity that

constitutes a melting criterion are, (i) the universality of being rigorously applicable to
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both classical and quantum systems, and (ii) its direct relation to the physical processes

taking place during a phase transition.

Strongly correlated indirect excitons in quantum wells. The central topic of chapter
5 was the investigation of strongly correlated electrons and holes in a single quantum
well heterostructure. The investigation started with a detailed theoretical discussion
of requirements of an electrostatic confinement for spatially indirect excitons in view
of experimental realization. To this end the author quantitatively analysed different
electrostatic setups confining neutral excitons within the quantum well plane by means of
the quantum-confined Stark effect. In the proposed trap geometry, the parabolic lateral
confinement on the micrometer scale is produced by the strong inhomogeneous field of
a single tip electrode on top of the semiconductor sample. Using PIMC simulations,
electron and holes are shown to form stable permanent dipoles aligned perpendicular to
the quantum well plane in the presence of the electric field. The dipole moment causes
various favorable (collective) properties of the indirect excitons which were discussed.
In particular, the strong repulsive interaction between the indirect excitons prevents
droplet formation and stabilizes the excitons up to high densities. On the basis of
the considered trap, the author discussed the influence of electric field strength, tip-to-
sample distance, excitation intensity (related to the exciton population of the trap) and
temperature on the confined N-exciton system. The broad range of accessible exciton
and trap parameters allowed to predict the parameter ranges, in which interesting many-
particle phenomena, including Wigner crystallization of (composite bosonic) excitons,

are expected to occur in GaAs and ZnSe based quantum wells.

Electron-hole bilayer systems. A second concern in chapter 5 was the investigation of
a remarkable feature of quasi-two-dimensional electron-hole bilayer systems: the gradual
transition from pure (long-range) Coulomb to (short-range) dipole intralayer interaction,
which occurs when the separation between electron and hole layer d is reduced with re-
spect to the average intralayer interparticle distance. The detailed analysis of the classi-
cal ground state configurations for harmonically confined clusters with N < 30 electrons
and hole pairs revealed that at intermediate values of d the energetically most favorable
state frequently differs from that found in limits of pure dipole [44] and Coulomb [26, 36]
single layer systems. The classical ground state structures were found to be in essential
agreement with corresponding quantum systems in the intermediate and strongly cou-
pling regime. Furthermore, the analysis of the normal mode excitation spectrum for the

exceptional N = 19 cluster pointed out that the lowest mode frequencies exhibit drastic
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jumps (of several orders of magnitude) when d is varied. This abrupt change of the
collective N-particle behavior highlights the close relationship between structural and
collective dynamical cluster properties and suggests — in combination with optical exci-
tation — the implementation of an optoelectronic nano switch which can be controlled

by exerting strain on the bilayer system.

Further attention was directed to the effect of mass-asymmetry in electron-hole bilayer
systems. By varying the hole to electron mass ratio M = my/m. between 1 and 100
at low temperature, fixed layer separation and high density, it could be demonstrated
that the hole behavior can be tuned from delocalized (quantum liquid-like) to local-
ized (crystal-like), while the electrons remain delocalized. The complicated interplay
between Coulomb correlations (such as electron-hole pairing) and quantum effects of
both, electrons and holes, was fully taken into account by performing first-principle
path integral Monte Carlo simulations. While in bulk semiconductors holes are found
to undergo a phase transition to a crystalline state if the mass ratio exceeds a critical
value of M., ~ 80 [5], in the present thesis it was shown that in bilayer systems M., can
be drastically reduced by properly choosing the layer separation and the in-layer particle
density. As a striking result, hole crystallization was found already for M., < 10. The
theoretical finding is in the range of experimental accessibility with standard semicon-
ductor materials and underlines the exciting physical phenomena available in (quantum)

bilayer systems.
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