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1. Introduction

1.1. Topics and goal of the thesis

Charged particles are omnipresent in nature – from plasmas in the sun, the solar wind,
the interstellar medium and the ionosphere to lightning and the polar lights. Most
often they are unconfined and occur in astronomically large numbers in gaseous form.
In this thesis the focus lies on small systems of equally charged particles (one-component
plasma, OCP) confined by an external potential well.

The typical particle numbers range from approximately ten to only a few hundred.
The considered systems show finite size effects and, compared to large systems, their
properties strongly depend on the exact particle number. In addition the particles are
confined by an external trapping potential whose form also affects the physics. Examples
for these systems include

• electron-hole bilayers,

• cold ions in Paul or Penning traps,

• dusty plasmas.

An important aspect of this work is strong correlation effects. In conventional plasmas
the particles often have a high kinetic energy and can be treated as an ideal gas. For
laser cooled ions, to name one example, this is not true. Even though the ions interact
through the Coulomb potential the physics of these systems strongly differs from that
of a hot plasma. Instead of being in a gaseous state these systems occur as strongly
coupled liquids or even form crystalline structures.

While for weakly coupled systems analytical methods can often be employed, this is
usually not the case for strongly correlated systems. One thus has to refer to nu-
merical methods such as molecular dynamics or Monte Carlo simulations which have
become increasingly important with the availability of low cost computer power in the
last decade(s). They are able to treat the interaction between the particles from first
principles and are not restricted to approximate solutions.

The main part of this thesis is devoted to dusty plasmas. This relatively new field
of plasma physics allows one to directly study strongly correlated charged particles in
laboratory experiments and track the motion of single particles with standard video
microscopy. This allows for a detailed microscopic investigation and yields, at least in
principle, the position-velocity distribution function f(r,v, t) in phase space. A better
understanding of these systems could also lead to progress in the research on other
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1. Introduction

strongly correlated systems where direct observation methods are not feasible. This is
the reason why dusty plasma physics has attracted considerable attention.

An important experiment in this field was performed at the Institute for Experimental
and Applied Physics at the University of Kiel in 2004 [1]. For the first time it was possible
to create spherical three-dimensional dust crystals without void regions or chain-like
order. The observed shell structures were similar to those of trapped ions.

The goal of this work is to use numerical methods for the description of dust particles in
an external confinement and to understand and explain recent experimental observations
regarding the crystallization of the particles, especially the observed shell structures.
While these systems are well described by means of first-principle molecular dynamics
simulations, an accurate description in terms of a shell model has only been achieved for
systems with Coulomb interaction (e.g. trapped ions) so far. For dusty plasmas such a
model has recently been proposed [2] and will be investigated here.

Another goal is a deeper understanding of the processes and mechanisms that determine
the stationary state probabilities of dusty plasma crystals, which have recently been
measured in experiments [3]. Even though the results have been compared to molecular
dynamics simulations, no theoretical explanation has been given. Here this question
is addressed with both, simulations and an analytical method. The analysis aims at
finding the relevant parameters that determine the results and an explanation for the
unexpectedly high occurrence of metastable states.

1.2. Outline

This thesis is organized as follows:

Chapter 2 gives an introduction to the physics of strongly coupled charged particles
and a brief historic review on the creation of dust crystals in laboratory experiments.
The charging of dust particles and their mutual interaction in a plasma environment is
discussed as it will be important for the theoretical model used in this work. Additionally
the experimental setup for producing spherical dust crystals is introduced to establish a
link between the experiments on the one hand and the present theoretical work on the
other hand. Special attention is paid to the observed shell structures.

Chapter 3 deals with the theoretical model the analysis in this thesis is based on and
reviews some recent theoretical results. The required simulation methods are discussed
in Chapter 4. Among them are classical molecular dynamics, which is ideally suited
to investigate time dependent and dynamical quantities, and classical Monte Carlo,
typically used to study equilibrium properties. Here it is primarily used for minimization
purposes. As a third method Langevin dynamics is discussed which serves as a tool for
investigating dissipative systems such as the dust particles considered here.

Results are discussed in Chapters 5–7. A shell model for spherical dust balls is intro-
duced in Chapter 5. It is investigated with respect to its capability to reproduce the
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1.2. Outline

exact results obtained in molecular dynamics simulations. Especially the radii of the
shells and their occupation numbers are compared.

Chapter 6 is concerned with the probability of metastable states in Yukawa balls. The
model system is extended to account for friction effects as they occur in dusty plasmas.
The effects of friction, screening and temperature on the probabilities are discussed in
detail. A simple analytical model is employed to give a physically intuitive explana-
tion for the results. The connection between the analytical model and the molecular
dynamics simulations is established by resorting to the time evolution of the velocity
distribution function.

Chapter 7 discusses and reviews some of the aspects that are associated with the eigen-
frequency spectrum of strongly correlated systems in the presence of friction. Especially
the Fourier spectrum of undamped and damped systems is compared.

The last chapter summarizes the results of this work followed by some remarks on
unsolved problems, possible improvements of the model and an outlook on future work.

The appendix gives some details on the calculation of the shell radii in the Yukawa shell
model and the derivation of the analytical model used in Chapter 6.
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2. Classical charged particles in traps

2.1. Strongly coupled Coulomb systems

In the last decades strongly coupled Coulomb systems have been of great interest in many
fields, e.g. Z-pinches, inertial confinement fusion or electrons at the surface of liquid
helium, for an overview see Ref. [4]. This chapter discusses some of the main aspects of
strongly coupled Coulomb systems and specifically the physics of dusty plasmas.

Classical plasmas are characterized by the dimensionless coupling parameter

Γ =
|〈Ucorr〉|
kBT

∼ Q2

〈r〉kBT
, (2.1)

which determines whether a system is strongly or weakly coupled. Here kB denotes
Boltzmann’s constant, T the temperature, Q the particles’ charge and 〈r〉 their mean
separation. In a strongly coupled system the average correlation energy Ucorr exceeds
the thermal energy kBT , i.e. Γ > 1, whereas in a weakly coupled system Γ < 1. The
required coupling parameter at which crystallization occurs depends on the specific
system at hand. For a macroscopic 3D one-component plasma the phase transition
occurs at Γ ≈ 175 [5], while in 2D a coupling strength of Γ ≈ 137 is sufficient [6]. For
small systems with only ten to a few hundred particles finite size effects can strongly
influence the stability and melting points of crystals [7]. Especially so called ’magic’
clusters with a high symmetry often have an unusually high melting temperature.

While in weakly coupled systems it is often sufficient to treat the particle-particle in-
teraction approximatively, this is not possible in the strong coupling limit. Instead of
starting with the ideal gas (i.e. Γ = 0), often used as a model system for a hot plasma,
one may consider the opposite limit of infinite coupling (Γ →∞). In this situation the
(classical) particles are located at their equilibrium positions and small oscillations can
be introduced via the harmonic approximation of the potential, for which many ana-
lytical results are known. Thus strongly coupled Coulomb systems resemble plasmas
on the one hand, due to their Coulomb interaction, but on the other hand also have
similarities with systems in the solid state, where the second method is often employed
for the study of lattice vibrations. If none of the two approaches can be used, numerical
simulations come into play which can handle arbitrary coupling strengths. In the frame
of this work it turned out that the combination of both techniques yields reliable results
on the one hand and a deeper understanding of the underlying physics on the other
hand.
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2. Classical charged particles in traps

Coulomb crystals

One of the first works on Coulomb crystal formation was published by Wigner in 1934 [8],
who predicted that electrons in a solid would form a body-centered cubic (bcc) lattice
if they had no kinetic energy. More recent examples for systems with strong Coulomb
interaction include ion crystals in Paul or Penning traps, which have been observed
in Refs. [9, 10]. Here lasers are used to cool ions to temperatures of a few mK where
strong correlation effects dominate over thermal fluctuations and crystallization becomes
feasible. The number of ions can vary from only a few to tens of thousands. In Ref. [10]
shell structures were found which agreed well with theoretical predictions.

Further examples include electrons in quantum dots [11], electron-hole bilayers [12] and
dusty plasmas [1]. In this work the emphasis is laid on finite classical systems in external
traps when quantum effects are negligible. While the major part is devoted to dusty
plasmas, the results are also relevant for ion crystals in the appropriate limits of the
model parameters.

In the following the physics of dusty plasmas will be considered in more detail.

2.2. Dusty plasmas

2.2.1. Introduction

In contrast to conventional plasmas consisting of ions, electrons and neutral gas particles,
dusty (or complex) plasmas contain a fourth particle species which is referred to as the
’dust’ component. Besides laboratory experiments dusty plasmas widely occur in nature,
e.g. astrophysical systems such as planetary rings [13] or cometary tails [14]. In the
microchip industry dust particles can be a serious problem in the plasma production
processes.

While the crystallization of the dust subsystem was predicted theoretically in 1986 by
Ikezi [15], the first observations of dusty plasma crystals in laboratory experiments were
reported almost ten years later in 1994 by Chu and I [16], Thomas et al. [17] and Melzer
et al. [18]. They were able to produce two-dimensional crystals in radio frequency (rf)
discharges. These findings had a dramatic impact on the research on dusty plasmas.

In experiments the dust typically consists of µm sized particles and has a mass being
much higher than that of the ions. This makes dusty plasmas an ideal system for
studying dynamical properties in the strong coupling limit, since their motion occurs on
a ’macroscopic’ timescale and can be recorded with ordinary video microscopy. While
ions must be cooled to temperatures in the mK regime for crystallization to occur, dust
crystals can be observed at room temperature. The reason for this is their much higher
charge of thousands of electrons, which may give rise to a coupling parameter Γ � 1
even at T ≈ 300 K.
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2.2. Dusty plasmas

Figure 2.1.: Illustration of a dust particle
immersed in a plasma. The negatively
charged grain is surrounded by a cloud of
positive ions and negative electrons shield-
ing the bare Coulomb potential. The grain
charge is determined by the ion and elec-
tron currents Ii,e. The Debye length λD

indicates the effective range of the dust po-
tential.

2.2.2. Grain charging

Due to the high mobility of the electrons (compared to ions) in the plasma the dust
rapidly acquires a high negative charge Q of thousands of elementary charges. A simple
theory of the charging process that calculates the ion and electron currents to the grain
is the OML (orbit motion limited) theory, for a recent overview see Ref. [19]. Its main
assumptions are the conservation of energy and angular momentum and that every
electron or ion hitting the grain surface will be absorbed. Goree stated the conditions
for its applicability as a� λD � le,i [20], where a is the grain radius, λD the screening
length (see next paragraph) and le,i the electron (ion) mean free path. Furthermore it is
assumed that the grain is isolated in a sense that it does not affect the orbits of electrons
and ions in its vicinity [4], i.e. the dust density is low. Another mechanism that could
be relevant for the grain charge in the presence of an external source of radiation is
photo-emission of electrons [19]. For an illustration of the charging process see Fig. 2.1.

2.2.3. Electrostatic potential

The surrounding plasma environment changes the (effective) electrostatic potential of
the dust particles from a bare Coulomb potential ΦC(r) = Q/r to a screened Coulomb
(Yukawa) potential

ΦY (r) =
Q

r
e−κr, (2.2)

if dynamical screening and nonlinear effects are neglected. Instead of the screening
parameter κ the Debye length λD is often used to denote the screening strength. The
two parameters are simply related by κ = λ−1

D .

This form of the interaction potential can be derived from Poisson’s equation

∆Φ = −4πe(ni − ne)− 4πQδ(r) (2.3)

for a single test charge Q embedded in a plasma with electron density ne, ion density
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2. Classical charged particles in traps

Figure 2.2.: Sketch of the experi-
mental setup used to create spherical
dust balls. The dust is confined in a
glass box on the lower electrode. Par-
ticles can be injected from the top of
the setup from a dust dispenser. From
Ref. [25].

ni and the corresponding temperatures Te,i. Assuming a Boltzmann distribution for
electrons and (singly charged) ions, ne,i = n0e

±eΦ(r)/(kBTe,i), and linearizing the densities
according to ne,i ≈ n0[1 ± eΦ(r)/(kBTe,i)] yields the (linearized) Poisson equation for
the potential Φ(r). The electron and ion densities far away from the dust grain are
denoted by n0 and are assumed to be equal. This procedure requires the condition
|eΦ/kBTe,i| � 1 to be fulfilled.

The solution is given by Eq. (2.2) and the screening parameter can be determined from
the plasma parameters according to

κ2 = λ−2
D =

4πn0e
2

kB

(
1
Te

+
1
Ti

)
= λ−2

De + λ−2
Di . (2.4)

In experiments κ is mostly determined by the inverse ion Debye length, κexp ≈ λ−1
Di , since

the electron temperature is usually much higher than that of the ions. As it is difficult
to determine the screening parameter in the experiments, κ must be determined from a
comparison with the simulation results. Besides dusty plasmas Yukawa interaction can
also be found in colloidal suspensions [21].

Other forms of the interaction potential and their influence on dust crystallization have
been widely discussed in the literature, e.g. Refs. [22–24]. Especially the effect of
streaming ions creating an attractive wakefield potential and ion focusing effects have
been of great interest. In the experiments of Ref. [3], to which the results of this thesis
will specifically be compared, the clusters are well described by simple Debye screening.
There the effect of streaming ions is negligible since the dust levitates high above the
lower electrode (the experimental setup is shown in Fig. 2.2) where the electric field is
weak and the ion flow subsonic. In addition no vertical chains have been observed which
typically occur in experiments with strong ion flows [25]. Thus the use of the isotropic
Yukawa potential is well justified. Collective effects arising from the presence of other
grains are not included in this model since they do not play a significant role here.
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2.2. Dusty plasmas

Figure 2.3.: Vertical
section through a con-
fined Yukawa ball at
different temperatures
TE of the lower elec-
trode. The structure
changes from prolate to
oblate as the tempera-
ture is varied. From
Ref. [25].

In fact the charging process and the grain potential are closely related and influence
each other. This problem is still an issue of current research [19].

2.2.4. Experiments

Dust confinement and recording

While the first experiments with dusty plasmas produced 2D monolayer crystals, the
formation of 3D crystals posed a greater challenge. Usually the dust resides above the
lower electrode in an rf discharge, where the vertical gravitational force is balanced by
an electric field. Even though multilayered 2D crystals with attractive forces between
the layers could be observed [26], real 3D crystals always had to struggle with gravity
pushing the particles towards the lower electrode.

In microgravity experiments [27] or laboratory experiments where a thermophoretic
force was used to compensate gravity [28], the formation of three-dimensional clusters
was hindered by the occurrence of voids in the center region of the dust cloud. The
breakthrough in producing spherical, three-dimensional clusters with many particles
was achieved in 2004 by Arp et al. [1, 25] who used a combination of thermophoretic
force and dielectric walls to confine the dust. The experimental setup is shown in
Fig. 2.2.

The experiment is conducted in a capacitively coupled rf discharge [25]. Argon gas is
used with a typical pressure of 20− 120 Pa. Windows in the side walls allow for a direct
observation of the injected dust particles. The lower electrode can be heated to create a
temperature gradient and thus a thermophoretic force in the vertical direction. Together
with the electric field it compensates the gravitational force. A glass box is placed on
the lower electrode in which the dust balls are confined. On the one hand it serves as
a plasma loss area and therefore the net plasma production in the box is minimal [25].
This effectively suppresses the formation of voids due to outward streaming ions. On
the other hand a sheath is formed in front of the walls with an electric field that adds to
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2. Classical charged particles in traps

Figure 2.4.: Experimental
cluster with N = 190. In
a) the particles are projected
into the (ρ, z) plane (cylin-
drical coordinates). Parts
(b) and (c) show a bottom
view of the two outer shells
together with a Voronoi cell
analysis. Hexagons and pen-
tagons are indicated by light
gray and dark gray, respec-
tively. From Ref. [1].

the horizontal confinement of the dust cloud. The ion-drag force is more than two orders
of magnitude smaller than the electric field force and does not influence the topology of
the trap. The overall confinement was shown to be parabolic and almost isotropic [25].

In the experiments it is possible to record the motion of single dust particles and obtain
their trajectories {ri(t)}. One therefore has the complete phase space information which
allows for the study of dynamical quantities such as normal mode excitations or wave
phenomena. While in the first experiments standard video microscopy was used [25],
more sophisticated monitoring methods are based on stereoscopy [3].

The particles are found to arrange themselves in a nested shell structure very similar
to that of trapped ions, but with different shell occupation numbers. Examples are
shown in Fig. 2.3 and Fig. 2.4. On the shells the particles mostly have five or six
neighbors (pentagons and hexagons) but also defect structures with seven neighbors
can be observed.
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3. Theoretical model

3.1. Hamiltonian

The theoretical model used throughout this thesis aims at describing the dust balls
found in the experiments of Ref. [1]. The Hamiltonian for this system consists of the
kinetic energy part, the external confinement and the interaction between the particles.

As was pointed out before, the external confinement for the experiments performed in
Kiel was shown to be isotropic and harmonic [25]. The interaction between the dust
particles in a plasma is approximately given by the Yukawa potential (2.2). Then the
Hamiltonian for the system of N equal dust particles with charge Q and mass m reads

H =
N∑
i=1

{
p2
i

2m
+ Vext(ri)

}
+

N∑
i>j

V (|ri − rj |), (3.1)

where
Vext(r) =

m

2
ω2

0r
2 (3.2)

is the external confinement potential and the interaction potential is given by

V (r) =
Q2

r
e−κr. (3.3)

Despite its simplicity this model is of relevance for many systems, such as colloids, and
has proven to accurately describe the spherical dust crystals (Yukawa balls) observed in
experiments [29]. If the Yukawa potential is replaced by a bare Coulomb potential the
model can also be used to study ions in external traps.

3.2. Dimensionless units

The Hamiltonian (3.1) appears to involve a wide number of parameters, namely the
charge Q, mass m, trap frequency ω0 and the screening parameter κ. In fact, the
number of variables can be reduced to only one by introducing dimensionless units.

An energy scale can easily be obtained by equating the external confinement energy
and the bare Coulomb interaction between two particles, i.e. m

2 ω
2
0r

2
0 = Q2

r0
. From this

expression one derives the length unit r0 = 3

√
2Q2

mω2
0
, which denotes the stable distance

15



3. Theoretical model

Table 3.1.: Overview on the system of units used throughout this work.

distance r0 3
√

2Q2/mω2
0 energy E0 Q2/r0

temperature T0 E0/kB time t0 ω−1
0

force F0 mω2
0r0 screening parameter κ0 r−1

0

between two particles in the absence of screening, and the corresponding energy unit
E0 = Q2/r0 = m

2 ω
2
0r

2
0. The inverse trap frequency is a convenient time unit t0 = ω−1

0 .
Forces will be given in units of F0 = mω2

0r0, while the unit of temperature is closely
related to the unit of energy by T0 = E0/kB. The system of units is summarized in
Table 3.1.

By performing the transformation H → H/E0, r → r/r0, κ→ κr0, p→ p/(mr0ω0) the
Hamiltonian (3.1) can be recast in the form

H =
N∑
i=1

p2
i +

N∑
i=1

r2i +
N∑
i>j

e−κ|ri−rj |

|ri − rj |
. (3.4)

The only remaining parameter is the screening parameter κ. Since it cannot be measured
in the experiments directly it must be chosen to match the experimental results. The
other parameters such as mass or charge only determine the scaling of the variables but
are completely eliminated from the problem otherwise.

3.3. Review of recent results

Ground states and influence of screening

The Hamiltonian (3.1) has been widely studied in the literature. A detailed analysis
of the ground states of 3D Coulomb clusters was presented in Refs. [30, 31]. Besides
the ground state also metastable states with a slightly larger energy were found in the
simulations [30–32]. Furthermore a fine structure was observed, i.e. states with the
same number of particles on the shells, but with a different arrangement on the same
shell [30]. The eigenfrequency spectrum of Coulomb and Yukawa balls has been studied
extensively in Ref. [32].

The ground states of small spherical Yukawa clusters for a wide range of the screening
parameter can be found in Ref. [33]. It was shown that the ground state configuration
strongly depends on the screening parameter, cf. Fig. 3.2. The general trend is that
with increased screening particles move from outer to inner shells. Upon increase of
the particle number the additional particle usually goes to one of the existing shells or
moves into the center. However, there are a few exceptions to this behavior. Three
kinds of anomalies have been identified (cf. Fig. 3.2):
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3.3. Review of recent results

1. Correlated two-particle transitions (increase of the particle number leads to a
structural transition involving two particles).

2. Reduction of inner shell population upon increase of N .

3. Reentrant shell transition upon increase of κ (a previous ground state at lower κ
reappears at a higher screening parameter).

In Refs. [29, 34] the influence of screening has been studied by considering the two-
particle system. It was shown that the ground state distance rκ is a monotonically
decreasing function of the screening parameter. This is in agreement with the observa-
tion that increased screening leads to a compression of the clusters.

Expanding the potential energy around the equilibrium positions to second order one
obtains a local trap frequency Ω with

Ω2(κ) =
6
m

Q2

r3κ
f2(κ), (3.5)

f2(κ) = e−κrκ(1 + κrκ + κ2r2κ/3). (3.6)

The variance of the particle distance fluctuations for two particles was shown to
be σr =

√
2kBT
mΩ2(κ)

, which leads to the conclusion, that the shell width grows with

temperature as
√
T , while screening reduces the shell width [29, 34]. However, the

distance between the shells also decreases with κ, which is the reason why screening
effectively destabilizes the clusters against melting since transitions between shells be-
come more likely.

Compared to Coulomb systems, where the coupling parameter ΓC is defined by
Eq. (2.1), Yukawa systems interact with a screened Coulomb potential and their
coupling parameter has to be modified accordingly. Instead of simply adding the
Yukawa factor e−κr, the authors of Ref. [29] proposed

Γκ = ΓCf2(κ), (3.7)

which is related to the relative distance fluctuations of the two-particle system by

u2
r =

σ2
r

r2κ
=

1
3

1
Γκ

(3.8)

and is very similar to that of the macroscopic Yukawa system [35].

Melting

Since the considered systems consist of only ten to a few hundred particles their prop-
erties are strongly influenced by finite size effects. This is especially apparent when one
considers the cluster stability. There exists a number of so-called ’magic’ clusters with
highly symmetric configurations that have very high melting points, see Fig. 3.1. This
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3. Theoretical model

Figure 3.1.: Melting tempera-
tures for the first melting process in
small Coulomb balls (left axis, black
open squares) and lowest nonzero
eigenfrequency (right axis, red filled
squares) for systems with 5 to 13
particles. From Ref. [36].

issue has been studied in detail in Ref. [36]. The magic clusters were identified as those
with N = 6, 12, 13 and N = 38 particles. The melting process mainly evolves through
two different mechanisms: intrashell melting and radial melting. An intermediate pro-
cess has been found for the magic cluster with 38 particles. For clusters in an anisotropic
confinement the melting process was found to be inhomogeneous and depends on the
spatial location of the particles in the cluster [37].

Analytical results for the density profile

An analytical theory for confined Yukawa systems has been developed in References [2,
38]. Compared to Coulomb systems, which have a constant radial density profile in a
parabolic confinement, Yukawa systems exhibit a parabolically decreasing profile with
the highest density in the center of the trap. These results have been obtained in a
mean field approach neglecting correlation effects [2]. While the agreement with exact
results from molecular dynamics simulations is very good for low screening, deviations
occur for larger values of κ. In this case the density profile is well described by the
local density approximation (LDA) [38]. In both cases the density in the trap center is
increased upon increase of κ which is in agreement with the higher population of inner
shells as was observed in finite crystals.

Further details can be found in the cited papers and the references therein.

Comparison with Lennard-Jones clusters1

The main difference between Lennard-Jones (LJ) clusters and Yukawa balls is the nature
of the interaction potential. While particles with the purely repulsive Yukawa interaction
necessarily require an external confinement to form crystals, this is not true for the LJ

1This discussion is published in Ref. [33]
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3.3. Review of recent results

Figure 3.2.: Ground states of Yukawa balls for a screening parameter 0.0 ≤ κ ≤ 5.0 and particle
numbers 11 ≤ N ≤ 60. The white numbers denote the number of particles on the inner shell(s).
The black circles indicate anomalies of the 1st kind. The white circles denote the end of the
screening range, where anomalies of the 2nd kind appear. The ground states for a screening
parameter κ = 20.0 are plotted above the diagram. The cyan bar for N = 44 at κ = 20.0 refers
to a ground state of (11, 1) in the center region. The dark blue squares just below κ = 20.0
indicate anomalies of the 3rd kind, where a ground state configuration reappears with increased
screening. For comparison the ground state configurations for Lennard-Jones (LJ) interaction
are plotted below the diagram, where possible. In the cases N = 35, 37, 43− 45 it is not possible
to define radial shells in the LJ systems. From Ref. [33]
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potential as it has an attractive tail. The ground states of LJ clusters have been studied
extensively and are summarized in Ref. [39] for N ≤ 110.

In contrast to Yukawa balls which always have a shell structure, the form of LJ clusters
is somewhat different [33]. For most N ≤ 60 the global minimum consists of a Mackay
icosahedron surrounded by a low energy layer of the remaining particles [39]. Closed
shells are observed for N = 13 and N = 55 with an icosahedral structure and a particle
in the center of the cluster. Compared to Yukawa balls, where adding one particle to a
closed-shell configuration leads to a new inner shell, adding one particle here often gives
rise to a new outer ’shell’. This is the reason why the first closed-shell configuration is
found for N = 13 (LJ) – with a particle in the center, while Yukawa balls have their
first closed-shell configurations for N = 11 or N = 12 (depending on κ) – without a
center particle. The same behavior is found for the second closed-shell configuration
with N = 55 (LJ), which is never observed for Yukawa balls with this particle number.

In Fig. 3.2 only the innermost shells of LJ systems are shown where a shell determination
is possible. The particles of clusters without closed-shell configurations are not uniformly
distributed on the shells. As an example consider the transition N = 13 → 14. The 14th
particle is not added to the first shell but is attached to the surface of the N = 13 cluster
and forms a new outer ’shell’ with an occupation number of one. In the case of Yukawa
balls the additional particle would generally open a new inner shell (center particle) or
would be added to one of the existing shells. The positions of the particles on this shell
would be changed such that the particles stay as far away from each other as possible,
with the strongest tendency for Coulomb interaction and a diminishing effect for larger
κ. A single particle on an outer shell is unfavorable due to the symmetry of the trap
and the purely repulsive forces. A trend similar to LJ clusters is only observed for very
high κ where sub-shells can be found with an occupation number higher than those of
nearby outer shells. It would be interesting to analyze the effect of an external trap on
the structure of LJ clusters without closed-shell configurations to further investigate the
influence of a confinement on the emergence of shells as found in Yukawa balls.
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particles

4.1. Relations to Statistical Physics

In Statistical Physics thermodynamic averages are obtained by averaging a quantity A
over independent realizations of the same system. To describe different situations of
interest there exist various ensembles for which certain parameters are fixed. Among
them, two often employed ensembles are the microcanonical and the canonical ensemble.

The former describes an isolated system of N particles at constant total energy E. The
fundamental hypothesis of Statistical Physics is that for a closed system in equilibrium,
every microstate s, in the classical case defined by the particles’ positions {ri} and
momenta {pi}, has the same probability. The equilibrium state is defined as the state in
which the distribution of states does not change with time and consequently macroscopic
quantities remain constant [40].

In the canonical ensemble the system under consideration can exchange energy with a
large heat bath such that it maintains a constant temperature. While for small systems
the microcanonical and the canonical ensemble describe very different situations, the
differences are negligibly small for large systems with many particles where it is not
important whether the energy or the temperature is fixed [40].

In the canonical ensemble the probability of a state with phase space coordinates
R = (r1, . . . , rN ) and P = (p1, . . . ,pN ) is determined by

ρce(P,R) =
e−βH(P,R)

Z(N,T )
, (4.1)

where β = 1/kBT . In the classical limit the canonical partition function Z(N,T )
reads [40]

Z(N,T ) =
1

(2π~)3N

∫
Ω
dP dR e−βH(P,R). (4.2)

The integral has to be evaluated over the entire phase space Ω. For identical particles
one has to add the factor 1/N !. In addition to N and T the canonical partition function
can also depend on external parameters such as the volume V or the confining strength
of an external trap.
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Thermodynamic averages are calculated according to [40]

〈A〉 =
1

(2π~)3N

∫
Ω
dP dR ρce(P,R)A(P,R), (4.3)

which shows that ρce(P,R)
(2π~)3N

can be regarded as the probability density in phase space.

The ergodic hypothesis states that an ensemble average is equivalent to a time average
’for a single system in equilibrium during the course of its natural evolution’ [41]. While
Monte Carlo simulations calculate ensemble averages, molecular dynamics simulations
track the time evolution of a single system and calculate time averages of the form

〈A〉 = lim
∆t→∞

1
∆t

∫ t0+∆t

t0

dtA(t). (4.4)

In the following the two simulation methods will be considered in more detail.

4.2. Molecular dynamics

4.2.1. Introduction and applications

In molecular dynamics (MD) simulations the trajectories of particles (e.g. atoms,
molecules, planets etc.) are computed under the action of internal and external forces
by solving the fundamental equations of motion of Classical Mechanics. This means
one computes the trajectory of a system in the 3N -dimensional phase space. Since for
the general N -body problem analytical solutions do not exist, one has to rely on the
numerical solution of Hamilton’s equations.

MD is based on the idea that with a given set of initial conditions the system’s evolution
is completely determined by Hamilton’s equations and any information can be extracted
from the particles’ trajectories. The method provides particle positions and momenta
at all times and therefore a detailed microscopic description of the system. Given
this information one can compute arbitrary macroscopic quantities such as pressure or
temperature. The temperature is related to the kinetic energy of the system by the
equipartition theorem

d

2
NkBT = Ekin =

N∑
i=1

p2
i

2m
, (4.5)

where d denotes the dimensionality. Strictly speaking this is only valid in the thermo-
dynamic limit N →∞. For finite systems the temperature has fluctuations of the order
O(1/

√
N) in the microcanonical ensemble [42].

The simplest form of MD assumes structureless particles, but it is possible to take into
account internal degrees of freedom of molecules or geometric constraints as well. MD
can be used to study fluids with different kinds of interaction, e.g. Yukawa [43, 44]
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or Lennard-Jones [45], proteins [46] or hydrogen plasmas [47] and a wide variety of
phenomena such as anomalous diffusion [44] or melting transitions [48].

Hamilton’s equations of motion are purely classical. If one is interested in quantum
effects, they can be incorporated by means of effective quantum pair potentials, as was
done in Ref. [49]. Of course this is only possible to a limited extent and cannot include
the same information as a full quantum mechanical treatment. This is why MD is
usually used for problems where quantum effects are negligible or can approximately be
accounted for.

Naturally MD simulations are performed at constant energy and constant N , i.e. they
correspond to the microcanonical ensemble. However, there exist several techniques
which extend MD simulations to constant pressure or temperature, but in these cases the
equations of motion to be solved differ from the original form of Hamilton’s equations.
This issue will be dealt with in Section 4.3.

4.2.2. MD integrators

It is known that trajectories can be exponentially sensitive to small perturbations of the
initial conditions. Thus the goal of MD simulations cannot be to yield exact trajectories
since a finite timestep always introduces numerical errors and therefore small perturba-
tions of the trajectories. A more sensitive quantity that measures the accuracy of the
simulation is the total energy. For an explicitly time independent Lagrangian L with
∂L/∂t = 0 Noether’s theorem states that the total energy is a conserved quantity [50].
It should therefore also be conserved in the simulation. The criteria for choosing an
integration scheme should be the degree of energy conservation and the ability to re-
produce certain time- and space-dependent correlations [41]. Since energy conservation
is connected with time-reversibility, integrators are classified according to this feature.

Leapfrog

Various schemes exist for the integration of the equations of motion. Among them
are the leapfrog scheme and the Verlet algorithm which are both based on a Taylor
expansion of the particle coordinates. The aim is to integrate Newton’s equation of
motion

mr̈(t) = F(r(t), t), (4.6)

where F(r(t), t) denotes the force. For the coordinates r(t) and velocities v(t) = ṙ(t)
one may write [41]

r(t+ ∆t) = r(t) + v(t)∆t+
F(t)
2m

∆t2 +O(∆t3)

= r(t) +
[
v(t) +

∆t
2m

F(t)
]

∆t+O(∆t3). (4.7)
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The term in brackets in the second line of Eq. (4.7) is just the first term in the Taylor
expansion for v(t+ ∆t/2). Subtracting from v(t+ ∆t/2) the corresponding expression
for v(t−∆t/2) one arrives at the leapfrog integration formulas

v(t+ ∆t/2) = v(t−∆t/2) +
F(t)
m

∆t

r(t+ ∆t) = r(t) + v(t+ ∆t/2)∆t. (4.8)

Here it is inconvenient to have coordinates and velocities at different times even though
this does not pose a real problem since one can easily calculate v(t) from v(t −∆t/2)
and the acceleration at time t. A more elegant way which avoids this issue is a two step
method of the following form, which is algebraically equivalent to the original leapfrog
method.

v(t+ ∆t/2) = v(t) +
F(t)
2m

∆t

r(t+ ∆t) = r(t) + v(t+ ∆t/2)∆t

v(t+ ∆t) = v(t+ ∆t/2) +
F(t+ ∆t)

2m
∆t. (4.9)

In this scheme the value of v(t + ∆t) is calculated using the new force at time t + ∆t
after the first velocity halfstep. This scheme will appear again in a similar fashion in
the chapter on Langevin dynamics simulations.

The Verlet algorithm can be derived in a similar manner. Both, the leapfrog and Verlet
algorithm, are time-reversible.

Runge-Kutta

Another often used technique which can generally be used to integrate ordinary differ-
ential equations (ODEs) is the Runge-Kutta method. For ODEs it is always possible to
reduce an equation of higher order to a set of first order equations. Newton’s equation
of motion (4.6) can be written as

ṙ(t) = v(t)

v̇(t) =
F(r(t),v(t), t)

m
. (4.10)

The three second order equations (4.6) have been reduced to six coupled equations (4.10)
of first order. The force can be a function of the velocity v(t) or, in the N -particle case,
also a function of the coordinates of all other particles. Two examples for velocity
dependent forces are the Lorentz force on charged particles in the presence of magnetic
fields or friction forces.
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Let us now discuss the general numerical scheme of solving equations of the form

dyi(t)
dt

= fi(t, y1, . . . , yL), i = 1 . . . L, (4.11)

for the functions y1, . . . , yL. The functions fi on the right hand side of Eq. (4.11) are
assumed to be known. This is the most general form of a system of L coupled first order
differential equations such as (4.10).

Let yn and fn denote the vectors of the yi and fi at t = tn. Runge-Kutta methods
advance the solution from the point yn = y(tn) to the point yn+1 = y(tn+1) by using
the derivatives of y at one or more points in the interval [tn, tn+1]. The simplest method
for the integration of (4.11) reads

yn+1 = yn + f(tn,yn)∆t, (4.12)

where ∆t is the step size. It is commonly known as the Euler method. The method
is unsymmetrical since it uses only the derivative of y at the left point of the interval.
The integration error is of the order O(∆t2), i.e. the scheme calculates yn+1 up to first
order in ∆t.

The so-called mid-point method initially makes a step halfway across the interval to use
the values of t and y at that point to calculate y at the right point of the interval. This
method is of second order.

The following scheme is the Runge-Kutta method of fourth order and is one of the most
often used integrators. The formula reads

k1 = f(tn,yn)∆t

k2 = f(tn +
∆t
2
,yn +

k1

2
)∆t

k3 = f(tn +
∆t
2
,yn +

k2

2
)∆t

k4 = f(tn + ∆t,yn + k3)∆t

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(∆t5). (4.13)

It requires four evaluations of the functions f per timestep. Runge-Kutta methods of
order M > 4 always require more than M function evaluations which explains the
popularity of the fourth order scheme.

As was mentioned before, higher order schemes are not always superior to low order
schemes. Typically they perform better if the timestep can be chosen such that the
advantage of the larger timestep is not foiled by the necessity of several force evaluations.
For further gain of performance for a given limit of accuracy variable timestep methods
have been developed [51]. For regions where the forces are rapidly varying a small
timestep must be chosen. On the other hand, in regions where the forces are well
behaved and vary considerably only on larger distances, one can get away with a larger
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timestep. This can significantly enhance the performance of numerical integrators. One
such method is described in Ref. [51].

The ’embedded Runge-Kutta method’ calculates six coefficients which can be combined
to yield a formula of fourth or fifth order. The integration error is then estimated as
the difference between the two. Since it does not require explicit function evaluations
for each order separately, it is superior to schemes that estimate the error based on step
doubling. The MD code used in this work uses the Cash-Karp parameters as given in
Ref. [51]. The code was written by Patrick Ludwig and was modified for the needs of
this work. Additional information can be found in Ref. [52].

4.3. Langevin dynamics

4.3.1. Introduction

Langevin dynamics is a method similar to molecular dynamics but takes into account
additional forces caused by a surrounding medium [53]. This could be air, a solvent
or neutral gas particles in a dusty plasma. The motion of these particles is usually
very fast due to their small mass and often of little interest. A complete simulation
with these particles included explicitly in the equation of motion would require a very
small timestep and thus would greatly increase the computational effort. In addition
the particles will be present in much larger numbers than those of interest. In these
cases one can adopt an approximate method, which models the effect of the surrounding
medium as a combination of random and frictional forces.

The theoretical basis for the simplified equations of motion was given by Zwanzig [54–56]
and Mori [57, 58]. They used a projection operator method to obtain a reduced descrip-
tion of the problem. Their approaches are equivalent and the relation between the two
similar to that between the Heisenberg and the Schrödinger picture in Quantum Me-
chanics [53]. While Mori used projection operator methods for the time evolution of
the dynamical variables Ai (e.g. the phase-space coordinates of the particles of inter-
est), Zwanzig introduced the operators for the evolution of the phase space distribution
function [53].

4.3.2. Langevin equation of motion

The Langevin equation of motion is

mr̈i = −∇iU(r1, . . . , rN )−mνṙi + fi(t), (4.14)

where i, j ∈ {1, . . . , N} denote the particle index.

Compared to Newton’s equation of motion it has an additional damping term with
friction coefficient ν and a stochastic force fi having a Gaussian distribution with zero
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mean and correlation 〈
fαi (t)fβj (t′)

〉
= 2mνkBTδijδαβδ(t− t′). (4.15)

This noise term is uncorrelated in time and there exists no correlation between different
particles i, j and particle coordinates α, β. The friction and noise term balance each
other to yield a particle temperature T . The coupling to the heat bath is determined
by the value of the friction parameter ν.

To integrate Eq. (4.14) the quasi-symplectic SLO (symplectic low order) algorithm of
Ref. [59] is used. The goal in deriving this integration scheme was to obtain an algorithm
that becomes symplectic in the deterministic, frictionless case ν = 0, T = 0 and to
reproduce the equilibrium distribution function as closely as possible. So far these two
conditions had not been enforced in the derivation of integration schemes at the same
time.

The algorithm reads

r̃i = ri(t) +
vi(t)

2
∆t,

vi(t+ ∆t) = c2

[
c1vi(t)−

∇i U(r1, . . . , rN )|r=r̃

m
∆t+ dwi

]
,

ri(t+ ∆t) = r̃i +
vi(t+ ∆t)

2
∆t, (4.16)

and the coefficients are given by

c1 = 1− ν∆t
2
, c2 =

1
1 + ν∆t

2

, d =
√

2mνkBT . (4.17)

wi is a random Gaussian deviate with standard deviation one and zero mean. It is
generated here by a GSL (GNU Scientific Library) routine using the Box-Müller algo-
rithm.

In the limit T → 0, ν → 0 this algorithm becomes symplectic and is similar to the
leapfrog algorithm (4.9). The author of Ref. [59] showed that the algorithm can run very
fast since it allows for a rather large timestep and only needs one random deviate and one
force evaluation per integration step. Compared with other popular integration schemes
the SLO algorithm often performs better in both speed and accuracy. In addition it is
very easy to program.

4.3.3. Fokker Planck equation

The distribution function f(x, v, t) for the particles that obey the Langevin equa-
tion (4.14) can be described by a Fokker Planck equation. The simplest form for
non-interacting particles in 1D without external potential is given by [60]
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∂f

∂t
+ v

∂f

∂x
= ν

[
∂(vf)
∂v

+
kT

m

∂2f

∂v2

]
. (4.18)

The first term on the right hand side is called the drift term whereas the second term
describes diffusion in velocity space. A simpler form of Eq. (4.18) can be derived by
neglecting inertial effects in the high damping regime. Then it is possible to obtain an
equation for the evolution of the distribution function in configuration space only. Here
it is assumed that after a very short time ∼ ν−1 a Maxwellian velocity distribution is
established. This simplified equation is known as the Smoluchowski equation [60].

Eq. (4.18) has the canonical distribution as stationary solution which is the reason why
the Langevin approach can be used for MD simulations at constant temperature (instead
of constant energy). Other thermostats with different approaches such as the extended
system method or the constraint method are discussed in Ref. [53].

4.4. Monte Carlo

4.4.1. Introduction and applications

Classical Monte Carlo methods follow a different approach to obtain thermodynamic
quantities. Instead of calculating time averages they directly evaluate the integral (4.3).
The classical Metropolis algorithm [61] can be used to efficiently sample the configura-
tional space of a given system and calculate thermodynamic averages. In their tradi-
tional form Monte Carlo methods are restricted to equilibrium situations. Applications
include spin lattices [62], Lennard-Jones fluids [63] and especially melting [64].

Besides time-independent equilibrium calculations Monte Carlo methods can also be
used for time-dependent phenomena [65], such as surface growth, surface diffusion or
defect diffusion in solids. These problems usually involve a multi-timescale problem.
The harmonic vibrations of atoms around their lattice positions occur on a time-scale
which is much shorter than that on which transitions of atoms between lattice points
occur (infrequent events). MD simulations would waste computational time simulating
the fast harmonic motion of atoms that require a small timestep. Kinetic Monte Carlo
(KMC) solves this issue by using transition probabilities between different states of the
system and does not require the resolution of the fast atomic motions [65].

Monte Carlo methods have been extended to treat problems where quantum effects play
a dominant role. Besides Variational Monte Carlo (VMC), which uses the minimum en-
ergy principle of the ground state wavefunction, there exists the Path Integral Monte
Carlo (PIMC) method, based on Feynman’s path integral formalism [66]. It treats quan-
tum mechanical problems from first principles. Applications include electrons in quan-
tum dots [11], electron-hole plasmas [67], superfluidity [68] or the Kosterlitz-Thouless
transition of a trapped Bose gas [69].
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In this thesis the classical Monte Carlo method will be used to find the global minimum
of a function by the method of simulated annealing.

4.4.2. Monte Carlo integration

Solving a high-dimensional integral can be a challenging task. Traditional discretiza-
tion methods will fail because they would require a large number K of function eval-
uations [42]. Monte Carlo methods choose a different way. Instead of evaluating the
function at predefined points they are chosen randomly from a probability distribu-
tion [42, 66]. This can greatly improve the performance of numerical integration for high
dimensions if the probability distribution is chosen appropriately. A one-dimensional
integral of a function f(x) can be evaluated according to∫ b

a
f(x)dx =

∫ b

a

f(x)
p(x)

p(x)dx ≈ 1
K

K∑
i=1

f(x̃i)
p(x̃i)

. (4.19)

The integral is regarded as the mean of the new function f(x)/p(x) and the {x̃i} are
chosen from the probability density p(x). The idea is to choose p(x) such that the func-
tion is sampled at points where the main contribution to the integral comes from. This
is called importance sampling. A uniform probability density corresponds to straight-
forward sampling.

In Statistical Physics one has to evaluate integrals of the form

I =
∫ ∞

−∞
f(x)p(x)dx, IMC ≈ 1

K

K∑
i=1

f(x̃i). (4.20)

Here the error of the MC integration is proportional to σ/
√
K, where K is the number

of function evaluations and σ2 =
∫∞
−∞ f2(x)p(x)dx− I2 is the variance of the integral of

the function f(x). Reducing the error can be achieved by either choosing p(x) to reduce
σ or/and increasing K.

One can show that for traditional integration methods, such as Simpson’s rule, the
error for a d-dimensional integration decreases as K−a/d if the error for a 1D integration
decreases as K−a. For MC methods the error always decreases as K−1/2. Thus MC
integration has its advantages for high dimensions (typically d & 5) whereas for low
dimensions ordinary methods are often advantageous [66].

4.4.3. Markov-chain and Metropolis algorithm

For Hamiltonians of the form H =
∑N

i=1
p2
i

2m + U(R) and if the quantity A does not
depend on P, the momentum integration in the integral (4.3) can be performed ana-
lytically and can be canceled (the integral also appears in ρce). Only the coordinate
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part including the potential energy U(R) has to be solved. The probability density is a
function of the coordinates only.

The remaining integral can then be evaluated using the idea of importance sampling [66]
according to

〈A〉 =
∫ ∞

−∞
dRA(R)p(R) ≈ 1

K

K∑
i=1

A(Ri). (4.21)

Here the Ri must be chosen from the probability density

p(R) =
e−βU(R)∫∞

−∞ dR e−βU(R)
. (4.22)

Unfortunately p(R) is not known a priori since it requires the evaluation of the integral
in Eq. (4.22).

This is where Metropolis proposed the idea of using a Markov chain in 1953 [61]. In the
Markov chain only transition probabilities from a state with coordinates Ri to a new
state with coordinates Ri+1 are specified [66]. If the transition probability v(Ri,Ri+1)
obeys the following restrictions (1) − (4), it can be shown that the Ri are distributed
according to the given probability density p(R). This is not restricted to the one given
by Eq. (4.22).

(1) Conservation law:
∑

Ri+1
v(Ri,Ri+1) = 1 for all Ri

(2) Convergence to a unique equilibrium state:
∑

Ri
p(Ri)v(Ri,Ri+1) = p(Ri+1)

(3) Ergodicity: One can go from any state to any other state in a finite number of
steps.

(4) Non-negative transition probabilities: v(Ri,Ri+1) ≥ 0 for all Ri

The time evolution of the probability density is given by the Master equation

dp(Ri)
dt

=
∑
Ri+1

v(Ri+1,Ri)p(Ri+1)−
∑
Ri+1

v(Ri,Ri+1)p(Ri), (4.23)

which describes the in- and outgoing probability flow into the state Ri. The stationary
solution of the Master equation with dp(Ri)

dt = 0 corresponds to thermodynamic equilib-
rium.

If the condition of detailed balance is imposed,

p(Ri)v(Ri,Ri+1) = p(Ri+1)v(Ri+1,Ri), (4.24)

and ergodicity is assumed to be guaranteed, the sampling with the transition probability
v(Ri,Ri+1) will yield the correct distribution p(R).

For the special case of the canonical ensemble with p(R) given by Eq. (4.22) one can
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4.4. Monte Carlo

make the particular choice of

v(Ri,Ri+1) =

{
e−β∆U , if ∆U = U(Ri+1)− U(Ri) ≥ 0
1, otherwise

(4.25)

This choice for the transition probabilities has a very intuitive physical meaning. On
the one hand MC moves that decrease the potential energy are always accepted. On
the other hand moves that increase U are only accepted with a probability given by the
Boltzmann factor and thus depend on the specified temperature of the system. If these
moves were always rejected this could lead to trapping of the system in a metastable
state and would violate the detailed balance condition (4.24).

4.4.4. Simulated annealing

The simulated annealing procedure [51, 70] can be used to find the global (energy)
minimum of a function U(N1, . . . , NL) of L variables. While local optimization methods
can easily be trapped in a local minimum [51], the simulated annealing method does not
suffer from this problem in general. It is often used when a global minimum is hidden
among many other local minima.

The procedure is similar to crystallization processes that occur in nature [51]. A liquid
metal may be trapped in an amorphous state with a higher energy rather than the
ground state when cooled very quickly. While for high temperatures the atoms can
move freely and do not ’feel’ the potential energy surface, they lose their mobility for
low temperatures. The probability distribution is given by the Boltzmann distribution
p ∼ e−U/kBT . Even for low temperatures there is a chance that the system is in a state
with high energy. Most methods can only go ’downhill’ until they reach a local minimum.
In the simulated annealing approach the system is also allowed to go ’uphill’ and thus
can escape from a local minimum. This is only possible if the probability of ’uphill’
moves is sufficiently high. Thus the temperature, directly related to the probability of
these moves, must be decreased very slowly. The procedure works as follows.

Starting with an initial set of parameters the Metropolis algorithm is used to create a set
of new parameters while the temperature of the system is slowly being decreased. Since
MC moves can be accepted even for steps that do not decrease the energy, trapping in a
local minimum can often be avoided. As the temperature decreases, the probability of
accepting states with higher energy decreases. For T = 0 only moves with ∆U < 0 will
be accepted. If the initial temperature is chosen sufficiently high and is decreased very
slowly, the probability of finding the global minimum is high. Since for a finite simulation
length the probability is always less than one, the procedure has to be repeated several
times to ensure the correctness of the obtained (global) minimum.
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5. Shell model of Yukawa balls

5.1. Introduction

The problem of finding the ground state for a system consisting of a large number of
particles can be a demanding task since one has to find the global minimum of the
potential energy U , which is a function of 3N variables. For Coulomb or Yukawa balls
one can directly make use of the observed shell structures in the experiments and the
simulations to obtain a simplified description. Instead of keeping track of all particle
positions one is only interested in the occupation numbers of the shells and their radii.
This dramatically reduces the complexity of the problem. This description is known
as the shell model. It was first introduced by Hasse and Avilov in 1991 for particles
with Coulomb interaction [71]. Here a recently developed shell model for particles with
Yukawa interaction [2] is investigated and compared to MD simulations 1.

5.2. Derivation

Shell models are based on the assumption that the particles are located on concentric,
spherical shells of zero thickness and that the charge is uniformly distributed on the
shells [73], see Fig. 5.1. While this is a rather crude assumption for only two particles,

1The results of this chapter are published in Ref. [72]. MD results were provided by Volodymyr
Golubnychiy.

Figure 5.1.: Illustration of the charge distribution in the shell model. A cluster with three shells
and a discrete charge distribution is mapped onto a system with a uniform charge distribution.
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5. Shell model of Yukawa balls

the charge distribution should become more homogeneous when the particle number is
increased.

In the case of a continuum model [2], where physical quantities are a function of the
density, the energy at T = 0 can be written as

E[n] =
∫
d3r u(r). (5.1)

In the mean field approximation, where correlations are neglected, the potential energy
density is given by

u(r) = n(r)
{
Vext(r) +

N − 1
2N

∫
d3r′ n(r′)V (|r− r′|)

}
, (5.2)

where Vext(r) denotes the contribution of an external confinement and V (r) the inter-
action between the particles.

By making the ansatz that the density is composed of L concentric, spherical shells with
shell occupation numbers Nν and radii Rν ,

ns(r) = ns(r) =
L∑
ν=1

Nν

4πR2
ν

δ(r −Rν), (5.3)

a shell model can be derived from Eq. (5.2). The energy in this model for Yukawa
interaction is [2]

Es({Nν}, {Rν}, κ) =
L∑
ν=1

Nν

{
Vext(Rν) +Q2 e

−κRν

Rν
×(

sinh(κRν)
κRν

Nν − 1
2

+ ζ +
∑
µ<ν

sinh(κRµ)
κRµ

Nµ

)}
. (5.4)

ζ ∈ {0, 1} denotes the possibility of a particle being located in the center of the cluster.

However, the expression obtained from the mean field model neglects correlation effects.
In Ref. [73] correlations were taken into account for the Coulomb model by modifying the
term for the intrashell energy s(Nν) according to s(Nν) = Nν −1 → Nν − εν(N,κ)

√
Nν .

Here εν(N,κ) is a fit parameter that allows for an excellent agreement with MD simu-
lations.

Following the same procedure for Yukawa interaction one obtains the energy

Es({Nν}, {Rν}, κ) =
L∑
ν=1

Nν

{
Vext(Rν) +Q2 e

−κRν

Rν
×(

sinh(κRν)
κRν

Nν − εν(N,κ)
√
Nν

2
+ ζ +

∑
µ<ν

sinh(κRµ)
κRµ

Nµ

)}
. (5.5)
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5.3. Variation procedure and results for Coulomb interaction

In the limit κ→ 0 (Coulomb interaction) one recovers [73]

Es({Nν}, {Rν}) =
L∑
ν=1

Nν

{
Vext(Rν) +

Q2

Rν

(
Nν − εν(N)

√
Nν

2
+ ζ +

∑
µ<ν

Nµ

)}
, (5.6)

which is similar to the shell model of Tsuruta and Ichimaru [74], where εν ≡ 1, and the
model of Hasse and Avilov [71], where the square root term is missing. Here the case of
a parabolic confinement potential Vext(r) = m

2 ω
2
0r

2 is considered.

The first term in Eq. (5.6) denotes the contribution of the external confinement while
the remaining two terms take into account the interaction between particles on the same
shell and on different shells, respectively.

The different terms for Coulomb interaction can readily be understood in terms of
simple formulas for spherical capacitors [73]. The energy of the intrashell term can be
obtained by counting the number of pair interactions of particles on the same shell. A
homogeneously charged sphere composed ofNν−1 particles has a potential (Nν−1)Q/Rν
at its surface giving an energy contribution of Nν(Nν − 1)Q2/(2Rν) for each shell. The
factor 1/2 simply avoids double counting. The square root in the intrashell term in
Eq. (5.6) takes into account that each particle occupies a finite area Aν = 4πR2

ν/Nν

on the surface of the sphere which cannot be occupied by other particles [73, 74]. A
justification for the parameter ε, which has been proposed by the authors of Ref. [73],
has recently been given in Ref. [75], where the Coulomb shell model was developed by
resorting to the Thomson problem. Here ε is used as a fit parameter.

The interaction energy between different shells (intershell) is determined by the charge
inside a given shell. The shell ν ’feels’ the potential of the charge

∑
µ<ν NµQ inside

its radius which is just that of a point charge located at the origin. This explains the
appearance of the double sum in Eq. (5.6). The center particle can also be attributed
to this term.

In the case of Yukawa interaction the Coulomb potential ∼ 1/r is not simply replaced
by the Yukawa potential ∼ exp(−κr)/r but contains an additional factor sinh(κr)/(κr).

5.3. Variation procedure and results for Coulomb interaction

The correlation parameter ε is used to fit the energy of the shell model to the MD
energies. In the beginning it is assumed that εν ≡ ε for all shells. The variation
parameters L,Nν , ζ, Rν and εν(N) are obtained by minimizing the total energy (5.5)
using the following procedure.
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5. Shell model of Yukawa balls

Shell radii

The computation of the energy (5.5) for a given set of shell occupancies requires the
unknown shell radii. They can be determined from the condition

∂Es
∂Rν

= 0, ν = 1, . . . , L, (5.7)

which yields a set of equations for the {Rν}. For Coulomb interaction the equations are
uncoupled and the system (5.7) can be solved analytically. One obtains

Rν
r0

= 2−1/3

[
Nν − ε(N)

√
Nν

2
+ ζ +

∑
µ<ν

Nµ

]1/3

, (5.8)

which shows that the radius of the shell ν is only determined by the charge inside the
shell and on itself.

For Yukawa interaction this is not the case due to the R dependence of the sum over the
inner shells in Eq. (5.5). Here Eq. (5.7) comprises a set of coupled nonlinear equations
and must be solved numerically. This is done using the Newton-Raphson method [51].
Details on the procedure can be found in Appendix A.

Occupation numbers: Monte Carlo algorithm

The shell occupation numbers are found using a Monte Carlo method with simulated
annealing. The initial configuration for the MC procedure is chosen randomly. In a
Monte Carlo step the configuration is changed randomly and the Metropolis algorithm
(cf. Section 4.4.3) is used to either accept or reject the new set of occupation numbers,
based on their potential energy. Thereby the restriction

∑
ν Nν + ζ = L must always be

fulfilled.

As explained in Section 4.4.4, the temperature is slowly decreased at each step by
rescaling T by a factor f < 1 (typically f ≈ 0.9995). Depending on the number of
particles, the number of MC steps ranges from approximately 10,000 – 30,000 for a
single run.

The configuration with the lowest energy is recorded throughout the entire procedure.
During a single calculation the number of shells L is not varied. However, one has to
assure that a calculation with a greater number of allowed shells does not lead to a
lower energy. Once an optimal set of occupation numbers has been found, the number
of shells is increased by one and the optimization procedure is repeated. If this does
not lead to a lower energy, the occupation numbers are accepted as the lowest energy
configuration. To assure that the correct ground state has been found for a given L, the
procedure is repeated several times with different initial configurations.

36



5.3. Variation procedure and results for Coulomb interaction
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Figure 5.2.: Correlation parameter ε as a function of total number of particles for Coulomb
interaction, obtained from (a) MD configuration (squares), (b) ground state configuration of shell
model (circles).

Determination of the fit parameter ε

Three methods are used to determine the fit parameter ε:

1. The ground state MD configuration is fixed and used as input for the shell model.
An ε is found such that the energy of the shell model Emodel = EMD. This is not
possible for all MD configurations as one is limited by the constraint ε <

√
Nν .

Otherwise one would obtain unphysical negative energy contributions for the in-
trashell interaction term.

2. For a given ε the ground state of the shell model is determined and compared to
the MD energy. Since the energy decreases with increasing ε, one starts with a
value that gives an energy greater than the MD energy. Now ε is decreased to yield
an energy Emodel = EMD. Again one can only take into account configurations
with ε <

√
Nν .

3. A fit is performed for the correlation parameters obtained for the ground state of
method two. Beginning with the MD occupation numbers {NMD

ν } the fit is used
to calculate a single correlation parameter εν(NMD

ν , κ) for each shell. The ground
state configuration is then determined for a limited number of shells given by the
MD data.

For Coulomb interaction the results for methods 1 and 2 are shown in Fig. 5.2.

For large N the parameter ε tends to a constant value of 1.104. This is in agreement
with Ref. [73].
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5. Shell model of Yukawa balls

Model E/N configuration
shell model 5.3914 (10, 6, 1)

without 5.3427 (8, 5, 3, 1)
correlations 5.3238 (6, 5, 3, 2, 1)

MD 4.5784 (16, 1)

Table 5.1.: Effect of neglecting correlations in the shell model for a system of N = 17 particles
and κ = 0.3. The number of allowed shells ranges from 2 to 4.

5.4. Results for Yukawa interaction

The same procedure is applied to the case of Yukawa interaction. A system of N = 12
particles is considered first. The ground state according to the MD simulations is (12, 0)
for κ ≤ 4.1 [33]. For larger screening parameters (12, 0) becomes a metastable state.
Fixing this configuration ε is determined to fit the energy of the MD simulations. Results
are given in Fig. 5.3. Clearly ε strongly increases as κ is increased.

Fig. 5.4 shows the effect of neglecting the correlation term in the shell model. The energy
of this model is constantly above the results of the MD simulations. In Tab. 5.1 the
occupation numbers and energies computed with the shell model without the correlation
term are given for a system of N = 17 particles. The number of shells is restricted to
the value given in the table. The energy of this model is much larger than the energy
of the MD simulations. Increasing the number of allowed shells results in a system with
many shells and low occupation numbers, strongly deviating from the MD result.

In Fig. 5.5 the difference between the energy of the configurations (12, 0) and (11, 1)
is shown for the shell model and the MD simulations. The configuration (11, 1) is the
ground state in the MD simulations only for κ ≥ 4.1. In contrast, the shell model
without the correlation term prefers the (11, 1) state for all tested screening parameters.
Including the correlation term (fitted for the (12, 0) configuration and all κ) (12, 0)
remains the ground state up to κ ≈ 2.5 being much closer to the exact behavior.

The radii for the different models are compared in Fig. 5.6. For Coulomb interaction
the radii of the MD simulations and the shell model with correlations are approximately
equal. For increasing screening parameters the deviations grow larger and the shell
model predicts too small radii. Neglecting correlations the shell model yields too large
radii for all tested screening parameters. However, the shape of the exact function is
well reproduced.

Fig. 5.7 shows the obtained correlation parameters for different screening parameters
and different numbers of particles. The ground state values (method 2) are used to
obtain an analytical fit according to ε(N,κ) = a ·N b with the fit parameters a, b. The
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Figure 5.3.: Correlation parameter ε as a
function of the screening parameter κ for a
fixed MD configuration (12,0).
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Figure 5.4.: Effect of neglecting the corre-
lation term in the shell model for a system
of N = 12 particles for different screening
parameters, fixed configuration (12, 0). The
energy of the MD simulations is equal to the
graph including correlations.
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Figure 5.5.: Preferred states for a system of N = 12 particles, (a) MD simulations (circles),
(b) shell model neglecting the correlation term (diamonds), (c) shell model with the correlation
parameter determined to fit the energy of the configuration (12,0) (squares).
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Figure 5.6.: Radii for different screening parameters in the case of (a) MD simulations (cir-
cles), (b) shell model neglecting correlations (diamonds), (c) shell model including correlations
(squares).

fit results are, for three values of κ,

ε(N,κ = 0.3) = 0.891 ·N0.164,

ε(N,κ = 0.6) = 0.957 ·N0.204,

ε(N,κ = 1.0) = 1.001 ·N0.231. (5.9)

The deviations between the values obtained from the MD configuration and the ground
state of the shell model are small for κ = 0.3. For larger screening parameters (κ = 0.6
and κ = 1.0) one can clearly observe an increasing discrepancy. Instead of approaching
a constant value as in the Coulomb case ε increases significantly with N .

In Table 5.2 some sample configurations are presented for different parameters. On
the one hand, for small clusters the occupation numbers are comparable to the MD
configurations. On the other hand, for larger clusters (N = 278, 300) substantial de-
viations occur. Here allowing for different εν for different shells (method 3) produces
better results. In general the radii of the outer shells are well predicted by the shell
model. Using only one correlation parameter for all shells (method 2) leads to a very
small radius of the first shell in the case of a low occupation number. As there are
no energy contributions from other shells in this case, the term of the intrashell con-
tribution is mostly compensated by the correlation term. Again, different εν decrease
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Figure 5.7.: Correlation parameter ε as a function of total number of particles for Yukawa
interaction, obtained from (a) MD configuration (method 1, circles), (b) ground state configura-
tion of shell model (method 2, squares). The lines through the squares are the best fit, given by
Eq. (5.9).

κ N model E/N occupation numbers Nν shell radii Rν
0.3 28 ε = 1.538 6.4301 (24, 4) 1.7613 0.5872
0.3 28 MD 6.4292 (24, 4) 1.7915 0.7559
0.6 28 ε = 1.878 4.8400 (24, 4) 1.6182 0.3543
0.6 28 MD 4.8397 (24, 4) 1.6575 0.6898
0.3 100 ε = 1.870 14.0559 (65, 31, 4) 2.8838 1.7708 0.3678
0.3 100 MD 14.0554 (69, 27, 4) 2.8739 1.7696 0.7265
0.6 100 ε = 2.422 10.0248 (60, 34, 6) 2.6231 1.6472 0.2121
0.6 100 MD 10.0245 (67, 27, 6) 2.5923 1.6326 0.7667
0.6 278 ε = 3.041 16.9964 (92, 81, 61, 34, 10) 3.7530 3.1027 2.3773 1.5535 0.3445
0.6 278 diff. εν 17.4250 (134, 88, 45, 11) 3.6139 2.6997 1.7756 0.8360
0.6 278 MD 16.9961 (143, 80, 42, 12, 1) 3.5836 2.6669 1.8400 1.0181
0.3 300 ε = 2.280 25.9038 (135, 97, 54, 14) 4.2460 3.2798 2.1983 0.9573
0.3 300 diff. εν 26.1995 (152, 94, 44, 10) 4.1925 3.1296 2.0471 0.9704
0.3 300 MD 25.9033 (154, 90, 43, 12, 1) 4.1947 3.1162 2.0611 1.1940

Table 5.2.: Total energy from Eq. (5.5), shell occupation numbers Nν and radii Rν . The first
line in each row corresponds to model 2, ’diff. εν ’ denotes the use of different ε values for each
shell.
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5. Shell model of Yukawa balls

the deviations. Thus the best choice is the use of εν = ε(NMD
ν , κ) using the above fit

formulas with the MD shell population.

5.5. Discussion

An improved shell model for Yukawa balls has been discussed. There, an additional cor-
relation parameter ε(N,κ) is used to fit the energy of the shell model to the MD energies.
The occupation numbers for this method are in the same range as the MD results but
show deviations. While the results deviate by only a few particles for small N , the de-
viations can become rather large for higher particle numbers and larger κ. Allowing for
different parameters for different shells, the model predicts the MD configurations much
more accurately. Here the energies are different from the MD results whereas the radii
are well reproduced. For a comparison to experiments with low screening (κ ≤ 0.6) the
shell model is able to predict shell populations within experimental errors. For higher
screening and for usage as a diagnostic for determining the exact experimental screening,
it is still recommended to use MD simulations.

The recently published article by Cioslowski et al. [75] gives an explanation for the
appearance of the correlation parameter in the Coulomb shell model by resorting to the
solution of the Thomson problem. Here the large N asymptote for the intrashell term
is given by

s(Nν) ∼ Nν − ξ1
√
Nν + ξ2N

−1/2
ν , (5.10)

which explains the success of the proposed fit parameter ε used in the present approach
with s(Nν) = Nν − ε

√
Nν . In addition the conjectured exact value of

ξ1 =
33/4

√
2π

[
ζ

(
1
2
,
2
3

)
− ζ

(
1
2
,
1
3

)]
ζ

(
1
2
, 0
)
≈ 1.10610,

where ζ(s, a) denotes the generalized Riemann zeta function, is very close to the value
found in Ref. [73], also cf. Fig. 5.2.

It should be possible to obtain better results for the Yukawa model by finding the cor-
relation energy for each shell separately instead of determining it from a method that is
based on a single function ε(N,κ) for all shells. The authors of Ref. [76] approximated
the intrashell cohesive (correlation) energy in their shell model (with a different confine-
ment potential) by that of a two-dimensional Yukawa lattice. Applied here this could
expand the applicability of the model to comparison with the experiments.

A rigorous derivation for a Yukawa shell model including correlation effects is still miss-
ing.
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6. Probability of metastable states

6.1. Introduction

Recently metastable states of Yukawa balls have been investigated in Ref. [3] for small
particle numbers N = 27 and N = 31. It was found that often metastable states oc-
curred with a higher probability than the ground state. This was confirmed by MD
simulations but no theoretical explanation was given. This is the goal of this chap-
ter 1. Monte Carlo simulations (MC) as well as extensive molecular dynamics (MD)
simulations are applied with a broader parameter range than before, confirming the
main results of Ref. [3]. For a theoretical explanation an analytical method based on
the classical canonical partition function [78] is employed. In addition to small clusters
also a larger cluster with 190 particles is investigated and previous results, based on
comparison of the ground state shell occupation numbers, are discussed.

1Most of the results in this chapter are published in Ref. [77]

Figure 6.1.: Camera setup used to
record the motion of the dust particles.
The particles are illuminated by two
expanded laser beams from two direc-
tions. High-speed video cameras are
used to record the dust particles inside
the cuvette. From Ref. [79].
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6. Probability of metastable states

6.2. Experiments

The experiments on metastable states [3] were conducted with the setup explained in
Section 2.2.4. The clusters were illuminated with an expanded laser beam at a power
of 600 mW and a wavelength of 532 nm. The dust particle motion was recorded with
an improved stereoscopic setup consisting of three synchronized cameras with pairwise
perpendicular orientation, see Fig. 6.1.

Small dust crystals with N = 27 and N = 31 were produced repeatedly. The par-
ticles were trapped by a nearly spherically isotropic confinement potential which was
rapidly turned off and on. In this time the present cluster is destroyed and falls towards
the lower electrode. Before the dust particles leave the discharge the confinement is
reestablished and a new (possibly different) cluster is created, without memory of the
previous configuration. This allowed to repeat the crystal formation frequently without
changing the plasma parameters and to compute probabilities of stationary states (shell
configurations) from the occurrence frequencies.

6.3. Model and simulation idea

6.3.1. Hamiltonian and potential energy

The system of dust particles is described by the Hamiltonian (3.1). The ground
(metastable) states are the global (local) minima of the potential energy U ,

U(r1, . . . , rN ) =
N∑
i=1

m

2
ω2

0r
2
i +

N∑
i>j

Q2

|ri − rj |
e−κ|ri−rj |. (6.1)

In both cases the total force on all particles vanishes and the system is in a stable
configuration, i.e. stable against small perturbations.

6.3.2. Monte Carlo (MC)2

The MC simulations use the standard Metropolis algorithm (Section 4.4) with the
Hamiltonian (3.1), but without the kinetic energy part. Starting from the classical
ground state at T = 0 the system is given a finite temperature. For a fixed temperature
107 MC steps are performed and the configuration is determined every 104th step. The
temperature is then increased and the same procedure repeated. Ergodicity of the
procedure was checked by using different initial configurations. Following this method
the probability is calculated as a function of T from the number of occurrences of the
different states.

2The MC simulations in this chapter were performed by Henning Baumgartner.
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6.3.3. Molecular dynamics (MD)

In the MD simulations the approach is different. Here the equations of motion for
particles in a parabolic trap interacting through the Yukawa potential (3.3) are solved
but an additional damping term is included to simulate the annealing process the way
it occurs in the experiment, as explained in Ref. [3]. This is different from the MC
simulations where the particles are in contact with a heat bath and maintain a constant
temperature. This also differs from the MD simulations in Ref. [3] which were also
performed at finite temperature. Here, the performed simulations are substantially
larger and a broader parameter range is scanned. For the ith particle the equation of
motion is

mr̈i = −∇iU(r1, ..., rN )− νmṙi, (6.2)

where ν is the collision frequency, which will be given in units of ω0. Eq. (6.2) is solved
using the ’embedded Runge-Kutta method’ as explained in Section 4.2.2. Due to the
friction term the system described by Eq. (6.2) is non-Hamiltonian. In dusty plasmas
friction is mainly due to the neutral gas.

The simulation is initialized with random particle positions and velocities in a square
box. To stop the simulation and determine the configuration two similar, but not
equivalent conditions are used:

(A) The particles’ mean kinetic energy drops below a threshold value
〈
Emin

kin
〉

of typi-
cally 10−6 − 10−8.

(B) The force on each particle due to the confinement and the other particles decreases
below 10−4.

It is tempting to define (A) as a proper condition but it will be shown that (B) has to be
used, although they look equivalent at first glance. The difference lies in the definition
of a stable configuration. If the particles lose their initial kinetic energy before they have
reached a local minimum, the simulation could be stopped before the particle motion
has effectively ended. This problem can be circumvented by condition (B) which makes
direct use of the definition of a stable state, namely that the force on each particle due
to U vanishes.

The screening parameter, the friction coefficient as well as the lower limit for the mean
kinetic energy are varied. For each parameter setting the simulation is repeated 3000−
5000 times to obtain accurate statistics. Systems with 31 and 27 particles are considered
as was done in the experiment. As another example a cluster with 40 particles is used
because here the ground state shell configuration abruptly changes from (34,6) to (32,8)
at κ = 0.415 as the screening parameter is increased – without the configuration (33,7)
ever being the ground state [33]. This gives rise to the question of how often this
configuration can actually occur in experiments.

The Yukawa cluster with 190 particles has been investigated in detail in Ref. [29]. There
the screening parameter was determined by comparing the experimental configuration
with the ground state configuration of the simulations. It was thus assumed that the
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6. Probability of metastable states

Table 6.1.: Energy difference between metastable states and the ground state (the ground state
and its energy is given by italic numbers) as seen in Fig. 6.2. States with the same shell con-
figuration but different energy differ only by the arrangement of the particles on the same shell
(fine structure).

∆E/N configuration ∆E/N configuration
3.030266 (27,4) 0.000479 (26,5)
0.000006 (27,4) 0.000499 (26,5)
0.000009 (27,4) 0.000530 (26,5)
0.000291 (26,5) 0.000656 (25,6)
0.000372 (26,5) 0.000669 (25,6)

experimentally found configuration was the ground state. Since it will turn out that
often a metastable state has a higher probability this was not necessarily the case.
For this reason the N = 190 cluster is investigated theoretically with respect to the
occurrence probabilities in Section 6.4.3.

6.4. MD simulation results

In this section the results of the first-principle MD simulations are presented. The main
parameters determining the occurrence frequencies of different metastable states for a
given N are the screening parameter κ and the friction coefficient ν. The dependence
on κ and ν is therefore discussed in detail. As an example of particular interest the
parameter values of dusty plasma experiments will be considered which are in the range
of κ ≈ 0.4 . . . 1.0 [3]. This case will be dealt with in Section 6.6.

The effect of the damping rate on the occurrence probabilities is discussed first. It
will turn out that with a properly chosen rate one can produce very general results for
different screening lengths which do not depend on the exact chosen damping coefficient
and hold for any rate in the overdamped limit. The effect of screening will then be
examined in the following section.

6.4.1. Effect of friction

A typical simulation result is shown in Fig. 6.2. For slow cooling (ν = 0.05) the particles
are not hindered by friction and can move according to the interparticle and confinement
forces. They continuously lose kinetic energy until they are trapped in a local minimum
of the potential energy U . Here they are further being damped until the simulation is
stopped. It is interesting to see that there exist more metastable states than different
shell occupations, as was first observed in Ref. [30], see also Ref. [32]. Details are given
in Table 6.1.

In the case of strong damping (ν = 5.3) the situation is different. Here the particles are
readily slowed down after the initialization process in the box. Their motion is strongly
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Figure 6.2.: Stationary states observed in the MD simulations for N = 31, κ = 1.4 and〈
Emin

kin

〉
= 10−8. The runs are sorted by the energy or the stationary state, see also Table 6.1.

Egs denotes the ground state energy. For slow cooling (black bars, ν = 0.05) one can clearly
see distinct states which correspond to the horizontal lines. The length of the bold lines is
proportional to the occurrence probabilities. In the case of strong friction (red, dashed line,
ν = 5.3) the particles often lose their kinetic energy before they can settle into the equilibrium
positions and the fine structure (different states with the same shell configuration) cannot be
resolved.

affected by friction and interrupted even before they may be trapped in a local minimum.
If condition (A) is used to stop the simulation it is not clear if the particles are in a
stable state. The reason is that due to the rapid damping they can be sufficiently slowed
down even though they are not in a potential minimum but on a descending path and
would reach the stable configuration at a later time.

Fig. 6.3 shows the influence of friction on the occurrence probabilities in more detail.
For fixed screening the probability of finding the ground state configuration increases
when the friction coefficient is decreased. Here the particles are cooled down more slowly
and it is more likely that they reach the system’s true ground state. During the cooling
process they still have a sufficiently high kinetic energy and time to escape from a local
minimum until the force on each particle vanishes.

In the case of strong friction the particles can fall into a nearby minimum and leaving
it becomes more difficult due to the rapid loss of kinetic energy. The typical simulation
time until the forces are small enough is longer than for intermediate friction strength.
Once cooled down the particles are pushed along the gradient of the potential energy
surface until they reach a stable state. Thus the results can depend on how far the
system’s temperature is decreased. One can see that for ν > 2, i.e. in the overdamped
regime, the probabilities have practically saturated. For fast cooling, i.e. large friction,
metastable states can occur with a comparable or even higher probability than the
ground state.
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Figure 6.3.: Effect of fric-
tion on the occurrence probabili-
ties obtained with condition (B)
for three different numbers of par-
ticles. In a) and b) horizon-
tal solid and dashed lines indicate
experimental mean and standard
deviation, respectively [3]. For
N = 27 the experimental val-
ues for the clusters (23,4) and
(24,3) are the same. In c) solid
lines indicate Yukawa interaction
with κ = 1.0 [ground state (32,8)]
whereas dashed lines show results
for Coulomb interaction [ground
state (34,6)]. In all cases slow
cooling favors the ground state
over metastable states.
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The N = 40 cluster shows a qualitatively different behavior compared to the N = 27, 31
clusters. In the case of κ = 1.0 the lines corresponding to different configurations do
not intersect and the ground state is the most probable state regardless of the damping
coefficient. In contrast, in the Coulomb limit κ = 0, the most probable state is always
a metastable state, except for very small friction, ν ≤ 0.01.

The dusty plasma experiments of Yukawa balls are performed in the overdamped regime,
i.e. here ν is of the order of 3− 6 [3]. Since in this limit the probabilities depend only
very weakly on the damping rate the results presented in the next section for ν = 3.2
should hold for any such damping coefficient. Even though this was shown only for a
few examples this should also hold for other particle numbers and screening lengths.

6.4.2. Effect of screening

The screening dependence of the ground state shell configurations of spherical Yukawa
clusters in the absence of damping has been analyzed in Ref. [29]. The general trend is
that increased screening favors ground state configurations with more particles on the
inner shell(s). A systematic analysis in a large range of particle numbers and screening
parameters [33] confirms this trend (see Section 3.3). Here this analysis is extended
to spherical crystals in the presence of damping and the screening dependence of the
occurrence probability of metastable states is considered.

For a fixed friction coefficient in the overdamped limit the effect of screening is shown
in Fig. 6.4. The different ground state configurations are indicated by the numbers
with arrows in the figures. As in the undamped case, at some finite value of κ, a
configuration with an additional particle on the inner shell becomes the ground state.
Consider now the probability to observe the ground and metastable states. For weak
screening the ground states (27,4) and (24,3) are the most probable states in the cases
N = 31 and N = 27, respectively. At the same time in both cases, the probability of the
configuration with one more particle on the inner shell grows with κ, until it eventually
becomes even more probable than the ground state. Note that this occurs much earlier
(at a significantly smaller value of κ) than the ground state change. For N = 31 this
trend is observed twice: the probability of the configuration (26,5) first increases with
κ and reaches a maximum around κ ≈ 1. For κ > 2 this configuration becomes less
probable than the configuration (25,6), i.e. again a configuration with an additional
particle on the inner shell becomes more probable with increased screening.

Different behavior is observed for the N = 40 cluster where the ground state for weak
screening (34,6) is never the most probable state. For large screening, κ ≥ 0.6, the new
ground state (32,8) has the highest probability, but this happens only substantially later
(for larger κ) after this state has become the energetically lowest one. This is due to the
existence of a third state (33,7) which has the highest probability for κ ≤ 0.6, although
it never has the lowest energy.

Fig. 6.5 shows the states with the highest probability for a wide range of particle num-
bers. The trend, that increased screening leads to a higher occupation of inner shells,
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Figure 6.5.: Most probable states as found in the MD simulations, obtained with a friction
coefficient ν = 3.2 and condition (B). Numbers in brackets denote the occupation of the innermost
shell.

is also observed here. This figure, together with Fig. 3.2 for the ground states, could be
relevant for future experiments if one specifically wants to study states with a certain
configuration and their screening dependence.

Comparison with Fig. 3.2 yields some interesting findings. In most cases the ground
state itself is the most probable state or has one particle less on the inner shell than the
most probable state. However, exceptions from this rule can be found. For 31 particles
there exists an interval of the screening parameter where the ground state has more
particles on the inner shell than the most probable state. This can also be observed for
N = 11, 26, 30, 33, 34, 40− 42, 47− 50. In the case N = 38 the most probable state can
have two more particles on the inner shell than the ground state. These ’anomalies’
often arise from those in Fig. 3.2, especially from those where the ground state changes
by two particles as κ is increased. Such a case has already been discussed for N = 40. In
contrast, the shell filling mechanism in Fig. 6.5 is strictly monotonic upon increase of κ
and N . Anomalous behavior is only observed for N = 47−49 and large screening where
adding one particle gives rise to a configuration change involving two particles. Here
the inner shell configuration of the most probable state changes from (11, 0) → (12, 1).
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6. Probability of metastable states

Summarizing, the observations confirm that in spherical Yukawa clusters the ground
state is not necessarily the most probable state. Often, a metastable state with more
particles on the inner shell is observed substantially (in some cases up to five times)
more frequently. Further, increased screening tends to favor states with more particles
on the inner shell. The interaction range and thus the effective size of the particles is
decreased so they can be more closely packed. In addition the potential energy is lower
near the center of the trap. A more detailed explanation for this behavior will be given
in Section 6.5 by using an analytical model for the partition function.

Before doing this we comment on the technical details which are important in the
present MD simulations: For certain intervals of the screening parameter the results
for the probabilities depend on how far the system is cooled down. Here one state
(generally the ground state) is favored over another the smaller

〈
Emin

kin
〉

is chosen. This
also means increasing the mean simulation time. As discussed before the particles are
heavily damped and lose their initial kinetic energy on a short time scale. Their motion
is then determined by the shape of the energy surface. Using condition (B) to terminate
the simulation one obtains converged results where the particles have reached a local
minimum. Thus if the simulation was continued the configuration would remain the
same. This is quite similar to the experimental procedure which is explained in detail
in Ref. [79]. There the cluster is also given a long equilibration time to reach a stable
state.

6.4.3. Results for N = 190

The results of MD simulations for N = 190 are given in Table 6.2 and Fig. 6.6. They
are obtained in the same fashion as before in the overdamped limit with ν = 3.2 and
condition (B).

Since the simulations require a long run time the clusters are only cooled down 600
times, which makes the absolute values of the probabilities less reliable than before.
The number of different states shown in Tab. 6.2 will only be a lower limit. The most
probable state however can usually be clearly identified since it has a relatively high
probability, keeping in mind the large number of different configurations. Only for
κ = 0.3 there are two states with almost the same probability.

Fig. 6.6 shows the dependence of the shell occupation on the screening parameter. While
on the outermost shell the most probable state has a smaller or equal number of particles
than the ground state, the opposite is usually the case for the inner shells. The trend
of a higher occupation of inner shells with increased screening also holds for this larger
cluster. The relative deviations between the occupation of the most probable state and
the ground state are rather small, except for the inner shell with only a few particles.
The configuration found in the experiments has a non-zero probability only for a small
interval of the screening parameter 0.4 ≤ κ ≤ 0.7. The implications of these findings for
previous results are discussed in Section 6.6.1.
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Figure 6.6.: Ground state, mean shell configuration with standard deviation and most probable
configuration in the MD simulations for N = 190 with ν = 3.2.

κ # config. ground state most probable state m P (m) P(107,60,21,2)
0.0 ≥ 30 (115,56,18,1) (114,57,18,1) 0.33 0
0.1 ≥ 29 (115,56,18,1) (114,57,18,1) 0.25 0
0.2 ≥ 26 (114,57,18,1) (112,57,19,2) 0.18 0
0.3 ≥ 30 (111,57,20,2) (111,57,20,2)* 0.29 0
0.4 ≥ 30 (110,58,20,2) (109,58,21,2) 0.27 <0.01
0.5 ≥ 25 (109,58,21,2) (108,59,21,2) 0.23 0.11
0.6 ≥ 29 (107,60,21,2) (106,59,22,3) 0.30 0.07
0.7 ≥ 35 (105,60,22,3) (105,60,22,3) 0.36 0.01
0.8 ≥ 29 (105,60,22,3) (105,60,22,3) 0.17 0

Table 6.2.: Results of MD simulations for N = 190 with ν = 3.2. Shown is the number of dif-
ferent configurations found in the simulations, the ground state configuration, the most probable
state, its probability and the probability of the experimentally found configuration (107,60,21,2).
*) P(110,58,20,2)=0.28.
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6. Probability of metastable states

6.5. Analytical theory of stationary state probabilities

6.5.1. Harmonic approximation

The analytical approach to calculating the occurrence probabilities is based on the
classical canonical partition function Z(T, ω0, N). Instead of the dependence on volume
(or density) as in a homogeneous system, here thermodynamic quantities depend on
the confining strength ω0. The partition function can be evaluated analytically in the
harmonic approximation, see e.g. Ref. [78]. Here the potential energy of a given state
is expanded around a local minimum with energy E0

s , where s denotes the ground or a
metastable state. It can be written as

Us ≈ E0
s +

1
2

N∑
i,j=1

3∑
α,β=1

∂2U(r)
∂ri,α∂rj,β

∣∣∣∣
r=r0s

δri,αδrj,β , (6.3)

where r0s = (r0s
1 , . . . , r

0s
N ) denotes the 3N -dimensional vector of the particles’ equilib-

rium positions and δri,α = ri,α − r0
i,α the displacement vector. Transforming to normal

coordinates ξs,i this turns into a sum of decoupled harmonic oscillators

Us ≈ E0
s +

1
2

f∑
i=1

mω2
s,iξ

2
s,i, f = 3N − 3. (6.4)

The eigenfrequencies ωs,i are the square roots of the eigenvalues of the Hessian matrix

U(iα),(jβ) =
∂2U(r)
∂ri,α∂rj,β

∣∣∣∣
r=r0s

.

The expansion (6.4) includes the particles’ three center of mass oscillations in the trap
with ω = 1 (in units of ω0). Furthermore it is assumed that the vibrational and the three
rotational modes of the whole system (ω = 0) are decoupled, the latter are, therefore,
eliminated from the sum (6.4). In the principal axes frame the rotational kinetic energy
can then be expressed as

T rot
s =

3∑
i=1

L2
s,i

2Is,i
,

with angular momenta Ls,i and constant principal moments of inertia Is,i. In this
approximation the full energy of the state s is, to second order in the displacements,

Es = E0
s +

f∑
i=1

{
p2
ξs,i

2m
+
m

2
ω2
s,iξ

2
s,i

}
+

3∑
i=1

L2
s,i

2Is,i
. (6.5)

The first term in parentheses denotes the vibrational kinetic energy T vib
s .

The harmonic approximation is only applicable for low temperatures (or strong coupling)
when the particles oscillate around the equilibrium positions with a small amplitude.
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6.5.2. Partition function

The general form of the classical canonical partition function is

Zs =
ns

(2π~)3N

∫ ∞

−∞
dp3Ndq3Ne−βH

s(pi,qi). (6.6)

Here it is written for a general Hamiltonian Hs(pi, qi) with 3N degrees of freedom,
generalized coordinates qi and conjugate momenta pi. Since in the present case the
energy contributions are independent it can be factorized according to

Zs = nsZ
int
s Zvib

s Zrot
s (6.7)

with the internal partition function

Z int
s = e−βE

0
s (6.8)

and the degeneracy factor ns calculated as

ns =
N !∏L
i=1N

s
i !
, (6.9)

where L is the number of shells and N s
i the occupation number of shell i with∑L

i=1N
s
i = N . The degeneracy factor ns denotes the number of possibilities to form a

configuration with shell occupation (N1, N2, . . . , NL) from distinguishable particles.

Zvib
s is the partition function for f independent harmonic oscillators while Zrot

s is related
to the rotational degrees of freedom. The results for the specific case with the energy
given by Eq. (6.5) can be found in [78, 80] and read

Zvib
s (T ) =

(
kBT

~Ωs

)f
, (6.10a)

Zrot
s (T ) =

(
2π1/3kBT Īs

~2

)3/2

. (6.10b)

The expressions include the mean geometric eigenfrequency Ωs = (
∏f
i=1 ωs,i)

1/f and
the mean moment of inertia Īs = (Is,1Is,2Is,3)1/3. Details on the derivation are given in
Appendix B.3

To obtain the total partition function Z(T, ω0, N) the contributions of all M
(metastable) states are summed up, i.e.

Z =
M∑
σ=1

Zσ.

3The eigenfrequencies ωs,i are calculated by using a Mathematica notebook created by Christian
Henning.
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Table 6.3.: Mean shell radii R1, R2 of first and second shell for states observed in the MD
simulations for N = 27 and κ = 0.6. The relative statistical weight q̃s = (Īs/Ī1)3/2 caused by
different moments of inertia can be neglected in the computation of the probabilities since q̃s ≈ 1
for all states.

state s configuration R2 R1 q̃s
1 (24,3) 1.6175 0.5977 1
2 (23,4) 1.6413 0.6963 1.0009
3 (23,4) 1.6413 0.6957 1.0009
4 (25,2) 1.5935 0.4542 1.0004
5 (25,2) 1.5934 0.4543 1.0004

6.5.3. Probability of stationary states

Collecting the results of Section 6.5.2, the stationary state probabilities are given by

Ps =
Zs
Z

=
Zs∑M
σ=1 Zσ

. (6.11)

For the clusters of interest with 27 − 40 particles the moments of inertia for different
states are equal to a good approximation (cf. Table 6.3 for N = 27) and can be canceled.
Similar behavior is observed for N = 31, 40. For low particle numbers, N . 10, they
should be included, since here a slight change of the configuration can alter the moment
of inertia by a significant amount, but this is not of importance for the present analysis.

Using Eqs. (6.10) one obtains from Eq. (6.11)

Ps ≈
nsΩ

−f
s e−βE

0
s∑M

σ=1 nσΩ
−f
σ e−βE0

σ

. (6.12)

To avoid computation of the full partition function [denominator of Eq. (6.12)] it is
advantageous to compute probability ratios of two states s and s′,

Ps
Ps′

=
ns
ns′

(
Ωs′

Ωs

)f ( Īs
Īs′

)3/2

e−β(E0
s−E0

s′ )

≈ ns
ns′

(
Ωs′

Ωs

)f
e−β(E0

s−E0
s′ ). (6.13)

Thus the probability ratio of two states depends on three factors: their energy difference
E0
s −E0

s′ , the ratio of the degeneracy factors ns/ns′ and the inverse ratio of their mean
eigenfrequencies Ωs′/Ωs.

The Boltzmann factor e−β(E0
s−E0

s′ ) gives preference to states with a low energy. For
low temperatures it will be the most dominant factor but it becomes less important for
higher temperatures when kBT � E0

s′ − E0
s and e−β(E0

s−E0
s′ ) ≈ 1.
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Figure 6.7.: Spectrum of the
eigenfrequencies for the 9 states
shown in Table 6.5. The top fig-
ure shows the lowest modes in
more detail.

According to Eq. (6.9) the degeneracy factor assigns a large statistical weight to states
with more particles on inner shells. As an example, for N = 27, one has n(25,2)/n(23,4) =
23!4!
25!2! = 1/50. The configuration with only 2 particles on the inner shell is suppressed
due to a lower degeneracy factor contrary to the states with an inner shell consisting
of 4 particles, see also Table 6.4. The reason is that there exist more combinatorial
possibilities to construct configurations when the difference between the single shell
occupation numbers is small. For N = 31 (Table 6.6) this ratio can be even larger. This
shows that (even for low temperatures) this factor can strongly influence the occurrence
probabilities.

In the MD simulations one observes several states with the same shell configuration
but different energies. Their energy difference can be as large as between states with
different configurations (cf. Table. 6.1). In Eq. (6.11) all states with the same shell
configuration are added with the same degeneracy factor.

Let us now consider the effect of the mean eigenfrequency, i.e. the effect of the local
curvature of the potential energy surface. Written out explicitly, using Eq. (6.13), this
factor reads
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6. Probability of metastable states

Table 6.4.: Energy difference between metastable states and the ground state (ground state
energy given in italic numbers) that are used to compute the partition function for N = 27 and
κ = 0.6. Also shown is the relative statistical weight ñs = ns/n1 and the statistical weight due
to the eigenfrequencies w̃s = (Ω1/Ωs)

f compared to the ground state.
state s configuration ∆Es/N ñs w̃s

1 (24,3) 4.732856(4) 1 1
2 (23,4) 0.001622(1) 6 0.24
3 (23,4) 0.001870(5) 6 0.67
4 (25,2) 0.004993(0) 3/25 14
5 (25,2) 0.004997(3) 3/25 3.3

(
Ωs′

Ωs

)f
=
∏f
i=1 ωs′,i∏f
i=1 ωs,i

, (6.14)

i.e. it is the inverse ratio of the products of the eigenfrequencies. The main contribution
here usually arises from the lowest eigenfrequencies. This can be seen in Fig. 6.7 showing
the spectrum for the states of the cluster with N = 31, κ = 0.8. State #7 has two very
low eigenfrequencies [cf. Fig. 6.7, red arrow] which strongly increase its statistical weight
(see also Table 6.5).

For two states with the same shell configuration one has ns = ns′ , and the probability
ratio is only determined by their energy difference and eigenfrequencies. Even though a
state has a higher energy it can have a higher probability provided it has a lower mean
eigenfrequency. Fig. 6.8 shows the effect for N = 27, for the states listed in Table 6.4.
The physical explanation of the eigenfrequency factor is very simple: states with low
eigenfrequencies have a broad (flat) potential energy minimum and thus a larger phase
space volume of attraction for the trajectories of N particles. Thus initially randomly
distributed particles will have a higher probability to settle in a minimum with small Ωs

compared to another minimum (when the energies and degeneracy factors are similar).

Because the harmonic approximation only describes a minimum’s local neighborhood
one should be aware that this could overestimate the probability of states with broad
minima and low escape paths [78], which are not taken into account in this approxi-
mation. This could be improved by changing the limits for the position integration in
Eq. (6.6) according to the potential barrier height and the temperature. This was done
for 2D clusters in Ref. [81] but requires knowledge of the barrier heights. This is not
essential for the present analysis. Finally, the value of w̃s is sensitive to numerical errors
in the computation of the eigenvalues of the Hessians since the mean eigenfrequency is
a product of 3N − 3 single values. In the present results the error is estimated not to
exceed 5 % which is sufficient for the analysis.
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Table 6.5.: Same as Table 6.4 for N = 31 and κ = 0.8.
state s configuration ∆E0

s/N ñs w̃s
1 (27,4) 4.397858(8) 1 1
2 (27,4) 0.000008(7) 1 0.82
3 (27,4) 0.000035(8) 1 1.7
4 (26,5) 0.001810(1) 27/5 0.84
5 (26,5) 0.001850(9) 27/5 1.4
6 (26,5) 0.002000(0) 27/5 5.3
7 (26,5) 0.002091(6) 27/5 9.7
8 (25,6) 0.003583(7) 117/5 1.4
9 (25,6) 0.003586(7) 117/5 1.1

6.5.4. Analytical results and comparison with Monte Carlo simulations

Let us now come to the results of the analytical model and compare them to Monte Carlo
simulations which were explained in Section 6.3.2. The MC results have first-principle
character, in particular, they are not restricted to the harmonic approximation and fully
include all anharmonic corrections. For N = 27 the MC results were additionally verified
by a Langevin dynamics simulation using the SLO algorithm of Ref. [59], as explained
in Section 4.3. Here the probabilities were obtained in an equilibrium calculation with
a simulation time t = 105 ω−1

0 by determining the configurations at fixed time intervals.

Results for three representative examples are shown in Fig. 6.9. The two examples
N = 27, κ = 0.6 and N = 31, κ = 0.8 are chosen since these will turn out to be close to
the situation in the dusty plasma experiments, see. Section 6.6. As a third example data
for N = 40 with Coulomb interaction is presented. The input parameters of the ana-
lytical model, i.e. details on the (metastable) states are summarized in Tables 6.4–6.6.
In Fig. 6.9 the occurrence probabilities are plotted as a function of temperature. This
allows one to specifically study the effect of the depth of the potential energy minimum
E0
s . The latter effect should be dominant at low temperature, leading to a relatively

high probability of the ground state. In contrast, this effect should become less impor-
tant at high temperatures where the degeneracy factors and the eigenfrequency ratio
should play a decisive role for the probabilities. This general trend is indeed observed
in all three cases.

For N = 27, top part of Fig. 6.9, the effects of the degeneracy factor and the mean
eigenfrequency act in opposite directions. While the state with 4 particles on the inner
shell gains statistical weight by having a high degeneracy, this effect is almost compen-
sated by narrow minima, and consequently a low w̃s, cf. Tab. 6.4. Therefore, this state
achieves comparable probability with the ground state (27,4) only at high temperatures
T ≥ 0.03 (in the MC simulation this is observed only for T ≥ 0.045). For the configura-
tion (25,2) the opposite is true. Here the degeneracy is low and the minima broad, but
due to its high energy this configuration has a non-vanishing probability only for high
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Figure 6.8.: Probability of the two metastable states with configuration (23,4) compared to
the ground state (24,3) for the Yukawa ball with N = 27. The inset shows the ratio of the
probabilities for states 2 and 3 from Table 6.4 at low temperatures. Although state 3 has the
same configuration and a higher energy the probability of finding state 3 is higher for T ≥ 0.007
due to the effect of the eigenfrequencies.

Table 6.6.: Same as Table 6.4 for N = 40 and κ = 0 (Coulomb interaction).
state s configuration ∆E0

s/N ñs w̃s
1 (34,6) 12.150162(9) 1 1
2 (33,7) 0.001143(4) 34/7 2.3
3 (33,7) 0.001190(3) 34/7 2.8
4 (33,7) 0.001236(9) 34/7 8.3
5 (32,8) 0.001862(8) 561/28 13
6 (32,8) 0.001863(1) 561/28 3.5
7 (32,8) 0.003482(4) 561/28 6.7
8 (35,5) 0.004201(7) 6/35 5.2
9 (35,5) 0.004392(7) 6/35 32

temperatures T ≥ 0.03. A stable state with configuration (22,5) could not be found in
the simulations.

The situation for N = 31, central part of Fig. 6.9, is different. Here all metastable
states have a higher degeneracy factor than the ground state configuration. In addition
all states further gain statistical weight because of broad minima, except for state s = 4,
cf. Tab. 6.5. Thus one should expect that metastable states have a high probability even
at low temperatures. This is indeed observed in the model and the MC simulations
already below T = 0.02.
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6. Probability of metastable states

In the third case, N = 40, bottom part of Fig. 6.9, one generally sees the same trend.
The metastable state (33,7) has a high degeneracy and frequency factor, cf. Tab. 6.5,
and thus it becomes more probable than the ground state already for T ≥ 0.01 (0.015
in the MC simulations).

Let us now compare the analytical and MC results in more detail. Good agreement
is found for N = 31 up to T ∼ 0.02, cf. full lines and symbols. For N = 27 the
agreement between MC and the analytical theory is good for T < 0.012 but only if
the effect of the eigenfrequencies is neglected, cf. dashed lines. With eigenfrequencies
included the theory shows deviations for low temperatures but better agreement for
higher temperatures. For the cluster with 40 particles moderate agreement is observed
for the configurations (34,6) and (33,7) up to T = 0.015 whereas the deviations from
MC for the remaining two are rather large. This overall agreement is quite satisfactory
keeping in mind that the melting temperature of these clusters is typically below T =
0.015 [64, 82, 83].

The discrepancies are due to the limitations of the simple harmonic model [the good
agreement between the completely independent MC and Langevin MD results for
N = 27, cf. top part of Fig. 6.9, confirms the reliability of the simulations]. Since
the discrepancies are growing with temperature, the main reason is probably the ne-
glect of anharmonic effects. In some cases, when the barriers of the potential energy
surface are low, these effects might already occur at low temperatures. Changing the
limits of allowed particle motion in the integration of Eq. (6.6) may help reduce the
deviations. A further reason for deviations from MC results could be an insufficient
number of stationary states being taken into account. It is not clear if all stationary
states have been found (they were pre-computed with MD simulations) and used in the
partition function. To ensure a high probability more than 104 independent runs were
performed. For example, for the cluster with 40 particles one observes 9 states, but
it was difficult to identify the states with 5 particles on the inner shell because they
were found only a few times and were energetically close. The larger number of states
given in Ref. [32] also suggests that a few states could be missing. Nevertheless, the
effect originating from these states should give only a small statistical contribution to
the probabilities.

6.6. Comparison with dusty plasma experiments

To compare with the experiments explained in Section 6.2 the relation between the
chosen system of units and the experimental parameters must be establish. The tem-
perature unit kBT0 = E0 = (αQ4/2)1/3 [in SI units E0 = (αQ4/32π2ε20)

1/3] depends on
the trap parameter α = mω2

0 and the dust charge. Since the charge is not known very
accurately the errors could be rather large. With Z = 2000 e and α = 5.2×10−11 kg s−2

given in Ref. [3], room temperature (300 K) corresponds to Troom ≈ 0.0015. Also, the
experimental screening parameter is known only approximately. From previous com-
parisons with simulations [29] it is expected to be in the range of 0.5 < κ < 1.
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The reported measurements on the probability of metastable states for the clusters
with N = 27 and N = 31 [3] will now be used for comparison with the MD and MC
simulations and the analytical model. More recent experimental results are presented
in Ref. [79].

6.6.1. MD results vs. experiment

The molecular dynamics simulations model a situation which is closest to the
experiment. In contrast to the experiment which is performed at room temperature, the
present simulations correspond to a Langevin dynamics simulation at T = 0 (the system
is cooled to almost zero kinetic energy). The influence of the final temperature was ver-
ified by performing additional Langevin simulations for the cluster with 27 particles and
κ = 0.6 with temperatures up to T = 0.0035 (Fig. 6.10), which is more than twice the
experimental temperature. Apart from a finite temperature the simulations were done
in the same way as explained in Section 6.3, but with a predefined simulation time. For
high temperatures one has to pay attention to the time after which the configuration
is determined since then transitions between states can easily occur. This can be seen
in Fig. 6.9 where for T > 0.01 metastable states have a non-vanishing probability. In
the present Langevin simulations a simulation time of tend = 400ω−1

0 was used, which
corresponds to tend ≈ 10 s for a dust particle mass of m = 3.3 × 10−14 kg. No sys-
tematic deviation from the results at zero temperature can be observed. The slight
deviations for the configurations (23,4) and (24,3) are probably due to the insufficiently
long simulation time with the same explanation as given at the end of Section 6.4.2.
This leads to the conclusion that for the present analysis an MD simulation without
fluctuations and cooling towards zero temperature is adequate.

The data for comparison with the experimental results is shown in Figs. 6.3 and 6.4.
The friction parameter in the experiments is expected to be in the range ν = 3 . . . 6 [3].
This means the system is overdamped and any value above ν = 2 will not change the
results significantly, cf. Fig. 6.3. So in Fig. 6.4 a value of 3.2 was used. The MD
simulations agree well with the experiment in the case of screening parameters in the
range 0.6 < κ < 0.8 (for N = 31) and 0.4 < κ < 0.6 (N = 27), for details cf. Tab. 6.7.
The lower screening parameter in the latter case is a consequence of the lower plasma
density in the experiment, compared to the conditions under which the cluster with
31 particles was produced. This was also found in the MD simulations performed in
Ref. [3]. The present simulations, being much more extensive, confirm these results. It
should be noted that this comparison allows one to determine the screening parameter
in the experiment.

Comparison for the cluster with 190 particles

Unfortunately the occurrence probabilities of the N = 190 cluster have not been mea-
sured in the experiment. Previous comparisons between experiment and simulation were
based on the ground state shell occupation [29], which coincides with the experimental
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Figure 6.10.: Langevin dynamics simulation for N = 27, κ = 0.6 and ν = 3.2. Horizontal
lines indicate results of Section 6.4.2, Fig. 6.4.

configuration for κ = 0.58 . . . 0.63. From Table 6.2 one can see that the experimental
configuration has a non-vanishing probability only for κ ≈ 0.45 . . . 0.65 (with a maximal
probability at κ ≈ 0.5) which is in good agreement with the ground state considerations.

Since the probabilities have not been measured, one can only narrow down the possible
values of the experimental screening to 0.45 . κexp . 0.65. This includes the previously
considered interval where the experimental configuration is the ground state. However,
also lower screening values are permitted here. This shows that determining the experi-
mental screening parameter from a comparison with the ground state of the simulations
may lead to a (systematic) error.

This is not surprising since often a state with more particles on the inner shell(s) than
the ground state achieves a comparable or higher probability. The change of the con-
figuration with the highest probability usually occurs prior to the change of the ground
state configuration as κ is increased. In addition, finite temperature effects will play a
more dominant role for large clusters since the energy differences between metastable
states are much lower than for small clusters. This might further increase the probability
of metastable states.

6.6.2. Analytical and MC results vs. experiment

A comparison of the analytical model and the MC simulations with the experiment is
disappointing. From Fig. 6.9 it is evident that at room temperature the ground states
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always have a probability of almost 100 % which is in striking contrast to the experiment
and the MD results. This is not surprising since the dust comprises a dissipative system
and the clusters are created under nonequilibrium conditions. In contrast, both Monte
Carlo and the analytical model are based on the canonical partition function and assume
thermodynamic equilibrium. Thus, at first sight, there seems to be no way to explain
the experiment with the analytical model or with Monte Carlo methods. However, this
is not true. As will be shown below, there is a way to apply equilibrium methods to the
problem of metastable states.

6.6.3. Time scales of the cluster dynamics

Let us have a closer look at the nonequilibrium dynamics of the cluster during the
cooling process. It is particularly interesting to analyze on what time scales the differ-
ent relaxation processes occur. In a weakly coupled plasma there are three main time
scales [84, 85]: first, the buildup of binary correlations which occurs for times shorter
than the correlation time τcor, which is typically of the order of the inverse plasma fre-
quency [86]. Second, the relaxation of the velocity distribution towards local equilibrium
due to collisions, for τcor ≤ t ≤ trel (kinetic phase) and third, hydrodynamic relaxation,
trel ≤ t ≤ thyd. This behavior has so far not been analyzed for strongly correlated
Yukawa clusters.

To get first insight, the quantities of central interest are the kinetic energy and the
velocity distribution function f(v, t) of the cluster particles. These quantities are easily
computed in the MD simulations of the cooling process, as explained in Section 6.4. To
obtain the velocity distribution 420 runs with different randomly chosen initial condi-
tions were performed and the data was collected for each time step. The results for the
kinetic energy evolution and for f(vx, t) at six different times are shown in Fig. 6.11,
parts a)–f) [the other velocity components show the same behavior]. The solid curves in-
dicate the best fit to a Maxwellian, the obtained ’temperatures’ are shown in Fig. 6.11 g)
by the crosses.

Four main relaxation stages can be observed. Stages two to four are analogous to the
ones discussed above. However, there is an additional stage at very short times which
is due to strong friction effects in the present system:

1. 0 ≤ t ≤ 0.1, initial stage: A rapid thermalization of the initial randomly chosen ve-
locity distribution f0 is observed which is due to strong friction in this overdamped
system. This leads to the formation of a Maxwellian distribution even before the
particles substantially ’feel’ the confinement potential and binary forces.

2. 0.1 ≤ t ≤ 0.5, correlation buildup: Rapid particle acceleration is observed which
accompanies the build up of binary correlations in the initially random (uncorre-
lated) particle system. This is also seen in the appearance of superthermal parti-
cles, see Fig. 6.11, parts b) – d). This behavior is typical for any rapid change of
the interparticle forces and proceeds on time scales of the order of the correlation
time, see Refs. [86–88].
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3. 0.5 ≤ t ≤ 1.3, competition between correlations and dissipation: The kinetic
energy increase saturates and cooling starts. This means, at t & 1 correlation
build up is finished and dissipation due to neutral gas friction dominates the
behavior.

4. t > 1.3, local equilibrium: the mean kinetic energy decreases approximately
exponentially, i.e. 〈Ekin〉(t) ∝ e−2γt where the decay constant is found to be
γ ≈ 0.65 ≈ ν/5.

The behavior on the last stage resembles a single (Brownian) particle in a dissipative
medium where γ is the velocity relaxation rate corresponding to a relaxation time of
trel = γ−1 = 1.54. In the case of Brownian particles, the velocity distribution rapidly
relaxes towards a Maxwellian for t ≤ trel. At early times high velocities are efficiently
suppressed by the high damping coefficient. The particles are then being accelerated
towards the center of the trap and increasingly interact with each other giving rise to
a non-thermal velocity distribution. The subsequent evolution towards a Maxwellian is
evident in Figs. 6.11 d) – f) which is established around t = 2.5.

This allows to conclude that, after an initial period (phases 1 – 3), the cluster has
reached an equilibrium velocity distribution and the subsequent cooling process, ul-
timately leading to freezing into a spherical Yukawa crystal, is well described by lo-
cal thermodynamic equilibrium: the time-dependent velocity distribution is given by
f(v, t) ∼ exp{− mv2

2kBT (t)} with kBT (t) = 2〈Ekin〉(t)/3. Thus, the system evolves from
one equilibrium state to another which differ only by temperature.

6.6.4. Application of equilibrium theories to the probability of metastable
states of Yukawa balls

Based on the results of Section 6.6.3, one can expect that equilibrium methods such
as Monte Carlo or the analytical model are applicable to the final (fourth) relaxation
stage. Thereby one has to use the equilibrium result for the current temperature T (t).
Using temperature dependent results such as in Fig. 6.9, allows one to reconstruct the
time-dependence of various quantities from the known dynamics of the kinetic energy:
T (t) = T (trel)e−2γ(t−trel).

Now, the key point is that this local (time-dependent) Maxwellian is established long
before the particles are in a strongly coupled state, i.e. the potential energy U of the
trap and of the pair interaction does not exceed the thermal energy. For example, at
t ≈ trel, the temperature is around 0.15, which is about a factor 100 higher than room
temperature and one order of magnitude higher than the freezing point. In the case
of very rapid cooling beyond the freezing point the particles will settle (with a certain
probability) in the stationary state ’s’ and will not have time to escape it since further
cooling removes the necessary kinetic energy (i.e. the escape probability will be low).
This means that the decision about what stationary state the system will reach is made
at a time when the system’s temperature is close to the melting temperature.
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Figure 6.11.: a) – f) Velocity distribution function f(vx, t) for different times [a): t = 0.1,
b): t = 0.2, c) t = 0.4, d) t = 1.0, e) t = 2.0, f) t = 3.1, as indicated in h) by the vertical
dashed lines.] for N = 27, κ = 0.6, ν = 3.2. Solid lines show the best Maxwellian fit. The
initial velocity distribution at t = 0 is chosen randomly and thermalizes rapidly until t = 0.1.
g) Averaged kinetic energy as a function of time. Crosses denote the averaged kinetic energy
obtained from the best fit using the equipartition theorem. The distributions are averaged over
420 MD runs.
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Table 6.7.: Comparison of experimental results for N = 27 and N = 31 with MD and MC
simulations (MC results are given for the temperatures T = 0.02 and T = 0.04). Also shown
are the results of the analytical model (“AM”) for T = 0.02 and with the Boltzmann factor
being neglected (T → ∞). For N = 27 (N = 31) the simulation results are shown for κ = 0.6
(κ = 0.8).

N = 27 P (24, 3) P (23, 4) P (25, 2)
Experiment 0.46± 0.14 0.46± 0.14 0.08± 0.06

MD 0.46 0.53 0.01
MC(0.02) 0.56 0.43 0.01
MC(0.04) 0.43 0.45 0.04
AM(0.02) 0.67 0.33 0.00
AM(∞) 0.12 0.64 0.24
N = 31 P (27, 4) P (26, 5) P (25, 6)

Experiment 0.35± 0.10 0.62± 0.13 0.03± 0.03
MD 0.30 0.59 0.11

MC(0.02) 0.40 0.55 0.04
MC(0.04) 0.33 0.50 0.14
AM(0.02) 0.44 0.53 0.03
AM(∞) 0.02 0.60 0.38

Using this idea the probability of metastable states are computed from the Monte Carlo
simulations for two temperatures T = 0.02 and T = 0.04, cf. Fig. 6.9 (at the higher
temperature, due to intershell transitions, shell configurations can be identified only
with an error of about 8%). The probability at T = 0.02 is also calculated within the
analytical model. Finally the high-temperature limit is considered which is obtained
by neglecting the Boltzmann factor in the probability ratios. The corresponding results
are presented in Table 6.7. The overall agreement with the experiment is much better
than the results for room temperature which confirms the correctness of the above
arguments. Evidently, the Boltzmann factor is crucial and cannot be neglected, cf. last
lines in Table 6.7. The best results are observed for temperatures around T = 0.04 which
is about two to three times higher than the melting temperature where the system is in
the moderately coupled liquid state. This shows that it is indeed possible to predict, at
least qualitatively, the probabilities of metastable states in dissipative nonequilibrium
Yukawa crystals within equilibrium models and simulations. This is possible in the
overdamped limit as is the case in dusty plasmas.

6.7. Discussion

In summary simulation results for the probabilities of Yukawa balls with four different
numbers of particles and a broad range of screening parameters and damping coefficients
were presented. In addition the most probable states were determined for 0 ≤ κ ≤ 2 and
10 ≤ N ≤ 50. It was shown by extensive molecular dynamics and Langevin dynamics
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simulations that the cooling speed (damping coefficient) strongly affects the occurrence
probabilities of metastable states even if the interaction and the confinement remain
the same. This is similar to the liquid solid transition in macroscopic systems where
rapid cooling may give rise to a glass-like disordered solid rather than a crystal with
lower total energy. The same scenario is also observed in the present finite crystals.
While slow cooling leads predominantly to the lowest energy state, strong damping
gives rise to an increased probability of metastable states. These states may have an
up to five times higher probability than the ground state, which is fully consistent with
the recent observation of metastable states in dusty plasma experiments [3]. These
metastable states are not an artifact of an imperfect experiment or due to fluctuations
of experimental parameters, but are an intrinsic property of finite Yukawa balls.

Furthermore it was shown that screening strongly alters the results compared to
Coulomb interaction. Generally increased screening leads to a higher probability of
states with more particles on inner shells due to the shorter interaction range. An ana-
lytical theory for the ground state density profile of a confined one-component Yukawa
plasma [2, 38], cf. Section 3.3, also showed that decreasing the screening length (increas-
ing κ) leads to a higher particle density in the center of the trap. This would correspond
to a higher population of inner shells in the present case.

An analytical model based on the canonical partition function and the harmonic ap-
proximation for the total potential energy was presented. This model allowed for a
physically intuitive explanation of the observed high probabilities of metastable config-
urations. The Boltzmann factor (which always favors the ground state relative to higher
lying states), competes with two factors that favor metastable states: the degeneracy
factor [favoring states with more particles on the inner shell(s)] and the local curva-
ture of the potential minimum. Low curvature (low eigenfrequency) corresponds to a
broad minimum and a large phase space volume attracting particles. Among all normal
modes the dominant effect is due to the energetically lowest modes. The thermody-
namic results from Monte Carlo simulations and the analytical theory are in reasonable
agreement with each other at low temperatures, as expected. For higher temperatures
anharmonic effects such as barrier heights will be equally important.

It was shown that in thermodynamic equilibrium the abundances of metastable states
are much lower than observed in dusty plasma experiments at the same temperature.
The reason is that, in equilibrium, the particles are given infinitely long time to escape a
local potential minimum and they will always visit the ground state more frequently than
any metastable state. In contrast, in the limit of strong damping the particles are being
trapped in the first minimum they visit. Thus the decision about the final stationary
state is made early during the cooling process, when the temperature is of the order
of two to three times the melting temperature. Therefore, equilibrium theories without
dissipation may be successfully applied to strongly correlated and strongly damped
nonequilibrium systems. A systematic derivation from a time-dependent theory is still
lacking and will be subject of further analysis.
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7. Modification of eigenfrequency
spectrum in the presence of friction

7.1. Introduction

In dusty plasma experiments the dust particles are subject to friction with the ambient
neutral gas. From the simple theory of a damped harmonic oscillator it is known that
the oscillation frequency is changed by the friction force. The same applies to the normal
modes of the dust particles. This chapter reviews the theory of normal mode oscillations
and specifically studies the aspects related to damping. Furthermore the modification
of the power spectrum is discussed.

7.2. Small oscillations with damping

Linearized equation of motion

The starting point is the linearization of the equation of motion1

mr̈i = −∇iU(r1, ..., rN )− νmṙi (7.1)

around the equilibrium positions r0
i according to ri(t) = r0

i+δri(t). The potential energy
U , which includes the external potential and the particle interaction, is approximated
by its Taylor expansion up to second order, cf. Eq. (6.3). For the component α of the
displacement vector δri(t) this yields the equation of motion

δr̈i,α + νδṙi,α +m−1
N∑
j=1

3∑
β=1

∂2U(r)
∂ri,α∂rj,β

∣∣∣∣
r=r0

δrj,β = 0, (7.2)

which comprises a set of coupled linear differential equations for the {δri(t)}. As in
Section 6.5.1, r0 = (r0

1, . . . , r
0
N ) denotes the vector of the particles’ equilibrium positions.

1This procedure can be found in any textbook on Classical Mechanics, e.g. Ref. [50]
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Eigenfrequencies

One now searches for solutions of the form δri(t) ∼ Aie
−iλt. Inserting this ansatz into

Eq. (7.2) yields a homogeneous system of linear equations for the coefficients Ai,[
U(iα),(jβ)

m
− (λ2 + iνλ)δ(iα),(jβ)

]
︸ ︷︷ ︸

M(iα),(jβ)

Aj,β = 0, (7.3)

with the unknown ’eigenfrequencies’ λ, see also Ref. [89]. The summation over the
repeated pair of indices j, β is assumed. Recall the definition of the Hessian matrix

U(iα),(jβ) =
∂2U(r)
∂ri,α∂rj,β

∣∣∣∣
r=r0

. (7.4)

The existence of a non-trivial solution requires the vanishing of the determinant of the
system’s matrix M(iα),(jβ). Basically it is the Hessian matrix (7.4) with a prefactor m−1

and the additional term −(λ2 + iνλ) on the diagonal. This yields the condition for the
new ’eigenfrequencies’ λ,

det
[
U(iα),(jβ)

m
− (λ2 + iνλ)δ(iα),(jβ)

]
= 0. (7.5)

By making the substitution ω2 = λ2 + iνλ one can derive a relation between the eigen-
frequencies with and without dissipation. One has ω2 ≥ 0 since r0 is chosen to be a
stable local minimum. This yields

det
[
U(iα),(jβ)

m
− ω2δ(iα),(jβ)

]
= 0. (7.6)

Eq. (7.6) is simply the equation for the eigenfrequencies ω of the undamped system as
in Section 6.5.1. Thus the eigenfrequencies in a damped system are related to those in
an undamped system by

λ = − iν
2
±
√
ω2 −

(ν
2

)2
. (7.7)

Solution

If all eigenfrequencies of the undamped system are different (non-degenerate), the
general solution is a superposition of 3N damped normal modes. The eigenvectors
Qi = (Ai

1, . . . ,A
i
N ), i ∈ {1, . . . , 3N}, are the same as in the undamped case since they

are the solutions of Eq. (7.3), which has exactly the same coefficient matrix as the un-
damped system if ω2 = λ2 + iνλ is substituted. Since the Hessian matrix is symmetric,
eigenvectors Qi corresponding to different eigenfrequencies ωi are orthogonal.
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7.2. Small oscillations with damping
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Figure 7.1.: Trajectories of
a damped harmonic oscilla-
tor with eigenfrequency ω0

for different ν. The initial
conditions are ξ(0) = ξ0 and
ξ̇(0) = 0.

Now let δRi(t) = (δri1(t), . . . , δr
i
N (t)) denote the normal mode i ∈ {1, . . . , 3N} and qi =

(ai1, . . . ,a
i
N ) the orthonormal basis vectors, where qi corresponds to the eigenfrequency

ωi. The general solution of Eq. (7.2) can be written as

δR(t) =
3N∑
i=1

δRi(t) =
3N∑
i=1

ξi(t)qi, (7.8)

where the {ξi(t)} denote the normal coordinates. In this system of coordinates the
equations of motion (7.2) are decoupled and read

ξ̈i + νξ̇i + ω2
i ξi = 0, (7.9)

i.e. each eigenmode separately obeys the equation of motion of a damped harmonic
oscillator.

There are three kinds of solutions, see Fig. 7.1. In the following the constants ai, bi must
be chosen to match the initial conditions.

• ν < 2ωi (underdamping):

ξi(t) = e−νt/2 [ai sin ω̃it+ bi cos ω̃it]

The oscillations are damped with a factor e−νt/2 and have an oscillatory part with

a frequency ω̃i =
√
ω2
i −

(
ν
2

)2. For very small damping, ν � ωi, the frequency

changes only slightly and is given by ω̃i ≈ ωi

[
1− 1

8

(
ν
ωi

)2
]
.
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7. Modification of eigenfrequency spectrum in the presence of friction

• ν = 2ωi (critical damping):

ξi(t) = e−νt/2 [ai + bit] = e−ωit [ai + bit]

The square root term in Eq. (7.7) vanishes and oscillatory particle motion is ef-
fectively suppressed. The displacement readily goes to zero.

• ν > 2ωi (overdamping):

ξi(t) = e−νt/2
[
aie

−λ̃t + bie
λ̃t
]

The square root term becomes imaginary which makes the particle motion non-

oscillatory as in the previous case. Here λ̃ =
√(

ν
2

)2 − ω2
i . The amplitude only

slowly goes to zero for t→∞, which is due to the second term where the ’decay
constant’ is −ν/2 + λ̃ ≈ −ω2

i /ν for ν � ωi.

7.3. Power spectrum

For undamped systems the spectrum of the eigenmodes shows sharp peaks at the eigen-
frequencies since the motion is strictly sinusoidal. In damped systems the spectrum is
altered in two ways:

• Line broadening occurs due to damping and consequently the non-periodic motion.

• The maximum of the power spectrum is shifted to a lower ωmax due to the friction
force. This is especially apparent for the underdamped case where the sinusoidal

part has a shifted frequency of ω̃i =
√
ω2
i −

(
ν
2

)2.

The spectrum will be studied by starting from the uncoupled equations of motion for
the damped eigenmodes,

ξ̈i + νξ̇i + ω2
i ξi = 0. (7.10)

In the following the index i will be dropped and the eigenfrequencies will be denoted by
ωi ≡ ω0.

The goal is to calculate the quantity

ξ̃(T, ω) =
∫ T

0
ξ(t)e−iωtdt, (7.11)

which is essentially the Fourier transform of ξ(t) for T → ∞. The lower integration
limit is chosen as t0 = 0 since ξ(t) ≡ 0 for t < 0.

The transformation (7.11) is applied to the equation of motion (7.10). Thereby one has
to solve the integrals
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7.3. Power spectrum
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Figure 7.2.: Power spec-
trum (7.16) of the damped
oscillator for different ν.
The initial conditions are
ξ(0) = ξ0 and ξ̇(0) = 0.

∫ T

0
ξ̇(t)e−iωtdt = ξ(T )e−iωT − ξ0 + iωξ̃(T, ω), (7.12)∫ T

0
ξ̈(t)e−iωtdt = ξ̇(T )e−iωT − ξ̇0 + iω

∫ T

0
ξ̇(t)e−iωtdt, (7.13)

which is easily achieved by integration by parts. Here the abbreviations ξ(0) = ξ0 and
ξ̇(0) = ξ̇0 are used to denote the initial conditions. Collecting terms one arrives at

ξ̃(T, ω) =
ξ̇0 + ξ0[ν + iω]−

[
ξ̇(T ) + ξ(T )[ν + iω]

]
e−iωT

(ω2
0 − ω2) + iνω

. (7.14)

In the limit T →∞ one has ξ(T ) → 0, ξ̇(T ) → 0 and the result reduces to

ξ̃(T →∞, ω) ≡ ξ̃(ω) =
ξ̇0 + ξ0[ν + iω]
(ω2

0 − ω2) + iνω
. (7.15)

The spectral power density is then given by

|ξ̃(ω)|2 =

[
ξ̇0 + νξ0

]2
+ ω2ξ20

(ω2
0 − ω2)2 + ν2ω2

. (7.16)

For large ω one calculates the asymptote |ξ̃(ω)|2 ∼ ξ20/ω
2.

75



7. Modification of eigenfrequency spectrum in the presence of friction

In contrast to the undamped case where the spectrum is peaked at a single frequency ω0

[for a continuous signal ξ(t) ∼ sin(ω0t), t ∈ (−∞,∞)], the power density of a damped
signal shows line broadening and a shifted maximum at

ωmax =
[√

(z2
0 + νz0 + ω2

0)(z
2
0 + 3νz0 + 2ν2 + ω2

0)− (z0 + ν)2
]1/2

,

where z0 = ξ̇0/ξ0. The maximum vanishes (i.e. it becomes a maximum at ω = 0) at
some critical value νcrit as ν is increased.

The spectrum is shown in Fig. 7.2 for different ν with the initial condition ξ̇0 = 0. In
this particular example the maximum is located at

ωmax =

√
ω0

√
2ν2 + ω2

0 − ν2

and vanishes at νcrit =
√

1 +
√

2ω0 ≈ 1.55ω0, i.e. even before the system is overdamped.

7.4. Discussion

In the strong damping regime, as is the case in the experiments on spherical Yukawa
balls, many eigenmodes will ’vanish’ because the friction coefficient is too large. For
ν ≥ 2ωi the eigenfrequencies (7.7) become purely imaginary and the motion is over-
damped so any kind of periodic motion is suppressed.

As one can see in Fig. 6.7, showing a typical spectrum with experimentally relevant
parameters, only a few modes will actually be in the underdamped regime, since ν is
typically of the order 3 . . . 6 (in units of the trap frequency). This is why it would be
difficult to examine and study the eigenfrequency spectrum in these systems. In addition
the maximum of the power spectrum for the eigenmodes can vanish even before the mode
is overdamped and this particular feature of the signal is lost.
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8. Summary and outlook

8.1. Summary of the work

This work was concerned with classical, strongly correlated finite systems in external
traps and their static and dynamic properties.

After a discussion of some of the aspects related to strongly coupled Coulomb systems,
the focus was laid on dusty plasmas, especially so-called Yukawa balls. The model for
the theoretical description in this work was based on a spherical harmonic confinement
and a statically screened Coulomb potential for the particle interaction. Next, molecular
dynamics, Langevin dynamics and Monte Carlo simulation methods were introduced as
the required tools for studying the model system.

The first aspect was the investigation of an improved shell model for Yukawa balls.
There the ground states were found by the method of simulated annealing using a
Metropolis Monte Carlo procedure. A fit parameter in the model was determined to
match the exact ground state energies found in MD simulations. It was shown that
for low screening the occupation numbers in the shell model were comparable to the
exact results, but showed substantial deviations for larger screening and higher particle
numbers. The radii could be reproduced with a good accuracy, except for the innermost
shell. An improvement was possible by allowing for different correlation parameters for
different shells. Here the occupation numbers and radii are well predicted for larger
clusters, but the energy deviates from the exact value.

Molecular dynamics and Langevin dynamics simulations were used to investigate the
occurrence probabilities of Yukawa balls in damped systems. It was found that the
damping strength strongly influences the abundances of metastable states. While slow
cooling generally leads to a high probability of the ground state, strong friction is re-
sponsible for the high abundances of metastable states in dusty plasma experiments.
The screening parameter, and thus the range of the interaction potential, strongly af-
fects the shell occupation. In Coulomb systems with long range interaction, states with
only a few particles on the inner shells have a high probability. The probability of states
that have more particles on the inner shell was shown to increase with the screening
parameter. A physically intuitive explanation for the probabilities was given in terms of
a simple model based on the canonical partition function. The temperature dependent
results from this model were compared to exact Monte Carlo simulations and reasonable
agreement was found for low temperatures. The application of the equilibrium model to
the nonequilibrium process that leads to the formation of a Yukawa ball was achieved
by considering the time evolution of the velocity distribution function. It readily relaxes
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8. Summary and outlook

towards a Maxwellian distribution during the cooling process and thus local thermody-
namic equilibrium. In this case the analytical theory is applicable and the probabilities
are determined when the particles have a temperature around the melting point.

In the last part of this work the eigenmodes of damped systems were investigated. After
a review of the relevant theory the power spectrum of damped oscillations was derived
and the influence of friction was demonstrated. Damping was shown to lead to line
broadening and a shift of the maximum in the power spectrum. The maximum can
vanish even before the system is in the overdamped regime.

8.2. Outlook

Several aspects of this work could be improved or extended.

The correlation term in the Yukawa shell model has been added without a rigorous
derivation – only based on the analogy with the Coulomb model. The primary goal of
future analysis should be to derive an energy expression for a shell model with Yukawa
interaction without making further assumptions regarding the correlation energy. Even
though the form of the correlation term is well justified for Coulomb interaction, as was
shown in Ref. [75], this is not necessarily the case for the Yukawa potential. As already
mentioned the cohesive (correlation) energy of a two-dimensional Yukawa lattice could
be used to approximate the correlation energy in the present shell model [76].

An improvement of the analytical model for the probability of stationary states is
possible by including anharmonic effects, as was done in Ref. [78] by allowing for
temperature dependent eigenfrequencies. An alternative approach taken by Schweigert
and Peeters [81] changes the limits of allowed particle motion in the integration of the
partition function. However, both methods require additional parameters such as a
measure of the anharmonicity or the barrier heights between different states.

Another possible extension of the present work is further analysis of the time evolution of
the distribution function (short-time behavior) during the cooling process. This would
be possible by means of a Fokker Planck equation that directly takes into account the
effect of the confinement potential and the particle interaction. In this framework it
should be possible to directly study the relaxation processes and further determine the
relevant time scales of the dynamics. The Fokker Planck equation directly yields the
relevant ensemble averages.

The theoretical model system could be improved by means of dynamically shielded
pair potentials. These potentials take into account the effects of external fields on
the ion (and electron) distribution functions which determine the effective interaction
between the dust grains. In the presence of an electric field, as encountered in the
sheath region above the lower electrode in dusty plasma experiments, there is a strong
downward ion flow. This makes the potential anisotropic and the dynamics of the dust
particles becomes non-Newtonian (non-reciprocal forces). With these methods it would
be possible to further account for the surrounding plasma environment and include
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8.2. Outlook

several new effects such as Landau damping or ion-neutral collisions, which are missing
in the present model.
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A. Calculation of shell radii for Yukawa
interaction

The shell radii {Rν} in the Yukawa shell model must be determined from the system of
equations (5.7). Explicitly, the equations are given by (after rearrangement of terms)

2
(
Rν
r0

)3

− e−κRν
[(

Nν − εν(N,κ)
√
Nν

2

)(
sinh(κRν)

(
1 +

2
κRν

)
− cosh(κRν)

)
+(1 + κRν)

(
ξ +

∑
µ<ν

Nµ
sinh(κRµ)
κRµ

)]

+ [cosh(κRν)κRν − sinh(κRν)]
L∑

µ=ν+1

Nµ
e−κRµ

κRµ
= 0. (A.1)

Here the number of shells is denoted by L and ν ∈ {1, . . . , L}. This system of coupled
nonlinear equations can be solved with the Newton-Raphson method [51].

The equations (A.1) have the form

Fν(R1, . . . , RL) = 0, ν ∈ {1, . . . , L}.

Now let F = (F1, . . . , FL) denote the vector of the functions {Fν} and let R =
(R1, . . . , RL) be an initial ’guess’ of the solution. In the local neighborhood of the
point R one can expand F in a Taylor series according to

F(R + δR) ≈ F(R) + J · δR +O(δR2).

Here J denotes the Jacobian matrix

J =
∂Fν
∂Rµ

, ν, µ ∈ {1, . . . , L},

that contains the partial derivatives of F. Terms of higher than linear order in δR are
neglected. The idea is to solve

F(R + δR) = 0
⇐⇒ J · δR = −F, (A.2)

for the correction δR to the initial guess of the solution. Eq. (A.2) is only a system of
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A. Calculation of shell radii for Yukawa interaction

linear equations which can be solved by Gaussian elimination. The corrected solution is
then given by Rcorr = R+ δR. Depending on the initial value of the solution vector the
procedure has to be repeated several times to obtain the solution with a certain degree
of accuracy.

The convergence of the iteration procedure is only guaranteed if the initial guess of the
solution is sufficiently close to the exact solution. This is not a problem here since the
radii for Coulomb interaction are known analytically [Eq. (5.8)] and change only slightly
in the case of Yukawa interaction and low screening. Thus one can choose the Coulomb
radii as the initial values to get an accurate starting point. The convergence of the
method can further be improved by rescaling the Coulomb radii by a factor s < 1 to
account for the smaller radii in the Yukawa model.
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B. Derivation of partition function

The first step in evaluating the partition function in the harmonic approximation is to
write down the Hamiltonian for each energy contribution. Thereby one has to choose ap-
propriate generalized coordinates. In the following the ’s’, denoting the local minimum,
will be dropped for simplicity, but one has to keep in mind that the chosen coordinates
are specific for each state.

For the vibrational part the normal coordinates ξi are chosen as generalized coordi-
nates [78]. Then the Hamiltonian takes the well known form of f decoupled harmonic
oscillators and reads

Hvib(ξi, pξi) =
f∑
i=1

{
p2
ξi

2m
+
m

2
ω2
i ξ

2
i

}
. (B.1)

Here the pξi are the conjugate momenta of the coordinates ξi.

The corresponding part of the partition function can now be evaluated. The integrals
are all of the Gaussian type

∫∞
−∞ e−a

2x2
dx =

√
π
a and one obtains from (6.6)

Zvib =
1

(2π~)f

f∏
i=1

∫ ∞

−∞
exp

[
−

(
p2
ξi

2m
+

1
2
mω2

i ξ
2
i

)
/kBT

]
dpξi dξi

=
f∏
i=1

kBT

~ωi
=
(
kBT

~Ω

)f
,

where Ω =
(∏f

i=1 ωi

)1/f
is the mean geometric eigenfrequency.

The evaluation of the rotational part is more involved [80]. Here one chooses the Euler
angles θ, φ, ψ as the generalized coordinates. For this choice of coordinates and with the
principal moments of inertia I1, I2, I3 the Lagrangian for a rigid rotator only consists of
kinetic energy and reads

Lrot(φ, θ, ψ, φ̇, θ̇, ψ̇) =
L2

1

2I1
+
L2

2

2I2
+
L2

3

2I3
. (B.2)

The L1, L2, L3 denote the angular momenta with respect to the associated principal
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B. Derivation of partition function

axes. In terms of the Euler angles they can be written as

L1 = I1(φ̇ sin θ sinψ + θ̇ cosψ)
L2 = I2(φ̇ sin θ cosψ − θ̇ sinψ)
L3 = I3(φ̇ cos θ + ψ̇). (B.3)

The conjugate momenta can easily be calculated according to

pφ =
∂Lrot

∂φ̇
= L1 sin θ sinψ + L2 sin θ cosψ + L3 cos θ

pθ =
∂Lrot

∂θ̇
= L1 cosψ − L2 sinψ

pψ =
∂Lrot

∂ψ̇
= L3. (B.4)

To get the Hamiltonian one has to perform the Legendre transformation Hrot = pφφ̇+
pθθ̇+ pψψ̇−Lrot and write the φ̇, θ̇, ψ̇ in terms of the generalized coordinates and their
conjugate momenta. In the case of a rigid rotator the Hamiltonian and the Lagrangian
are the same [80]. Thus one can directly proceed to the evaluation of the partition
function

Zrot =
1

(2π~)3

∫
e−βH

rot
dφ dθ dψ dpφ dpθ dpψ

=
1

(2π~)3

∫
e−βH

rot

∣∣∣∣J ( pφ, pθ, pψL1, L2, L3

)∣∣∣∣ dφ dθ dψ dL1 dL2 dL3

=
1

(2π~)3

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ 2π

0
dψ

∫ ∞

−∞
exp

(
− L2

1

2I1kBT

)
dL1

×
∫ ∞

−∞
exp

(
− L2

2

2I2kBT

)
dL2

∫ ∞

−∞
exp

(
− L2

3

2I3kBT

)
dL3. (B.5)

In the second line of Eq. (B.5)
∣∣∣J ( pφ,pθ,pψL1,L2,L3

)∣∣∣ denotes the determinant of the Jacobian
matrix of the transformation (B.4). The remaining integrals can easily be solved and
give the final result

Zrot =

(
2π1/3kBT Ī

~2

)3/2

, (B.6)

where Ī = (I1I2I3)
1/3 denotes the mean geometric moment of inertia.
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