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1 Introduction

1.1 Motivation
The interest and investigation of bosonic systems dates back to the beginning of quan-
tum mechanics and is nowadays far from being restricted to the investigation of Bose-
Einstein-condensation (BEC) and superfluidity. There are several aspects and phe-
nomena in condensed matter and atomic physics that are closely connected to Bose
statistics.
In 1924 Satyendra Nath Bose marked the starting point in the investigation of bosonic

systems with a proposal for a quantum statistical treatment of photons [1]. This work
inspired Einstein, who applied the idea to atoms and predicted the BEC. It is remarkable
that the theoretical prediction of BEC in 1925 and its experimental realization differ
70 years in time. In 1995, the group of C. E. Wieman and E. A. Cornell observed
the condensation of alkali atoms that where confined in a trap by magnetic fields and
evaporatively cooled [2], a success that brought this group the Nobel Prize in 2001.
Experimentalists owe a lot of this success to the preeminent physical and technical
spadeworks such as laser cooling [3] or Paul trapping [4].
Superfluidity is a phase of matter which is strongly connected to BEC. The first

experimental observation of this phenomenon traces back to the two groups of Pyotr
Kapitza in Moscow and Don Misener in Cambridge in 1937. Kapitza was awarded the
Nobel Prize for his discoveries. The theoretical explanation of superfluidity is due to
Lev Davidovich Landau which earned him the Nobel Prize.
The so called fermionization of bosonic systems was predicted by Girardeau in 1960 [5]

and had to wait more than 40 years for its experimental realization [6] by the group
of Belén Paredes. In this so called Tonks-Girardeau regime, the repulsive interactions
between bosonic particles confined to one dimension dominate the physics of the system
and its physical properties resemble those of fermions with the same interaction. This
can be understood intuitively, by regarding the strong repulsive interaction as a mimic
of the Pauli exclusion principle for fermions.
The investigation of bosonic systems is not only highly interesting for fundamental

physics, but is also important for several applications, for instance the realization of
an atom laser [7] or quantum information [8]. Bosons that are trapped in an optical
lattice evince other interesting phenomena. In 2002, the group of M. Greiner detected
a Mott-insulator phase transition between a superfluid and a Mott-insulator phase of
bosons trapped in an optical lattice [9].

There exist a variety of methods to analyze bosonic many particle systems theoret-
ically, including extensive computer simulations. In contrast to fermions, bosonic par-
ticles are well approachable with Path-Integral Monte-Carlo (PIMC) [10]. It achieves
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Figure 1.1: Number of publications
that contain the words “Bose” and
“Einstein”, divided by the number
of publications containing the word
“the” as normalization. The absolute
numbers of publications of the year
1995 are given in the graphic.
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exact results for systems with particle numbers up to several 100 bosons and serves
well for the numerical treatment of phenomena as mentioned above. Unfortunately, this
method does not provide the possibility to consider time-dependent systems. Further-
more, for the interpretation and understanding of physical phenomena, approaches are
needed that are not just a mathematical method, but rather a physical model.
The Gross-Pitaevskii approximation (GP) is a good approach to analyze the wave

function of the condensate fraction. It even holds for time-dependent systems and
serves to explain phenomena such as solitons [11]. However, its basic assumptions do
not suit such systems as considered in this work. The main topic of this work will
be the analysis and implementation of an approximation scheme that is very closely
connected to GP but goes beyond and hence is able to explain more effects that appear
in bosonic systems. It was first introduced by Igor Romanovsky in 2004 [12]. This
approximations will be applied to systems of up to 8 charged bosons trapped in a one-
and two-dimensional harmonic confinement. I will explain the relation of this method to
others that are able to deal with the same kind of systems and compare their capability
to explain the here mentioned phenomena.

1.2 Outline

The content of this thesis is subdivided as follows:
Chapter 2 gives an overview of the thermodynamics of bosonic systems. It starts

with the introduction of the reduced one-body density matrix, which is needed for the
calculation of the expectation values of observables and can be used to determine the
condensate fraction. Furthermore, the physical interpretation for systems with lower
dimensionality is given and the phenomenon of fermionization is discussed, which only
arises in one-dimensional systems. The final section emphasizes that for bosonic systems
with fixed particle number, the description in the canonical ensemble is required instead
of the grand canonical ensemble.
A summary of all single permanent ansatz approximations that apply the Ritz prin-

ciple is presented in chapter 3. The commonalities, differences, and features are em-
phasized. Special attention is given to the GP approximation. All these ansatzes can
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be extended to the time-dependent regime via the time-dependent variational principle,
which is also explained within this chapter.
Chapter 4 goes more into detail with the most general case of the single Slater perma-

nent ansatz – the so called unrestricted bosonic Hartree-Fock approximation (UBHF).
The crucial equations are derived and a numerical scheme for solving these equations
is presented. Some special properties are discussed, such as the occupation numbers of
the natural orbitals in UBHF. The equations of motion of the time-dependent extension
of this ansatz are derived.
Chapter 5 presents the results obtained with UBHF and compares some quantitative

and qualitative results with the results obtained by the GP approximation and an exact
method called configuration interaction. It is shown that with the UBHF approximation
metastable solutions can be obtained. For two dimensional systems, the breaking of the
rotational symmetry is discussed. Finally, a comparison of the time-dependent UBHF
approximation with an exact method is shown.
Chapter 6 deals with the programs that were developed for the diploma thesis. It

gives an overview of the structure of the programs. Also, it can be used as a manual for
people who want to analyze bosonic systems with this implementation.
The last chapter summarizes the results of this work followed by some remarks on

unsolved problems and possible extensions of the UBHF approximations.
The appendix presents either some detailed calculations that are needed for under-

standing the mathematical derivations in this work, or calculations that are related to
the topic of this work, but do not fit into the main chapters. Some important recursion
relations for the canonical treatment of ideal many particle systems that are not present
in the literature are derived in appendix F. In E, a generalization of the Ryser algorithm
to a special type of matrices is given. Appendix D presents an alternative approach to
the usual derivation of the Hartree-Fock Hamiltonian in the grand canonical ensemble.
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2 Bose systems

Bosons are particles with integer spin. Their many-body wave function is symmetric
under an arbitrary permutation of the arguments, where each argument contains all
required quantum numbers of the single particle state (coordinate, spin, isospin, etc.).
Thus bosons do not obey the Pauli principle and can accumulate in the same state.
In the introduction a short overview of the main properties and phenomena of bosonic
systems was given. This chapter introduces the required mathematical techniques and
presents further details of some bosonic effects.

2.1 The reduced one-body density matrix

An important entity that helps to indicate the appearance of a condensate is the reduced
one-bode density matrix (ROBDM ). 1 It can be defined for arbitrary mixtures or pure
states.
BEC is associated with the condensation of atoms in the state of lowest energy.

The question that arises directly from this definition, is in which state the system
condenses if no single particle orbital can be related with an energy as is the case for
interacting particles. Thus for nonideal systems a generalized definition of the orbital
of the condensate is needed. Hence we need to find the orbital ϕ that maximizes the
functional

n[ϕ] = 〈n̂ϕ〉 , (2.1)

where n̂ϕ is the occupation number operator of the state ϕ and 〈〉 denotes the expectation
value with respect to an arbitrary mixture of states. Such a mixture can always be
represented by the statistical density operator ρ̂. The expectation value 〈Â〉 of an
arbitrary operator Â with respect to a mixture given by ρ̂ can be expressed by the trace

〈Â〉 = Tr(Âρ̂) =
∑
α

〈α|Âρ̂|α〉 , (2.2)

with the sum ranging over a complete orthonormal set of states. The operator n̂ϕ
in equation (2.1) can be expressed as a product of the creation operator â†ϕ and the
annihilation operator âϕ of second quantization formalism. The action of â†ϕ (âϕ) yields
a state with the occupation number of the state |ϕ〉 being increased (decreased) by one.
The operators â†ϕ and âϕ themselves can be expressed via the field operators Ψ̂†(x) and

1The ROBDM is fundamentally different to the thermodynamical density operator ρ̂ = 1
Z
e−βĤ , which

is (also) called density matrix, if it is regarded in coordinate space representation [13].
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Ψ̂(x) 2:

n̂ϕ = â†ϕâϕ =
( ∫

dxϕ(x)Ψ̂†(x)
)( ∫

dy ϕ∗(y)Ψ̂(y)
)

=
∫

dx dy ϕ(x)ϕ∗(y) Ψ̂†(x)Ψ̂(y) .
(2.3)

This expression can be used for n̂ϕ in equation (2.1). As ϕ has to be normalized, a
Lagrange multiplier ν that guarantees this side condition is introduced. Thus one obtains
the following functional, which is of high importance for determining the condensate
fraction ∫

dx dy ϕ∗(x) g(x, y)ϕ(y)− ν
∫

dxϕ∗(x)ϕ(x) , (2.4)

where the one-body density matrix has been defined as:

g(x, y) := 〈Ψ̂†(x)Ψ̂(y)〉 . (2.5)

It can be considered as the kernel of an operator that will henceforth be called reduced
one-body density operator (ROBDO).
In order to find the wave function ϕ that minimizes (2.4), the variational derivative

with respect to ϕ∗ of (2.4) must be performed. This yields the equation
δ

δϕ∗(x)

( ∫
dz dy ϕ∗(z) g(z, y)ϕ(y)− ν

∫
dzϕ∗(z)ϕ(z)

)
=
∫

dyg(z, y)ϕ(y)− νϕ(z) != 0

⇐⇒
∫

dy g(x, y)ϕ(y) = νϕ(x) . (2.6)

The reduced one-body density matrix is the kernel of the before mentioned abstract
operator ROBDO that acts on the one-particle Hilbert space (see Chap. 2.1.1). As
this operator is hermitian, a CONS of solutions ϕ(x) of equation (2.6) is obtained.
By multiplying (2.6) with ϕ(x) and integrate over dx, one recognizes the Lagrange
multiplier ν as the occupation number of the orbital ϕ. Thus the orbital with the highest
eigenvalue (highest occupation number) is the orbital of the condensate – supposing the
system is in a condensed phase.
Even if the system is not Bose-Einstein condensed, the reduced one-body density

matrix is a very useful entity. E.g., it allows one to calculate the expectation value of
all one-body operators.

2.1.1 Symmetries of the one-body density matrix
The natural orbitals of a quantum mechanical system are obtained by solving the eigen-
value problem (2.6). In this section, only thermodynamical averaging or averages over
pure states, which are eigenstates of the Hamiltonian are considered for the definition
of the reduced one-body density matrix (2.5).
The eigenvalues ni are the occupation numbers of the orbitals with the wave func-

tion ϕi. With the definition of the field operators Ψ̂(x) =
∑
k φk(x)âk – with k repre-

senting an arbitrary CONS – equation (2.6) converts to∑
kl

∫
dyφ∗k(y)ϕi(y)︸ ︷︷ ︸

=:cik

φl(x) 〈â†l âk〉 =
∑
kl

cikφl(x) 〈â†l âk〉 = niϕi(x) (2.7)

2For a detailed introduction into the second quantization formalism see e.g. [14].



CHAPTER 2. BOSE SYSTEMS 7

In order to obtain the lth expansion coefficient cli of ϕi(x) with respect to the considered
basis {φk} , the latter equation is multiplied with φ∗l (x) and integrated over dx 3:∑

k

〈â†l âk〉 cki = nicli (2.8)

Thus the definition of the natural orbitals is independent of the basis in which the
reduced one-body density matrix is represented and it is appropriate to write down
equation (2.6) in an abstract way:

ĝ |i〉 = ni |i〉 (2.9)

ĝ is the before mentioned ROBDO and is defined by

ĝ =
∑
kl

〈â†kâl〉 |k〉 〈l| (2.10)

where |k〉 and |l〉 represent an arbitrary CONS. With this definition, it can easily be
seen that the operator ĝ is hermitian and hence has a complete set of eigenvectors. Now
it is of interest, wether the ROBDO commutes with any hermitian operator Ô that in
turn commutes with the Hamiltonian Ĥ:[

Ĥ, Ô
]
= 0 =⇒

[
Ô, ĝ

]
= 0 , (2.11)

what turns out to be the case for one-body operators, if the averaging is thermal. If nec-
essary, the operators Ĥ, Ô and ĝ can be considered in second quantization. Implication
(2.11) is valid if Ô is a pure one-body operator, what will be shown in now. Without
loss of generality, ĝ will be regarded in the representation respective to the CONS of
eigenstates of Ô (Choose |k〉 and |l〉 l in Eq. (2.10) such that Ô |k〉 = ok |k〉). Then the
commutator of ĝ and Ô is written as[

ĝ, Ô
]
=
∑
kl

〈â†kâl〉
[
|k〉 〈l| , Ô

]
=
∑
kl

〈â†kâl〉 (ol − ok) |k〉 〈l| . (2.12)

Now it needs to be shown that for an average with the density operator ρ̂ given by
ρ̂ = 1

Z e
−βĤ (thermal average), the density matrix holds

〈â†kâl〉 (ol − ok) = 0 (2.13)

If the averaging is to be performed in the grand canonical ensemble, the additional
conditions

[
N̂ , Ô

]
=
[
Ĥ, N̂

]
=
[
Ĥ − µN̂, Ô

]
= 0 are required. The auxiliary term with

the chemical potential µ that arises in the exponent for the grand canonical averaging
can be pushed into the one-particle part of the Hamiltonian where it only leads to a
shift of the zero point of the potential. Thus if

[
Ĥ, Ô

]
= 0 is valid, then[

1
Z
e−βĤ , Ô

]
= 0. (2.14)

3Perform the scalar product with φl from the left.
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It will be shown that 〈â†kâl〉 differs from zero if and only if ok = ol.
Consider the action of the operators ρ̂ and â†kâl on the many-particle eigenstate
|n1n2 . . .〉 of Ô – with nk being the occupation number of the kth eigenstate of Ô.
The action of the density operator ρ̂ does not change the eigenvalue with respect to Ô
(because

[
Ĥ, Ô

]
⇒
[ 1
Z e
−βĤ , Ô

]
). However, the operator â†kâl does if ok 6= ol, since

Ôâ†kâl |n1n2 . . .〉 =
√
nl(nk + 1)

(∑
i

nioi + ok − ol
)
|n1 . . . nk + 1 . . . nl − 1 . . .〉 (2.15)

The product states |n1n2 . . .〉 serve as a CONS for the performance of the trace for the
average (Eq. (2.2)). The summand appearing under the trace holds

〈n1n2 . . .| ρ̂â†kâl |n1n2 . . .〉 = 0, for ok 6= ol (2.16)

⇒〈â†kâl〉 = 0, for ok 6= ol (2.17)

⇒〈â†kâl〉 (ol − ok) = 0, for all k, l (2.18)

Inserting this in Eq. (2.12) yields[
Ĥ, Ô

]
= 0 =⇒

[
Ô, ĝ

]
= 0 (2.19)

for all hermitian one-body operators Ô. This gives rise to the question, why this is not
the case for two-body operators or higher. The main problem is that the eigenstates
of operators that contain a two-particle operator cannot be represented in the simple
fashion as symmetrized product states, as in equation (2.16). In Chap. 5 it will be seen
that the approximations that are analyzed in this work break certain symmetries of the
system, such as rotational symmetry.

2.2 Bose systems in lower dimensions

Although the physical coordinate space has three dimensions, there exist several experi-
mental justifications for the theoretical treatment of systems with lower dimensionality.
In the one-particle model such a simplification can be made, if the Hamilton operator
is composed additively by commuting Hamiltonians for systems with lower dimensions,
e.g. the three-dimensional harmonic oscillator or the free particle.
The Hamiltonian for interacting many particle systems can in general not be decom-

posed this way. But also for ideal systems where this decomposition is still possible,
it is unsuitable for the necessary consideration of particle statistics. E.g. for fermions,
the Pauli principle forbids two particles to reside in the same orbital respective to the
full Hamiltonian. If the orbitals can be decomposed as products of orbitals with lower
dimensionality, a one-dimensional part of an orbital can be multiply occupied in the
sense that there can be several occupied 3D-orbitals that have the same 1D-part in
the same direction as a factor. This is also intimated by the fact that the partition
function (either canonical or grand canonical) for an ideal system with a decomposable
Hamiltonian does not factorize into partition functions for each dimension.
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Figure 2.1: Thermal mean occupa-
tion number of the orbital with the
second lowest energy for systems with
N = 8 particles in different cases of
anisotropy in the 2D harmonic os-
cillator. The dashed black line is
the occupation number for 1D sys-
tems. The order of the ratios of the
trap frequencies (given on the left)
are related to the maximum values of
the corresponding graphs (from top to
bottom). Note that for the isotropic
case (ωy/ωx = 1.0) the considered
orbital belongs to a two-fold degen-
erate energy level.

The reduction to lower dimensions in these cases can be justified for extremely
anisotropic systems, where the excitation of the system preferentially occurs in a cer-
tain direction. As illustrative example, consider an anisotropic harmonic oscillator with
ωy = 3ωx. The energy of the orbital |nxny〉 is given by Enxny = ~ωx(2 + nx + 3 · ny).
Thus the four orbitals with the lowest energy are

|00〉 → 2~ωx, |20〉 → 4~ωx,
|10〉 → 3~ωx, |30〉 , |01〉 → 5~ωx .

I.e., an excitation in y-direction is not given until the fourth energy level. For extremely
anisotropic cases, one can neglect the effects that arise from the excitation of the system
in the direction of steeply increasing values for the energy levels. Such a tendency is
called “freezing out a dimension”. In figure 2.1 the occupation number of the orbital
with the second lowest energy eigenvalue is shown for different cases of anisotropy. It
can be seen that for low temperatures and high anisotropy (ωy/ωx � 1), the graphs
resemble the 1D case. Hence, in this regime, the 1D model of the system is suitable.

2.3 Fermionization of 1D Bose systems

In 1960 M. Girardeau predicted that one-dimensional Bose systems have the same den-
sity and energy spectrum as spinless4 fermions if the particle interaction contains an
impenetrable hard core [5]. This means that if the particle interaction of a 1D system
demands the wave function to vanish if the distance of two particles becomes less than
a certain limit a

Ψ(x1, . . . , xN ) = 0 if exist i, j : |xi − xj | ≤ a , (2.20)

4Or spinpolarised
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the bosonic (ΨB) and the fermionic (ΨF ) wave functions that solve the Schrödinger
equation of the system are related to each other as follows:

ΨB(x1, . . . , xN ) = ΨF (x1, . . . , xN )
∏
i<j

sign(xi − xj) , (2.21)

where the product on the left side rebuilds the correct symmetry of the bosonic wave
function. This so called Tonks-Girardeau gas has first been observed by the group of
B. Paredes with ultracold rubidium atoms held in an optical lattice [6]. The mapping
– given by Eq. (2.20) – does not imply that the bosonic many particle state fulfills
such a simple relation in other representations than coordinate space (e.g. momentum
space). The momentum space distribution of the bosonic state differs crucially from the
fermionic case, even phenomena such as condensation are still observed in the Tonks-
Girardeau limit [15]. This implies that the density matrix is not a good entity by which
to detect the fermionization limit of the system. For such analizations, the two-particle
density is required, which is explained in the following.

2.3.1 The two-particle density
The two-particle density n(x, x′) is the only function necessary to determine the inter-
action energy. Thus for a system with a hard core interaction, the two-particle density
must also vanish if the distance |x−x′| enters the forbidden sphere. Thus, the probability
of finding two particles at the same place

ptogether =
∫

n(x, x) dx , (2.22)

is a good indicator for the fermionization of the system.
An example for an interaction with a hard core is the one dimensional Coulomb

interaction 5

w(x, x′) = λ

|x− x′|
, (2.23)

which is of particular interest in this work. The coupling parameter λ will be explained
later in Chap. 5. To show that this interaction indeed has a hard core, it has to be
shown that the interaction energy diverges if n(x, x) 6= 0 for at least one x. The total
interaction energy is calculated by

〈Ŵ 〉 = 1
2
λ

∫∫
dx1 dx2

n(x1, x2)
|x1 − x2|

. (2.24)

Transformation to relative and center of mass coordinates ( y1
y2 ) = 1√

2

(
x1+x2
−x1+x2

)
leads to

〈Ŵ 〉 = λ

2

∫
dy2

1
|y2|

∫
dy1ñ(y1, y2)︸ ︷︷ ︸
=:I(y2)≥0

= λ

2

∫
dy I(y)
|y|

.

5Here the 1D Coulomb interaction is just the restriction of the familiar 3D Coulomb interaction to
particles that have only one spatial degree of freedom. Not to be confused with the Green’s function
of the one dimensional Laplace operator
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The latter integral is only defined if I(0) = 0. As the density with the substituted param-
eters is always positive (ñ(y1, y2) ≥ 0 for all y1, y2), this is only given if ñ(y1, y2)|y2=0 ≡
0 ⇔ n(x, x) ≡ 0. In Chap. 5, systems with shielded Coulomb interaction (equation
(5.1)) are considered. In this case, the transition to fermionic systems proceeds very
slowly with respect to small shielding parameters [16].

2.4 Canonical versus grand canonical ensemble
The prevailing literature about quantum statistics performs its analysis in the grand
canonical ensemble. This is motivated by the simplicity of the grand canonical prob-
ability distributions for ideal systems, which are given by the Bose-Einstein or the
Fermi-Dirac distributions (see Eq. (F.1) in App. F) as well as by the equivalence of both
ensembles in the oftend considered thermodynamic limit. However, for bosonic systems
with finite particle numbers, the differences between both ensembles are crucial. In this
section some aspects of this difference are presented. In particular, the problems that
arise with the fixation of the particle number by a corresponding choice of the chemical
potential µ are analyzed.

2.4.1 Particle number fluctuation

In the grand canonical ensemble, the particle number is a fluctuating observable due to
the coupling to a bath that allows the exchange of particles. This has to be factored
in when dealing with the grand canonical ensemble for systems that have fixed particle
numbers, which will be considered in the subsequent chapters. Some probability dis-
tributions for a systems with mean value of the particle numbers fixed to 〈N〉 = 8 are
shown in Fig. 2.2. For high temperatures, the distribution has the shape of a Gaussian
with the maximum near the average particle number. However, for low temperatures
the skewness of the distribution increases and the local maximum moves toward N = 0.
In appendix D.2 a relationchip between the first and the second moment of the oc-

cupation numbers is derived (Eq. (D.18)). This equation directly yields the variance of
the occupation numbers of a certain energy level

(∆nk)2 = 〈nk〉2 + 〈nk〉 . (2.25)

Thus the fluctuation of the occupation number is very high, if the occupation number
itself has a high value. In the thermodynamic limit, the relative variance ∆nk

〈nk〉 becomes 1.
This is a good explanation for the increasing fluctuation of the particle numbers in
the Bose condensed phase. Hence, the analysis of observables that are coupled to the
correlation of the occupation numbers 〈nknl〉, depend crucially on the regarded ensemble
in this parameter region. This implies that for temperatures below a critical value (often
connected with a phase transition such as BEC [17]), formalisms that apply for a grand
canonical treatment of interacting systems are not suitable for small systems with a
fixed particle number, as the interaction is a prime example for observables that depend
on 〈nknl〉. A comparison of the behavior of these entities for both ensembles is given
in Fig. 2.3. It can be seen that the main difference between both ensembles lies in the
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Figure 2.2: Distribution of the
particle number N in the grand
canonical ensemble for different in-
verse temperatures β in the 1D (up-
per panel) and the isotropic 2D
(lower panel) harmonic oscillator.
β is given in ~ω. The chemical
potential µ – given in parenthesis
behind the temperatures in natu-
ral units ~ω – is chosen such that
〈N〉 (µ, β) = 8 (vertical gray line)
for all distributions. The proba-
bility distribution is only defined
for integer numbers – the lines are
drawn as a guide to the eye.
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ground state orbital, while for higher orbitals the behavior is very similar. I expect this
difference between the ensembles to be responsible for the high difference of the energy
values obtained with the Green’s-function formalism and an exact method. In [18] a
Green’s-function formalism for the canonical ensemble is proposed and is extended to the
nonequilibrium in [19]. However, these methods have an extremely more complicated
structure than the grand canonical analog and lack computational implementations.
The mathematics needed for the calculation of the graphs shown in Fig. 2.2 and 2.3

is presented in appendix F.
In contrast to bosonic systems, for fermions the fluctuation of the particle number de-

creases for low temperatures. The variance of the occupation number for ideal fermions
in the grand canonical ensemble reads

(∆nk)2 = 〈nk〉 (1− 〈nk〉) . (2.26)

This equation can be derived in a way similar to that for the bosonic case given in
equation (D.18). For low temperatures all orbitals are either fully occupied (〈nk〉 = 1),
or empty (〈nk〉 = 0), except near the Fermi edge if some energy shell is not closed. And
for 〈nk〉 = 1, 0 the variance of the occupation numbers (2.26) is zero.

Summary

A mathematical analysis of some features of bosonic systems that are relevant for this
work was given in this chapter. Some properties of the ROBDM within the approxi-
mations to be presented will be analyzed later. The comparison of the thermodynamic
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Figure 2.3: First and second moment of the occupation numbers of the first three
energy levels in canonical (solid line) and grand canonical (dashed line) ensemble
for a system with the particle number fixed to N = 8 (in the grand canonical case
via the correct choice of µ). The second moment of the occupation of the ground
state is given as inset, because of the extremely different scales. In the 2D case, the
second and third energy level is two- and three-fold degenerate.

ensembles was needed to explain why approximations that are explicitly designed for
grand canonical systems are not applicable to the systems of interest in this work.
Furthermore, the approximations presented in Chap. 3 can be understood as a zero
temperature limit of a canonical treatment.
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3 Approximation methods

As is well-known, a variational
principle is a blind and dumb
procedure that always provides
an answer, but its accuracy
depends crucially on the choice
of the trial function.

(Peter Kramer and Marcos
Saraceno, 1981)

Usually the problem of finding stationary states of interacting many body systems
cannot be solved analytically; neither in the classical nor in quantum mechanical case.
Nevertheless, analytical approaches exist for nearly all physical problems – normally
including approximations or restricting assumptions – which are able to explain at least
the main qualitative behavior of the system. Consider e.g. the prediction of the BEC
by Einstein. He was able to predict the appearance of a new phase of matter and the
related point of transition. Although this kind of approach proposes and uses several
idealizations, the obtained results can tell us something about the reality the idealized
model attempts to describe.

Nowadays, as computational methods offer the possibility to avoid approximations by
performing the calculations numerically with high accuracy, the focus of theoretical anal-
ysis of physical systems has changed. The efficiency of toady’s computers makes precise
quantitative predictions of physical systems easily possible. However, still though com-
puters and programs have opened the doors to an enormous number of problems, even
their use has constraints. Thus approximation methods are required just as ever. Each
approximation has its typical regimes of validity with respect to the system parameters,
and usually reflects only a limited range of phenomena that the system provides.

In this chapter, an overview of a special class of approximations for the analysis of
Bose systems is presented. They can all be derived by using the Ritz method, and the
main ansatz, to which the Ritz method is applied, can be considered the same for all
presented approximations. After a short, outlining introduction to the Ritz principle,
which serves as a basis for the following sections, this chapter starts with the Gross-
Pitaevskii (GP) equation and ends with unrestricted bosonic Hartree-Fock (UBHF).
GP is the most special case of the main ansatz and UBHF is the most general one.
Another approximation scheme (called Multiconfigurational Hartree for Bosons) that
goes beyond this ansatz is discussed within this chapter, as it is strongly connected to
the others and can be regarded as their most obvious generalization.

15
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3.1 Variational methods
3.1.1 The Ritz principle (stationary systems)
The approximations presented here can all be derived by applying variational methods to
the Ritz principle (Actually the Rayleigh-Ritz-principle). It states that the expectation
value of the energy of an arbitrary state is higher or equal than the ground state energy:

E0 ≤
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

. (3.1)

Thus, if the ground state of a Hamiltonian needs to be found, one can make use of
this principle by making an ansatz for the wave function Φ that depends on a set of
real parameters (q1, q2, . . .) =: q. The function Φ(q) is called a trial function. With
this ansatz, only a fixed subset of the full Hilbert space is reached, which, in general,
does not have the properties of a subspace (except for CI [20], what will be explained
in section 5.4.1). Theoretically, this set of parameters can be infinite, but of course
for practical use one has to limit the set to a finite one. The best approximation of
the ground state |Φmin〉 within this ansatz, is the state that minimizes the expectation
value of the total energy. Mathematically, this can be expressed by finding the state
that makes the gradient of the total energy with respect to its parameters vanish:

∂

∂qi

〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

∣∣∣∣
qmin

!= 0, for all i. (3.2)

In order to avoid the differentiation of a fraction in (3.2), one can replace the functional
for the energy by E = 〈Φ|Ĥ|Φ〉 and demand the state Φ to be normalized by introducing
a Lagrange parameter E :

∂

∂qi

(
〈Φ|Ĥ|Φ〉 − E (〈Φ|Φ〉 − 1)

)∣∣∣∣
qmin

!= 0 for all i. (3.3)

By transforming this equation, it can be shown that the Lagrange multiplicator is the
expectation value of the energy

E = 〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

. (3.4)

Of course, it is possible to restrict the parameters in arbitrary ways, e.g. to avoid
a symmetry breaking of the system due to the chosen ansatz. But as rule of thumb
one can say that the results are better – or in this case: the energy lower – the less
restrictions one imposes on the ansatz. In section 4.7 a paradigmatic example for a
skillfull reduction of the parameter number by making reasonable assumptions is given.
Creating an ansatz for the sought after quantum mechanical state is the part of the

application of the Ritz Principle that requires the most intuition in physics. The rest is
just mathematics. However, solving the crucial equation (3.3) numerically can be very
difficult and usually some further tricks may be needed. E.g. in the case considered
here convert the equation into a self consistent generalized eigenvalueproblem and solve
it iteratively.
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A good ansatz for the sought after state should fulfill the two somehow mutually
conflicting qualities: It should be easy to handle numerically and provide good, or at
least acceptable, results. In the subsequent part of this chapter the Ritz principle is
applied to bosonic N -particle states with the ansatz

|Φ〉 = |Φ(|q1〉 , |q2〉 , . . . , |qN 〉)〉 = Ŝ+
{
|q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qN 〉

}
. (3.5)

Here ⊗ denotes the tensor product which is explained in greater depth in [14]. The
operator Ŝ+ brings the tensor product in the correct symmetry with respect to a per-
mutation of the ordering in the product. Ŝ+ is called a symmetrizer and is deeper
explained in Chap 4. In this case, each of the parameters |qi〉 is a one-particle Hilbert
space state. Thus, each of the parameters in itself consists of an, in principle, infinite
tuple of parameters. So the differentiation with respect to each parameter is a gradient
itself and one has to perform the differentiation with respect to all expansion coefficients
respective to a chosen basis of all (parameter-) states |qi〉. In appendix A a set of rules
for the calculation of a basis independent (abstract) differentiation of this functional is
given.
The symmetrized product state given in Eq. 3.5 is called a Slater permanent. An

arbitrary state of the N -body Hilbert space can be given as a superposition of such
Slater permanents. The ansatz for the many body state in Eq. 3.5 is called a single
Slater permanent ansatz. This chapter will present different realizations of this ansatz
differing only in the restrictions on the states |qi〉.

3.1.2 The time-dependent variational principle
For time dependent systems, an approximation exists that implies the Ritz principle as
a special case and is based on quite similar ideas. It takes advantage of the fact, that the
solution of the time-dependent Schrödinger equation minimizes the action integral [21]

S′[Φ] =
∫ 〈Φ|Ĥ − i d

dt |Φ〉
〈Φ|Φ〉

dt =
∫
L′(〈Φ| , |Φ〉) dt (3.6)

and is called time-dependent variational principle (TDVP). It is a well known and rig-
orously analyzed principle, see [22] or the review [23]. Dirac was the first to derive the
time-dependent Hartree-Fock equations for fermions from it [24]. This principle can be
deduced by performing the variational derivative with respect to the expansion coeffi-
cients regarding an arbitrary basis set of the Hilbert space. The Lagrangian L′ can be
transformed into a real one by adding the total time derivative i

2
d
dt ln(〈Φ|Φ〉). Just as

in classical mechanics, this transformation does not change the equations of motion.
As before, approximate equations of motion are obtained by making a reasonable

ansatz for |Φ〉 including a tuple of time-dependent parameters q(t). This restricts the
possible motions of |Φ〉 to lie in a certain predetermined region of Hilbert space. The
map Φ(q) of the trajectory q(t) in the parameter space that minimizes (3.6) is the best
approximation of the exact trajectory within the considered region. The action (3.6) can
– in analogy to the stationary case – be transformed into a term that does not contain a
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denominator by introducing a time-dependent Lagrange multiplier E . By additionally
factoring in, that the action in fact depends on the parameters q, the action reads

S[q,E (t)] =
∫
〈Φ(q)|Ĥ − i d

dt
− E (t)|Φ(q)〉 dt . (3.7)

The total time derivative can be calculated via the chain rule

d
dt
|Φ〉 =

∑
l

∂ |Φ〉
∂ql︸ ︷︷ ︸

=:|Φl〉

q̇l . (3.8)

This leads to an action that can be considered as a time integral over a Lagrangian that
resembles that of classical mechanics1

S[q,E (t)] =
∫
〈Φ|Ĥ − E (t)|Φ〉 − i

∑
l

〈Φ|Φl〉 q̇l︸ ︷︷ ︸
L(q,q̇,t)

dt (3.9)

and the trajectory in parameter space, which minimizes (3.9) is obtained by the well
known Euler-Lagrange equations, which in this case read

∂L
∂q̇k

= −i 〈Φ|Φk〉

⇒ d
dt
∂L
∂q̇k

= −i
∑
l

(
〈Φk|Φl〉+ 〈Φ|

∂

∂ql
|Φk〉︸ ︷︷ ︸

=:|Φkl〉

)
q̇l (3.10)

∂L
∂qk

= 〈Φk|Ĥ − E (t)|Φ〉+ 〈Φ|Ĥ − E (t)|Φk〉 − i
∑
l

(
〈Φk|Φl〉+ 〈Φ|Φlk〉

)
q̇l,

thus ∂L
∂qk
− d

dt
∂L
∂q̇k

= 0

⇔ 〈Φk|Ĥ − E (t)|Φ〉+ 〈Φ|Ĥ − E (t)|Φk〉 = i
∑
l

{〈Φk|Φl〉 − 〈Φl|Φk〉}q̇l . (3.11)

This equation of motion is not invertible in some cases, as will be seen in later sections.

Case |Φ(q)〉† = 〈Φ(q∗)|

It can be favorable to consider the parameters to be complex, which will be the case
in this chapter. For complex parameters, one has the choice either to treat the real
and imaginary part of a parameter as independent, or one has to treat the parameter
qi and its conjugated q∗i as independent variables and perform the derivative respective
to both.

1Also referred to as dequantization of the system and its observables [25].
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The differentiation with respect to a complex variable can be expressed in differenti-
ations with respect to its real and imaginary part [26]:

z = x+ iy : ∂

∂z
= 1

2

(
∂

∂x
− i ∂

∂y

)
∂

∂z∗
= 1

2

(
∂

∂x
+ i

∂

∂y

)
(3.12)

=⇒
( ∂
∂z

)∗
= ∂

∂z∗
. (3.13)

Before going on to the GP-equation, an ansatz for the wave function with complex
parameters, but with the ket-vector being independent of the complex conjugated of
the parameters and vice versa for the bra-vector, is considered.

I.e. ∂

∂q∗k
|Φ〉 = 0 and ∂

∂qk
〈Φ| = 0 (3.14)

For later purpose it is shown, that for an ansatz that fulfills these properties, it is not
necessary to regard the differentiation of the related functional with respect to both the
parameter and its complex conjugated, because the differentiation with respect to the
parameter yields the complex conjugated equation of the equation that is obtained by
the differentiation with respect to the complex conjugated parameter.
The parameters are treated as independent to their complex conjugated, hence the

summation index in equation (3.11) runs over all parameters and their complex con-
jugated. The notation ∂

∂qk
|Φ〉 = |Φk〉 is misleading in the case considered here, as it

does not distinguish between the derivative respective to a parameter and the derivative
respective to its complex conjugated. For that reason the term ∂

∂qk
|Φ〉 will be written

as
∣∣∣ ∂Φ
∂qk

〉
and analogous notation is used for the bra-vectors. For complex parameters,

two sets of equations are present, one for the parameters and one for their complex
conjugated. The related Euler-Lagrange equations for each set are calculated here:

〈 ∂Φ
∂qk︸︷︷︸
=0

∣∣∣Ĥ − E (t)
∣∣∣Φ〉+

〈
Φ
∣∣∣Ĥ − E (t)

∣∣∣ ∂Φ
∂qk

〉

= i
∑
l

{〈 ∂Φ
∂qk︸︷︷︸
=0

∣∣∣∂Φ
∂ql

〉
−
〈 ∂Φ
∂ql︸︷︷︸
=0

∣∣∣ ∂Φ
∂qk

〉}
q̇l +

{〈 ∂Φ
∂qk︸︷︷︸
=0

∣∣∣ ∂Φ
∂q∗l︸︷︷︸
=0

〉
−
〈 ∂Φ
∂q∗l

∣∣∣ ∂Φ
∂qk

〉}
q̇∗l

⇔
〈
Φ
∣∣∣Ĥ − E (t)

∣∣∣ ∂Φ
∂qk

〉
= −i

∑
l

〈 ∂Φ
∂q∗l

∣∣∣ ∂Φ
∂qk

〉
q̇∗l . (3.15)

With an analogous calculation, the following equations for the complex conjugated of
the parameters are obtained:

⇔
〈 ∂Φ
∂q∗k

∣∣∣Ĥ − E (t)
∣∣∣Φ〉 = i

∑
l

〈 ∂Φ
∂q∗k

∣∣∣∂Φ
∂ql

〉
q̇l . (3.16)
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With (3.13) the latter equation can be identified as the complex conjugated of (3.15).
This implies that one only has to solve the equation of motion for one set (parameters
or their c.c.) since the equation of the complement set is automatically fulfilled. For
the equation of stationary systems, the same result is obtained〈

Φ
∣∣∣Ĥ∣∣∣ ∂Φ

∂qk

〉
= E

〈
Φ
∣∣∣ ∂Φ
∂qk

〉
and

〈 ∂Φ
∂q∗k

∣∣∣Ĥ∣∣∣Φ〉 = E
〈 ∂Φ
∂q∗k

∣∣∣Φ〉 . (3.17)

3.2 The Gross-Pitaevskii approximation (GP)
3.2.1 Stationary GP
The most restricted implementation of the ansatz (3.5) is presented first. In this ansatz,
the many-particle state is assumed to be fully Bose condensed. This means, all N
particles reside in exactly the same orbital

|Φ〉 = |ϕ〉 ⊗ |ϕ〉 ⊗ . . .⊗ |ϕ〉︸ ︷︷ ︸
N-fold tensor product

. (3.18)

A symmetrization is not required, as all orbitals are equal. Thus, a permutation does
not have any effect on the product state. The GP approximation is designed for nonideal
systems. Thus the full Hamiltonian Ĥ of the interesting systems can be decomposed
additively into a single particle part and an interaction part:

Ĥ = ĥ+ Ŵ =
∑
ij

hij â
†
i âj + 1

2
∑
ijkl

wij,klâ
†
i â
†
j âkâl, (3.19)

where in the latter term, the Hamiltonian is expressed in second quantization formalism
with respect to an arbitrary CONS of single particle states. The matrix elements of
the single particle Hamiltonian are given by hij = 〈i|ĥ|j〉 and the two-particle integrals
wij,kl are defined appendix A Eq. (A.5).
In this case, the total energy for a normalized ϕ can be easily calculated with the

second quantization formalism using creation and annihilation operators respect to the
orbital ϕ

〈Φ| 〈ϕ|ĥ|ϕ〉 â†ϕâϕ + 1
2
wϕϕ,ϕϕâ

†
ϕâ
†
ϕâϕâϕ|Φ〉 = N 〈ϕ|ĥ|ϕ〉 + 1

2
N(N − 1)wϕϕ,ϕϕ . (3.20)

The norm of the GP-state with an unnormalized orbital ϕ is

‖Φ‖ =
(√
〈ϕ|ϕ〉

)N
. (3.21)

Thus it is normalized if and only if 〈ϕ|ϕ〉 = 1 and it is adequate to demand directly
that the orbital ϕ is normalized.
The orbital ϕ can be considered as an abstract parameter, that in practice is repre-

sented by a finite set of parameters depending on the chosen basis. Suppositionally the
one particle state ϕ is given by a tuple of expansion coefficients (c1, c2, . . .) respective
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to a given CONS. It is then sufficient to perform the differentiation only with respect
to either the coefficients or their complex conjugated, as shown in the previous section.
In appendix A it is shown, that the differentiation of matrix elements such as appear
in (3.20) with respect to the kth expansion coefficient c∗k of 〈ϕ| can be expressed in the
following way

∂

∂c∗k
= 〈k| δ

δ 〈ϕ|
. (3.22)

Here 〈k| is the basis state that is related to the considered expansion coefficient and
the differentiation with respect to an abstract Hilbert space vector δ

δ〈ϕ| is defined in
appendix A. Hence it is not necessary to assume ϕ to be given as expansion with
respect to a certain basis. The differentiation can be performed with respect to an
abstract vector (using the rules given in appendix A) and, for numerical purposes, one
can later simply project the equation onto each state of the given basis. Thus, the
determining equation for the state ϕ that minimizes the total functional

E(ϕ,E ) = 〈ϕ|ĥ|ϕ〉+ 1
2
(N − 1)wϕϕ,ϕϕ − E 〈ϕ|ϕ〉 (3.23)

can easily be obtained:

δ

δ 〈ϕ|

{
〈ϕ|ĥ|ϕ〉+ 1

2
(N − 1)wϕϕ,ϕϕ − E 〈ϕ|ϕ〉

}
= ĥ |ϕ〉+ N − 1

2
(
Ĵϕϕ |ϕ〉+ Ĵϕϕ |ϕ〉

)
− E |ϕ〉 != 0

⇐⇒
(
ĥ+ (N − 1)Ĵϕϕ

)
|ϕ〉 = E |ϕ〉

(3.24)

Here the multiplier E is the energy per particle of the system. The appearing Hartree
operator Ĵϕϕ is defined in Eq. (A.8). The operator in parenthesis on the left side can
be considered as an effective Hamilton operator. Hence, the GP equation is a Mean-
Field-approximation. It is also called nonlinear Schrödinger equation. The two-particle
density in this ansatz is n(x1, x2) = |ϕ(x1)|2 · |ϕ(x2)|2, which always has non-negative
values on the diagonal x1 = x2. Thus the GP approximation cannot, by definition,
explain phenomena such as fermionization or depletion (occupation of higher orbitals).

3.2.2 Time-dependent GP
To solve the GP equation numerically, it is necessary to derive the equation of motion
for the orbital ϕ for time-dependent systems, so the state ϕ, that minimizes (3.24)
can be found by starting with an arbitrary initial state and perform imaginary time
stepping. Imaginary time stepping is a method that makes usage of the fact that the
time evolution in negative imaginary time of an arbitrary state (that is nonorthonormal
to the ground state) converges into the ground state for long times.
Furthermore, this derivation helps to better understand the equations of motion de-

rived in section 3.4 for the most general case of the ansatz (3.5), as the main concepts
are quite similar.



22

The time-dependent GP approximation consists of the assumption, that the many
particle state is at all times fully condensed, with only the shape of the condensate
orbital varying in time. Thus, the Lagrangian for this motion is

〈Φ|Ĥ − i d
dt
− E (t)|Φ〉 = N

(
〈ϕ|ĥ− E (t)|ϕ〉+ N(N − 1)

2
wϕϕ,ϕϕ − i 〈ϕ|ϕ̇〉

)
. (3.25)

Just as above, the differentiation is performed with respect to 〈ϕ| – this corresponds to
a derivative with respect to all complex conjugated expansion coefficients c∗k. By taking
advantage of the fact, that the upper equation is independent of 〈ϕ̇|,

(
ĥ+ Ĵϕϕ − E (t)

)
|ϕ〉 = i

d
dt
|ϕ〉 (3.26)

is readily obtained as the equation of motion (Euler-Lagrange). A closed expression for
the time-dependent Lagrange multiplier E (t) can be obtained by scalarly multiplying
Eq. (3.26) from the right with 〈ϕ| and taking advantage of the fact, that the Lagrange
multiplier guarantees a normalization of ϕ at all times

E (t) = 〈ϕ| ĥ+ Ĵϕϕ − i
d
dt
|ϕ〉 . (3.27)

Inserting this expression in equation (3.26) yields the new equation of motion:

P̂i d
dt
|ϕ〉 = P̂

[
ĥ+ Ĵϕϕ

]
|ϕ〉 . (3.28)

The projector P̂ := 1−|ϕ〉 〈ϕ| appearing on both sides prevents the equation from being
invertible. Fortunately, this problem can be fixed by making a gauge transformation of
ϕ such that

〈ϕ|ϕ̇〉 != 0. (3.29)

This condition is equivalent to making the assignment of the time-dependent phase
|ϕ〉 → exp(

∫
〈ϕ|ϕ̇〉 dt) |ϕ〉, which effaces the effect of the projector: P̂ |ϕ̇〉 = |ϕ̇〉. Hence,

an equation of motion that is already resolved for the time derivative is obtained, and
provides the possibility to solve the stationary GP equation by performing imaginary
time-stepping.

i
d
dt
|ϕ〉 = P̂

(
ĥ+ Ĵϕϕ

)
|ϕ〉 . (3.30)

It is shown in [27], that the projector P̂ still appearing on the right side of (3.30) can
be totally omitted.

3.3 Multi orbital mean-field (MOMF)
For strong coupling, GP is a rough approximation, as it assumes that all particles
reside in the same orbital. And, for one-dimensional Coulomb systems without shielding
parameter, the energy would explode in this approximation. In [28] L. Cederbaum
introduces another ansatz which also consists of a single Slater permanent, but with



CHAPTER 3. APPROXIMATION METHODS 23

more than one orbital. In this ansatz, two particles reside either in the same orbital
or in mutually orthogonal orbitals. Thus, it is convenient to represent the sought after
product state by the occupation numbers of the orbitals that have to be minimized.
The related functional, including all necessary Lagrange multipliers, reads

E(ϕi, ni, µij) =
∑
k

ĥkknk + 1
2
∑
kl

nknl[wkl,kl + wkl,lk]−
∑
k<l

µkl(〈ϕk|ϕl〉 − 1) , (3.31)

with the sums running over all no sought after orbitals. This ansatz is able to include
effects such as condensate depletion and may provide lower energies for the approximated
ground state. However, this ansatz has some disadvantages.
As they are integer numbers, it does not make sense to additionally consider the

derivative with respect to the occupation numbers. I.e., one has to choose the occupation
numbers as input parameters. The introduction of 1

2no(no−1) Lagrange multipliers due
to the demanded orthonormality of the orbitals makes this ansatz unwieldy.
In [28–30] the occupation numbers are considered as floating point numbers with the

justification that the described systems have particle numbers in the range of a few
thousand. Thus, the relative occupation numbers are finely quantized. However, for
small particle numbers this assumption cannot be applied and fractional occupation
numbers of the system are, in principle, not obtained by this ansatz. In [31] this ansatz
is extended to the time-dependent regime by O. Alon and A. Streltsov in the group of
Cederbaum.
An extension of this ansatz to multi configurational states, where the state is sup-

posed to be a superposition of more than one Slater permanent, has been suggested and
implemented by this group in various pieces of work [32–34], including time-dependent
systems. It is called Multi Configurational Hartree for Bosons (MCHB) or Multi Con-
figurational Time-Dependent Hartree for Bosons (MCTDHB) respectively.

3.4 Unrestricted bosonic Hartree-Fock (UBHF)
The bosonic analog to the Slater determinant is the Slater permanent. Although the
definitions and the properties of the permanent and the determinant are very similar,
their differences are crucial for both the quantum statistical behavior of the related
particle types and the complexity required to calculate them. The determinant of an
n × n-Matrix can be calculated via the Gauß algorithm within ca. n3 steps [35]. In
contrast to the determinant, a permanent cannot be calculated in polynomial time 2 by
any method3.
UBHF was first introduced and computationally implemented by Romanovsky in

2004 [12, 37]. It is the most general form of a single permanent ansatz, and hence
2An algorithm, whose number of needed steps for its performance increases with nα – where n marks
the size of the problem to be solved (e.g. dimension of the matrix) – is said to be an algorithm
solvable in polynomial time.

3Actually, the existence of an algorithm for the calculation of the permanent in polynomial time would
imply the equality of the complexity classes FP = ]P , which is an even stronger statement than
P = NP in computational complexity theory. The last statement P = NP is one of the seven
famous Millennium Prize Problems [36].
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provides better results than the above mentioned ones. It demands no further restriction
to the orbitals contained in the symmetrized product state given in Eq. (3.5). The
calculation of the total energy and the derivative of the related functional is much more
complicated because of the difficulties with treating the permanent. It is for this reason,
that it is only applicable to small systems with a handful of particles.
As this work concentrates especially on this ansatz, a separate chapter is dedicated

to the derivation of the determining equations of the orbitals in the product state (3.5).

3.5 Multiconfigurational Hartree for Bosons (MCHB)
The approximation methods presented in this chapter are all linked in a special way.
They all consist of the same principle ansatz (3.5) with different types of restrictions.
The MCHB approximation mentioned at the end of section 3.3 goes beyond the ansatz
of a single Slater permanent. UBHF can be understood as a very special case of this
approximation, which is shown in this section.

3.5.1 Relationship between MCHB and UBHF
For this purpose, the construction of an orthonormal system of vectors (ONS) |1̃〉 , . . . , |Ñ〉
which spans the same subspace of the one-particle Hilbert space as the spinor orbitals
|1〉 , . . . , |N〉 is needed. Furthermore, this set shall have the property, that for the rep-
resentation of the kth spinor orbital |k〉 only the first k vectors of the ONS are needed.
This can be arranged by performing the Gram-Schmidt process with the spinor or-

bitals. In that manner, an ONS where the kth vector |k̃〉 is a superposition of the first k
spinor orbitals is obtained. The matrix of the coefficients that are needed to represent
each vector |k̃〉 is a lower triangular matrix. Thus, its inverse is also in triangular form.
By this procedure, the necessary ONS is constructed.
The symmetrized product state related to the spinor |Ψ〉 can then be transformed in

the following way

|Φ〉 = Ŝ+

{
|1〉 ⊗ |2〉 ⊗ . . .⊗ |N〉

}
= Ŝ+

{(
c11 |1̃〉

)
⊗
(
c21 |1̃〉+ c22 |2̃〉

)
⊗ . . .⊗

(
cN1 |1̃〉+ . . .+ cNN |Ñ〉

)}

= Ŝ+

{ N⊗
s=1

cs1 |1̃〉
}

+ Ŝ+

{
c11 |1̃〉 ⊗

N⊗
s=2

cs2 |2̃〉
}

+ . . .+ Ŝ+

{ N⊗
s=1

cs1 |s̃〉
}
, (3.32)

where the distributivity of the tensor product was used. In the fermionic case – obtained
by replacing the symmetrizer Ŝ+ with an antisymmetrizer Ŝ− – the last term in the
latter expression of the equality chain is the only term which would survive the anti-
symmetrization, because it is the only one with all orbitals being different. Hence,
UBHF would lead to the well known fermionic Hartree-Fock approximation if fermions
are considered.
The latter expression in equation (3.32) is a superposition of product states, with

orbitals that form an ONS. Hence UBHF can be understood as a special case of MCHB.
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MCHB
UBHF MOMF GP

Figure 3.1: Illustration of the im-
plications of the discussed ansatzes.

Note that the other direction is not applicable; a MCHB ansatz cannot, in general, be
converted into UBHF.

Conclusion: Confusion
An overview over a set of related approximation methods for bosonic systems that are
all denoted as Hartree, Hartree-Fock or Mean-Field type has been given in this chapter.
It may appear confusing or even disappointing, that a simple and unique Hartree-Fock
approximation, as in the fermionic case, does not exist for Bose systems. One could add
to this list the Bogoliubov approximation and the Hartree-Fock approximation proposed
in [38]. The UBHF ansatz is the most general one and provides the best results, but it is
very difficult to handle; and due to its complexity, it is only applicable to systems with
small particle numbers. GP is the most restricted version of the single Slater permanent
ansatz, and hence, its validity regime is quite limited, but it has a very simple form and
is easy to implement. It is also the best analyzed approximation in the literature. The
implication of the mentioned approximations as special cases of others is visualized in
Fig. 3.1. The inclusion of UBHF in MCHB does not imply at all, that MCHB provides
in general more exact results than UBHF. In MCHB one has to choose the number of
single particle orbitals to construct symmetrized product states with, and the number
of symmetrized product states to take into account for the construction of many body
states. Thus, for a certain choice of these parameters, it can provide better, worse, or
exactly the same results as UBHF. Furthermore, UBHF is a single permanent ansatz
and MCHB is not. CI – what is deeper discussed in section 5.4.1 – can be considered
as a very special case of MCHB.
Mean-Field type approximations is a misnamed denomination for all discussed meth-

ods except GP. For all other approximations, it is not possible to express the encoun-
tered ground state (within this ansatz) as a ground state of an effective single particle
Hamiltonian.
Special attention will be given to UBHF in the following chapter, as the results of its

numerical implementation are presented in this work.
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4 More on UBHF

A rigorous derivation and analysis of the equations for determining the optimal state in
UBHF approximation is presented in this chapter. The derivation of the determining
equations presented here differs slightly from the way chosen by Romanovsky in [39].
While in [39] each orbital of the product state is demanded to be normalized, in this
work, the only restriction is the normalization of the entire many particle state. Due to
this weaker restriction, the uniqueness of the solution is given up and a gauge freedom of
the set of orbitals is obtained. Furthermore, a new scheme for solving the determining
equations is presented for the first time. Also new in this work is the extension of this
ansatz to the time-dependent regime via the TDVP.

4.1 Stationary UBHF

Dealing with symmetrized product states that consist of nonorthonormal orbitals is far
more difficult than dealing with orthonormal ones, as the formalism of second quan-
tization is not applicable in such a simple manner as in the usual case. Thus, for
understanding the subsequent calculations, one has to recall the mathematical formal-
ism of tensor products of Hilbert spaces and the action of operators on them. A good
introduction to this topic is given in [14]. Before going on with UBHF, a short overview
of the special mathematical formalism that is needed here is given.

4.1.1 Spinor calculus

Within the single Slater permanent ansatz, the many-body wave function is fully deter-
mined by the set of single particle states |1〉 , |2〉 , . . . , |N〉 and can be represented by the
tuple  |1〉...

|N〉

 =: |Ψ〉 , (4.1)

In order to distinguish the resulting state |Φ〉 that is obtained by building the sym-
metrized product state from this set of orbitals, the tuple will be denoted with Ψ hence-
forth (|Φ〉 = |Φ(Ψ)〉). This notation is redolent of the representation of a particle with
spin. That is why |Ψ〉 will be called spinor subsequently. Its components |1〉 , . . . , |N〉
will be called spinor orbitals. For later purpose, it is useful to mention, that any oper-
ator Ô that acts on this spinor is a matrix of single particle operators and its action is
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similar to the action of a matrix on a column vector

Ô |Ψ〉 =


Ô11 . . . Ô1N
... . . . ...

ÔN1 . . . ÔNN


 |1〉...
|N〉

 =


Ô11 |1〉+ . . . +Ô1N |N〉

... . . . ...
ÔN1 |1〉+ . . . +ÔNN |N〉

 . (4.2)

Such kind of operator will subsequently be called spinor operator.
What will be needed as well, is the definition of the spinor of the dual space

(|Ψ〉)† = 〈Ψ| := (〈1| , . . . , 〈N |) (4.3)

and the hermitian adjoint operators acting on them

Ô
† :=


Ô†11 . . . Ô†N1
... . . . ...

Ô†1N . . . Ô†NN

 . (4.4)

With this definition, the action of an arbitrary operator on the dual space spinor is
given by 〈Ψ| Ô = (Ô† |Ψ〉)† and equation (4.2). Finally the dyadic product of a spinor
|Ψ〉 with a dual spinor 〈Ψ′| is defined

|Ψ〉 〈Ψ′| =

 |1〉 〈1
′| . . . |1〉 〈N ′|

... . . . ...
|N〉 〈1′| . . . |N〉 〈N ′|

 . (4.5)

All these definitions seem to be intuitive or even obvious, but their formulation is nec-
essary to avoid ambiguity.

4.1.2 Single Slater permanent calculus
The explicit way of building a fully symmetrized product state like in Eq. (3.5) is given
by the Slater permanent

|Φ〉 = Ŝ+

{
|1〉 ⊗ |2〉 ⊗ · · · ⊗ |N〉

}
= 1
N !

∑
π∈SN

N⊗
s=1
|π(s)〉 , (4.6)

where SN denotes the group of all permutations of 1, . . . , N (the symmetric group).
Thus each element π of SN brings the factors of the product |1〉 ⊗ |2〉 ⊗ . . . ⊗ |N〉 into
another ordering1. The symmetrization operator Ŝ+ is hermitian Ŝ†+ = Ŝ+ and with
the factor 1

N !
2 , it has the properties of a projector Ŝ2

+ = Ŝ+. For the calculation of the
total energy of this product state, the commutation of Ŝ+ with an arbitrary operator Ô

1Note, that the tensor product does not commute.
2In the literature, this operator is used with the factor 1√

N ! instead of 1
N ! . This is because with this

factor and the set of orbitals |1〉 , . . . , |N〉 being orthonormal, the whole symmetrized product state
would be normalized. But this work is dealing with a nonorthonormal set of orbitals anyway and
this replacement of the factor would not have any use.
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that is related to an observable [Ŝ+, Ô] = 0 and its projector properties and can be used.
Thus it is only necessary to perform the symmetrization on one side of a scalarproduct

Ŝ+Ĥ︸ ︷︷ ︸
=ĤŜ+

Ŝ+ = Ĥ Ŝ+Ŝ+︸ ︷︷ ︸
=Ŝ+

= ĤŜ+ (4.7)

⇒
(
〈1| ⊗ . . . 〈N |

)
Ŝ+ĤŜ+

(
|1〉 ⊗ . . . |N〉

)
=
(
〈1| ⊗ . . . 〈N |

)
ĤŜ+

(
|1〉 ⊗ . . . |N〉

)
. (4.8)

This leads to the following term for the total energy of a single Slater permanent [14]

〈Φ|Ĥ|Φ〉
‖Φ‖2

= 1
‖Φ‖2N !

∑
π∈SN

N∑
l=1

(∏
s 6=l
〈s|π(s)〉 〈l|ĥ|π(l)〉+ 1

2
∑
k 6=l

∏
s 6=k,l

〈s|π(s)〉wkl,π(k)π(l)
)
.

(4.9)
The two-particle integrals wij,kl3 are defined in the appendix (Eq. (A.5)) and the norm
of the state Φ is given by

‖Φ‖2 = 1
N !

∑
π∈SN

N∏
s=1
〈s|π(s)〉 . (4.10)

Thus the Ritz principle is applicable to the functional of the total energy. To avoid the
appearance of the norm of the state Φ in the denominator, a Lagrange multiplier E for
the restriction of a normalized state is introduced. The resulting functional that has to
be minimized has the form

E(|1〉 , . . . , |N〉 ,E ) = 〈Φ|Ĥ|Φ〉 − E 〈Φ|Φ〉 . (4.11)

For further calculations the rules for the differentiation with respect to abstract Hilbert
space vectors presented in appendix A will be applied for the same reasons as in sec-
tion 3.2. As the ket-vector |Φ〉 only depends on the ket-vectors |1〉 , . . . , |N〉 and vice
versa for the bra 〈Φ|, the fact that the derivative with respect to 〈k| of the func-
tional (4.11) is just the hermitian adjoint of the derivative with respect to |k〉 of this
functional can be used.
Before performing the calculation of the variational derivative with respect to 〈k|, the

definition of the following entity with a variational number of subscripts is needed

Pi1...in = Pi1...in(π) =
∏

s 6=i1...in
〈s|π(s)〉 , (4.12)

where π denotes an arbitrary element of the symmetric group SN . Without any in-
dex (P), this definition still holds and the product in Eq. (4.12) runs over all s =
1, . . . , N . The variational derivative of the functional in Eq. (4.11) reads

δ

δ 〈n|

(
〈Φ|Ĥ|Φ〉 − E 〈Φ|Φ〉

) != 0 for all n = 1, 2, . . . , N (4.13)

3Note, that the conventions for the definition of the two-particle integrals differ in literature.
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⇔ δ

δ 〈n|
∑
π∈SN

N∑
l=1

{
Pl 〈l|ĥ|π(l)〉+ 1

2
∑
k 6=l

Plkwkl,π(k)π(l)

}
= E

δ

δ 〈n|
∑
π∈SN

P

⇔
∑
π∈SN

N∑
l=1

{
δnlPlĥ |π(l)〉+ (1− δln)Pnl 〈l|ĥ|π(l)〉 |π(n)〉

+ 1
2
∑
k 6=l

Plk
(
δknĴlπ(l) |π(k)〉+ δlnĴkπ(k) |π(l)〉+ (1− δkn − δln)Pklnwklπ(k)π(l)

)}

=
∑
π∈SN

Pn |π(n)〉

⇔
∑
π∈SN

{
Pnĥ |π(n)〉+

∑
l 6=n

Pnl 〈l|ĥ|π(l)〉 |π(n)〉+
∑
l 6=n

PnlĴlπ(l) |π(n)〉

+ 1
2
∑
k,l6=n
k 6=l

Pnlkwkl,π(k)π(l) |π(n)〉
}

= E
∑
π∈SN

Pn |π(n)〉 ( for all n) (4.14)

The Hartree operator Ĵkl is defined in Eq. (A.8). This set of equations will be called
UBHF equations in the following. Unfortunately, these equations are very unwieldy
but in order to reveal their main structure, the definitions of the following two-fold
subscripted operators are needed

Ĥnm :=
∑
π∈SN
π(n)=m

[
Pnĥ+

∑
k 6=n

Pkn
[
〈k|ĥ|π(k)〉+ Ĵk π(k)

]
+
∑
l 6=k,n

Pklnwkl,π(k)π(l)

]

Ônm :=
∑
π∈SN
π(n)=m

Pn . (4.15)

With these definitions, the UBHF equations (4.14) take on the appealing form∑
m

Ĥnm |m〉 = E
∑
m

Ônm |m〉 for all n,

⇐⇒ Ĥ |Ψ〉 = E Ô |Ψ〉 ,
(4.16)

which has the form of a selfconsistent general eigenvalue problem just as in the fermionic
case. A detailed calculation that demonstrates the correctness of Eq. (4.16) with the
definitions given in Eq. (4.15) is presented in appendix B. If one of the operators Ĥ or
Ô would be positive definite, there would exist a complete set of eigenvectors that solve
the considered generalized eigenvalue problem. Note that the operators Ĥ and Ô are
both hermitian. Unfortunately, the positive definiteness is only given for the case of two
particles, hence solving this equation iteratively only provides results for this case. If
non of the operators is positive definite, it is possible that equation (4.16) has complex
eigenvalues as solution. This makes it impossible to choose the solution with the lowest
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eigenvalue for the next iteration4.
The solution to this problem consists in the fact that there are many ways to define

operators Ĥ and Ô such that the UBHF equations (4.14) take on the form of equation
(4.16). This can be explained with the following example. For the case of two particles
the term 〈2|1〉 ĥ |2〉 arises in the determining equation for the orbital |1〉. This expression
can be regarded as the result of the action of an operator on one of the two orbitals:

〈2|1〉 ĥ |2〉 =
(
〈2|1〉 ĥ

)︸ ︷︷ ︸
Â1

|2〉 =
(
ĥ |2〉 〈2|

)︸ ︷︷ ︸
Â2

|1〉 . (4.17)

I.e., for 2 particles there exist 16 ways5 to define operators Ô to bring equation (4.14)
into the form of Eq. (4.16). For an arbitrary particle number it is very difficult to
calculate this combinatorial factor, but as the number of summands in Eq. (4.14) is N !,
this factor grows at least with this order of magnitude. With a convenient choice of the
definition of the operators it is possible to transform equation (4.16) into an already
blockwise diagonalized form:

Ĥnm = δnmĤn and Ônm = δnmÔn , (4.18)

with the operator Ôn being positive-definite. So the general eigenvalue problem (4.16)
becomes a set of N generalized eigenvalue problems with a complete set of solutions. For
this purpose, one has to make sure, that the orbital |n〉 in the UBHF equations (4.14)
is extracted to the right. The resulting operators read

Ĥn =
∑
π∈SN

{
δnπ(n)

[
Pnĥ+

∑
l 6=n

Pln
(
〈l|ĥ|π(l)〉+ Ĵlπ(l)

)
+ 1

2
∑
k,l6=n
k 6=l

Pklnwkl,π(k)π(l)

]

+ (1− δπ(n)n)
[
Pnπ−1(n)

(
ĥ |π(n)〉 〈π−1(n)|+ |π(n)〉 〈π−1(n)| ĥ+ K̂π−1(n)π(n)

)
+

∑
l 6=π−1(n)

l 6=n

Plnπ−1(n)

(
〈l|ĥ|π(l)〉 |π(n)〉 〈π−1(n)|+ Ĵlπ(l) |π(n)〉 〈π−1(n)|

+ |π(n)〉 〈π−1(n)| Ĵlπ(l)
)

+ 1
2

∑
k,l6=nπ−1(n)

k 6=l

Pklnπ−1(n)wkl,π(k)π(l) |π(n)〉 〈π−1(n)|
]}

(4.19)

4It may appear odd for the reader that this nearly useless equation is mentioned at all, but the
implementation of this equation is a time and nerve consuming procedure and it is also a goal of this
work to prevent others from loosing their time by following ideas that do not work.

5This number is explained in this footnote: For two particles, the left hand side of equation (4.14) is
a superposition of two orbitals. E.g. for n = 1: E (〈2|2〉 |1〉 + 〈2|1〉 |2〉). According to Eq. (4.17),
there exist four possibilities of defining operators ĉ1 and ĉ2 such that E (〈2|2〉 |1〉 + 〈2|1〉 |2〉) =
E (ĉ1 |1〉+ ĉ2 |2〉). Those possibilities are (ĉ1, ĉ2) = (〈2|2〉 , 〈2|1〉), (〈2|2〉+ |2〉 〈2| , 0), (0, 〈2|1〉+ |1〉 〈2|)
or (|2〉 〈2| , |1〉 〈2|). The same possibilities hold for the second equation (n = 2). A combination of
all these possibilities yield 4 · 4 = 16 ways of defining such a spinor operator Ô.
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Ôn =
∑
π∈SN

{
δnπ(n)Pn + (1− δπ(n)n)Pnπ−1(n) |π(n)〉 〈π−1(n)|

}
(4.20)

The definitions of these operators are even more unpleasant to handle than the ones
given in Eq. (4.15) but as these definitions provide an efficient way to solve the UBHF
equations, we have to grapple with them. The appearing operator K̂kl is defined in the
appendix A in Eq. (A.8). π−1 denotes the inverse permutation of π and is also a member
of SN . Appendix B presents a detailed derivation of these two sets of operators.
As already mentioned before, it is also a goal of this work to point out what ideas do

not work. I allude, that it is not sufficient to take the operator Ĥ in (4.15) and the here
defined operator Ô and merge them to a new generalized eigenvalue problem, although
the entire operator Ô is positive definite – as it is a blockwise diagonalized operator
with positive definite blocks.
The proof of the positive definiteness of the operators Ôn for all n will be given

now. For this purpose consider the diagonal matrix element 〈η|Ôn|η〉, with η being an
arbitrary nonzero one-particle Hilbert space state. The statement 〈η|Ôn|η〉 > 0 for an
arbitrary η, implies the positive definiteness of Ôn. Note, that in the definition of Ôn
the state n does not occur. Consider now the special diagonal matrix element

〈n|Ôn|n〉 = 〈n|
∑
π∈SN

{
δnπ(n)Pn + (1− δπ(n)n)Pnπ−1(n) |π(n)〉 〈π−1(n)|

}
|n〉

=
∑
π∈SN

{
δnπ(n) Pn 〈n|n〉︸ ︷︷ ︸

=P

+(1− δπ(n)n)Pnπ−1(n) 〈n|π(n)〉 〈π−1(n)|n〉︸ ︷︷ ︸
=P (π)

}

=
∑
π∈SN

(
δnπ(n) + (1− δπ(n)n)︸ ︷︷ ︸

=1

) N∏
s=1
〈s|π(s)〉 = 〈Φ|Φ〉 (4.21)

This implies, that 〈η|Ôn|η〉 (for an arbitrary η) is just the squared norm of the state,
that is obtained by exchanging the state n with the state η. And the squared norm is
by definition nonzero for nonzero vectors. In the same manner it can be shown that

〈n|Ĥn|n〉 = 〈Φ|Ĥ|Φ〉 . (4.22)

Just as above, this implies that the diagonal matrix element 〈η|Ĥn|η〉 is the total energy
of the state, which is obtained by making the just mentioned replacement multiplied by
the norm of the resulting product state.

4.2 Scheme for solving the UBHF equations
Of course it is possible to solve the UBHF equations (4.14) by applying a multidimen-
sional minimization routine provided by a numerical programming library. This section
presents a scheme for solving the UBHF equations iteratively by making use of the
special structure of these equations.
The properties of the just defined and analyzed operators Ôn and Ĥn enable us to

develop an iteration scheme for solving Eq. (4.14) which guarantees, that the total
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energy of the state Φ decreases at each step. The principle idea is quite simple. In each
step one has to find the vector ηn,0 for each n, that minimizes the functional

En(η) := 〈η|Ĥn|η〉
〈η|Ôn|η〉

, (4.23)

as it is the total energy of the state that is obtained by replacing the state n with η.
Then one has to find the state n0, for which the minimum of En(η) has the minimal
value and replace this η by n0.
The functional derivative of the functional En reads

δ

δ 〈η|
〈η|Ĥn|η〉
〈η|Ôn|η〉

2 = 1
〈η|Ôn|η〉

·
(
Ĥn |η〉 〈η|Ôn|η〉 − 〈η|Ĥn|η〉 Ôn |η〉

)
.

The quotient rule is applicable, because the functional derivative can always be mapped
onto a derivative with respect to an expansion coefficient with respect to an arbitrary
basis. With E = 〈η|Ĥn|η〉

〈η|Ôn|η〉
this equation takes on the form of a generalized eigenvalue

problem
Ĥn |η〉 = EnÔn |η〉 . (4.24)

Thus for fixed operators Ĥn and Ôn, the state that minimizes En can easily be obtained
by solving the generalized eigenvalue problem (4.24) and picking out the state η0 that
is related to the smallest eigenvalue.
For better comprehension, the total scheme for a numeric implementation is given in

the following enumeration and is visualized in Fig. 4.1.

1. Choose a basis in which the calculation shall be performed. In this basis, the
orbitals |k〉 are column vectors (tuples) and the operators Ĥn and Ôn are matrices.
The matrix elements of the one particle part of the Hamilton operator and the
two-particle integrals have to be calculated before starting the iteration. For my
calculations which are presented in Chap. 5, I chose the eigenstates of the ideal
system as basis. In the following nb denotes the number of chosen basis vectors.

2. Guess an initial value for the Spinor Ψ. In my implementation, this is done
by a random number generator, that creates an initial state close to the ground
state. In practice the iteration leads favorably to a metastable state instead of the
absolute minimum if two of the initial spinor orbitals are orthogonal. However,
the N initial spinor orbitals should be linearly independent.

3. Calculate for all n the operators Ĥn and Ôn and solve the generalized eigenvalue
problem (4.24). For each n, a set of nb eigenvalues with associated eigenstates is
obtained.

4. Find the component nmin, whose associated eigenvalue problem has the smallest
minimal eigenvalue

Emin = min
{

Eln

∣∣∣∣ Ĥn |ηl〉 = ElnÔn |ηl〉 l = 1, . . . , nb, n = 1, . . . , N
}
.

Thus the n with E0n = Emin. This n will be called nmin.
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5. Replace the spinor orbital |nmin〉 in the spinor |Ψ〉 with the vector |η〉 related to
the smallest minimal eigenvalue. The energy that is related with the new spinor
|Ψ〉 has now the value Emin. The important feature of this iteration is that the
total energy can not possibly increase by this replacement.

6. Bring the new spinor into the desired gauge (see section 4.4).

7. Start again with the new |Ψ〉 at 3 until the total change ∆ = D(Ψi+1,Ψi) of
the spinor after the execution of one iteration step drops below a given value
that expresses the accuracy of the result. The total change ∆ can either be the
energy change of the iteration step, or another quantity resembling a distance.
For the choice of D, one has to take into account, that it does not make any
difference wether nmin is replaced by η or its negative. In my implementation of
this algorithm the total change is calculated by

D(Ψi+1,Ψi) =
∑
αn

∣∣∣|ciαn| − |ci+1
αn |

∣∣∣ , (4.25)

where ciαn denotes the αth expansion coefficient of the nth spinor orbital of the
spinor in the ith iteration step.

4.3 Time-dependent UBHF

The derivation of the equation of motion for the spinor is not only useful for the con-
sideration of nonequilibrium systems but also provides the possibility to determine the
minimum of the functional given in Eq. (4.11) by performing imaginary time stepping.
The sought after trajectory of the spinor minimizes the functional in Eq. (3.7) with
|Φ〉 = |Φ(Ψ)〉. The diagonal matrix element of the time derivative reads

〈Φ| d
dt
|Φ〉 = 1

N !
∑
π∈SN

N∑
l=1

Pl 〈l|
d
dt
|π(l)〉 (4.26)

which results directly from the product rule.
For the derivation of the Euler-Lagrange equations, the fact that a differentiation

with respect to |n〉 results in the hermitian adjoint equations to those obtained by a
differentiation with respect to 〈n|, is used by performing the derivative only with respect
to the bra-vectors. Note that the Lagrangian does not depend on their time derivative.
Fortunately the differentiation of the part 〈Φ|Ĥ − E (t)|Φ〉 has already been done in
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Choose pa-
rameters:

particle number
confinement

accuracy (∆ac)
...

Choose basis. Calculate matrix
elements of ĥ and two-particle

integrals respective to the basis.
hij , (ij|w|kl)

solve UBHF

iteration step

Ψi
Calculate Ĥn[Ψi]

and Ôn[Ψi] for all n

Ĥ1, Ô1 · · · ĤN , ÔN

Find |ηn〉 that minimizes
En(η) = 〈η|Ĥn|η〉

〈η|Ôn|η〉 by solving
GEVP f.a. n (en = En(ηn))

e1, . . . , eN

Find index ν: eν ≤ en f.a. n

ν

Replace |ν〉 by |ην〉. The
new energy reads Ei = eν .

Bring the new spinor Ψi+1

into the desired gauge form.
Ψi+1∆ = D(Ψi+1,Ψi)

Ψi+1 → Ψi

∆

∆ ≤ ∆ac?

no

yes

Write the
data to files.

End

Create an
initial guess for
the spinor Ψ0

Figure 4.1: Diagrammatic overview of the iteration scheme for solving the UBHF
equations (4.14) proposed in this chapter. The oval gray nodes mark the important
handover parameters of the procedures in the violet rectangle nodes. Disregarding
the details of the iteration step (box with dashed line), the scheme shows the usual
process of finding a fix point of an iteration as it is also known for the solving scheme
of the fermionic Hartree-Fock approximation.
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section 4.1, so it is only necessary to differentiate the part with the time-derivative:

δ

δ 〈n|
〈Φ| d

dt
|Φ〉 = 1

N !
∑
π∈SN

N∑
l=1

( δ

δ 〈n|
Pl
)
〈l| d

dt
|π(l)〉+ Pl

( δ

δ 〈n|
〈l| d

dt
|π(l)〉

)

= 1
N !

∑
π∈SN

N∑
l=1

(1− δnl)Pnl |π(n)〉 〈l| d
dt
|π(l)〉+ δnlPl

d
dt
|π(l)〉

= 1
N !

N∑
l=1

∑
π∈SN

(
(1− δnl)Pnl |π(n)〉 〈l|+ δnlPl

) d
dt
|π(l)〉

= 1
N !

N∑
m=1

( ∑
π∈SN

(1− δnπ−1(m))Pnπ−1(m) |π(n)〉 〈π−1(m)|+ δnπ−1(m)Pπ−1(m)

)
d
dt
|m〉

= 1
N !

N∑
m=1
T̂nm

d
dt
|m〉 . (4.27)

The penultimate term is easy to understand if one makes the transformation from this
term to the first. In the last expression, a new operator

T̂nm :=
∑
π∈SN

(1− δnπ−1(m))Pnπ−1(m) |π(n)〉 〈π−1(m)|+ δnπ−1(m)Pπ−1(m) (4.28)

is introduced. In contrast to equation (4.16), equation (4.27) does not leave any freedom
to define T̂nm such that equation (4.27) holds, because the spinor component that is
differentiated with respect to t shall not be involved in the definition of T̂nm. Using this
variational derivative together with the already performed derivative of the remaining
part of the Lagrangian, the Euler-Lagrange Equation of this system reads

Ĥ |Ψ〉 − E (t)Ô |Ψ〉 = iT̂ ∂t |Ψ〉 . (4.29)

Multiplying this equation scalarly from the left with 〈Ψ|, yields a closed expression for
the Lagrange multiplier:

E (t) = 1
〈Ψ|Ô|Ψ〉

(
〈Ψ|Ĥ|Ψ〉 − i 〈Ψ|T̂ d

dt
|Ψ〉

)
. (4.30)

Reinsertion of this expression in Eq. (4.29), transforms the equation of motion to

P̂Ĥ |Ψ〉 = P̂iT̂ |Ψ̇〉 . (4.31)

The problem is, that the introduced operator P̂ = (1− 1
〈Ψ|Ô|Ψ〉Ô |Ψ〉 〈Ψ|) is a projector

with Ô |Ψ〉 as eigenstate with eigenvalue 0:

P̂Ô |Ψ〉 =
(

1− Ô |Ψ〉 〈Ψ|
〈Ψ|Ô|Ψ〉

)
Ô |Ψ〉 = Ô |Ψ〉 − Ô |Ψ〉 〈Ψ| Ô |Ψ〉

〈Ψ|Ô|Ψ〉︸ ︷︷ ︸
=1

= 0 , (4.32)
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P̂2 = 1− 2Ô |Ψ〉 〈Ψ|
〈Ψ|Ô|Ψ〉

+ Ô |Ψ〉 〈Ψ|Ô|Ψ〉 〈Ψ|
〈Ψ|Ô|Ψ〉2

=
(

1− Ô |Ψ〉 〈Ψ|
〈Ψ|Ô|Ψ〉

)
= P̂ . (4.33)

Thus P̂ somehow blocks the view onto the sought after equation of motion. Fortunately,
this problem can be fixed in a very similar way as in the GP case by demanding the
time-derivative of |Φ〉 to be orthogonal on 〈Φ|:

0 != 〈Φ| d
dt
|Φ〉 = (N − 1)! 〈Ψ|T̂ d

dt
|Ψ〉 . (4.34)

Same as in the GP case, this equality can be obtained by multiplying the wave function
with a time dependent phase.
Before going on with the development of a usable equation of motion for the spinor
|Ψ〉, it is necessary to prove the validity of the last equal sign in Eq. (4.34). For this
purpose, it is sufficient to show that

〈n| 1
N !

N∑
m=1
T̂nm

d
dt
|m〉 = 〈Φ| d

dt
|Φ〉 ,

which is the scalar product of the nth column of T̂ d
dt |Ψ〉 with 〈n|. So

〈n| 1
N !

N∑
m=1
T̂nm

d
dt
|m〉 = 1

N !
∑
π∈SN

N∑
m=1

δnπ−1(m) Pπ−1(m) 〈n|
d
dt
|m〉︸ ︷︷ ︸

↘Pπ−1(m)〈π−1(m)| d
dt |m〉

+ (1− δnπ−1(m))Pnπ−1(m) 〈n|π(n)〉︸ ︷︷ ︸
Pπ−1(m)

〈π−1(m)| d
dt
|m〉

= 1
N !

∑
π∈SN

N∑
m=1

Pπ−1(m) 〈π−1(m)| d
dt
|m〉 = 1

N !
∑
π∈SN

N∑
l=1

Pl 〈l|
d
dt
|π(l)〉

(4.26)
= 〈Φ| d

dt
|Φ〉 .

(4.35)

With

〈Ψ|T̂ d
dt
|Ψ〉 =

N∑
n=1
〈n| 1

N !

N∑
m=1
T̂nm

d
dt
|m〉︸ ︷︷ ︸

=〈Φ| d
dt |Φ〉

= N 〈Φ| d
dt
|Φ〉 (4.36)

the assertion is shown.
With the restriction given in Eq. (4.34), the Lagrange multiplier (see Eq. (4.30)) reads

E (t) = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ô|Ψ〉

= 〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

, (4.37)

and the reinsertion of this expression in Eq. (4.29) yields

P̂Ĥ |Ψ〉 = iT̂ d
dt
|Ψ〉
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i.e. Ĥ |Ψ〉 − E (t)Ô |Ψ〉 = iT̂ d
dt
|Ψ〉 .

(4.38)

The last equality follows directly from equations (4.21) and (4.22).

4.3.1 Resolving the equation of motion

Unfortunately equation (4.38) cannot be resolved. For the case of two particles, this
can be seen by multiplying T̂ with (〈1| ,−〈2|)†:

(
|2〉 〈2|+ 〈2|2〉 |1〉 〈2|+ 〈2|1〉
|2〉 〈1|+ 〈1|2〉 |1〉 〈1|+ 〈1|1〉

)(
|1〉
− |2〉

)
= 0 . (4.39)

Thus for two particles T̂ has a vanishing eigenvalue. This singularity of T̂ also arises
in other approximations using the TDVP [40] and there are various propositions for
solving this problem. In [41] it is proposed to make the transformation A→ A+ ε1 for
the appearing noninvertible matrix 6 with a small parameter ε and hope that the new
obtained operator is not singular. This solution could also work for this case, but lacks
a good justification.
For the two particle case, practice has shown, that the additional equation

0 = 〈Ψ|T̂ |Ψ̇〉
(

= 1
N
〈Ψ|Ô|Ψ̇〉

)
(4.40)

provides a solvable system of linear equations; though equation (4.40) follows directly
from the main equation of motion (4.38).

4.4 Ambiguity of the spinor

The determining equations for the orbitals were derived by Romanovsky [39] in a slightly
different fashion than in section 4.1. In his ansatz, he demanded all orbitals in the spinor
to be normalized by introducing N further Lagrange multipliers. As this restriction does
not provide any advantages for the numerical implementation, I avoided it. Furthermore
it is possible to normalize the orbitals afterwards whenever needed. It is not even
necessary, that all spinor orbitals have the same norm. In this section the transformation
group of the spinor |Ψ〉 which leaves the resulting symmetrized product state |Φ(Ψ)〉
(see Eq. (4.6)) unchanged, is introduced.

6In the mentioned literature, the noninvertibility of the equation of motion is usually due to a different
kind of matrices.
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Permutations

An arbitrary transposition of two orbitals

πij



...
|i〉
...
|j〉
...


=



...
|j〉
...
|i〉
...


(4.41)

and combinations of such transpositions leave the symmetrized product invariant. Hence
it is possible to arrange the orbitals in an order, that reflects the localization of the
orbitals – see Fig. 5.1.

Equalizing the norm

Multiplying each spinor orbital |k〉 by a different factor Fk ∈ C\{0} is equivalent to the
multiplication of the symmetrized product state by

∏
k Fk. If this product values one,

this transformation of the spinor does not have any effect on |Φ〉. With the choice

Fk =
(

N∏
s=1
〈s|s〉

) 1
2N 1√

〈k|k〉
(4.42)

for the factors, each spinor orbital has the same norm

〈k̃|k̃〉 = 〈k|FkFk|k〉 =
(

N∏
s=1
〈s|s〉

) 1
N 〈k|k〉
〈k|k〉

=
(

N∏
s=1
〈s|s〉

) 1
N

, (4.43)

and the effect on |Φ〉 equals the multiplication with the product of these factors

N∏
k=1

Fk =
N∏
k=1

[(
N∏
s=1
〈s|s〉

) 1
2N 1√

〈k|k〉

]
=
(

N∏
s=1
〈s|s〉

) N
2N
(

N∏
k=1

1√
〈k|k〉

)
= 1 (4.44)

Thus, the transformation given by Eq. (4.42) yields a spinor with all components having
the same norm. A priori, it is not necessary to transform the spinor such that all
components have the same norm, but for the numerical implementation of UBHF, it is
convenient to avoid some components having a norm near zero, while others have values
near the upper limit of double numbers. Hence this transformation provides a numerical
stability and should be performed after each iteration step of the scheme presented in
section 4.2.

Multiplication by a phase factor

The multiplication of a quantum mechanical state by a phase factor eiφ does not change
any physical property. As the multiplication of a spinor component by a factor f equals
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a multiplication of |Φ〉 by the same factor, it can be regarded as an additional symmetry.
In the numerical implementation of the stationary UBHF, the spinor components are
always considered to be real. This can also be explained by the fact, that for any
generalized eigenvalue problem (4.16) with positive definite Ô has a real set of solutions.

All transformations presented here can be considered as gauge transformations of the
spinor that make it possible to bring Ψ into a numerically more stable form and to order
the components in a manner that reflects the position of the orbitals relative to each
other.

4.5 The reduced one-body density matrix in UBHF
In contrast to fermionic Hartree-Fock, the self-consistent orbitals (spinor orbitals) ob-
tained by UBHF are not equal to the natural orbitals. In section 2.1 the definition of
the reduced one-body density matrix is given in the second quantization formalism. In
the UBHF case, this formalism is not applicable in such a simple way, as the orbitals
in Ψ are non-orthonormal. Hence it is convenient to express the operators in dyadic
products of the single particle states:

â†kâl −→ |k〉 〈l| . (4.45)

Analogously to the expectation value of any one-body operator of Φ, the expectation
value of |~r〉 〈~r′| is given by:

g(~r, ~r′) = 1
N !

∑
π∈SN

N∑
l=1

Pl 〈l|~r〉 〈~r′|π(l)〉 = 〈~r′|
( 1
N !

∑
π∈SN

N∑
l=1

Pl |π(l)〉 〈l|
)
|~r〉 (4.46)

Thus the abstract form of the reduced one-body density matrix as introduced in sec-
tion 2.1.1 is given by

ĝ = 1
N !

∑
π∈SN

N∑
l=1

Pl |π(l)〉 〈l| . (4.47)

The action of this operator in the one-body Hilbert space can be divided into two
regions. On the subspace of the one-body Hilbert space that is spanned by the set of
spinor components HΨ = span(|1〉 , . . . , |N〉) the action is, in general, nonzero. And
on the subspace that is complementary to HΨ – the space where all vectors in it are
orthogonal to all components of |Ψ〉 – the result of its action is zero. This means,
that this complementary space to HΨ is an eigenspace of ĝ with vanishing eigenvalues.
Hence, ĝ only has at most N eigenvectors (natural orbitals) with nonzero eigenvalues,
as HΨ has dimension ≤ N .

4.6 Minor permanent calculus
The sum over all permutations that arises in the previous sections makes the considered
equations and expressions very cumbersome. The goal of this section is to bring the
UBHF equations (4.14) into a much more simple form that provides the possibility for
a less complex calculation of the terms than with the sum over all permutations.
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4.6.1 Total energy expressed with permanents
For this purpose, the shorthand notation of the tensor product of the spinor components
|1〉 ⊗ . . . ⊗ |N〉 =: |F ) is needed. The vector that is obtained when the state |i〉 in |F )
is replaced by |η〉 is denoted by |F |η〉i ). Using the representation given in Eq. (C.9) for
the operator ĥ, yields the diagonal element

〈Φ|ĥ|Φ〉 = (F |Ŝ+
∑
ij

〈i|ĥ|j〉 ô |i〉 〈j| ô|F ) =
∑
ij

〈i|ĥ|j〉 (F |Ŝ+|F ô|i〉j ) . (4.48)

Thus the calculation of the expectation value reduces to the calculation of the single
particle matrix element of ĥ and of (F |Ŝ+|F ô|i〉j ) which has the following form

(F |Ŝ+|F ô|i〉j ) = 1
N !

∑
π∈SN

〈π(j)|ô|i〉︸ ︷︷ ︸
=δiπ(j)

∏
s 6=j
〈π(s)|s〉

= 1
N !

∑
π∈SN
π(j)=i

∏
s 6=j
〈π(s)|s〉 = 1

N !
per(Gji ) . (4.49)

Here Gji is the matrix that is obtained after eliminating the jth row and the ith column
from the Gramian matrix of the set of spinor components:

G(|1〉 , . . . , |N〉) :=


〈1|1〉 〈1|2〉 . . . . . 〈1|N〉
〈2|1〉 〈2|2〉 . . . . . 〈2|N〉
...

... . . . ...
〈N |1〉 〈N |2〉 . . . . . 〈N |N〉

 (4.50)

and is called minor of G. With the notation Φi for the state that is a symmetrized
product of all spinor components except the ith, 1

N !per(G
j
i ) can be written as the scalar

product 1
N 〈Φi|Φj〉. Hence, the expectation value of ĥ reads

〈Φ|ĥ|Φ〉 = 1
N

∑
ij

〈i|ĥ|j〉 〈Φi|Φj〉 (4.51)

Of course, this equation holds for any one-body operator and with the unit operator
1̂, the Laplacian development (see Eq. (E.2)) for the permanent of the Gram matrix is
obtained.
For two-body operators, an analogous calculation can be done:

〈Φ|ŵ|Φ〉 = (F |Ŝ+
∑
ijkl

(ij|w|kl) ô |i〉 ⊗ ô |j〉 〈k| ô⊗ 〈l| ô|F )

=
∑
ij,k<l

(ij|w|kl)(F |Ŝ+|F ô|i〉,ô|j〉k,l ) , (4.52)

where the restriction of the summation to k < l ensures, that the operator ŵ7 acts
only once on each pair of orbitals. In the two-fold subscripted and superscripted vector

7In this chapter, the two-particle integrals are denoted with (ij|w|kl) instead of wij,kl. This is because
with this notation, the two-particle integrals can be regarded as matrix elements of the interaction
operator ŵ with respect to not symmetrised tensor products. To avoid doubts: (ij|w|kl) = wij,kl.
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|F ô|i〉,ô|j〉k,l ) the orbital |k〉 was replaced by ô |i〉 and |l〉 by ô |j〉 – analogously to the above
defined vector |F |η〉i ). The appearing scalar products (F |Ŝ+|F ô|i〉,ô|j〉k,l ) are calculated as
follows:

(F |Ŝ+|F ô|i〉,ô|j〉k,l ) = 1
N !

∑
π∈SN

〈π(k)|ô|i〉︸ ︷︷ ︸
=δπ(k),i

〈π(l)|ô|j〉︸ ︷︷ ︸
=δπ(l),j(1−δij)

∏
s 6=k,l

〈π(s)|s〉

= (1− δij)
1
N !

∑
π∈SN
π(k)=i
π(l)=j

∏
s 6=k,l

〈π(s)|s〉 = (1− δij)
1
N !

per(Gklij ) , (4.53)

where Gklij is the double-minor of G and is obtained after the elimination of the ith
and jth row and kth and lth column of G. The term (1 − δij) emerges because of the
inequality of k and l. Same as for the one-body case, this permanent can be expressed
as the scalar product of symmetrized product states with removed orbitals:

1
N !

per(Gklij ) = 1
N(N − 1)

〈Φij |Φkl〉 . (4.54)

Because of the identity |Φkl〉 = |Φlk〉 and (ij|w|kl) = (ji|w|lk) (see equation (A.5)),
the summation over k < l can be replaced by k 6= l including a factor 1

2 . Then the
expectation value of the total energy reads

〈Φ|Ĥ|Φ〉 = 1
N

∑
ij

〈i|ĥ|j〉 〈Φi|Φj〉+
1

2N(N − 1)
∑
i6=j
k 6=l

wij,kl 〈Φij |Φkl〉 (4.55)

Using this term for the total energy, one can apply Ryser’s formula for the calculation
of the permanent of a matrix, which has a much lower complexity then the sum over
SN . Fortunately, the variational derivative of Eq. (4.55) can also be expressed with
permanents of minor matrices of the Gram matrix of the spinor orbitals. Before going
on to the calculation of the derivative of Eq. (4.55), a special restriction of the UBHF
ansatz is proposed

4.6.2 Multi-occupied spinor orbitals (restricted UBHF)
In Chap. 5 it can be seen, that the natural orbital with the highest occupation number
contains nearly the half of all particles, even for high coupling strength. This observation
gives rise to the idea of restricting the UBHF ansatz by demanding some spinor orbitals
to be equal. This equality of some orbitals can be used for the calculation of the
permanents arising in the equations above in a way that is proposed in appendix E.
For that purpose it is helpfull to introduce a tuple of natural numbers nk, that tells
how often the orbital |k〉 8 appears in the spinor. This tuple is called partition of
the spinor. The deterioration of the results due to this restriction should be small if

8Actually this notation is a little bit misleading, because in the previous sections, the case that some
spinor orbitals coincide was never excluded from the possible solutions. But in this case, the deno-
tation of all orbital that are equal with the same number is obviously very practical.
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the partition resembles the occupation numbers of the natural orbital obtained by the
original UBHF approximation. Using the partition (n1, n2 . . .), the expression for the
total energy (Eq. (4.55)) becomes

〈Φ|Ĥ|Φ〉 = 1
N

∑
ij

ninj 〈i|ĥ|j〉 〈Φi|Φj〉

+ 1
2N(N − 1)

∑
ijkl

wij,klni(nj − δij)nk(nl − δkl) 〈Φij |Φkl〉 . (4.56)

In this case, the summation in the interaction term does not restrict the indices i and j
to be different, because some orbitals are many fold occupied. The sums run from 1 to
ν – the number of different orbitals contained in |Φ〉 – for each index. The Kronecker
delta in the second factor ensures that for singly occupied orbitals the summand with
i = j vanishes.

4.6.3 A minor permanent version for the UBHF equations with
multi-occupied orbitals

With this restriction of some orbitals being equal (characterized by the partition n), the
parameter set becomes smaller. As the product rule holds for the variational derivative
(see appendix A), the full differentiation reduces to differentiations of the matrix ele-
ments of ĥ, the two-particle integrals, and permanents of minors of gramian matrices
with some columns and rows being equal. The derivatives of the first two entities have
already been performed in previous sections (see also appendix A). The differentiation
of the permanents is performed in the following. For that purpose, consider the most
general case of a scalar product of a symmetrized product state 〈Φ| of the components
of the (dual) spinor 〈Ψ|, with the symmetrized product state |Φ̃〉 of the spinor |Ψ̃〉
with the partitions n and ñ respectively. One way of representing such states is by
giving the orbitals |k〉 and its related occupation number nk. Another possibility is to
give an N -tuple of orbitals (〈i1| , 〈i2| , . . .) where 〈i1| = 〈i2| = . . . = 〈in1| (=: 〈1|) and
〈in1+1| = 〈in1+2| = . . . = 〈in1+n2 | (=: 〈2|) and so on. With this notation (〈ik| related to
the state 〈Φ| and |ik〉 related to the state |Φ〉), the variational derivative with respect
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to 〈l| reads

δ

δ 〈l|
〈Φ|Φ̃〉 = δ

δ 〈l|
1
N !

∑
π∈SN

N∏
s=1
〈is|jπ(s)〉

= 1
N !

∑
π∈SN

nl−1+nl∑
r=nl−1+1

|jπ(r)〉
∏
s 6=r
〈is|jπ(s)〉

=
nl−1+nl∑
r=nl−1+1

1
N !

∑
π∈SN

|jπ(r)〉
∏
s 6=r
〈is|jπ(s)〉

=
nl−1+nl∑
r=nl−1+1

N∑
q=1
|q〉 1

N !
∑
π∈SN
π(r)=q

∏
s 6=r
〈is|jπ(s)〉

︸ ︷︷ ︸
1
N
〈Φir |Φ̃jq 〉

= 1
N
nl

ν̃∑
k=1

ñk 〈Φl|Φk〉 |k〉 , (4.57)

where ν̃ denotes the number of different orbitals contained in |Ψ̃〉 and ñk denotes the
occupation number of the orbital |k̃〉 in |Ψ̃〉. This relation can be applied for the calcu-
lation of the derivatives of 〈Φ|Φ〉 , 〈Φi|Φj〉, and 〈Φij |Φkl〉:

δ

δ 〈s|
〈Φ|Φ〉 = 1

N
ns

ν∑
r=1

nr 〈Φs|Φr〉 |r〉 (4.58)

δ

δ 〈s|
〈Φi|Φj〉 =

1
N − 1

(ns − δsi)
ν∑
r=1

(nr − δrj) 〈Φis|Φjr〉 |r〉 (4.59)

δ

δ 〈s|
〈Φij |Φkl〉 =

1
N − 2

(ns − δsi − δsj)
ν∑
r=1

(nr − δrk − δrl) 〈Φijs|Φklr〉 |r〉 (4.60)

The two-fold subscripted states Φij are defined to be zero, if they are equal and if this
orbital is singly occupied – similar to the two-fold application of an annihilation operator
in second quantization formalism. With these formulas, the variational derivative of
Eq. (4.11) can be performed easily:

δ

δ 〈s|

(
〈Φ|Ĥ|Φ〉 − E 〈Φ|Φ〉

) != 0

⇔
∑
r

nr 〈Φs|Φr〉 ĥ |r〉+
1

N − 1
∑
ijr

(ni − δis)nr(nj − δrj) 〈Φis|Φjr〉
[
〈i|ĥ|j〉+ Ĵij

]
|r〉

+ 1
2(N − 1)(N − 2)

∑
ijklr

(ni − δsi)(nj − δsj − δij)nk(nl − δkl)(nr − δrk − δrl)

· wij,kl 〈Φijs|Φklr〉 |r〉

= E
∑
r

nr 〈Φs|Φr〉 |r〉 f.a. s = 1, . . . , ν , (4.61)
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which are the UBHF equations for the restriction of some orbitals being equal. These
equations have not yet been tested, but a comparison with the (numerically) verified
UBHF equations (4.14) shows that each term in this equation can be related with a
therm in the other equations, what confirms this equation.

4.7 Gaussian type spinor orbitals
In contrast to fermionic Hartree-Fock, the self consistent spinor orbitals are, in general,
not equal to the natural orbitals of the system. As will be seen in the simulation results
(Chap. 5), the wave functions of the spinor orbitals have the shape of Gaussians in both
cases (2D and 1D systems).
Thus, a possible restriction of UBHF that provides good numerical results, is to

let all spinor orbitals be Gaussians. With this restriction the number of independent
parameters decreases to two times the dimension (components of the mean value and
the variance for each dimension) for each orbital. Furthermore, one can decrease the
number of independent parameters by taking advantage of the symmetry of the given
traps. E.g. in the 1D case for two particles, it turns out, that one orbital is just the
mirrored of the other one:

|1〉 = p̂ |2〉 , p̂→ parity operator.

Thus, the mean value of the first orbital can be set as the negative of the mean value
of the other one and the variances can be set to be equal. Thereby the number of
independent orbitals has been reduced to two.

Summary
An extensive and deep description of the UBHF ansatz was presented in this chapter. A
new approximation scheme, that takes advantage of the special structure of the UBHF
equations is presented for the first time in this chapter. The proposition of a general-
ization of UBHF to an ansatz with some orbitals being equal is also new. The analysis
of the ROBDO in UBHF gave more insight into this approximation.
Unfortunately, with the UBHF ansatz arise lots of expressions, that make it difficult

to maintain an overview over the structure of this approximation. Also, the notation
of the total energy in UBHF with minor permanents leads to difficultly manageable
equations. Nevertheless, the numerical implementation of UBHF can be done within a
few weeks and the capacity of this approximation is impressing, as will be shown in the
following chapter.
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5 Simulation results
The purpose of computing is
insight, not numbers.

(Richard Hamming)

When a new approximation scheme is proposed, it is self-evident that its implemen-
tation has to be tested, before applying it for the analysis of the considered systems.
Although UBHF was already presented and applied by Romanovsky [12, 39], solving the
UBHF equations within a basis of single particle states was never done before. In this
chapter, the analysis of UBHF is continued by regarding the simulation results obtained
by the application to a certain bosonic system.
First it is necessary to see if the obtained results are reliable, or more precisely, which

observables are reliable in which parameter regimes. The implementation and analysis
of the obtained results are useful for a better understanding of the method. For example,
it will be seen in this chapter that the wave functions of the spinor orbitals resemble
Gaussians, what is totally different to the Hartree-Fock orbitals in the fermionic case.
Another property of UBHF which will be discussed in this chapter is the breaking of the
symmetries of the Hamiltonian, what is typical for Hartree-Fock type approximations.
The example system that will be used for the presentation of the simulation results

consists of up to 8 Coulomb-interacting bosons trapped in a harmonic confinement.

5.1 System characterization (charged trapped bosons)
The Hamilton operator of a system consisting of N Coulomb interacting bosons with
charge q and mass m in a harmonic trap of the frequency ω reads in coordinate space
representation

ĤN =
N∑
i=1

(
− ~2

2m
∆̃i +

mω2

2
~̃r2i

)
+ q2

4πε0

∑
i<j

1√
|~̃ri − ~̃rj |2 + κ̃2

, (5.1)

where the Laplacians ∆̃i and the coordinate vectors ~ri can be considered one- or two-
dimensional. The shielding parameter κ̃ appearing in the square root of the interaction
term is only needed for the 1D case to make the two-particle integrals (A.5) finite. It can
be interpreted physically as a relict of the in fact higher dimensionality of the system
(compare chapter 2.2). In the 1D case, the system is fermionized for κ̃ = 0, and has thus
exactly the same energy spectrum and ground state density as an analogous fermionic
system. For higher dimensions, this parameter will be set to zero, as there arise no
problems with the convergence of the two-particle integrals and two particles can pass
each other in a 2D plane without having contact.
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Entity Symbol Natural unit Operator (expressed with cre-
ator and annihilator)

Energy E E0 = ~ω ~ω
∑
i(a
†
iai + 1

2)
Spatial coordinate x, y x0 =

√
~
mω

x0√
2(ai + a†i ), i = x, y

Momentum px, py p0 =
√

~mω p0√
2(ai − a†i ), i = x, y

Angular momentum L L0 = ~ −iL0(a†xay − a†yax)
Time t t0 = 1

ω
Inverse temperature β 1

E0
Shielding parameter κ x0

Coupling parameter λ q2

4πε0x0~ω

Table 5.1: Overview of the quantities that are of interest in this work and their
natural unit.

The expression for the Hamiltonian given in (5.1) can be transformed into a form
containing only two parameters

ĤN =
N∑
i=1

(
− 1

2
∆i +

1
2
~r2i

)
+ λ

∑
i<j

1√
|~ri − ~rj |2 + κ2

, (5.2)

where the entities without the tilde are given in natural units (see Table 5.1). In second
quantization, with the creation operator related to the orbitals of the ideal system, the
Hamiltonian reads

Ĥ =
∑
k

εkâ
†
kâk + 1

2
∑
ijkl

wij,lkâ
†
i â
†
j âkâl , (5.3)

with εk being the energy of the kth energy eigenstate of the ideal system.

5.2 Structure of the solutions
In contrast to fermionic Hartree-Fock, the obtained self-consistent orbitals in UBHF
(spinor orbitals) do not coincide with the natural orbitals of the resulting many particle
state. The spinor orbitals rather resemble displaced gaussians. In the 1D case, for
even particle numbers, each of the spinor orbital can be transformed into another one
by applying the parity operation (mirroring along the y-axis) to it. For odd particle
numbers, there exist one orbital that has well defined positive parity. Although parity is
in general not a good quantum number for interacting many body systems, the resulting
density is mirror symmetric due to this paring of the spinor orbitals. This can be seen in
Fig. 5.1. For small coupling (In Fig. 5.1 λ = 0.2), the resulting particle density cannot
resolve the localization of the wave functions because of the strong mutual overlap. For
higher interaction strengths, the density becomes wider and starts to exhibit N peaks
at a certain value for λ. The resemblance of the spinor orbitals to gaussians increases
with higher coupling.
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Figure 5.1: Overview of the general form of the wave functions of the spinor
orbitals for N = 4 (left column) and N = 5 (right column). The resulting density of
each set of spinor orbitals is given in the lower row in the same color as the related
set. The coupling strengths λ are given in the plots on the left and are the same in
the plot on the right. The positivity of the wave functions is not an intrinsic property
of the solution. They where rather transformed to be positive – by multiplying them
with a factor – for better clarity. The number of basis functions for this calculation
was nb = 30.
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n(x)

〈~r|2〉〈~r|3〉

〈~r|1〉

λ = 3.0
nb = 45

n(x)

〈~r|1〉

〈~r|2〉

Figure 5.2: Illustrative example of the localization of the spinor orbitals in 2D
for two (left) and three (right) particles. The exact values of the densities are not
important for this illustration, which is why no axis or colorbox is given in these
plots. The coupling strength and basis number given in the picture is valid for both
systems.

For 2D systems, the structure of the resulting UBHF orbitals is similar. They resemble
displaced two dimensional gaussians and the distance of the expectation value of the
site increases for high coupling strength. Figure 5.2 shows how the total particle density
is composed by the spinor orbitals in the 2D case.

5.3 Convergence of the algorithm

The results presented here are obtained by the implementation of the iterative algorithm
proposed in Chap. 4. The computational effort of this algorithm is very high: a sum
over SN has to be performed 2N times in each step. Thus the complexity of this
algorithm scales as 2N · N !. The computation of an 8-particle system with nb = 15
and accuracy 10−6 requires circa twelve hours on a single CPU, if the initial spinor is
created with a random number generator. In my implementation, the program seeks
for results of former calculations with similar parameters – same particle number and
a coupling strength close to the considered one. The final spinor of that calculation is
used as initial spinor for the new one. In this case, a computation takes much less time
if another system with the same particle number has already been calculated.

In Fig. 5.4 it can be seen that the energy and D(Ψi,Ψi+1) (see Eq. (4.25)) decrease
exponentially. Both curves can be divided in two parts. At a certain iteration step
(≈ 10), the curve changes the gradient and the decreasing becomes more slowly.
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Figure 5.3: Particle densities in the 2D case for different particle numbers and
coupling strengths. The number of basis functions in this calculation was nb = 45.

5.4 Validity and quality of UBHF

For testing the validity of an approximation, it is favorable to use a method that is
well known and where the origins of possibly arising differences can be localized. Path
Integral Monte-Carlo (PIMC) is an exact method that can deal with systems with
relatively high particle numbers, but it cannot consider systems at zero temperature,
though the temperature can be chosen to be very low. Neither can be estimated which
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Figure 5.4: Convergence of the
total energy and the quantity
D(Ψi,Ψi+1) (Eq. (4.25)) represent-
ing the distance between the spinors
of two iteration steps for a 1D
3-particle system and basis number
nb = 15. The different point types
mark three iterations with different
initial guesses for the spinor. The
number that is subtracted from the
total energy is the obtained ground
state energy in UBHF approximation
in natural units.
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differences between UBHF and PIMC arise from the limitation of the one particle basis
in the UBHF implementation – so called basis effects. A very good benchmark for the
UBHF approximation is configuration interaction (CI), which will be explained in the
following.

5.4.1 Configuration Interaction (CI) as benchmark

Configuration Interaction is often referred to as an exact method. Strictly speaking,
this is only true for Hilbert spaces with a finite dimension. It can be regarded as a
variational method, where the trial wave function is a superposition of a fixed finite set
of vectors. Thus the subset of all trial states that can be reached with this ansatz has
the properties of a vector space and the hermiticity of all operators restricted to this
space is conserved:

(
P̂ÂP̂

)† = P̂Â†P̂; where P̂ is the projector into the subspace of the
trial functions. In the CI method, the eigenstates of this projected Hamiltonian are the
states that minimize the energy within this ansatz. Thus for the implementation of CI,
one has to calculate all matrix elements of P̂ĤP̂ with respect to the basis elements of
the considered subspace and perform a matrix diagonalization.
For the so called full CI method, the considered basis consists of all symmetrised

product states that can be created from a fixed ONS of single particle states [20]. The
number of N -body Hilbert space states that can be created from a set of nb single
particle states is

(N+nb−1
N

)
for bosons, and

(nb
N

)
for fermions. This means, one has to

diagonalize a matrix whose dimensionality increases with a binomial coefficient. It is
evident that this method is not appropriate for systems with high particle numbers.
Nevertheless, it is well suited as a benchmark for UBHF results, because it can be

used for ground state calculations and one can choose the same set of single particle
orbitals as is used for the UBHF calculation, such that possible basis effects are blinded
out.
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Figure 5.5: Comparison of the ground
state energies for 2, 3 and 4 particles ob-
tained by UBHF, CI and GP in dependence
of the coupling strength λ. In the lower
panel, the colours distinguish the related ap-
proximation method, and the particle num-
bers can be distinguished by the line type –
see key in the upper panel. The number of
basis states for this calculation is nb = 12.

5.4.2 Comparison of UBHF and CI

After the choice of the method for testing the UBHF method, there are many quantities
that can be taken for comparison. As the trial wave function is the best approxima-
tion of the real ground state within a certain subset of the Hilbert space, one possible
quantity for testing how good this approximation actually is would be the distance1
of the approximating state ΨUBHF and the exact ground state Ψ0. As this distance
differs depending on the normalization of both states while expectation values do not,
this is not a good indicator for the quality of the approximation. The most meaningful
comparing quantities are those with a physical interpretation, such as the energy or the
particle density.
In Fig. 5.5, it can be seen that the energy obtained by UBHF is very close to the

CI result. For a certain value of λ – depending on the particle number – the difference
between the UBHF and CI energy starts to decrease. The GP energy of the system is
also given in the same plot and the graphs diverge strongly for high interaction strengths.
This is a good indicator that GP is not appropriate for this parameter regime, while
UBHF provides very good values for the total energy also for high coupling. The UBHF
approximation also reflects very well the main behavior of the particle density – see
Fig. 5.6. For high values of λ, the shape of the densities obtained by UBHF and CI
differ quantitatively and qualitatively from the GP density. The density evinces N
peaks for an N particle system. The GP approximation cannot by definition explain

1With respect to the metric that is induced by the scalar product.
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Figure 5.6: Comparison of the particle densities obtained by UBHF, CI and GP
for different coupling strength and particle numbers. The values for λ given in the
middle graphs refer to the whole row and the particle numbers given on the top of
each column refer to the whole column. To avoid big differences in the scaling of
the values, all densities are normalized to 1. The number of basis states for this
calculation is nb = 12.

this behavior of the density. This is due to the fact that the only dependency of the
particle number in GP is as a factor in front of the Hartree term in the GP equation
(3.24). The wavy form of the GP-density for λ = 5.0 in Fig. 5.6 is a pure finite basis
effect. It can also be seen in the same graphic that the localization of the particles is
slightly overestimated in the UBHF case.
In section 4.5 it was explained why the occupation numbers of the natural orbitals

obtained in UBHF approximation for N particles are only nonzero for the first N natural
orbitals. Figure 5.7 shows a comparison of the first N occupation numbers obtained
by both methods. A qualitatively different behavior is that in the UBHF case one of
the graphs crosses the 〈ni〉 = 1 line. It can be seen in this figure that for the exact
method (CI) the occupation numbers of higher natural orbitals is nonzero. The kink
in some curves in the left column of Fig. 5.7 is a pure numerical effect. Although, for
high coupling one would expect all occupation numbers to be 1 in UBHF approximation,
because in the extreme case of λ −→∞, the overlap of the spinor orbitals vanishes. Thus
in this case, the spinor orbitals form an ONS and the natural orbitals of the symmetrised
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Figure 5.7: Comparison of the ground state energies for 2, 3 and 4 particles ob-
tained by UBHF and CI in dependence of the coupling strength λ. The number of
basis states for this calculation is nb = 12. The occupation numbers given on the
right are zero in the UBHF case.

product state are the spinor orbitals themselves with occupation number 1. The graphs
of the occupation numbers of the (N + 1)th, (N + 2)th and (N + 3)th natural orbital
obtained by CI – also given in Fig. 5.7 – show that they are actually nonzero, but their
highest values lies at about 0.1.

5.5 Metastable solutions

It is not unusual that the results obtained by a variational method are not the absolute
minimum of the total energy within the considered ansatz. Just as the diagonal elements
of the full Hamiltonian, the energy functional of an approximating ansatz can have many
local minima.
The configurations of the particle densities in Fig. 5.3 for N = 5 and N = 8 (except

the density with λ = 3.5) particles suggest that the obtained results are metastable
solutions, because classically one would expect a (0, 5) configuration for the 5-particle
case and a (1, 7) configuration for the 8-particle case [42]. For 5 particles, the (1, 4)
configuration is classically a metastable solution with an energy very close to the classical
one, but for 8 particles, the (2, 6) configuration as in Fig. 5.3 (execpt for λ = 3.5) is not
mentioned as metastable configuration in the classical case in [42]. I tried to find other
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Figure 5.8: Comparison of the natural orbitals. For the four-particle system, a
comparison of the fourth orbital would also be of interest, but would worsen the
overview.
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configurations for N = 5 particles in 2D by changing the initial guess for the spinor, but
always obtained the same configurations as in Fig. 5.3. It is still possible that there exist
other configurations with lower energies, but it seems that they have at least a smaller
basin of attraction than the configurations with the absolute minimum. The depicted
density with N = 8 and λ = 3.5 in Fig. 5.3 has the configuration that is expected for 8
particles according to [42].
In the one dimensional case, a metastable solution for a two-particle system is ob-

tained if the first spinor orbital of the initial spinor is the ground state of the one-body
Hamiltonian and the second spinor orbital the first exited state. Figure 5.9 shows that
the metastable state obtained by this initialization of the spinor can be interpreted as
an excited state of the system. The UBHF energies coincide very well with the energies
of the first excited state of the system obtained with CI. In this solution, the spinor
orbitals are orthogonal and singly occupied. Thus in this case, the spinor orbitals of the
UBHF result are also the natural orbitals of the system. In Fig. 5.10 it is shown that
the shape of the natural orbitals (spinor orbitals) of the metastable solution coincide
very well with the natural orbitals of the first excited state of the exact solution.
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Figure 5.9: Comparison of the energies
(lower panel) and occupation numbers (up-
per panel) of a metastable state obtained
with UBHF with the first exited state in CI
for different λ. The CI results yield degener-
ated occupation numbers of the first and sec-
ond (solid line) and third and fourth (dotted
line) natural orbital. In UBHF, both occu-
pation numbers are constant 1. The scale
on the right in the upper panel refer to the
solid line and the scale on the left to the dot-
ted one. The basis number was nb = 12.

5.6 Rotational symmetry breaking for 2D systems
As the full many body Hamiltonian of the considered 2D isotropic harmonic oscillator
with Coulomb interaction commutes with the operator of total angular momentum, the
density of the ground state should be rotational invariant if the ground state is not
degenerate. The densities obtained with UBHF however show a lower symmetry (see
Fig. 5.3). For instance for six particles, the density is invariant under a rotation of the
system with an angle of integer multiples of 2π

5 . This is very typical for the Hartree-Fock
approximation [43, 44] and is still a topic of current investigation. In [45] a very efficient
method for the restoration of the symmetries of the Hamiltonian is presented. The spin
is another observable that is typically not conserved in Hartree-Fock approximations,
but the here discussed particles have zero spin anyway.
While Romanovsky forced the symmetry breaking of the UBHF result by restricting

the spinor orbitals to be displaced gaussians, in the implementation presented here, the
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Figure 5.10: Comparison of the shape of the particle density (left) and natural
orbitals (right) of the metastable state in UBHF approximation with the first excited
state obtained with CI.

breaking of the rotational symmetry is spontaneous. Note that in Fig. 5.3, the number
of the basis set is chosen such that the orbitals can fill an energy shell. E.g. for 45 basis
functions, all orbitals of the 9th energy shell are included, hence no spatial direction is
preferred.

Figure 5.11: Example for three equivalent UBHF results with coupling strength
λ = 3.0.

Fig. 5.11 shows UBHF densities that are obtained with three different initial guesses
for the spinor. All densities shown are related by the same total energy of the underlying
many particle state. It is important to keep in mind that it is absolutely possible to
obtain a UBHF state which is rotationally symmetric; e.g. by choosing the initial state
in an appropriate way, but the resulting energy is usually higher than the energy of the
states with broken symmetry [46].
In Fig. 5.12 it is shown that the natural orbitals also reflect the rotationally broken

symmetry. The depicted orbitals for the six-particle system are very similar to the
analog fermionic system (see [47]).
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Figure 5.12: Natural orbitals in UBHF approximation for 2D systems. The inter-
action strength is λ = 3.0 for all particle numbers. For the related spatial particle
densities see figure 5.3.

5.7 High coupling limit

As can be seen in Fig. 5.5, for high values of λ, the difference of the total energies
obtained with UBHF and CI decreases. This is because for high coupling, the system
transits to the classical limit [16]. In the classical case all particles are localized points
and their statistic is equivalent to the Boltzmann statistic of distinguishable particles.
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In UBHF the overlap of the spinor orbitals vanishes for high λ. In that case, the
expectation value of a one-body operator Â is given by

〈Â〉 =
∑
k

〈k|Â|k〉 ,

because all terms in the sum over all permutations vanish, except for the identical
permutation. Thus the formula for the expectation value is equal to the expectation
value of an operator with respect to a Slater permanent. Hence in this case the statistic
of the particles is not important.
A good indicator for how strong the orbitals are separated is the determinant of the

gramian matrix (gramian determinant det(G)), given in (4.50). For spatially totally
separated orbitals, the gramian matrix is the unit matrix and its determinant is one.
Thus this quantity is a good indicator for the classical behavior of the system. A graph
of the gramian determinant as a function of λ is given in Fig. 5.13. There it is also shown
that the decreasing of the values for det(G) is correlated with a stronger fragmentation
of the system.

Figure 5.13: Fragmentation of the rela-
tive occupation numbers for a two dimen-
sional systems with different particle num-
bers. The broadness of each line represents
the value of the relative occupation num-
ber of the related orbital. The graph of
the gramian determinant depending on λ is
given within each plot. λ
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5.8 Nonequilibrium
In quantum mechanics, every measurement of a system is also a perturbation that
brings the considered system out of equilibrium. On the other hand, in computational
simulations, one has to explicitly implement a perturbation of the system by making the
Hamiltonian time dependent. In this section, the time-development of two Coulomb-
interacting one dimensional bosons is compared with an exact method. Of special
interest are of course those excitations that describe the interaction of the particles
with the electromagnetic field. In classical mechanics, the so called normal modes are
important to characterize a system. Not all of these modes have a quantum mechanical
analog. Some normal mode excitations are common in trapped systems. In this section,
the excitation to the quantum breathing mode is considered.
The main goal of this section is to show that the equations of motion in TDUBHF

derived in Chap. 4 are correct and solvable. As these equations are new, this testing is
a very important part for the further development of the UBHF approximation.
The results presented here are obtained by solving the TDUBHF equations (4.38)

and (4.40) with the fourth order Runge-Kutta method. The time step was set fix to
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the value δt = 0.005ω. As in the equilibrium results, the calculation was performed in
the basis of the ideal system with nb = 12. The time derivatives of the spinor |Ψ̇〉 were
calculated in each step by the inversion of the equations (4.38) and (4.40) with the linear
algebra package LAPACK. Because the routine I used for solving the mentioned linear
equations required a square matrix, I simply replaced the first line of the coefficient
matrix by equation (4.40). By this replacement an invertible set of N · nb equations is
obtained.

5.8.1 Quantum breathing mode
Classically, the breathing mode is a normal mode excitation of trapped systems with
an isotropic external confinement, where the deviation of the particles from their rest
position is radial for all particles and the amplitudes are proportional to their distance
to the center [48]. In [48] is also shown that the classical breathing mode exists for all
harmonic trapped systems with particle interactions of the form |~r|γ(γ ∈ R 6=0).
Quantum mechanically, the breathing mode cannot be defined in this way. In [16],

the quantum breathing mode is defined as the excitation that is obtained when the
confining trap is switched off for a short time. In the classical case, the frequency of
the breathing mode for coulomb interacting particles is

√
3ω – where ω is the frequency

of the harmonic confinement – and for ideal quantum mechanical systems it is 2ω.
For harmonically trapped systems, the motion of the many body wave function can
be factorized into a center of mass part and a part only depending on the relative
coordinates of the particles [49] and the Hamiltonian of the center of mass part is
identical to the Hamiltonian of a single particle trapped in a harmonic confinement.
Due to this separation, the normal mode spectrum also has at least two parts. One
can be related with the motion of the center of mass wave function and the other one
with the wave function of the relative coordinates. A good quantity for the analysis of
the breathing motion of the system is the potential energy of the confinement. It turns
out that the time evolution of the potential energy (in breathing mode excitation) for
two interacting particles evinces exactly two frequencies: One for the center of mass
wave function and one for the relative coordinates wave function [16]. Thus the time
evolution of Epot can be fitted with the following beat:

Epot = a sin(ωrt+ ϕr) + b sin(ωRt+ ϕR) + c . (5.4)

Because the Hamiltonian for the center of mass wave function has no interaction part,
the frequency of the center of mass part is ωR = 2ω – the breathing mode frequency of
ideal quantum systems. Unfortunately this cannot be reflected in UBHF. Figure 5.14
shows the time evolution of Epot(t) in TDUBHF. A comparison with the time evolution
obtained by solving the time-dependent Schrödinger equation directly on a coordinate
mesh (performed by Sebastian Bauch, see [16]) is also plotted in Fig. 5.14. The fit
parameters for the fit plotted within the same figure (dashed line) are listed in table 5.2.
Both graphs have very similar values until tω ≈ 25 and in the narrowest area of the beat
the difference of the two time evolutions is very notable. It seems that the behavior of
the system changes abruptly, but note that this difference is also reflected in the beats
which overlay perfectly the curves for both methods. Thus the difference of both curves
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a/~ω ωr/ω ϕrω b/~ω ωR/ω ϕRω c/~ω

TDSE 0.0161 1.8917 -0.1108 0.0132 1.9997 -0.1248 0.5450
TDUBHF 0.0098 1.8635 -0.0399 0.0181 1.9762 -0.0742 0.5447

Table 5.2: Fit parameters for Epot (5.4) of the excitation shown in Fig. 5.14.

is already present for earlier times, but is not notable (with bare eyes) until tω ≈ 25. The
temporal energy fluctuation is negligible, as it only fluctuates at the fifth digit after the
comma, what can be considered numerically constant. Unfortunately, the conservation
of the norm is not very good but also numerically acceptable.
In summary, TDUBHF reflects the main behavior of the time evolution in the breath-

ing mode excitation and also provides acceptable values for the quantities. In contrast to
the exact methods, TDUBHF provides the possibility to consider higher particle num-
bers. Unfortunately, with the current implementation, the program aborts after a few
time steps for N > 2, but with a further developement of the code it should be possible
to consider systems with about 7 particles and calculate the time evolution within a
few days on a single CPU. The consideration of systems with a higher dimensionality
should also be possible for this range of particle numbers.

Summary
Many aspects of the results obtained in UBHF were shown in this chapter. A rigorous
comparison of the energies and the ROBDM of UBHF and CI were performed and it
turned out that this approximation provides very good values for the energies also for
high particle interactions, while GP has only a small validity regime respective to the
coupling. Also the ROBDM obtained with UBHF resembles the exact solution. This
implies that all single particle observables yield very similar values for both methods.
Furthermore, the existence of metastable UBHF solutions that can be interpreted as

an excited state of the system was shown. It was seen that in the 2D case, the rotational
symmetry is not conserved. This is a property of UBHF that is supposed and used by
Romanovsky, but he did not show that this symmetry breaking happens spontaneously.
An important feature of this section is the test of the implementation of TDUBHF by
considering the breathing mode excitation of a bosonic system.
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Figure 5.14: Breathing mode excitation of a one dimensional two particle system
with λ = 0.1, κ = 0.1, and nb = 12. For this excitation, the confining potential was
switched off for the time interval [tω = 0.00, tω = 0.05], for both, the TDSE and
the TDUBHF. The form of the fit is given in equation (5.4) and the fit parameters
are listed in 5.2. Atop are plotted some snapshots of the time evolution. The blue
lines are the real part of the wave function and the violet lines are the imaginary
part multiplied by a factor 10. The related times are given within the snapshots in
natural units. The solid lines refer to the first spinor orbital and the dashed line to
the second. The TDSE calculation that is used for comparison in this section was
performed by Sebastian Bauch [16].
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6 Structure of the computational
implementation

(Shell output when starting the
program)

The computational implementation of the presented scheme for solving the UBHF
equations is a time consuming challenge. A large program for the performance of the
GP and UBHF approximation was developed during the time of my diploma work. As
it is the case for nearly all computer software it is under persistent construction and it
is my hope, that this program will be used or even further developed by others. For
that reason, an overview of the structure of this program and an auxiliary program that
is needed for the analysis of the output is given in this chapter. I will start with the
main program called beta 1. Afterwards, an overview of the features of the pythonscript
scs.py 2 that was used for further processing of the output provided by beta is given. All
versions of these programs are administrated with the revision control system subversion
(svn). The repository is located under the url

svn://134.245.67.14/programs/negf/heimsoth/beta.
The repository is organized, such that it can be checked out as an eclipse 3 project. But
it is also possible to do the checkout directly on the shell and compile the code with
the makefile in the folder src. The code is designed for a LINUX operating system and
requires the libraries GSL and LAPACK. This chapter refers to the revision number 361
of the repository given above. A HTML documentation for this program is planned to
be done in June 2009.

6.1 The program beta
The main program beta solves the UBHF equations in basis representation. Furthermore
it can perform different approximation schemes determined by a shell parameter. The

1The name is historically related. The first computational realizations of UBHF where implemented
in the source code of the program hfmbeta by K. Balzer [50]. Until later a separated program with
a new structure was developed that still contains parts of its mother program.

2For a detailed tutorial of the python programming language, see the webpage http://docs.python.
org/tutorial/.

3An integrated development environment available under http://www.eclipse.org/platform.
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possible procedures and the related values of the shell parameters are listed in the
following.

0/1 Hartree-Fock type approximation pursuant to the ansatz proposed by P. C. Martin
and J. Schwinger [38, 51]. The results obtained by this approximation are of poor
quality for the systems I considered. Furthermore, the iteration scheme is quite
unstable in the mode 0. A better stability is obtained with mode 1 (damping
mode procedure [52]).

2 Solves the GP equation by imaginary time stepping (see 3.2.2).

3 Solves the UBHF ansatz with the iteration scheme presented in 4.1.

4 In this mode beta starts performing the same procedure as in 3, and uses the
obtained results for a subsequent time evolution of the system (see 4.3).

This list is also printed on the shell, if the option ––help is passed. The calculation of the
wave functions, matrix elements of important operators and the two-particle integrals
with respect to the chosen basis are provided by a separated program developed by
K. Balzer and stored in extra files. All further parameters can be modified via an
initialization file beta.ini. The parameters that are accessible in this file and their
meaning in the program are given in Table 6.1.
beta is written in the C++ 4 programming language and the code applies many fea-

tures of object oriented programming paradigm. Each of the approximation schemes
and procedures provided by beta is performed by a separated class. As all approxi-
mations are solved iteratively, many class members with very similar functionality are
contained in each class. For that reason, they are all derived from an abstract base
class called solvable. It contains an increment operator (++) that executes an iteration
step when it is called. Also it has a member function called renew, that calculates the
needed entities in each step. For instance the UBHF variant of the method renew cal-
culates the operators Ĥn and Ôn for each n. An important member, that is contained
in solvable and hence in all derived classes is an object of the class parameters, where
all parameters that are accessible with beta.ini, some matrix elements and the two-
particle integrals are administrated. When the constructor of an object of parameters
is called, it reads the values for the parameters given in beta.ini.
After the iteration has finished, an object of the class output is instantiated. It

contains an object of the type solvable and hence has also access to the members of
the instantiation of parameters contained in solvable. Its central function is print
whose assignment is to store the results in ASCII datafiles. The relationships and tasks
of the afore mentioned classes are summarized in Fig. 6.1.

6.2 Analysis of the primary output (scs.py)
The datafiles, that are created with output only contain the most important informa-
tion, such as the chosen parameters, the resulting total energy (eval.dat), the spinor

4For an introduction to this language, I recommend the web tutorial http://www.cplusplus.com/doc/
tutorial/.

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
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Contains and manages all parameters
given in beta.ini.

• int npart: particle Number

• int nb: particle Number

• double lambda: interaction
strength

• double accuracy: claimed accu-
racy of iteration.

• std::string logfA/logfB: path to
the files with matrix-elements, wave-
function of the basis states and two-
particle integrals.

parameters

Class for the output of the results. Its most
important members are:

• solvable* result

• void print(): Writes the results in
different files.

output

Class for solving the UBHF equations.

• double *spinor: Coefficients of the
spinor orbitals; spinor+k*nb is the
pointer to the first coefficient of the
kth orbial.

• int **permat: Array with all per-
mutations of 1, . . .,N stored as rows.

• void renew(): Calculates the oper-
ators Ĥn, Ôn for all n.

• void equalize(): Brings the
spinor in the desired gauge of all
components having the same norm
and multiplies each component of the
spinor with a factor, such that Φ(Ψ)
is normalised.

gpamethod

Abstract base class for the performance of
the iteration steps.

• parameters* par

• double **dmat: array for storing
the density matrix respective to the
basis.

• virtual void operator++: An it-
eration step is performed, when this
increment operator is called.

• bool end: Turns true, when the
claimed accuracy is reached in the
last iteration step.

solvable

Class for the performance of grand canon-
ical Hartree-Fock approximation

• void renew(): Calculates the effec-
tive Hamiltonian in each step.

hfmethod

Class for calculating the system in GP ap-
proximation.

• void renew(): Calculates the GP
hamiltonian in each step.

gross-pitaevskii

is member of

is base class to

Figure 6.1: Schematic overview of the classes in the code of beta . The class
gpamethod performs the UBHF approximation.
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Parameter name and type
of variable

Meaning and value range

char stat 0∗ Statistic of the considered system. Can only take on
the values ’f’ and ’b’.

int npart 1 Particle number N
int nb 2 Number of basis functions nb
double lambda 3 Coupling strength λ.
double beta 4∗ Inverse temperature β.
std::string logfA 5 Path to the file with the matrix elements of the

Hamiltonian and the wave functions of the basis
states.

std::string logfB 6 Path to the file with the two-particle integrals.
double accuracy 7 Claimed accuracy of the iteration.
int nitmax 8 If this iteration number is reached, the procedure is

forced to stop.
double delta 9∗ Acceptance fraction in damping-mode-procedure).
double deltat 10 Length of the time step for the time evolution.
int xc 11∗ Exchange term.
char ensemble 12∗ ’g’ for grand canonical ensemble, ’c’ for canonical

ensemble.
bool bt 13∗ Bose term.
int g 14∗ Spin degeneracy.
double tmax 15 Upper limit for the length of the time evolution.
int partition 16 Set partition for multi-occupied UBHF.

Table 6.1: Parameters that can be controlled by editing the initialization file
beta.ini and their meaning. The numbers in the central column refer to the num-
ber of the parameter in the initialization file. The parameters marked with ∗have
only an effect on the procedure in the modes 0 or 1 and are not further explained
here (for more information see [50]).
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components (spincomps.dat), and the components of the ROBDM (dmat.dat). In fact
the spinor orbitals is all the information, that is needed, because they determine the
whole N -body wave function and with it all interesting expectation values can be cal-
culated. Anyway, with this pure data it is not possible to plot the wave functions of the
spinor orbitals or the natural orbitals. For that purpose, a python script called scs.py
5 was developted, that produces plotable data, or any other needed information to anal-
yse the results – such as occupation numbers of the natural orbitals. Unfortunately,
the current version of scs.py is only applicable to results, that where calculated in the
basis of the energy eigenstates of the harmonic oscillator. The exact task of scs.py is
determined by passing adequate shell parameters. The mode (passed by -m [number
of the mode]) is a parameter, that always has to be passed. It determines what type of
entity shall be calculated. Depending on the mode, other shell parameters are required.
In the following, the possible values for the mode and the related tasks are listed:

0 Print the n-th natural orbital of the ROBDM stored in dmat.dat. The required
number of the desired orbital is passed with -n [number of the orbital], where
the orbital with the highest occupation number has the number 0 in the enumer-
ation of the orbitals.

1 Print the one-particle-part of the total energy of the system.

2 Print the occupation numbers of the natural orbitals.

3 Print the spatial particle-density.

4 Print the wave function of the desired spinor orbital. The number of the spinor
orbital, that shall be printed is passed with -s [number of the orbital].

This script uses the numpy programming library, for solving the eigenvalue problem
of the ROBDM .

5The name of this program stands for “self consistent spinor”, because it was created at a time, when
I was not sure how to call this approximation method. Later I found out with the help of Karsten
Balzer, that Romanovsky had already proposed this ansatz and named it UBHF
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7 Conclusion and outlook

A rigorous and extensive analysis of the UBHF approximation was presentend in this
work. Its relationship to the GP and other approximations proposed by Cederbaum
et al. was discussed. In chapter 2, it was emphasized that for the considered systems
with fixed particle number, the grand canonical description, as it is used in the Keldysh
formalism does not yield acceptable results.
UBHF is the only single Slater permanent ansatz, which is capable to describe the

depletion of the condensate for increasing relative interaction strength. It provides en-
ergies that are impressively close to the energies obtained by exact methods, and also
the arising peaks in the particle densities for high coupling show up in this approxima-
tion. This is not included within GP. The current numerical implementation is capable
to handle systems consisting of 8 particles within acceptable time ranges. The perfor-
mance is better than CI, where for similar calculations, one is limited to a small basis
size, what would worsen the quality of the results.
The unfortunately bad scaling of the simulation time with increasing particle number

within the current implementation inhibits a consideration of systems with more than 8
bosons. The alternative representation of the UBHF equations with minor permanents
of the gramian matrix opens the possibility to clearly improve the algorithm. Hence,
it should be possible to apply the UBHF approximation to systems with up to 15
particles by using the Ryser algorithm for the calculation of the minor permanents. A
C++ routine for the calculation of such minor permanents is already developed, but the
implementation of this routine in a UBHF scheme did not yet work out fine. In addition,
the generalization of UBHF to multi occupied UBHF (proposed in section 4.6.2) should
further decrease the simulation time.
The TDUBHF approximation has so far only successfully been applied to two-particle

systems. For larger particle numbers, the current implementation aborts after very few
time steps. The comparison of the TDUBHF results with an exact method indicate,
that this ansatz is indeed reasonable and there is no reason, why it should not work for
larger particle numbers. The applicability of TDUBHF to higher particle numbers could
be considered as a great and important success, as approximations, that are capable to
describe the nonequilibrium of bosonic systems with such a good quality are very few.
For bosonic systems, it is pretty unsatisfactory to restrict to the consideration of the

ground state, as for low temperatures such systems can undergo very interesting phase
transitions, being connected with BEC, superfluidity or supersolidity. An extension of
the Ritz principle to finite temperatures does not exist. One possibility would be to
find all metastable states within the considered ansatz and raise a statistical approach
with these solutions. However, this idea already fails at the problem of detecting all
metastable states. And it is not guaranteed, that all metastable states refer to a real
excited state of the system or that all excited states have an analog local minimum in
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the regarded ansatz. A suggestive extension of UBHF to finite temperature systems
would be to use the UBHF orbitals as basis for a subsequent (full) CI calculation. The
UBHF orbitals (spinor orbitals) are supposed to be especially suitable for representing
the considered system.
The abstract notation of the ROBDO in Eq. (2.10), the Hartree and Fock mean-field

terms (A.8), the GP equation (3.24), and the variational derivative with respect to
single-particle states in appendix A is not used in the usual literature, thus, parts of
this work can be used as an introduction for handling this notation.
During the time of this work, a publication with some here presented ideas and results

did emerge [53].



A Variational derivative with respect to
abstract Hilbert space vectors

In Chap. 3 and 4 variational derivatives of functionals containing only matrix-elements,
scalar products and two-particle integrals are performed. To avoid an anticipated choice
of the basis in which the calculation shall be done, it is useful to derive some rules for
the derivative of such functionals with respect to an abstract Hilbert space state, such
that the choice of the basis can be done afterwards.
Some differentiation rules that are needed to obtain equation (4.14) are deduced in

this section. In the following, ϕn(x) denotes the wavefunction of the nth orbital of
a given set (like the components of the spinor (4.1) or a CONS). Consider now the
variational derivative of the matrix element of an arbitrary operator Â:

δ

δϕ∗n(x)
〈i|Â|j〉 = δ

δϕ∗n(x)

∫
ϕ∗i (z)A(z, y)ϕj(y) dz dy

= δin

∫
A(x, y)ϕj(y) dy = δin 〈x|Â|j〉 = 〈x|

( δ

δ 〈n|
〈i|Â|j〉

)
. (A.1)

The latter transformation can be considered as a definition for the abstract derivative
with respect to an abstract Hilbert space vector:

δ

δ 〈n|
〈i|Â|j〉 := δinÂ |j〉 (A.2)

To point out that this definition makes sense, consider the same derivative but in an
arbitrary discrete representation. Henceforth Greek letters will denote the quantum
numbers of the fix but arbitrarily chosen CONS, which is used as basis:

〈n| =
∑
γ

c∗nγ 〈γ| and |k〉 =
∑
α

ckα |α〉 . (A.3)

The differentiation of the matrix element 〈i|Â|j〉 with respect to c∗nγ – the γth expansion
coefficient of the nth dual vector 〈n| reads

∂

∂c∗nγ
〈i|Â|j〉 = ∂

∂c∗nγ

∑
αβ

c∗iαAαβcjβ =
∑
αβ

∂c∗iα
∂c∗nγ︸ ︷︷ ︸

=δinδαγ

Aαβcjβ = δin
∑
β

Aγβcjβ

= δin 〈γ|Â|j〉 = 〈γ|
( δ

δ 〈n|
〈i|Â|j〉

)
.
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Thus in general one can write for the differentiation with respect to an expansion coef-
ficient with respect to an arbitrary basis

∂

∂c∗nγ
〈i|Â|j〉 = 〈γ|

( δ

δ 〈n|
〈i|Â|j〉

)
. (A.4)

This formula also includes differentiations of simple scalar products by taking the special
case Â = 1̂.
For the differentiation of the two-particle integrals, the same ideas can be used. In

this work, the convention

wij,kl :=
∫

dx dy ϕ∗i (x)ϕ∗j (y)w(x, y)ϕk(x)ϕl(y) ⇒ Ŵ = 1
2
∑
ijkl

wij,klâ
†
i â
†
j âlâk (A.5)

for the two-particle integrals is used. The arguments in the wave function can be
composed of spatial coordinates and inner degrees of freedom such as spin or isospin.
Then the integral is actually a combination of an integral in coordinate space and a sum
over all remaining quantum numbers. A two particle integral can be expressed in terms
of two-particle integrals with respect to the vectors of the chosen CONS:

(A.3) ⇒ wij,kl =
∑
αβκλ

c∗iαc
∗
jβckκclλwαβ,κλ (A.6)

Analog to the one-body operator case, in this discrete representation a differentiation
with respect to the expansion coefficient c∗nγ reduces to a simple partial derivative:

∂

∂c∗nγ
wij,kl =

∑
αβκλ

(
δinδαγ c

∗
jβckκclλ + δjnδβγ c

∗
iαckκclλ

)
wαβ,κλ

= 〈γ|
(
δinĴjl |k〉+ δjnĴik |l〉

)
= 〈γ|

(
δinK̂jk |l〉+ δjnK̂il |k〉

)
(A.7)

Thus we have a bit more liberties to define the remaining term. The names and the
definitions of the appearing operators are

Hartree (direct) : Ĵij =
∫

dx dy ϕ∗i (y)w(x, y)ϕj(y) |x〉 〈x|

Fock (exchange) : K̂ij =
∫

dx dy ϕ∗i (x)w(x, y)ϕj(y) |y〉 〈x| .

(A.8)

With these definitions and equation (A.7) the abstract variational derivative of a two-
particle integral reads

δ

δ 〈n|
wij,kl = δinĴjl |k〉+ δjnĴik |l〉 = δinK̂jk |l〉+ δjnK̂il |k〉 . (A.9)

It was shown here that all functional derivatives of matrix elements or two-particle
integrals can be regarded as a comprehension of simple and well known partial differ-
entiations, thus the usual differentiation rules like product or chain rule still hold for
functionals that only depend on scalar products, matrix elements or two-particle in-
tegrals of the considered Hilbert space states. As this is the case for all considered
functionals in chapters 3 and 4, all the differentiation rules needed are given in this
chapter.



B Detailed derivations for the UBHF
equations

The derivations of the operators Ĥ and Ô that are needed to bring equation (4.14) into
the form of a self consistent eigenvalue problem (4.16), were not done in Chap. 4, as
such derivations need lots of long equations and would worsen the overview.
Both, the derivation of the first introduced pair of spinor operators Eq. (4.15) and

of the second ones Eq. (4.19) is given in this chapter. The notations of both pairs of
operators only differs in the number of subscripts. I start with the derivation of the
operators given in equation (4.15).

N ! δ

δ 〈n| 〈Φ|Φ〉 =
∑
π∈SN

Pn |π(n)〉 =
N∑
m=1

 ∑
π∈SN
π(n)=m

Pn


︸ ︷︷ ︸

Ônm

|m〉 , (B.1)

where the the last transformation simply arises from the equality of the sum
∑
π∈SN

and the sum
∑N
m=1

∑
π∈SN
π(n)=m

. This can also be used for the derivation of the operator

Ĥnm:

N ! δ

δ 〈n| 〈Φ|Ĥ|Φ〉

=
∑
π∈SN

{ (T1)

Pnĥ |π(n)〉+
∑
l 6=n

(T2)

Pnl 〈l|ĥ|π(l)〉 |π(n)〉+
∑
l6=n

(T3)

PnlĴlπ(l) |π(n)〉+ 1
2

∑
k,l 6=n
k 6=l

(T4)
Pnlkwkl,π(k)π(l) |π(n)〉

}

=
∑
π∈SN

{
Pnĥ+

∑
l6=n

(
Pnl 〈l|ĥ|π(l)〉+ Ĵlπ(l)

)
+ 1

2

∑
k,l 6=n
k 6=l

Pnlkwkl,π(k)π(l)

}
|π(n)〉

=
N∑
m=1

 ∑
π∈SN
π(n)=m

{
Pnĥ+

∑
l 6=n

(
Pnl 〈l|ĥ|π(l)〉+ Ĵlπ(l)

)
+ 1

2

∑
k,l 6=n
k 6=l

Pnlkwkl,π(k)π(l)

}
︸ ︷︷ ︸

Ĥnm

|m〉 . (B.2)

The designation of the terms with (T1). . . (T4) in the second line of this chain of
equations is needed now for the calculation of the singly subscripted operators Ĥn and
Ôn. These operators are obtained by expressing the derivatives in (B.1) and (B.2) as
the action of an operator on |n〉. For the calculation of Ôn one has to distinguish only
the cases π(n) = n and π(n) 6= n under the sum:∑

π∈SN

Pn |π(n)〉 =
∑
π∈SN

{
δnπ(n)Pn + (1− δnπ(n))Pnπ−1(n) |π(n)〉 〈π−1(n)|

}
|n〉 = Ôn |n〉 (B.3)
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If this transformation is not clear to the reader, I recommend to reproduce this trans-
formation backwards or perform this calculation for the two-particle case, where the
sum over all permutations has only two summands1.
For the calculation of Ĥn, regard each of the terms (T1). . . (T4) separately. For the

term (T1), one has to consider the same cases as in (B.3):

∑
π∈SN

Pnĥ |π(n)〉 =
∑
π∈SN

{
δnπ(n)Pnĥ+ (1− δnπ(n))Pnπ−1(n)ĥ |π(n)〉 〈π−1(n)|

}
|n〉 . (B.4)

For the term (T2) and (T3), one has to additionally consider the case π(l) = n. The
cases π(l) = n and π(n) = n are exclusive, because the sum runs over l 6= n. In the
following, the calculation of the terms that arise from (T2) is done:

∑
π∈SN

∑
l 6=n

Pnl 〈l|ĥ|π(l)〉 |π(n)〉

=
∑
π∈SN

∑
l6=n

{
δnπ(n)Pnl 〈l|ĥ|π(l)〉+

(
1− δnπ(n)

)[
δnπ(l)︸ ︷︷ ︸
δ
π−1(n)l

Pnl |π(n)〉 〈l| ĥ

+
(
1− δnπ(l)

)
Pnπ−1(n)l 〈l|ĥ|π(l)〉 |π(n)〉 〈π−1(n)|

]}
|n〉

=
∑
π∈SN

{
δnπ(n)

∑
l 6=n

Pnl 〈l|ĥ|π(l)〉+
(
1− δnπ(n)

)[
Pnπ−1(n) |π(n)〉 〈π−1(n)| ĥ

+
∑
l6=n

l6=π−1(n)

Pnπ−1(n)l 〈l|ĥ|π(l)〉 |π(n)〉 〈π−1(n)|
]}
|n〉 (B.5)

For the treatment of (T3), the relation Ĵjl |k〉 = K̂jk |l〉 is needed (see Eq. (A.9)).

∑
π∈SN

∑
l6=n

PnlĴlπ(l) |π(n)〉

=
∑
π∈SN

∑
l 6=n

{
δnπ(n)PnlĴlπ(l) +

(
1− δnπ(n)

)[
δnπ(l)PnlK̂lπ(n)

+
(
1− δnπ(l)

)
Pnπ−1(n)lĴlπ(l) |π(n)〉 〈π−1(n)|

]}
|n〉

=
∑
π∈SN

{
δnπ(n)

∑
l 6=n

PnlĴlπ(l) +
(
1− δnπ(n)

)[
Pnπ−1(n)K̂π−1(n)π(n)

+
∑
l6=n

l6=π−1(n)

Pnlπ−1(n)Ĵlπ(l) |π(n)〉 〈π−1(n)|
]}
|n〉 (B.6)

Finally, for the last term (T4), one additionally has to consider the case π(k) = n.

1For that purpose, the footnote 5 in Chap. 4 may helps.
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Therefore the equation wij,kl = 〈i|Ĵjl|k〉 is needed.∑
π∈SN

1
2

∑
k,l 6=n
k 6=l

Pnlkwkl,π(k)π(l) |π(n)〉

=
∑
π∈SN

1
2

∑
k,l 6=n
k 6=l

{
δnπ(n)Pnlkwkl,π(k)π(l) +

(
1− δnπ(n)

)[
δnπ(l) |π(n)〉 〈l| Ĵkπ(k) + δnπ(k) |π(n)〉 〈k| Ĵlπ(l)

+
(
1− δnπ(l) − δnπ(k)

)
wkl,π(k)π(l)Pnπ−1(n)kl |π(n)〉 〈π−1(n)|

]}
|n〉

=
∑
π∈SN

{
δnπ(n)

1
2

∑
k,l 6=n
k 6=l

Pnlkwkl,π(k)π(l) +
(
1− δnπ(n)

)[ ∑
l 6=n

l 6=π−1(n)

Pnlπ−1(n) |π(n)〉 〈π−1(n)| Ĵlπ(l)

+ 1
2

∑
k,l 6=n,π−1(n)

k 6=l

Pklnπ−1(n)wkl,π(k)π(l) |π(n)〉 〈π−1(n)|
]}
|n〉 . (B.7)

In order to obtain the sought after operator Ĥn, one has to bring all the here calculated
terms together and obtains:

N ! δ

δ 〈n| 〈Φ|Ĥ|Φ〉 =
∑
π∈SN

{
δnπ(n)

[
Pnĥ+

∑
l6=n

Pln(〈l|ĥ|π(l)〉+ Ĵlπ(l)) + 1
2

∑
k,l 6=n
k 6=l

Pklnwkl,π(k)π(l)

]

+ (1− δπ(n)n)
[
Pnπ−1(n)

(
ĥ |π(n)〉 〈π−1(n)|+ |π(n)〉 〈π−1(n)| ĥ+ K̂π−1(n)π(n)

)
+

∑
l 6=π−1(n)

l 6=n

Plnπ−1(n)

(
〈l|ĥ|π(l)〉 |π(n)〉 〈π−1(n)|+ Ĵlπ(l) |π(n)〉 〈π−1(n)|+ |π(n)〉 〈π−1(n)| Ĵlπ(l)

)

+ 1
2

∑
k,l 6=nπ−1(n)

k 6=l

Pklnπ−1(n)wkl,π(k)π(l) |π(n)〉 〈π−1(n)|
]}
|n〉 = Ĥn |n〉 .
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C Relativity of orthonormality

It is well known that one can create a set of orthonormal vectors out of an arbitrary set
of linearly independent vectors |1〉 , . . . , |N〉 such that both sets expand the same vector
space; e.g. via the Gram-Schmidt process. Orthonormality of a set of vectors is not at
all an intrinsic property of the vectors but is rather inseparably connected to the choice
of the scalar product. Keeping this fact in mind, one may ask if it is also possible to
create an orthonormal set of vectors not by changing the vectors, but by a change of the
scalar product. I.e. if a linearly independent set of vectors |1〉 , . . . , |N〉 is given; does
there exist a (hermitian – with respect to the present scalar product) positive definite
operator ô such that

〈i|ô|j〉 = δij for all i, j ? (C.1)

In this chapter it is shown that this is actually the case and a closed expression for the
operator ô is given. For that purpose consider each vector of the given set represented as
an N -tuple (columns) v1, . . . ,vN that contains the expansion coefficients with respect
to an arbitrary but fix chosen ONS that spans the same space as the original vectors
– for which it is already known that this is always possible to find. As the vectors are
linearly independent, the determinant of the matrix that has the tuples v1, . . . ,vN as
columns is nonzero

det(v1, . . . ,vN ) 6= 0 . (C.2)

For the calculation of the partial derivative of this determinant with respect to the
kth component of the ith vector1 one can make use of the defining properties of the
determinant:

∂

∂vik
det(v1, . . . ,vN ) = lim

h→0

1
h

(
det(v1, . . . ,vi + hêk, . . . ,vN )− det(v1, . . . ,vi, . . . ,vN )

)
= det(v1, . . . , êk, . . . ,vN ) , (C.3)

where êk denotes the tuple with the kth component being 1 and the others being 0. The
determinant of the matrix that is obtained by replacing the ith column by an arbitrary
vector v′ can be expressed as dyadic product of the gradient ∇i det(v1, . . . ,vN ) and v′:

det(v1, . . . ,vN )|vi↔v =
∑
k

∂

∂vik
det(v1, . . . ,vN ) v′k . (C.4)

Thus the dyadic product ∇i det(v1, . . . ,vN )Tvj is only nonvanishing if i = j, because
otherwise it would be the determinant of a matrix with two vectors being equal. An

1As the basis to which the expansion coefficients (contained as components in the tuples) is fixed
during this calculation, it is allowed to identify the tuples v1, . . . ,vN with the vectors |1〉 , . . . , |N〉.
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analogous calculation holds for the complex conjugated of the determinant and the
derivatives with respect to the dual vectors v†1, . . . ,v

†
N :(

∇i det(v1, . . . ,vN )
)T

vj = δij det(v1, . . . ,vN )

v†j
(
∇i det(v1, . . . ,vN )

)∗
= δij det(v1, . . . ,vN )∗

These two equations can be merged to yield the following equation

v†i
(
∇n det(v1, . . . ,vN )

)∗ (
∇n det(v1, . . . ,vN )

)T
vj = δinδjn|det(v1, . . . ,vN )|2 ,

(C.5)
which leads directly to the definition of the sought after operator

ô = 1
|det(v1, . . . ,vN )|2

∑
n

∇†n∇n| det(v1, . . . ,vN )|2 . (C.6)

This notation for ô – with the derivatives ∇†n∇n acting on the same term – only holds if
the components of the tuples are considered as variables independent of their complex
conjugated. The squared absolute value of a determinant is the determinant of the
Gramian matrix of its columns (or its rows). Thus, for the abstract vectors |1〉 , . . . , |N〉
given at the beginning of this chapter, this is just the norm of the antisymmetrized
product state ΦF of |1〉 , . . . , |N〉, and the operator given in (C.6) can be expressed in
an abstract way as follows

ô = 1
〈ΦF |ΦF 〉

∑
n

δ

δ |n〉
δ

δ 〈n|
〈ΦF |ΦF 〉 , with

δ

δ |n〉
δ

δ 〈n|
〈ΦF |ΦF 〉 =

∑
π∈SN

(−1)π
{
δnπ(n)Pn + (1− δπ(n)n)Pnπ−1(n) |π(n)〉 〈π−1(n)|

}
(C.7)

With this operator ô, one can give an expression of 1̂ (in the subspace of the expansion
of the considered set of vectors) that is well connected to the set of vectors one has to
deal with:

1̂ =
∑
n

|n〉 〈n| ô =
∑
n

ô |n〉 〈n| . (C.8)

The first equality can be derived by regarding the action of the sum on one of the vectors
|1〉 , . . . , |N〉, and the second follows from the hermiticity of 1̂. Hence, the action of an
arbitrary one-body operator Â within the expansion of the vectors |1〉 , . . . , |N〉 can be
expressed as

Â = 1̂Â1̂ =
∑
ij

〈i|Â|j〉 ô |i〉 〈j| ô . (C.9)

A two body operator ŵ can be expressed in an analog way:

ŵ =
∑
ijkl

wij,kl ô |i〉 ⊗ ô |j〉 〈k| ô⊗ 〈l| ô . (C.10)

This can easily be seen, by calculating the matrix elements 〈k′| ⊗ 〈l′| ŵ |i′〉 ⊗ |j′〉, which
yields the two-particle integrals.



D Hartree-Fock for the grand canonical
ensemble

In literature the Hartree-Fock approximation for finite temperature systems is usually
introduced as an expansion of the two-particle Green’s function in terms of products of
the one-particle Green’s function that complies with the conditions due to the quantum
statistics of the particles [38, 50, 54, 55]. The resulting reduced one-body density matrix,
can be regarded as the one-body density matrix of an ideal system with an effective
Hamiltonian.
In this chapter a different derivation of the well known Hartree-Fock equations is

presented. The starting point is the assumption that all energy eigenstates of the many
body system are symmetrized product states of a set of self-consistent one particle states
and that each of these orbitals is related to an energy that additionally contributes to
the total energy of the many body state.

D.1 Fermions

With this assumption, the total energy in the grand canonical ensemble has the form

〈Ĥ〉 = 1
Z

∑
n1=0,1

∑
n2=0,1

. . . e−β
∑

k=1 nk(εk−µ)

· 〈n1n2 . . .|
∑

k1k2=1
hk1k2a

†
k1
ak2 + 1

2
∑

k1k2k3k4

wk1k2,k3k4 â
†
k1
â†k2

âk3 âk4 |n1n2 . . .〉 . (D.1)

The two-particle integrals wk1k2,k3k4 are defined in Eq. (A.5). The creation and an-
nihilation operators refer to the Hartree-Fock orbitals. For the computation of this
expectation value consider the diagonal elements of the following operator products

〈n1n2 . . .| â†k1
â†k2

âk3 âk4 |n1n2 . . .〉 = (1− δk1k2)(1− δk3k4)nk1nk2(δk2k3δk1k4 − δk2k4δk1k3)
= (δk2k3δk1k4 − δk2k4δk1k3)nk1nk2 (D.2)

〈n1n2 . . .| â†k1
âk2 |n1n2 . . .〉 = δk1k2nk1 (D.3)
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The sum over the occupation numbers can be executed by introducing the averages of
the occupation numbers and their products:

〈Ĥ〉 =
∑
k1k2

hk1k2δk1k2 〈nk1〉+
1
2

∑
k1k2k3k4

wk1k2,k3k4(δk2k3δk1k4 − δk2k4δk1k3) 〈nk1nk2〉

=
∑
k

hkk 〈nk〉+
1
2
∑
k1k2

[wk1k2,k2k1 − wk1k2,k1k2 ] 〈nk1nk2〉

= 〈h〉+ 〈W 〉 (D.4)

Fortunately, for i 6= j the replacement 〈ninj〉 = 〈ni〉 〈nj〉 can be done. This equality
is only valid for i 6= j, but it is allowed to make the same replacement also for equal
indices, since these terms annul each other because of the minus sign that appears in
the fermionic case in the exchange term.
For further calculation, the basis of the ideal system is chosen to represent the Hartree-

Fock orbitals. The basis states of the ideal system will be denoted with the index l. Both
the Hartree-Fock orbitals and the basis orbitals form a CONS. Thus, the transformation
is notably easy

Akl := 〈k|l〉 (D.5)
⇒ â†k =

∑
l

Aklâ
†
l â†l =

∑
k

A∗klâ
†
k (D.6)

Especially the two-fold subscripted entities transform as follows

〈â†l1 âl2〉 =
∑
k1k2

A∗k1l1Ak2l2 〈â
†
k1
âk2〉 =

∑
k

A∗kl1Akl2 〈nk〉 (D.7)

|k1k2) =
∑
l1l2

Ak1l1Ak2l2 |l1l2) , (D.8)

where |l1l2) := |l1〉 ⊗ |l2〉 denotes the tensor product of the vectors |l1〉 and |l2〉. In
the following equation, the two-particle integrals are regarded as matrix elements of
these tensor products (according to [14]). These transformations can be used for the
calculation of the expectation values within the basis of the ideal system

〈h〉 =
∑
k

hkk 〈nk〉 =
∑
k

∑
l1l2

Akl1A
∗
kl2 〈l1|h|l2〉︸ ︷︷ ︸

=〈k|h|k〉

〈nk〉 =
∑
l

ε0l
∑
k

AklA
∗
kl 〈nk〉︸ ︷︷ ︸

=〈a†
l
al〉=:〈nl〉

The expectation values for the interaction 〈W 〉 in Eq. (D.4) part is a little bit more
awkward to calculate∑

k1k2

〈nk1〉 〈nk2〉wk1k2,k1k2 =
∑
k1k2

∑
l1l2

A∗k1l1A
∗
k2l2(l1l2|w

∑
l3l4

Ak1l3Ak2l4 |l3l4) 〈nk1〉 〈nk2〉

(D.9)

=
∑
l1...l4

wl1l2,l3l4
∑
k1

〈nk1〉A∗k1l1Ak1l3︸ ︷︷ ︸
=〈a†

l1
al3 〉

∑
k2

〈nk2〉A∗k2l2Ak2l4︸ ︷︷ ︸
=〈â†

l2
âl4 〉

=
∑
l1...l4

wl1l2,l3l4 〈â
†
l1
âl3〉 〈â

†
l2
âl4〉 (D.10)
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Analogously, the other summand of the interaction part in (D.4) reads:∑
k1k2

〈nk1〉 〈nk2〉wk1k2,k2k1 =
∑
l1...l4

wl1l2,l4l3 〈â
†
l1
âl3〉 〈â

†
l2
âl4〉 (D.11)

In total, the following expression for the expectation value of the energy is obtained

〈H〉 =
∑
l

ε0l 〈nl〉+
1
2
∑
l1...l4

[wl1l2,l4l3 − wl1l2,l3l4 ] 〈â
†
l1
âl3〉 〈â

†
l2
âl4〉

=
〈 ∑

l

ε0l â
†
l âl +

1
2
∑
l1...l4

[wl1l2,l4l3 − wl1l2,l3l4 ] 〈â
†
l1
âl3〉 â

†
l2
âl4

〉
(D.12)

Hence, by extracting one averaging, the outer averaging can be regarded as an average
over an effective Hamiltonian. In second quantization this effective Hamiltonian deduced
here reads

Ĥeff =
∑
l

ε0l â
†
l âl +

1
2
∑
l1...l4

[wl1l2,l4l3 − wl1l2,l3l4 ] 〈â
†
l1
âl3〉 â

†
l2
âl4 (D.13)

As it is an effective one-particle Hamiltonian it is sufficient to calculate the matrix ele-
ments with respect to one-body Hilbert space states to know the action of this operator
in Fock space. With the relation 〈l5|â†l2 âl4 |l6〉 = δl4l6δl5l2 the matrix element

〈l5|H|l6〉 = δl5l6ε
0
l5 + 1

2
∑
l1l3

[wl1l5,l6l3 − wl1l5,l3l6 ] 〈â
†
l1
âl3〉 (D.14)

is obtained. In [50] 1 , the factor 1
2 does not appear at the interaction part, but there

the total energy is calculated by

〈Ĥ [50]〉 = 1
2
∑
k

f(εk − µ)εk + 1
2
∑
k1k2

h0
k1k2 〈a

†
k1
ak2〉 = 1

2
∑
k

H
[50]
kk · 〈nk〉+

1
2
∑
k

h0
kk 〈nk〉

= 1
2
〈H [50]〉+ 1

2
〈h0〉 = 1

2
(
〈h0〉+ 〈W [50]〉+ 〈h0〉

)
= 〈h0〉+ 1

2
〈W [50]〉 (D.15)

The superscripted index [50] shall suggest that this is the calculation of the energy ac-
cording to [50] where the factor 1

2 is included in the calculation of the energy afterwards.
The function f in the first term denotes the Fermi-Dirac distribution.

D.2 Bosons
Equation (D.1) holds as well for the calculation of the total energy of a bosonic system,
but with the summations of the occupation numbers running from 0 to ∞. The expec-
tation values of the products of creation and annihilation operators (D.2) differ from

1For a comparison with [50] note the different conventions in the notation of the two-particle integrals:
w

[50]
kl,ij = wik,jl.
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the fermionic case [56]

〈n1n2 . . .| â†k1
â†k2

âk3 âk4 |n1n2 . . .〉 = δk3k4δk3k2δk2k1nk1(nk1 − 1)
+ (1− δk1k2)nk1nk2(δk1k3δk2k4 + δk1k4δk2k3) (D.16)

〈n1n2 . . .| â†k1
ak2 |n1n2 . . .〉 = δk1k2nk1 (D.17)

Inserting these relations in equation (D.1) and gathering the thermal average to the
products of creators and annihilators, the following expression for the total energy is
obtained

〈H〉 =
∑
k1

hk1k2 〈nk1〉+
1
2
∑
k1 6=k2

〈nk1nk2〉︸ ︷︷ ︸
〈nk1 〉〈nk2 〉

[wk1k2,k2k1 + wk1k2,k1k2 ]

+ 1
2
∑
k

(〈n2
k〉 − 〈nk〉)wkk,kk

In order to make the same transformation into the basis of the ideal system for the first
two terms in the interaction part, it is necessary that the sums run over all k1 and k2.
The error that arises by replacing the sum over k1 6= k2 by a sum over all k1, k2 needs
to be countervailed by subtracting the term

∑
k 〈nk〉

2wkk,kk. Additionally the second
moment of the bosonic occupation numbers in the grand canonical ensemble has to be
replaced by a term consisting of the first moment of the occupation numbers. For that
purpose, the following calculation is done:

〈nk〉 = 1
eβ(εk−µ) − 1

⇒ eβ(εk−µ) = 1 + 1
〈nk〉

< n2
k >= eβ(εk−µ) + 1

(eβ(εk−µ) − 1)2
⇒ < n2

k >= 2 < nk >
2 + < nk > . (D.18)

This can be inserted in the expression for 〈H〉. Expressing the matrix elements with
respect to eigenstates of ĥ yields the following term for the total energy:

〈H〉 =
∑
l

ε0l 〈nl〉+
1
2
∑
l1...l4

[wl1l2,l4l3 + wl1l2,l3l4 ] 〈â
†
l1
âl3〉 〈â

†
l2
âl4〉

+ 1
2
∑
k

(〈n2
k〉 − 〈nk〉 − 2 〈nk〉2)wkk,kk

=
∑
l

ε0l 〈nl〉+
1
2
∑
l1...l4

[wl1l2,l4l3 + wl1l2,l3l4 ] 〈â
†
l1
âl3〉 〈â

†
l2
âl4〉

+ 1
2
∑
k

((2 〈nk〉2 + 〈nk〉)− 〈nk〉 − 2 〈nk〉2)wkk,kk

=
∑
l

ε0l 〈nl〉+
1
2
∑
l1...l4

[wl1l2,l4l3 + wl1l2,l3l4 ] 〈â
†
l1
âl3〉 〈â

†
l2
âl4〉 (D.19)

The additional term is canceled, and the same effective Hamiltonian as for the fermionic
case is obtained (see Eq. (D.12)), but with a changed sign of the exchange term.
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D.2.1 Problems for Bose systems
In practice, one can obtain the effective Hamilton operator Ĥeff by iteratively finding
its eigensystem. Effects that arise from the particle number fluctuation in the grand
canonical ensemble are negligible for fermions. For bosons this is not the case (see
section 2.4). Another calculation is done here that emphasizes the fact that a grand
canonical treatment is not suitable for Bose systems with fixed particle number N even
if the mean value of N coincides with the particle number of the considered system.
The effective one-body Hamiltonian Ĥeff can also be obtained by an approximate

expansion of the two-body density in terms of the reduced one-body density matrix:

n(x, y) = n(x)n(y) + |g(x, y)|2 (D.20)

For a system with fixed particle number N , the two-body density should be normalized
by ∫

dx dy n(x, y) = N(N − 1) , (D.21)

whereas the expansion in (D.20) gives∫
dx dy n(x)n(y) + |g(x, y)|2︸ ︷︷ ︸

=|
∑

i
niϕ∗i (x)ϕi(y)|2

= N2 +
∑
ij

ninj

∫
ϕ∗i (x)ϕj(x) dx︸ ︷︷ ︸

=δij

∫
ϕi(y)ϕ∗j (y) dy︸ ︷︷ ︸

=δij

= N2 +
∑
i

n2
i . (D.22)

Which can impossibly be equal to the term in (D.21). Meanwhile, for fermions the
last term in the latter equation would be signed with a minus and, for all occupation
numbers being either one or zero, it coincides exactly with (D.21). This difference in
the normalization of the two-body density is another explanation for the high difference
of the Energy values with this Hartree-Fock approximation for bosons and an exact
method (CI or PIMC).
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E Computing the permanent of a matrix
with Ryser’s algorithm

As well as the determinant, the permanent of a Matrix is a special case of the so called
immanent. Even though the definitions of both mappings are closely related to each
other, the complexity of their computation differs substantially. While the determinant
can be calculated in polynomial time1 by Gaussian elimination, for the permanent, it is
still uncertain, if an algorithm for its calculation in polynomial time even exists. The
existence of such an algorithm would imply P = NP in computational complexity the-
ory, which is one of the Millennium Prize Problems [36]1. In the analytical calculations
for the UBHF-Method, the Leibniz-formula for the calculation of the permanent of an
m×m-matrix was used:

per(A) =
∑
π∈Sm

m∏
i=1

aiπ(i) . (E.1)

This formula serves as the definition of the permanent and its complexity is given by
the term (m− 1)m!, which grows even faster than any exponential function. Moreover,
there is an algorithm that is analog to the Laplacian expansion of a determinant:

per(A) =
m∑
i=1

aijper(Aij) for all j. (E.2)

The minor matrix Aij is the matrix that is obtained by removing the jth column and
the ith row from A. As this algorithm is still super-exponential it is not suitable for
computational implementation.
The best known algorithm for the computation of the permanent of an arbitrary

matrix was developed 1963 by H.J. Ryser and is named after him [57]. The Ryser
formula can be written in the following, compact way:

per(A) =
∑

P⊆{1,...,m}
(−1)m−|P |

m∏
i=1

∑
j∈P

aij , (E.3)

where |P | denotes the cardinality of the set P . The set of all subsets of {1, . . . ,m} is
called the power set of {1, . . . ,m} and has 2m elements. Thus, the complexity of Ryser’s
formula is m2 · 2m.
One possibility to reach larger particle numbers in UBHF is to set a certain number

of particles in the same orbital (see section 4.6.3). For the calculation of the related
permanents, this would mean that some columns and some rows of the matrix A are
the same. The frequency of each column (row) vector can be expressed by a νc-tuple

1For more explanations see the footnotes in section 3.4.
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(νr-tuple) nc (nr) of integer numbers – where νc (νr) denotes the number of different
columns (rows). In this case it is sufficient to store the matrix by just dealing with the
columns that differ from each other. E.g. let ãij denote the matrix component with
frequency ncj in column direction and nri in row direction. With this notation, the
sum over all subsets in (E.3) can be replaced by a sum over all partitions n′, with the
property

n′i ≤ nci for all i , (E.4)

which will be denoted with n′ ≺ nc and called a subpartition of nc. This is because
the sum over all subsets would contain many summands that are equal, e.g. if the first
and the second column of A are equal, then the subsets that are obtained by removing
the element 1 or the element 2 of {1, . . . ,m} yield the same summand in (E.3). The
set of all subsets of {1, . . . ,m} has, in general, a higher cardinality than the set of all
subpartitions of a tuple with the sum of all components equal to m. Thus, in addition to
replacing the sum over all subsets by a sum over all subpartitions, one has to build in a
combinatorial factor, that takes into account how many possibilities exist to obtain the
partition n′ by removing a certain number of columns from a matrix with nc as partition
for its columns. The factor is composed as a product of factors for each component of
the tuple n′. As there are

(ncl
n′
l

)1 ways to select n′l indistinguishable objects from ncl, the
total factor for each summand is

∏νc
l=1
(ncl
n′
l

)
. Thus, by considering matrices with some

rows or columns to be equal, one obtains the following formula from the Ryser formula:

per(A) =
∑

n′≺nc

νc∏
l=1

(
ncl
n′l

)
(−1)m−|n′|

νc∏
i=1

(
νr∑
j=1

nrj ãij

)n′i
. (E.5)

In this case |n′| denotes the sum of all components of the partition n′. This variant
of the Ryser formula is not present in the literature, but its correctness has been (pos-
itively) tested by comparing its numerical implementation with an implementation of
the original version (E.3).
A good tutorial for the implementation of the Ryser algorithm is given on the web

site http://www.codeproject.com/KB/applications/RyserPermanent.aspx .

1binomial coefficient

http://www.codeproject.com/KB/applications/RyserPermanent.aspx


F Occupation numbers in the canonical
ensemble

The mean occupation numbers of ideal systems in equilibrium for both particle types
fermions and bosons are well known in the case of a grand canonical ensemble

〈nk〉 =
1

eβ(εk−µ) − ζ
with ζ =

{
+1 , for bosons
−1 , for fermions

, (F.1)

with εk being the energy of the kth orbital and µ the chemical potential of the system.
Unfortunately, it is not possible to give a closed expression for the occupation num-
bers in the canonical ensemble. In this appendix a recursion relation for the canonical
partition function Z(N, β), the occupation numbers 〈nk〉 (N, β), and the correlations of
the occupation numbers 〈nknl〉 (N, β) dependent upon the inverse temperature β and
particle number N is derived for both particle types1.
Two common ways exist to represent symmetrized product states. One way is the so

called occupation number representation, which is usually used in literature. The other
possibility to represent a (anti-)symmetrized product state is by only giving the orbitals
that are occupied. E.g. |i1, i2, . . . , iN 〉 means that one particle is in orbital i1, another is
in orbital i2 and so on. For fermions, all orbitals i1, . . . , iN have to be different, while for
bosons they don’t. If a summation over all these states is performed – as is needed for
the trace, a double counting of the states has to be avoided by introducing an ordering
of these states. Note that e.g. the states |i1, i2, . . . , iN 〉 and |i2, i1, . . . , iN 〉 differ at most
by a phase factor. A double counting is avoided by considering only states that fulfill

iN <
(−) iN−1 <

(−) · · · <
(−) i2

<
(−) i1 (F.2)

with
<

(−) =
{

6 , for bosons
< , for fermions

(F.3)

This ordering is used in the following expression of the occupation number 〈nk〉N (β) of
a N -particle system (multiplied by the partition ZN (β) function of the system)

ZN (β) 〈nk〉N (β) =
∑

iN
<

(−) iN−1

· · ·
∑

i2
<

(−) i1

e−β
∑N

s=1 εis nk(i1, . . . , iN )︸ ︷︷ ︸
:=
∑N

s=1 δkis

(F.4)

1Even though fermions are not the topic of this thesis, I take the freedom and present this in my
opinion beautiful calculation that I have never seen in literature.
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For a simpler notation of the sums, the sum over a multi-index in introduced by∑
iN

<
(−) iN−1

· · ·
∑

i2
<

(−) i1

· · · =
∑

i∈IN,ζ

· · · , (F.5)

where the index set IN,ζ fulfills the ordering given in Eq. (F.2), in compliance to the
value of ζ.
The summand in (F.4) vanishes if none of the summation indices i1, . . . , iN equals k.

Thus it is convenient to pick out one index iN and fix it to k. For bosons, the remaining
sum runs over the same range of indices but with one index fewer and the occupation
counter nk has to be incremented by 1. For fermions it is the same, but if one of the
remaining indices equals k, the summand has to vanish due to the Pauli principle. This
is guaranteed by replacing nk(i) with ζnk(i) + 1. Thus,

ZN (β) 〈nk〉N (β) = e−βεk
∑

i∈IN−1,ζ

e−β
∑N−1

s=1 εis (ζnk(i1, . . . , iN−1) + 1) , (F.6)

with ζ given in (F.1). The last expression can be further simplified:

e−βεkζ
∑

i∈IN−1,ζ

e−β
∑N−1

s=1 εisnk(i)

︸ ︷︷ ︸
=ZN−1(β)〈nk〉N−1(β)

+e−βεk
∑

i∈IN−1,ζ

e−β
∑N−1

s=1 εis

︸ ︷︷ ︸
=ZN−1(β)

= e−βεkZN−1(β)(〈nk〉N−1 (β) + ζ) (F.7)

=⇒ ZN (β) 〈nk〉N (β) = e−βεkZN−1(β)
(
ζ 〈nk〉N−1 (β) + 1

)
.

(F.8)

This equation coincides with the one given in [18]. E.g. for two particles, one obtains

Z2(β) 〈nk〉2 (β) = e−βεk
(
ζ Z1(β) 〈nk〉1 (β)︸ ︷︷ ︸

e−βεk

+Z1(β)
)

= ζe−2βεk + e−βεkZ1(β) (F.9)

Inserting this expression in the equation for N = 3 and so on, leads to

ZN (β) 〈nk〉N (β) =
N∑
n=1

ζn+1ZN−n(β)e−βnεk , (F.10)

with the definition
Z0(β) ≡ 1 . (F.11)

In the canonical ensemble, the particle number is fixed. Thus the sum over the occupa-
tion numbers of all orbitals equals N . This identity can be used for the determination
of the occupation numbers, by summing equation (F.10) over all k.

ZN (β)
∑
k

〈nk〉N (β)︸ ︷︷ ︸
N

=
N∑
n=1

ζn+1ZN−n(β)
∑
k

e−βnεk︸ ︷︷ ︸
Z1(nβ)

(F.12)
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=⇒ ZN (β)N =
N∑
n=1

ζn+1ZN−n(β)Z1(nβ) .

(F.13)

This relation is also given for the special case of only bosonic particles in [13]. The
equations (F.13) and (F.10) are sufficient to calculate all occupation numbers of a given
system.
For the derivation of a recursion relation for the correlation of the occupation numbers
〈nknl〉N (β), consider its definition given by the sum

ZN (β) 〈nknl〉N (β) =
∑

i∈IN,ζ

e−β
∑N

s=1 εisnk(i)nl(i) (F.14)

Just as for the derivative of equation (F.8), one component of the multyindex iN can
be fixed to the value k and the occupation counter nk can be replaced by ζnk + 1. For
the remaining sum it is necessary to factor in that in the case k = l, iN is also fixed to
l, hence, nl has to be replaced by nl + δkl:

ZN (β) 〈nknl〉N (β) = e−βεk
∑

i∈IN−1,ζ

e−β
∑N−1

s=1 εis (ζnk(i) + 1)(nl(i) + δkl)

= e−βεk
∑

i∈IN−1,ζ

e−β
∑N−1

s=1 εis
(
ζ nk(i)nl(i)
→〈nknl〉N−1(β)

+ nl(i)
→〈nl〉N−1(β)

+ ζ δklnk(i)
→〈nk〉N−1(β)

+ δkl
)

=⇒ ZN 〈nknl〉N = e−βεkZN−1

(
ζ 〈nknl〉N−1 + 〈nl〉N−1 + δkl

(
ζ 〈nk〉N−1 + 1

))
.

(F.15)

For a better overview, the β dependence has been omitted, since all quanities in this
equation depend on the same temperature. This equation allows to calculate efficiently
the correlations of the occupation numbers 〈nknl〉, which are needed for calculating e.g.
the heat capacity cV of the system. I haven’t found this equation in the literature, but
it has been positively tested by comparing the results obtained by this equation with
results obtained by Eq. (F.14).
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G List of (frequently) used abbreviations
and symbols

Abbreviation Explanation

UBHF Unrestrestricted bosonic Hartree-Fock
GP Gross-Pitaevskii (Approximation)
MOMF Multi orbital mean-field
CI Configuration interaction
MCHB Multi configurational Hartree for bosons
ROBDM Reduced one-body density matrix
ROBDO Reduced one-body density operator
ONS Orthonormal set (of vectors, with respect to the considered

scalarproduct)
CONS Complete orthonormal set (of vectors, with respect to the

considered scalarproduct)
BEC Bose-Einstein condensation
PIMC Path integral Monte-Carlo
TDSE Time-dependent Schrödinger equation
TDUBHF Time-dependent unrestricted Bosonic Hartree-Fock
TDVP Time-dependent variational principle

Table G.1: List of abbreviations used in this work.
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Symbol Explanation

g(x, y) One-body density matrix
n(x, x′) Two-body density (probability density of finding one particle at

site x and another at x′)
n(x) One-body density (probability density of finding a particle at x)
1̂ Unit operator of the considered vector space
|Ψ〉 Vector built by a Cartesian product of single particle orbitals
|Φ〉 Symmetrised product state of the orbitals contained as compo-

nents in |Ψ〉
|Φi1i2...〉 Symmetrised product state of the orbitals contained as compo-

nents in |Ψ〉 except the orbitals |i1〉 , |i2〉 . . .
wij,kl Two-particle integrals (A.5)
Â Abstract operator
A Matrix
Â Operator compound of blocks of operators arranged in a matrix,

acting on a spinor.
~r Vector in coordinate space
k A tuple of entities
SN Symmetric group of the numbers 1, . . . , N (set of all permutations)
|1〉 ⊗ |2〉 Tensor product of the vectors |1〉 and |2〉. In some literature, the

operation symbol ⊗ is omitted.
|i1 . . . in) Short notation for the tensor product |i1〉 ⊗ . . .⊗ |in〉.(n
k

)
Binomial coefficient

Table G.2: Explanation of the symbols used in this work.
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