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Abstract

The objective of this thesis is the ab initio description of the uniform electron gas (UEG)
at warm dense matter conditions by means of quantum Monte Carlo (QMC) simulations.
Unfortunately, in case of fermions, the existing QMC methods are in general strongly
hampered by the fermion sign problem (FSP). More specifically, at finite temperature, the
FSP prevents the standard path integral Monte Carlo (standard PIMC) method from being
applicable to strongly degenerate fermions. Thus, large parts of the so-called warm dense
regime, where extreme densities and temperatures are present, are inaccessible to the standard
PIMC approach.

In this thesis, an alternative QMC method is employed: configuration path integral Monte
Carlo (CPIMC), which, in contrast to standard PIMC, is formulated in second quantization
representation of quantum mechanics. As a result, it exhibits a FSP that is complementary to
that of standard PIMC and, in particular, it excels at high densities (weak coupling).

As a first step, the CPIMC algorithm is optimized for efficient simulations of the UEG.
Thereafter, a strategy is presented which greatly alleviates the FSP such that simulations at
significantly lower densities (stronger coupling) become possible—the first major achieve-
ment of the present thesis. With the aid of this enhancement, a direct comparison of the exact
CPIMC data to the widely used restricted PIMC data is performed, whereby the systematic
error of the so-called fixed node approximation (at finite temperature) is quantified for the
first time.

Next, the CPIMC method is generalized from the spin-polarized to the unpolarized case
and combined with another novel QMC method: permutation-blocking path integral Monte
Carlo (PB-PIMC), which, in contrast to CPIMC, is most efficient at low densities (strong
coupling). Via the combination of these two methods, the FSP can be circumvented so that
simulations of both the spin-polarized and unpolarized UEG are feasible over the entire
density regime relevant to warm dense matter research.

Since most QMC methods are by design restricted to the simulation of finite systems,
the next logical step towards an ab initio description of the UEG consists in the extension of
the QMC results to the thermodynamic limit. To accomplish this, an improved extrapolation
scheme is devised by combining the exact information about short-range correlations from
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the QMC data with the highly accurate information about long-range correlations from
dielectric methods. This allows for the extrapolation of the ab initio QMC results to the
thermodynamic limit without significant loss of accuracy—the second major achievement of
the present thesis.

Finally, exhaustive QMC simulations are performed on large computer clusters to generate
comprehensive ab initio data sets for various energies as well as the static structure factor
of the warm dense UEG. Subsequently, these data are utilized for the construction of a
complete parametrization of the exchange–correlation free energy, fxc, in dependence of
density, temperature, and spin-polarization covering the entire warm dense matter regime;
the accuracy attained is an unprecedented ∼ 0.3%. This is the third and central achievement
of the present thesis.

Naturally, a parametrization of fxc contains all thermodynamic information of the UEG
and, beyond that, constitutes a direct input quantity for many applications, most importantly
for thermal density functional theory calculations of real warm dense matter as well as
for astrophysical models. Therefore, over the years, a host of parametrizations have been
proposed, all based on different approximations of unknown accuracy. The novel ab initio
parametrization of fxc presented in this thesis brings these developments to an end. Moreover,
it opens up the opportunity to gauge the accuracy of all previous parametrizations and, in
addition, of countless many-body approximations that have been applied to the UEG. These
include the various dielectric approaches, restricted PIMC, classical mapping approaches,
and Green’s function methods.

Furthermore, in the present thesis, the CPIMC method is extended to the simulation of
the harmonically perturbed electron gas to directly compute ab initio results for the static
density–density response function.

At last, a promising strategy to further improve the CPIMC method is proposed, which
may render CPIMC simulations in the regime of solid densities feasible in the future.



Kurzfassung

Das Ziel dieser Arbeit ist die ab initio Beschreibung des homogenen Elektronengases (HEG)
unter Bedingungen der warmen dichten Materie mittels Quanten Monte Carlo (QMC) Simu-
lationen. Allerdings sind die existierenden QMC Methoden im Falle von Fermionen generell
stark durch das fermionische Vorzeichenproblem (FVP) beeinträchtigt. Bei endlichen Tem-
peraturen verhindert das FVP insbesondere, dass die Standard Pfadintegral Monte Carlo
(Standard PIMC) Methode bei stark entarteten Fermionen anwendbar ist. Folglich sind große
Teile des sogenannten warmen dichten Bereichs, in dem extreme Dichten und Temperaturen
vorliegen, nicht zugänglich für de Standard PIMC Methode.

In dieser Arbeit wird ein alternativer Zugang verwendet: Configuration Pfadintegral
Monte Carlo (CPIMC), welches im Gegensatz zu Standard PIMC in der Zweiten Quan-
tisierung der Quantenmechanik formuliert ist. Dies führt dazu, dass diese Methode ein FVP
aufweist, welches komplementär zu dem in Standard PIMC ist. Insbesondere ist CPIMC am
effizientesten bei hohen Dichten (schwacher Kopplung).

Als erstes wird der CPIMC Algorithmus für die effiziente Simulation des HEGs optimiert.
Danach wird eine Strategie vorgestellt, mit der das FVP stark abgeschwächt wird, sodass
Simulationen bei signifikant niedrigeren Dichten (stärkerer Kopplung) möglich werden—das
erste Hauptergebnis dieser Arbeit. Mit Hilfe dieser Verbesserung wird ein direkter Vergleich
der exakten CPIMC Daten mit den viel genutzten restricted PIMC Daten durchgeführt,
wodurch der systematische Fehler der sogenannten Näherung fixierter Knotenflächen erstmals
(bei endlichen Temperaturen) quantifiziert wird.

Als nächtes wird die CPIMC Methode vom spin-polarisierten zum unpolarisierten Fall
verallgemeinert und mit einer weiteren neuartigen QMC Methode kombiniert: permutation
blocking PIMC (PB-PIMC), welches im Gegensatz zu CPIMC am effizientesten bei niedrigen
Dichten (starker Kopplung) ist. Durch die Kombination dieser beiden Methoden kann das
FVP umgangen werden, sodass Simulationen des Spin-polarisierten und -unpolarisierten
HEGs über den gesamten Dichtebereich, der von Relevanz für die Erforschung der warmen
dichten Materie ist, möglich sind.

Da die meisten QMC Methoden per Konstruktion auf die Simulation endlicher Systeme
beschränkt sind, besteht der nächste logische Schritt hin zu einer ab initio Beschreibung
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des HEGs darin, die QMC Ergebnisse zum thermodynamischen Limes zu erweitern. Um
dies zu erreichen, wird ein verbessertes Extrapolationsverfaheren entwickelt, indem die
exakte Information über kurzreichweitige Korrelationen aus den QMC Daten mit den hoch
akkuraten Informationen über langreichweitige Korrelationen aus dielektrischen Methoden
kombiniert wird. Dies ermöglicht die Extrapolation der ab initio QMC Ergebnisse zum ther-
modynamischen Limes ohne signifikanten Genauigkeitsverlust—das zweite Hauptergebnis
dieser Arbeit.

Schließlich werden umfangreiche QMC Simulationen auf großen Computerclustern
ausgeführt, um umfassende ab initio Datensätze für verschiedene Energien als auch für
den statischen Strukturfaktor des warmen dichten HEGs zu generieren. Anschließend
werden diese Daten verwendet, um eine vollständige Parametrisierung der freien Austausch–
Korrelations Energie, fxc, in Abhängigkeit von Dichte, Temperatur und Spin-Polarisation zu
konstruieren, welche den gesamten Bereich der warmen dichten Materie abdeckt; die erzielte
(zuvor unerreichte) Genauigkeit ist ∼ 0.3%. Dies ist das dritte und zentrale Ergebnis der
vorliegenden Arbeit.

Selbstverständlich enthält eine Parametrisierung von fxc alle thermodynamischen Infor-
mationen des HEGs. Darüber hinaus stellt es eine direkte Eingabegröße für viele Anwendun-
gen dar, vor allem für Simulationen von warmer dichter Materie innerhalb der thermischen
Dichtefunktionaltheorie sowie für astrophysikalische Modelle. Aus diesen Gründen wurde in
den letzten Jahre eine Vielzahl solcher Parametrisierungen vorgeschlagen, wobei all diese auf
unterschiedlichen Näherungen mit unbekannter Genauigkeit basieren. Die in dieser Arbeit
vorgestellte ab initio Parametrisierung von fxc schließt diese Entwicklungen ab. Außerdem
ergibt sich mit dieser die Möglichkeit die Genauigkeit von vorherigen Parametrisierungen und
von unzähligen Vielteilchennäherungen, die auf das HEG angewendet wurden, zu beurteilen.
Dies beinhaltet verschiedene dielektrische Methoden, restricted PIMC, classical mapping
Verfahren und Green Funktions Methoden.

Des Weiteren wird die CPIMC Methode in der vorliegenden Arbeit zur Simulation des
harmonisch gestörten Elektronengases erweitert, um ab initio Ergebnisse für die statische
Dichte–Dichte Antwortfunktion direkt zu berechnen.

Zuletzt wird eine vielversprechende Strategie zur Weiterentwicklung von CPIMC vorgestellt,
mit der CPIMC Simulationen im Bereich von Festkörperdichten zukünftig möglich werden
könnten.
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Chapter 1

Introduction

In our everyday life, the materials that make up the world surrounding us are, to a high degree,
in their ground state. More specifically, their temperature is much lower than their Fermi
temperature TF, a system or material specific temperature that determines when thermal
excitation effects of the electrons begin to play an important role. However, quantum effects
are often important, and thus, the physics are governed by the many-body Schrödinger
equation. In practice, the solution of this equation constitutes a highly challenging task (even
in the stationary case); the difficulty arises from the long-range Coulomb interaction between
charged particles, which causes non-trivial correlation effects.

When we are interested in the description of matter beyond that which naturally occurs
on our planet earth, it is often, in addition, crucial to properly take into account thermal
excitation effects. In fact, a significant fraction of the matter in our universe is found at
temperatures that are comparable to the Fermi temperature (∼ 104 − 107 Kelvin), while
the densities are up to several orders of magnitude larger than those in solids. Prominent
examples of such conditions are the interiors of many astrophysical objects including giant
planets [1, 2], stars [3, 4], as well as white and brown dwarfs [5, 6]. This exotic state
is commonly referred to as warm dense matter (WDM). In addition to its astrophysical
relevance, a deep understanding of WDM is an important aspect on the pathway to inertial
confinement fusion [7–12]—a promising future energy source.

Naturally, the non-trivial interplay of quantum degeneracy, Coulomb correlation, and
thermal excitation effects makes a rigorous theoretical description most challenging. It is
the overarching goal of this thesis to help pushing forward our understanding of WDM
by combining and further developing modern many-body simulation techniques within
the framework of quantum statistical physics, and to utilize these to perform large-scale
simulations on computer clusters.
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1.1 Quantum Monte Carlo Simulation of Fermions

Undoubtedly, when it comes to the exact computation of thermodynamic expectation values
of some observable, ⟨Ô⟩, quantum Monte Carlo methods (QMC) belong to the most powerful
many-body simulation techniques. Although the concrete algorithm strongly differs between
the various existing QMC methods, the common feature is that all of them make use of some
stochastic sampling procedure to compute a statistical estimate of ⟨Ô⟩ that converges to the
exact result with increasing computation time1. For this reason, QMC methods are often
referred to as being quasi exact. The advantage of such stochastic algorithms lies in their
greatly reduced computational cost compared to the utilization of standard (non-stochastic
based) numerical procedures2.

Regarding the simulation of equilibrium quantum systems at finite temperature, the
standard path integral Monte Carlo [14–16] (standard PIMC) approach is certainly the
most successful QMC method. It is based on Feynman’s path integral formulation of
quantum mechanics [17, 18] (applied in imaginary time) in combination with the Metropolis
algorithm [19], which is highly efficient for the stochastic evaluation of the arising high-
dimensional path integrals. This strategy allows for the simulation of bosonic systems with
up to several thousand particles, and has thereby facilitated key insights in many physical
phenomena like, e.g., superfluidity [15, 16, 20–24] and Bose–Einstein condensation [25, 26].

However, when applied to fermionic systems, the standard PIMC approach becomes a
victim of the notorious fermion sign problem (FSP) [27, 28], which causes an exponential
loss of accuracy of the simulation results both with decreasing temperature and increasing
particle number. In general, the FSP occurs in most fermionic QMC simulations (including
the ground state), but its specific manifestation strongly depends on the particular method
that is utilized3.

In standard PIMC, the FSP vanishes towards strong coupling. This property is a result
of its formulation in coordinate representation of quantum mechanics, which is best suited
for the description of spatially separated particles (low densities). In contrast, simulations
of weakly coupled, and, in particular, strongly degenerate systems (high densities and low
temperatures), in which quantum effects play the dominant role, are severely hampered by

1According to the law of large numbers [13], the estimate becomes exact with increasing sample size,
i.e., with increasing computation time, and, thanks to the central limiting theorem, its statistical error quickly
approaches a Gaussian distribution.

2Strictly speaking, this is only true for high-dimensional problem statements, which, however, are common
in physics.

3For completeness, it shall be mentioned that in case of QMC methods based on the Metropolis algorithm
the FSP was even shown to be NP-hard for a certain class of Hamiltonians [28].
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the FSP [13, 29]. Naturally, this prevents the standard PIMC method from being applicable
over large parameter regimes relevant to WDM research [30].

Over the years, great effort has been invested to alleviate the FSP within standard PIMC.
This includes the introduction of exact improvements that conserve the ab initio character of
the method, such as determinant-based standard PIMC [29, 31, 32] or the multi-level blocking
scheme [33, 34]; but also approximate strategies have been proposed, most prominently,
the restricted PIMC method (RPIMC) by Ceperley [35, 16]. Within RPIMC, the FSP is
completely removed by employing the fixed node approximation, thereby allowing for
simulations of systems at, in principle, arbitrary degeneracy. For this reason, RPIMC has
been utilized to investigate many fermionic systems at WDM conditions [36–42]. However,
even though the fixed node approximation is known to be highly accurate in the ground
state [43, 44], its accuracy at finite temperature has been unclear—a situation that is changed
throughout this thesis (see Sec. 3.3).

An entirely different approach, around which this thesis is centered, is the exact config-
uration PIMC (CPIMC) method [45–47], which is a generalization of the continuous-time
world-line Monte Carlo (CTWL-MC) concept [48, 49] to spatially continuous systems with
arbitrary pair interaction, including the most important case of the long-range Coulomb
interaction. Prior to CPIMC, a variety of highly specialized CTWL-MC algorithms had been
presented (for a comprehensive overview see Ref. [50]), yet all of them were restricted to the
simulation of lattice models.

The original CPIMC algorithm was presented by T. Schoof, M. Bonitz and co-workers
in 2011 [51]. Subsequently, in order to increase its efficiency, the method was reformu-
lated within the spirit of the worm algorithm by Prokof’ev et al. [48, 52], a task that was
accomplished within the PhD thesis of T. Schoof [53] and my master thesis [54].

In contrast to the coordinate representation of standard PIMC, CPIMC is formulated
within second quantization representation of quantum mechanics, which is the perfect frame-
work for the description of a degenerate quantum system and, in particular, the non-interacting
(ideal) case. Essentially, CPIMC can be viewed as a Metropolis Monte Carlo evaluation of
the exact (infinite) perturbation expansion with respect to coupling strength (around the ideal
system). As such, the specific nature of the fermion sign problem within CPIMC is highly
complementary to that of standard PIMC. More precisely, the method enjoys the absence of
the sign problem near the ideal system but breaks down with increasing coupling.

Therefore, the first major achievement of this thesis is the improvement of the CPIMC ap-
proach such that its applicable range is significantly extended towards stronger coupling [55]
(see Sec. 3.5).
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A further PIMC approach that is formulated in coordinate space is the permutation
blocking PIMC (PB-PIMC) method by T. Dornheim et al. [56, 57], which was developed
in our group shortly after CPIMC. Compared to standard PIMC, this method is applicable
at higher degeneracy (i.e., at weaker coupling and lower temperature), making it perfectly
suitable for a combination with CPIMC.

1.2 The Uniform Electron Gas at Warm Dense Matter Con-
ditions

The uniform electrons gas (UEG), often referred to as jellium, is a model system that
consists of Coulomb interacting electrons in a neutralizing uniform background. As such,
its ground state properties are entirely defined by the electron density4, or equivalent, the
density parameter (Wigner–Seitz radius)5, rs = (4πn/3)−1/3/aB. Originally constructed
for a simplified description of the conducting electrons in metals [58], it has emerged
as perhaps the most fundamental model system of quantum chemistry and physics, upon
which core concepts such as Fermi-liquid theory [59, 58], the quasi-particle picture [60],
quantum screening [61–64], as well as the Bardeen–Cooper–Schrieffer (BCS) theory [65] of
superconductivity were built. Since an accurate description of the ground state UEG requires
to simultaneously take into account quantum degeneracy and Coulomb correlation effects, it
has served as a test system for countless many-body approaches such as, e.g., the random
phase approximation [60], more refined dielectric methods [66, 67], or even modern ground
state QMC algorithms [68].

Most importantly, the unmatched success of the density functional theory [69] (DFT)
regarding the simulation of real materials was mainly facilitated by the availability of
an accurate parametrization of the exchange–correlation (XC) energy6 in dependence of
density, i.e., exc(rs). Within DFT calculations, the XC contribution to the total energy of the
simulated system is in general unknown and constitutes an input quantity—often called the
exchange–correlation functional. However, knowledge of the exact XC energy is equivalent
to having solved the complete many-body problem. Therefore, the DFT has to rely on
approximations for the XC energy, the simplest one being the local density approximation
(LDA), which was and, to the present day, is still utilized in countless DFT calculations. In

4Strictly speaking, there is a second parameter, the spin-polarization ξ := (n↑−n↓)/(n↑+n↓) with n↑ (n↓)
being the density of spin up (spin down) electrons.

5The Wigner–Seitz radius measures the interparticle distance in units of the Bohr radius and is therefore
often referred to as the quantum coupling parameter.

6The XC energy is defined by exc = etot − e0 with etot (e0) being the total energy (per particle) of the
interacting (non-interacting) UEG.
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the LDA, it is assumed that the XC energy of the real (simulated) system of interest can
be locally approximated by that of the UEG at the same density—hence the necessity of a
parametrization of exc(rs) of the UEG. Such parametrizations were provided by Vosko et
al. [70] and later by Perdew and Zunger [71] on the basis of the accurate ground state QMC
data by Ceperly and Alder [72]. Together with the more sophisticated generalized gradient
approximations [73], which also incorporate the aforementioned parametrizations of exc(rs),
these publications are among the highest cited and perhaps most influential works in physics,
all built upon the properties of the ground state UEG.

However, over the last years there has been a growing interest in matter under extreme
conditions, i.e., at high temperatures (of the order of the Fermi temperature) and, at the same
time, at densities even higher then those found in solids. As already mentioned in the very
beginning, this exotic state of matter, where quantum degeneracy, Coulomb correlations, and
thermal effects are all similarly important, has been termed warm dense matter (WDM). The
electronic component of WDM is characterized by two parameters: the above introduced
density parameter rs, and the reduced temperature (degeneracy parameter) θ = T/TF with
the Fermi temperature TF = h̄2(3π2n)2/3/(2mkB). In the warm dense regime, both of these
parameters assume values of approximately 0.1−10.

In nature, these extreme conditions are found in many astrophysical objects such as
the interiors of giant planets [1, 2], stars [3, 4], as well as white and brown dwarfs [5, 6].
In addition, they occur in inertial confinement fusion experiments [7–12], which aim at
finding a new clean future source of energy. For this reason, there has been a remarkable
progress regarding the experimental realization and investigation of WDM at large research
facilities, such as the national ignition facility (NIF) at Lawrence Livermore National Lab,
California [74, 75], or the Z-machine at the Sandia National Labs in New Mexico [76, 77].
With the aid of state-of-the-art lasers, as those found at the Linac Coherent Light Source
(LCLS) in Stanford, California [78–80] or at the recently launched European X-FEL (free
electron laser) in Hamburg, Germany [81], it is nowadays possible to accurately measure
many properties of WDM samples. For example, the dynamic structure factor is directly
accessible within routinely performed X-Ray Thomson scattering experiments [82, 83].

Given this great experimental progress, it is desirable to also improve our theoretical
understanding of WDM, most importantly, by means of computer simulations. However, due
to the many physical effects that are present in matter under such extreme conditions, this is
a highly non-trivial task. In particular, in most cases it is not sufficient to assume that the
electrons are in their ground state and thus, instead of the aforementioned ground state DFT,
it is essential to employ its finite temperature extension, i.e., thermal DFT [84]. In turn, a
consistent extension of the LDA [85, 86, 3] (and additional gradient corrections [87, 88])
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to finite temperature requires a parametrization of the exchange–correlation free energy,
fxc(rs,θ), of the UEG over the whole warm dense regime7. In other words, in thermal DFT8,
the ground state functional for exc(rs) is replaced by a functional for fxc(rs,θ).

In addition to its relevance for thermal DFT, an accurate parametrization of fxc constitutes
a key input for, e.g., several astrophysical models [89–93] and for quantum hydrodynamic
simulations [94, 95]. And, needless to say, a parametrization of fxc is equivalent to a complete
thermodynamic description, from which, in principle, all other thermodynamic quantities of
the warm dense UEG can be computed.

For the stated reasons, a host of parametrizations for fxc have been presented over the
last years (see Refs. [96–102] and Chpts. 2 and 5 for an overview.). However, these were
all constructed on the basis of various different many-body approximations and hence, their
quality has remained unclear. Changing this unsatisfactory situation by providing a highly
accurate parametrization of the exchange–correlation free energy, fxc(rs,θ ,ξ ), in dependence
of density, rs, temperature, θ , and spin-polarization, ξ , is the major goal of this thesis.

To accomplish this goal, in the present work, the combined strength of two novel QMC
methods is exploited to perform ab initio simulations of the warm dense UEG over a wide
range of parameters. Specifically, as is demonstrated in Secs. 3.6 and 3.8, using the CPIMC
approach at high densities and PB-PIMC at low densities it is possible to cover the entire
density range relevant for WDM research. Furthermore, an improved finite-size correction
scheme is devised that allows for an extrapolation of the QMC data (for a finite simulation
box) to the desired thermodynamic limit (infinitely extended system) without significant
loss of accuracy (see Chpt. 4.1). By carrying out exhaustive ab initio QMC simulations
on large computer clusters and subsequently applying the improved extrapolation scheme,
comprehensive data sets are obtained for various quantities, including different energies
and the static structure factor. Finally, on the basis of these new data, a parametrization of
fxc(rs,θ ,ξ ) is constructed that exhibits an unprecedented accuracy of ∼ 0.3%.

Moreover, this new functional of fxc is employed to, for the first time, access the quality
of the previous most widely used functionals (see Chpt. 2). In addition, with the aid of the
vast QMC data tables as a benchmark, the systematic error that is introduced by various
many-body approximations is quantified for different quantities (see Chpt. 2). Among these
approximations are the RPIMC method [36], several dielectric approaches [103, 101, 100]
and finite temperature Green’s function techniques [104–106].

7For completeness, I mention that for thermal DFT calculations within the local spin-density approximation
(LSDA) a parametrization of fxc also with respect to the spin-polarization ξ is needed.

8In certain thermal DFT calculations, instead of consistently using fxc(rs,θ), it may be a viable approxima-
tion to employ the ground state functional for exc(rs). However, it was shown that this is not always true [85, 87]
and thus may lead to an additional source of uncontrolled errors.
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1.3 Structure of this Thesis

This is a cumulative thesis that contains all publications to which I contributed throughout my
work as a PhD student. A complete list of those publications is provided in Sec. 1.3.2. The
chronologically last publication of this work is devoted to a complete overview on the warm
dense UEG [30], which includes the results and achievements of all previous publications
of this work. Therefore, this review article should be understood as the centerpiece of the
present PhD thesis and is thus presented first (in Chpt. 2).

The subsequent chapters should be regarded as an appendix, where the relevant publi-
cations are presented in a chronological order with additional brief introductions to each
of them. These introductions consist of a concise motivation, an outline of the key ideas,
and a summary of the most important results. In addition, a more detailed discussion of my
contributions to each of those publications is given, where, in general, "I" is used to point out
which parts of the work were carried out by me9.

1.3.1 Outline

Chapter 2: The Uniform Electron Gas at Warm Dense Matter Conditions
This chapter consists of a full-text document of a review article on the warm dense electron
gas [30]. It provides a comprehensive introduction to WDM in general, the warm dense
UEG, its applications, QMC, the fermion sign problem, various many-body approximations,
and much more. Specifically, the CPIMC method, which is of central importance for this
thesis, is discussed in detail. Moreover, this review article puts the results and achievements
of all previous publications of this work into a broader context and contains many additional
comparisons with previous results.

Chapter 3: Further Development of CPIMC and Combination with PB-PIMC
In Chpt. 3, the overall situation and the status quo regarding the development of the CPIMC
method at the beginning of this thesis is described (Sec. 3.1). Thereafter, the CPIMC al-
gorithm is specialized for the UEG and a proof of principle regarding the simulation of
the spin-polarized UEG (for a small test system) is presented (Sec. 3.2, Ref. [45]). Next
(Sec. 3.3, Ref. [46]), the method is applied to a larger system and a direct comparison to
the RPIMC data by Brown et al. [107] is performed. Thereby, the systematic error of the
fixed node approximation, which is utilized in RPIMC simulations, is quantified. In the

9Overall, "we" is used when referring to contributions or achievements that have been worked out in
collaboration with others.
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following Sec. 3.4 (Refs. [56, 57]), the CPIMC data is used as a benchmark to optimize the
performance of the PB-PIMC method.

Subsequently (Sec. 3.5, Ref. [55]), the fermion sign problem within CPIMC is investi-
gated in detail. On the basis of these investigations, an auxiliary kink-potential is introduced,
which allows for CPIMC simulations at considerably lower densities (stronger coupling). Fur-
thermore, the CPIMC method is extended to the unpolarized case (Sec. 3.7, Ref. [108]), and,
together with the PB-PIMC method, simulations of both the spin-polarized and unpolarized
UEG are carried out over broad parameter ranges (Sec. 3.6, Ref. [55] and Sec. 3.8, Ref. [108]).

Chapter 4: The Warm Dense UEG in the Thermodynamic Limit
In Chpt. 4, a novel finite-size correction scheme is presented (Sec. 4.1, Ref. [109]), which
makes it possible to extrapolate the QMC results to the thermodynamic limit. With the aid
of this correction scheme, the potential energy of the unpolarized UEG is computed in the
thermodynamic limit over the entire density range for temperatures θ ≥ 0.5, and, on the
basis of these data, first results for the exchange–correlation free energy, fxc, are computed.

Next (Sec. 4.2, Ref. [110]), the QMC data for the static structure factor are extended to
the thermodynamic limit. Finally (Sec. 4.3, Ref. [111]), a status report on QMC simulations
of the warm dense UEG is given, which includes an outline of the remaining open questions
and challenges regarding the final goal of an ab initio parametrization of fxc.

Chapter 5: Parametrization of the Exchange–Correlation Free Energy
In Chpt. 5, the ab initio data for fxc from Ref. [111] (restricted to temperatures θ ≥ 0.5) is
utilized to gauge the accuracy of several existing functionals of fxc (Sec. 5.1, Ref. [112]). In
addition, the precise way in which these functionals were constructed and which data was
utilized as input is discussed.

Thereafter (Sec. 5.2, Ref. [47]), the exchange–correlation free energy of the UEG,
fxc(rs,θ ,ξ ), is parametrized over the entire warm dense regime in dependence of density, rs,
temperature, θ , and spin-polarization, ξ . The high qualitiy of this new parametrization is
demonstrated via several consistency checks and comparisons to the most prominent previous
parametrizations.

Chapter 6: Static Density Response Function of the Uniform Electron Gas
In Chpt. 6, both the CPIMC (Ref. [113]) and the PB-PIMC approaches (Ref. [114]) are
extended to simulations of the harmonically perturbed UEG, which gives direct access to
the static density–density response function. Moreover, in Ref. [113], a highly efficient
finite-size correction for the response function is presented. As a side project, in Sec. 6.2, the
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static local field correction in STLS approximation is utilized to compute screened ion–ion
potentials (Ref. [115]).

Chapter 7: Summary and Discussion
In Chpt. 7, all results of this thesis are briefly summarized and discussed.

Chapter 8: Outlook
In Chpt. 8, the expected utility of the results of this thesis for other applications is pointed
out (Sec. 8.1). Afterwards, an outlook is given regarding interesting topics for future investi-
gations by means of CPIMC simulations (Sec. 8.2). In particular, CPIMC is well suited for
the computation of the momentum distribution of the UEG and the precise determination of
its large-k behavior, which is demonstrated in Sec. 8.2.2.

Finally, in Sec. 8.3, the influence of certain diagram classes on the fermion sign problem
within CPIMC is investigated. This points to a promising strategy to further improve the
method.

1.3.2 List of Publications

The following list contains all publications that are included in this work. To increase the
transparency, for each paper I explicitly state my contribution to it. Furthermore, as a result
of the close collaboration with T. Dornheim (TD), there are six publications with equal
contributions from TD and me (SG). These articles are indicated by the green font of the
author names.

1. T. Schoof, S. Groth, and M. Bonitz, Towards ab initio Thermodynamics of the Electron
Gas at Strong Degeneracy, Contrib. Plasma Phys. 55, 136-143 (2015)

• SG contributed 30% to this work, specifically to the theoretical formulation and
implementation of the algorithm. The paper is included on p. 132.

2. T. Schoof, S. Groth, J. Vorberger and M. Bonitz, Ab Initio Thermodynamic Results
for the Degenerate Electron Gas at Finite Temperature, Phys. Rev. Lett. 115, 130402
(2015)

• SG contributed 35% to this work, most notably he developed the kink potential
that allowed to extend the simulations to stronger coupling and partly worked out
the manuscript. The paper is included on p. 142.

http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201400072/abstract
http://link.aps.org/doi/10.1103/PhysRevLett.115.130402
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3. T. Dornheim, S. Groth, A. Filinov and M. Bonitz, Permutation blocking path integral
Monte Carlo: a highly efficient approach to the simulation of strongly degenerate
non-ideal fermions, New J. Phys. 17, 073017 (2015)

• SG contributed 10% to this work by providing benchmark data for the PB-PIMC
method from CPIMC simulations. The paper is included on p. 160.

4. T. Dornheim, T. Schoof, S. Groth, A. Filinov, and M. Bonitz, Permutation blocking
path integral Monte Carlo approach to the uniform electron gas at finite temperature,
J. Chem. Phys. 143, 204101 (2015)

• SG contributed 10% to this work by providing benchmark data from CPIMC
simulations and working on the manuscript. The paper is included on p. 179.

5. S. Groth, T. Schoof, T. Dornheim, and M. Bonitz, Ab Initio quantum Monte Carlo
simulations of the uniform electron gas without fixed nodes, Phys. Rev. B 93, 085102
(2016)

• SG contributed 60% by thoroughly analyzing the fermion sign problem in the
CPIMC method, developing the kink-potential, and partly carrying out the
CPIMC calculations. Furthermore, the majority of the manuscript and the figures
were created by SG. The paper is included on p. 190.

6. T. Dornheim, S. Groth, T. Schoof, C. Hann, and M. Bonitz, Ab initio quantum Monte
Carlo simulations of the uniform electron gas without fixed nodes: The unpolarized
case, Phys. Rev. B 93, 205134 (2016)

• SG contributed 45% by further developing the CPIMC method to allow for
simulations of the unpolarized electron gas. All CPIMC simulations were carried
out by SG. Moreover, SG wrote half of the manuscript, in particular the CPIMC
specific parts. The paper is included on p. 206.

7. T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz,
Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the
Thermodynamic Limit, Phys. Rev. Lett. 117, 156403 (2016)

• SG contributed 45% by carrying out all CPIMC simulations. The central idea for
the finite size correction was worked out in equal parts by SG and TD. Moreover,
SG wrote substantial parts of the manuscript. The paper is included on p. 224.

http://iopscience.iop.org/1367-2630/17/7/073017 
http://scitation.aip.org/content/aip/journal/jcp/143/20/10.1063/1.4936145 
http://scitation.aip.org/content/aip/journal/jcp/143/20/10.1063/1.4936145 
http://link.aps.org/doi/10.1103/PhysRevB.93.085102 
http://link.aps.org/doi/10.1103/PhysRevB.93.205134 
http://link.aps.org/doi/10.1103/PhysRevLett.117.156403
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8. S. Groth, T. Dornheim, and M. Bonitz, Free energy of the uniform electron gas:
Testing analytical models against first-principles results, Contrib. Plasma Phys. 57,
137 (2017)

• SG contributed 45% by producing all figures and writing parts of the text. The
paper is included on p. 259.

9. T. Dornheim, S. Groth, F.D. Malone, T. Schoof, T. Sjostrom, W.M.C. Foulkes, and
M. Bonitz, Ab initio quantum Monte Carlo simulation of the warm dense electron gas,
Phys. Plasmas 24, 056303 (2017)

• SG contributed 45% by writing substantial parts of the manuscript and by creating
two of the figures. The paper is included on p. 247.

10. S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz,
Ab initio Exchange–Correlation Free Energy of the Uniform Electron Gas at Warm
Dense Matter Conditions, Phys. Rev. Lett. 119, 135001 (2017)

• SG contributed 45% by carrying out all CPIMC simulations and writing sub-
stantial parts of the manuscript. The central idea for the parametrization of the
exchange–correlation free energy was worked out in equal parts by SG and TD.
The paper is included on p. 271.

11. T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Permutation-blocking path-
integral Monte Carlo approach to the static density response of the warm dense electron
gas, Phys. Rev. E 96, 023203 (2017)

• SG contributed 10% by working out parts of the linear response theory in QMC
simulations. The paper is included on p. 287.

12. S. Groth, T. Dornheim, and M. Bonitz, Configuration path integral Monte Carlo ap-
proach to the static density response of the warm dense electron gas, J. Chem. Phys. 147,
164108 (2017)

• SG contributed 80% to this work by extending the CPIMC algorithm to the
simulation of the harmonically perturbed electron gas, implementing related
observables, and carrying out all CPIMC simulations. Moreover, SG created all
figures and wrote the entire manuscript. The paper is included on p. 302.

13. T. Dornheim, S. Groth, and M. Bonitz, Ab initio results for the static structure factor
of the warm dense electron gas, Contrib. Plasma Phys. 57, 468 (2017)

http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201600082/abstract
http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201600082/abstract
http://aip.scitation.org/doi/full/10.1063/1.4977920
https://link.aps.org/doi/10.1103/PhysRevLett.119.135001
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.023203
http://aip.scitation.org/doi/10.1063/1.4999907
http://aip.scitation.org/doi/10.1063/1.4999907
http://dx.doi.org/10.1002/ctpp.201700096
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• SG contributed 15% to this work by providing the CPIMC data and writing parts
of the manuscript. The paper is included on p. 235.

14. Zh.A. Moldabekov, S. Groth, T. Dornheim, M. Bonitz, and T.S. Ramazanov, Ion
potential in non-ideal dense quantum plasmas, Contrib. Plasma Phys. 57, 532 (2017)

• SG contributed 20% to this work by providing the STLS data and writing parts
of the manuscript. The paper is included on p. 317.

15. T. Dornheim, S. Groth, and M. Bonitz, The Uniform Electron Gas at Warm Dense
Matter Conditions, arXiv:1801.05783, submitted as an invited article to Phys. Rep.
(2018)

• This review was written in equal parts by TD (45%) and me (45%). It constitutes
the centerpiece of both our PhD theses and is included on p. 13 (Chpt. 2). To pro-
vide maximum transparency, a detailed breakdown of our respective contributions
to the different chapters is listed in the following:

– 1. Introduction: SG and TD contributed equally.

– 2. Important quantities and definitions: SG and TD contributed equally.

– 3. Dielectric Approximations and Linear Response Theory: written by
SG.

– 4. Other Approximate Approaches: written by SG (20%, half of Sec. 4.1)
and TD (80%, Sec. 4.2 and half of Sec. 4.1)

– 5. Quantum Monte Carlo Methods: SG wrote the CPIMC section (25%),
and TD the rest (75%).

– 6. Finite-Size Correction of QMC Data: written by TD .

– 7. Benchmarks of other methods: written by TD.

– 8. Parametrizations of the XC Free Energy: written by SG .

– 9. Inhomogeneous Electron Gas: QMC study of the density response:
SG wrote Sec. 9.3.2 (33%), and TD the rest (67%).

– 10. Summary and Outlook: SG and TD contributed equally.

http://dx.doi.org/10.1002/ctpp.201700109
https://arxiv.org/abs/1801.05783


Chapter 2

The Uniform Electron Gas at Warm
Dense Matter Conditions

In this chapter, a review article on the warm dense electron gas [30] is presented. Aiming at
a broader readership, this article provides a thorough introduction to WDM in general, the
warm dense UEG, and its applications. Moreover, it covers the most prominent many-body
approximations that had been utilized to compute thermodynamic properties of the warm
dense UEG. This includes the STLS method (p. 9-14 in Ref. [30]), a variant of the dielectric
approaches that is a key ingredient for many results obtained within this work. Further,
a detailed introduction to state-of-the-art QMC (p. 18-44 in Ref. [30]), the fermion sign
problem, and the finite-size correction of QMC data (p. 45-52 in Ref. [30]) is given. In
particular the CPIMC method, which is of central importance for this thesis, is explained in
detail (p. 31-40 in Ref. [30]).

Furthermore, our novel ab initio QMC data for different energies and static structure
factors are utilized to test the accuracy of various many-body approaches (p. 52-58 in
Ref. [30]). Subsequently, these data are used as input for the construction of a parametrization
of the exchange–correlation free energy of the warm dense UEG (p. 59-64 in Ref. [30]).
Due to its high quality, which is verified via thorough cross- and consistency checks, this
new parametrization is well suited to serve as a benchmark for previous parametrizations
(p. 64-72 in Ref. [30]). Finally, the simulation of the inhomogeneous UEG with CPIMC and
PB-PIMC is outlined, whereby ab initio results for the static density response of the UEG
are obtained (p. 75-83 in Ref. [30]).

Overall, the following review article contains the important results and achievements of
all publications relevant to this work, puts them into a broader context and provides additional
exhaustive comparisons with previous results. Therefore, it constitutes the centerpiece of this
thesis.
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Abstract

Motivated by the current high interest in the field of warm dense matter research, in this article we review the
uniform electron gas (UEG) at finite temperature and over a broad density range relevant for warm dense matter
applications. We provide an exhaustive overview of different simulation techniques, focusing on recent developments
in the dielectric formalism (linear response theory) and quantum Monte Carlo (QMC) methods. Our primary focus
is on two novel QMC methods that have recently allowed us to achieve breakthroughs in the thermodynamics of
the warm dense electron gas: Permutation blocking path integral MC (PB-PIMC) and configuration path integral
MC (CPIMC). In fact, a combination of PB-PIMC and CPIMC has allowed for a highly accurate description of the
warm dense UEG over a broad density-temperature range. We are able to effectively avoid the notorious fermion
sign problem, without invoking uncontrolled approximations such as the fixed node approximation. Furthermore,
a new finite-size correction scheme is presented that makes it possible to treat the UEG in the thermodynamic
limit without loss of accuracy. In addition, we in detail discuss the construction of a parametrization of the
exchange-correlation free energy, on the basis of these data – the central thermodynamic quantity that provides a
complete description of the UEG and is of crucial importance as input for the simulation of real warm dense matter
applications, e.g., via thermal density functional theory.

A second major aspect of this review is the use of our ab inito simulation results to test previous theories, includ-
ing restricted PIMC, finite-temperature Green functions, the classical mapping by Perrot and Dharma-wardana,
and various dielectric methods such as the random phase approximation, or the Singwi-Tosi-Land-Sjölander (both
in the static and quantum versions), Vashishta-Singwi and the recent Tanaka scheme for the local field correction.
Thus, for the first time, thorough benchmarks of the accuracy of important approximation schemes regarding vari-
ous quantities such as different energies, in particular the exchange-correlation free energy, and the static structure
factor, are possible. In the final part of this paper, we outline a way how to rigorously extend our QMC studies to
the inhomogeneous electron gas. We present first ab initio data for the static density response and for the static
local field correction.
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1. Introduction

1.1. The uniform electron gas at zero temperature

The uniform electron gas (UEG), often referred to as “jellium”, is one of the most important model sys-
tems in physics and quantum chemistry, and consists of Coulomb interacting electrons in a positive neutraliz-
ing background [1]. Therefore, it constitutes the quantum mechanical analogue of the classical one-component
plasma (OCP) [2] and qualitatively reproduces many physical phenomena [3] such as Wigner crystallization, spin-
polarization transitions, and screening. Often, it is used as a simple model system for conducting electrons in
alkali metals [1, 4]. The investigation of the UEG at zero temperature has lead to several key insights, like the
BCS theory of superconductivity [5], Fermi liquid theory [6, 1], and the quasi-particle picture of collective exci-
tations [7, 8]. Further, as a continuous correlated electronic quantum system, it has served as a workbench for
the development of countless computational many-body methods, most prominently dielectric approximations, e.g.,
Refs. [8, 9, 10, 11, 12, 13, 14] and quantum Monte Carlo (QMC) methods [15, 16, 17, 18, 19, 20, 21, 22]. Even
though the UEG itself does not represent a real physical system, its accurate description has been of paramount
importance for the unrivaled success of density functional theory (DFT) [23, 24], the working horse of modern many-
body simulations of realistic materials in solid state physics, quantum chemistry, and beyond [25, 26, 27]. Within
the DFT framework, the complicated interacting many-electron system is mapped onto an effective one-particle
(non-interacting) system via the introduction of an effective potential containing all exchange and correlation ef-
fects. While exact knowledge of the latter would require a complete solution of the many-body problem so that
nothing was gained, it can often be accurately approximated by the exchange-correlation energy of the UEG, using
a parametrization in dependence of density [28, 29, 30].

The first accurate data of the ferromagnetic and paramagnetic UEG were obtained in 1980 by Ceperley and
Alder [16], who carried out ground state QMC simulations (see Ref. [17] for a review) covering a wide range of
densities. Subsequently, these data were used as input for parametrizations, most notably by Vosko et al. [28] and
Perdew and Zunger [29]. Since then, these seminal works have been used thousands of times for DFT calculations in
the local (spin-)density approximation (L(S)DA) and as the basis for more sophisticated gradient approximations,
e.g., Refs. [31, 32]. Note that, in the mean time, there have been carried out more sophisticated QMC simulations [33,
34, 35, 36, 37, 38], with Spink et al. [38] providing the most accurate energies available.

In addition to the exchange-correlation energy, there exist many parametrizations of other quantities on the
basis of QMC simulations such as pair distribution functions and static structure factors [39, 40, 41, 42] and the
momentum distribution [34, 35, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. Finally, we mention the QMC
investigation of the inhomogeneous electron gas [55, 56, 57, 58, 59], which gives important insights into the density
response formalism, see Sec. 9 for more details.

1.2. Warm dense matter

Over the last decades, there has emerged a growing interest in the properties of matter under extreme conditions,
i.e., at high temperature and densities exceeding those in solids by several orders of magnitude. This exotic state
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Figure 1: Temperature-density plane around the warm dense matter (WDM, orange) regime – Shown are lines of constant density
parameter rs (blue) and reduced temperature θ (green). Purple and grey bubbles schematically sketch experimental and astrophysical
applications, respectively. The various parameter ranges have been taken from Refs. [60, 61].

is usually referred to as warm dense matter (WDM) and is characterized by two parameters being of the order of
unity: (i) the density parameter (Wigner-Seitz radius) rs, and (ii) the reduced temperature θ

rs aB =

(
3

4πn

)1/3

, θ =
kBT

EF
, (1)

with EF being the Fermi energy defined in Eq. (5). Here rs plays the role of a quantum coupling parameter: at
high density (rs → 0), the electrons behave as an ideal Fermi gas and towards low density, the Coulomb repulsion
predominates, eventually leading to a Wigner crystal [62, 63, 64, 37]. Further, θ can be understood as the quantum
degeneracy parameter, where θ � 1 indicates a classical system (typically characterized by the classical coupling
parameter Γ = 1/(rsaBkBT ), cf. the red line in Fig. 1); for an overview on Coulomb correlation effects in classical
systems, see ref. [65]. On the other hand, the case θ . 1 characterizes a strongly degenerate quantum system.
Thus, in the WDM regime, Coulomb coupling correlations, thermal excitations, and fermionic exchange effects are
equally important at the same time. Naturally, this makes an accurate theoretical description of such systems most
challenging [66].

In nature, WDM occurs in astrophysical objects such as giant planet interiors [67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77], brown and white dwarfs [78, 79, 80, 81, 82] and neutron star crusts [83], see Refs. [60, 84] for a recent review.
Further areas of interest contain the physics of meteor impacts [81] and nuclear stewardship [85]. Another highly
important aspect of warm dense matter research is the concept of inertial confinement fusion [86, 87, 88, 89, 90, 91],
which could become a potentially nearly infinite source of clean energy in the future.

WDM conditions are now routinely realized at large research facilities such as the national ignition facility
(NIF) at Lawrence Livermore National Lab, California [92, 93], the Z-machine at the Sandia National Labs in
New Mexico [94, 95, 96, 97, 98], the Linac Coherent Light Source (LCLS) in Stanford, California [99, 100, 101],
FLASH and the European X-FEL (free electron laser) in Hamburg, Germany [102, 103] and other laser and free
electron laser laboratories. Moreover, we mention shock-compression experiments, e.g. [104, 105, 95]. Of particular
importance is X-ray Thomson scattering (XRTS), e.g. Refs. [106, 107, 108, 109, 110, 102, 111], which provides
a widespread diagnostics for warm dense matter experiments, see Ref. [112] for a review. More specifically, it
allows for the direct measurement of the dynamic structure factor, which can subsequently be used to obtain, for
example, the temperature [112]. Finally, we stress that WDM experiments allow for the investigation of many other
quantities, such as the dielectric function [113, 114], electrical and thermal conductivities [115, 116, 117, 118], the
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electron-ion temperature equilibration [119] and even the formation of transient nonequilibrium states [120, 117].
As a schematic overview, in Fig. 1 various important applications are depicted in the density-temperature plane
around the warm dense matter regime. For a recent text book overview we refer to [121].

Despite the remarkable experimental progress, a thorough theoretical description of warm dense matter is still
lacking (even in the case of thermodynamic equilibrium), and it is well-known that simple analytic models do not
sufficiently reproduce experimental measurements [122, 123]. Naturally, an exact quantum mechanical treatment
that incorporates all correlation and excitation effects is not feasible. Unfortunately, quantum Monte Carlo methods
which often allow for accurate results in the ground state are not straightforwardly extended to the simulation of
fermionic matter at finite temperature. More specifically, exact fermionic path integral Monte Carlo (PIMC)
simulations (see Sec. 5.2) are severely hampered by the so-called fermion sign problem; nevertheless, there has been
made some progress in direct fermionic QMC simulations by Filinov and co-workers [124, 125, 126, 127, 128, 129,
130, 131, 132]. To avoid the fermion sign problem, usually the fixed node approximation is utilized [133, 134, 135]
(also “Restricted PIMC”, RPIMC, see Sec. 5.3) breaks down at low temperature and high density. Therefore,
RPIMC is not available over substantial parts of the warm dense regime, and the accuracy is, in general, unknown.

The probably most widespread simulation technique for warm dense matter is the combination of molecular
dynamics (for the heavy ions) with a thermal density functional theory description of the electrons [136, 137, 138],
usually denoted as DFT-MD [139, 140, 141, 142, 143]. Naturally, the decoupling of the ionic and electronic systems
according to the Born-Oppenheimer approximation might not be appropriate in all situations. In addition, similar
to the ground state, the accuracy of the DFT calculation itself strongly relies on the specific choice of the exchange-
correlation functional [144, 145]. An additional obstacle for thermal DFT calculations is the explicit dependence
of the exchange-correlation functional on temperature [146, 147], a topic which has only recently attracted serious
attention, but might be crucial to achieve real predictive capability [66, 148]. Even worse, at moderate to high
temperature, the usual thermal Kohn-Sham (KS) treatment of DFT becomes unfeasible, due to the increasing
number of orbitals necessary to reach convergence. For this reason, Militzer and co-workers have proposed to
combine RPIMC at high temperature with DFT elsewhere, and successfully applied this idea to the simulations of
many different materials at warm dense matter conditions [149, 150, 151, 152, 153, 154]. A possible extension of
KS-DFT towards stronger excitations is given by the so-called orbital free (OF) DFT [155, 156, 157, 158, 159, 160],
where the total electronic density is not represented by Kohn-Sham orbitals. While being computationally cheap
and, in principle, still exact, in practice orbital free DFT relies on an approximation for the ideal part of the (free)
energy [161], whereas the latter is treated exactly within KS-DFT. Since the ideal part usually constitutes the
largest contribution, it is widely agreed that OF-DFT does not provide sufficient accuracy, and, therefore, cannot
give a suitable description of warm dense matter [160]. A recent, more promising, strategy to extend KS-DFT
towards higher temperature has been introduced by Zhang and co-workers, see Refs. [162, 160, 163] for details.

On the other hand, even at relatively low temperature, when the electrons are in the ground state, a DFT
description for the electronic component is often not sufficient [144, 145]. For this reason, Ceperley, Pierleoni
and co-workers proposed to combine a classical Monte Carlo (instead of MD) for the heavy ions, with highly
accurate ground-state QMC calculations for the electrons. This so-called coupled electron-ion QMC (CEIMC)
method [164, 165, 166, 167] has subsequently been applied, e.g., to the (controversially discussed, see also the recent
experiments in Ref. [168]) liquid-liquid phase transition in hydrogen [169, 170]. Note that, within the CEIMC
approach, quantum effects of the ions can easily be included, e.g., Refs. [170]. In a similar spirit, Sorella and
co-workers [171, 172, 173, 174, 175, 176] introduced a combination of electronic ground state QMC calculations
with classical MD for the ions, although, to our knowledge, no consensus with CEIMC (and, for that matter, with
DFT-MD) simulations has been reached so far regarding liquid hydrogen.

In addition, there has been remarkable recent progress in the development of real time-dependent DFT calcula-
tions [177, 178, 179, 180], which would also give direct access to the dynamic properties of the electrons, although
this topic remains in its infancy due to the high computational cost of accurate exchange correlation functionals.

Finally, we mention the possiblity of so-called quantum-classical mappings employed by Dharma-wardana et
al. [181, 182, 183, 184], where the complicated quantum mechanical system of interest is mapped onto a classical
model system with an effective “quantum temperature”, see Sec. 4.2 for more details.

1.3. The warm dense electron gas

Of particular interest for the theoretical description of WDM are the properties of the warm dense uniform
electron gas. As mentioned above, an accurate parametrization of the exchange-correlation free energy with respect
to temperature θ, density rs, and spin-polarization ξ is of paramount importance for thermal DFT simulation both
in the local (spin) density approximation or as a basis for more sophisticated gradient approximations [185, 32].
Further, direct applications of such a functional include astrophysical models [186, 187, 188, 189, 190, 191], quantum
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hydrodynamics [192, 193, 194], and the benchmark for approximations, such as finite-temperature Green function
methods [195, 196], for a recent study see Ref. [197].

However, even the description of this simple model system, without an explicit treatment of the ionic component,
has turned out to be surprisingly difficult. Throughout the eighties of the last century, Ebeling and co-workers [198,
199, 200, 201, 202] proposed various interpolations between different known limits (i.e., high temperature, weak
coupling, and the ground state). A more sophisticated approach is given by the dielectric formalism, which, at
finite temperature, has been extensively developed and applied to the UEG by Ichimaru, Tanaka, and co-workers,
see Refs. [203, 204, 205, 206, 207, 208]. For a more comprehensive discussion of recent improvements in this field,
see Sec. 3. In addition, we mention the classical-mapping based scheme by Perrot and Dharma-wardana [209, 210],
the application of which is discussed in Sec. 4.2.1. Unfortunately, all aforementioned results contain uncontrolled
approximations and systematic errors of varying degrees, so that their respective accuracy has remained unclear.

While, in principle, thermodynamic QMC methods allow for a potentially exact description, their application
to the warm dense UEG has long been prevented by the so-called fermion sign problem, see Sec. 5. For this
reason, the first QMC results for this system were obtained by Brown et al. [211] in 2013 by employing the fixed
node approximation (i.e., RPIMC). While this strategy allows for QMC simulations without a sign problem, this
comes at the cost of the exact ab-initio character and it has been shown that results for different thermodynamic
quantities are not consistent [212]. Nevertheless, these data have subsequently been used as the basis for various
parametrization [213, 212, 214].

This overall unsatisfactory situation has sparked remarkable recent progress in the field of fermionic QMC
simulations of the UEG at finite temperature. The first new development in this direction has been the configuration
path integral Monte Carlo method (CPIMC, see Sec. 5.5), which, in contrast to standard PIMC, is formulated in
second quantization with respect to plane waves, and has been developed by Schoof, Groth and co-workers [215, 216,
217]. In principle, CPIMC can be viewed as performing a Monte Carlo simulation on the exact, infinite perturbation
expansion around the ideal system. Therefore, it excels at high density and strong degeneracy, but breaks down
around rs ∼ 1 and, thus, exhibits a complementary nature with respect to standard PIMC in coordinate space.
Surprisingly, the comparison of exact CPIMC data [218] forN = 33 spin-polarized electrons with the RPIMC data by
Brown et al. [211] revealed systematic deviations exceeding 10% towards low temperature and high density, thereby
highlighting the need for further improved simulations. Therefore, Dornheim and co-workers [219, 220] introduced
the so-called permutation blocking PIMC (PB-PIMC, see Sec. 5.4) paradigm, which significantly extends standard
PIMC both towards lower temperature and higher density. In combination, CPIMC and PB-PIMC allow for an
accurate description of the UEG over the entire density range down to half the Fermi temperature [217, 221]. Soon
thereafter, these results were fully confirmed by a third independent method. This density matrix QMC (DMQMC,
see Sec. 5.6) [222, 223, 224] is akin to CPIMC by being formulated in Fock space. Hence, there has emerged a
consensus regarding the description of the electron gas with a finite number of particles [225]. The next logical step
is the extrapolation to the thermodynamic limit, i.e., to the infinite system at a constant density, see Sec. 6. As it
turned out, the extrapolation scheme utilized by Brown et al. [211] is not appropriate over substantial parts of the
warm dense regime. Therefore, Dornheim, Groth and co-workers [221, 226] have developed an improved formalism
that allows to approach the thermodynamic limit without the loss of accuracy over the entire density-temperature
plane.

Finally, these first ab initio results have very recently been used by the same authors to construct a highly
accurate parametrization of the exchange-correlation free energy of the UEG covering the entire WDM regime [227],
see Sec. 8. Thereby, a complete thermodynamic description of the uniform electron gas at warm dense matter
conditions has been achieved.

1.4. Outline of this article

• In Sec. 2, we start by providing some important definitions and physical quantities that are of high relevance
for the warm dense UEG. Further, we discuss the jellium Hamiltonian for a finite number of electrons in a
box with periodic boundary conditions, and the corresponding Ewald summation.

• In Sec. 3, we give an exhaustive introduction to the dielectric formalism within the density-density linear
response theory and its application to the uniform electron gas, both in the ground state and at finite tem-
perature. Particular emphasis is put on the STLS approach, which is extensively used throughout this work.
Most importantly, it is a crucial ingredient for the accurate extrapolation of QMC data to the thermodynamic
limit, see Sec. 6. In addition, we summarize all relevant equations that are required for the implementation
and numerical evaluation of various dielectric approximations.

• In Sec. 4, we briefly discuss other approximate methods that have been applied to the warm dense UEG. This
includes the finite-temperature Green function approach, as well as two different classical mapping formalisms.
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• In Sec. 5, we provide an all-encompassing discussion of the application of quantum Monte Carlo methods
to the uniform electron gas at warm dense matter conditions. We start with a brief problem statement
regarding the calculation of thermodynamic expectation values in statistical physics. The solution is given by
the famous Metropolis algorithm, which constitutes the backbone of most finite-temperature quantum Monte
Carlo methods (Sec. 5.1). Undoubtedly, the most successful among these is the path integral Monte Carlo
method (Sec. 5.2), which, unfortunately, breaks down for electrons in the warm dense matter regime due to the
notorious fermion sign problem (Sec. 5.2.3). Two possible workarounds are given by our novel permutation
blocking PIMC (Sec. 5.4) and configuration PIMC (Sec. 5.5) methods, which we both introduce in detail.
Further mentioned are the approximate restricted PIMC method (Sec. 5.3) and the recent independent density
matrix QMC approach (Sec. 5.6). The section is concluded with a thorough comparison between results for
different quantities by all of these methods for a finite number of electrons (Sec. 5.7).

• In Sec. 6, we discuss the extrapolation of QMC data that has been obtained for a finite number of electrons to
the thermodynamic limit. A brief introduction and problem statement (Sec. 6.1) is followed by an exhaustive
discussion of the theory of finite-size effects (Sec. 6.2). Due to the demonstrated failure of pre-existing
extrapolation schemes, in Sec. 6.3 we present our improved finite-size correction and subsequently illustrate
its utility over the entire warm dense matter regime (Sec. 6.4).

• In Sec. 7, we use our new data for the thermodynamic limit to gauge the accuracy of the most important
existing approaches, both for the interaction energy and the static structure factor.

• In Sec. 8, we give a concise introduction (Sec. 8.1) of the state of the art of parametrizations of the exchange-
correlation energy of the warm dense uniform electron gas, and of their respective construction (Sec. 8.2).
Particular emphasis is put on the parametrization of the spin-dependence, Sec. 8.3. Finally, we provide
exhaustive comparisons (Sec. 8.4) of fxc itself, and of derived quantities, which allows us to gauge the accuracy
of the most widely used functionals.

• In Sec. 9, we extend our QMC simulations to the inhomogenous electron gas. This allows us to obtain highly
accurate results for the static density response function and the corresponding local field correction (Sec. 9.1).
As a demonstration, we give two practical examples at strong coupling using PB-PIMC (Sec. 9.3.1) and at
intermediate coupling using CPIMC (Sec. 9.3.2). Further, we employ our parametrization of fxc to compute
the long-range asymptotic behavior of the local field correction via the compressibility sum-rule and find
excellent agreement to our QMC results.

• In Sec. 10, we provide a summary and give an outlook about future tasks and open questions regarding the
warm dense electron gas.

2. Important quantities and definitions

2.1. Basic parameters of the warm dense UEG

In the following, we introduce the most important parameters and quantities regarding the warm dense electron
gas. Observe, that Hartree atomic units are assumed throughout this work, unless explicitly stated otherwise. Of
high importance is the above mentioned density parameter (often denoted as Wigner-Seitz radius, or Brueckner
parameter)

rs =

(
3

4πn

)1/3

, (2)

which is independent of temperature and spin-polarization and solely depends on the combined density of both
spin-up and -down electrons, n = n↑ + n↓. The spin-polarization parameter ξ is defined as

ξ =
n↑ − n↓

n
∈ [0, 1] , (3)

where it is implicitly assumed that n↑ ≥ n↓. Thus, ξ = 0 corresponds to the unpolarized (paramagnetic) case,
whereas ξ = 1 is being referred to as the spin-polarized (ferromagnetic) case. For completeness, we mention that rs
and ξ are sufficient to fully determine the thermodynamics of the UEG in the ground state. At warm dense matter
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conditions, we also require information about the temperature, usually characterized by the quantum degeneracy
parameter

θ =
kBT

EF
, (4)

with

EF =
(k↑F)2

2
(5)

denoting the Fermi energy. Observe that we always define EF with respect to the Fermi wave vector of the spin-up
electrons,

k↑F = (6π2n↑)1/3 . (6)

Hence, for an ideal electron gas at zero temperature EF defines the maximum energy of the occupied one-particle
orbitals. Note that in the relevant literature, there exists another possible definition of EF, where the Fermi wave
vector is computed with respect to the total electron density, i.e., using kF = (3π2n)1/3 in Eq. (4).

The warm dense matter regime, to which the present work is devoted, is roughly characterized by 0.1 ≤ rs ≤ 10
and 0 ≤ θ ≤ 10.

2.2. The Jellium Hamiltonian: Coordinate representation

The description of an infinite system based on a quantum Monte Carlo simulation of a finite number of electrons
N in a finite simulation box with volume V = L3 is usually realized by making use of periodic boundary conditions.
In addition to the Coulomb interaction of the electrons in the simulation cell, one also includes the interaction with all
electrons in the infinitely many images (the same applies to the positive homogeneous background). Unfortunately,
such an infinite sum with diverging positive and negative terms is only conditionally convergent, i.e., the result
depends on the ordering of the terms and is not well defined [228]. In practice, one usually employs the Ewald
summation technique (see Ref. [229] for a recent accessible discussion), which corresponds to the solution of Poisson’s
equation in periodic boundary conditions [230, 231]. The full Hamiltonian is then given by

Ĥ = −1

2

N∑

i=1

∇2
i +

N∑

i=1

N∑

k>i

WE(ri, rk) +
N

2
ξM , (7)

with the periodic Ewald pair potential being defined as [231]

WE(r, s) =
1

V π

∑

G6=0

(
G−2e−

π2G2

κ2 +2πiG·(r−s)
)
− π

κ2V
+
∑

R

erfc(κ|r− s + R|)
|r− s + R| , (8)

where G = nL and R = mL−1 denote reciprocal and real lattice vectors, respectively (n,m ∈ Z3). Furthermore,
ξM is the so-called Madelung constant, which takes into account the interaction of a charge with its own background
and array of images,

ξM = lim
r→s

(
WE(r, s)− 1

|r− s|

)
(9)

=
1

V π

∑

G6=0

G−2e−
π2G2

κ2 − π

κ2V
+
∑

R 6=0

erfc(κR)

R
− 2κπ−

1
2 . (10)

Observe that both Eqs. (8) and (9) are independent of the specific choice for the Ewald parameter κ, which can
be exploited for optimization. Further, we note that in Eq. (7) there appear no additional terms describing the
uniform positive background as the average value of WE(r, s) within the simulation box vanishes [231].

Let us conclude this section with some practical remarks. Obviously, a direct evaluation of the infinite sums in
reciprocal and real space in Eq. (8) is not possible. Fortunately, the optimal choice of the free parameter κ leads
to a rapid convergence of both sums. Furthermore, there exist numerous schemes to accelerate the computation
of the Ewald potential that are advisable in different situations, such as multipole expansions [232] or using a
basis of Hermite interpolants [233], see, e.g., Refs. [230, 234] for an overview. Finally, we mention the possibility
for pre-averaged pair potentials, e.g., Refs. [235, 236, 237, 238], which can potentially get rid of “artificial crystal
effects” due to the infinite periodic array of images, and are computationally cheap. Recently, this idea has been
applied to quantum Monte Carlo simulations of an electron gas by Filinov and co-workers [130].
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2.3. The Jellium Hamiltonian: Second quantization

Second quantization is an efficient way to incorporate the symmetry or anti-symmetry of quantum particles in
a many-particle description. Due to the indistinguishability of quantum particles the relevant observables are the
occupation numbers of individual single-particle orbitals |i〉 which are solutions of the one-particle problem. Here
we will concentrate on the UEG where the natural choice of orbitals are plane waves spin states. For a general
introduction to the theory of second quantization we refer the reader to standard text books, e.g. [195, 239].

In case of the UEG, the quantization is naturally performed with respect to plane wave spin orbitals, |i〉 → |kiσi〉,
with the momentum and spin eigenvalues ki and σi, respectively. In coordinate representation they are written as
〈rσ |kiσi〉 = 1

L3/2 e
iki·rδσ,σi with k = 2π

L m, m ∈ Z3 and σi ∈ {↑, ↓} so that the UEG Hamiltonian, Eq. (7), becomes

Ĥ =
1

2

∑

i

k2
i â
†
i âi +

∑

i<j,k<l
i 6=k,j 6=l

w−ijklâ
†
i â
†
j âlâk +N

ξM
2

. (11)

Here, the creation (annihilation) operator â†i (âi) creates (annihilates) an electron in the i-th spin orbital, and for
electrons (fermions) the operators obey the standard anti-commutation relations. Also, w−ijkl = wijkl−wijlk denotes
the antisymmetrized two-electron integral with

wijkl =
4πe2

L3(ki − kk)2
δki+kj ,kk+klδσi,σkδσj ,σl , (12)

and we used the Fourier representation of the Coulomb potential. Further, the N−particle states are given by
Slater determinants

|{n}〉 = |n1, n2, . . . 〉 , (13)

with the fermionic occupation number ni ∈ {0, 1} of the i-th plane wave spin-orbital. Obviously, the second
quantization representation of the UEG Hamiltonian has two practical advantageous compared to its coordinate
representation: 1) the Ewald interaction only enters in a trivial way via the Madelung constant, ξM, thus not
requiring any elaborate evaluation of the interaction part, and 2), the correct Fermi statistics are automatically
incorporated via the usual fermionic anti-commutator relations of the creation and annihilation operators.

3. Dielectric Approximations and Linear Response Theory

3.1. Introduction

Before the advent of the first exact but computationally highly demanding quantum Monte Carlo simulations of
the UEG in the late 1970s, the approximate approaches based on the dielectric formulation [11, 12, 13, 14, 1] have
arguably constituted the most vital tool for gaining crucial insights into correlated quantum many-body systems.
In the ground state, a seminal work in this direction have been provided by Bohm and Pines with the formulation
of the random phase approximation (RPA) [8, 14, 240], which becomes exact in both the long wavelength and high
density limit and thus sufficiently describes long-range phenomena. Later, an alternative derivation of the RPA has
been performed by Gell-Mann and Brueckner [241] through a summation of Feynman diagrams leading to the first
exact expansion of the correlation energy of the UEG in the high density regime. However, at metallic densities,
rs ≈ 1.5, . . . , 7, the RPA dramatically overestimates short-range correlations between the electrons resulting in
significantly too low correlation energies and an unphysical negative value of the pair-correlation function at zero
distance. To overcome these shortcomings, Singwi, Tosi, Land and Sjölander (STLS) [9] proposed a self-consistent
scheme that allows for an approximate but greatly improved treatment of the short-range exchange and correlation
effects. Most notably, the STLS scheme predicted the exchange-correlation energies that have later been accurately
computed by Ceperley and Alder [15, 16] with an impressive accuracy of ∼ 1% even up to densities rs ∼ 20 (see
e.g. Ref. [242]). Nevertheless, the obtained pair-correlation functions still become slightly negative at densities
rs ≥ 4, but, compared to the RPA, the magnitude of this error is strongly reduced. A further issue regarding the
STLS scheme is the violation of the exact compressibilty sum rule, Eq. (39). Vashishta and Singwi (VS) could
modify the self-consistent scheme by also taking the density derivative of the pair-correlation function into account
so that the compressibility sum rule is almost exactly verified [10, 243], though this lead to a reduced quality of the
pair-correlation function and exchange-correlation energy.

All of the mentioned schemes beyond RPA rely on a static (frequency-independent) approximation of the so-
called local field correction, the central quantity in the dielectric formulation. There have been many attempts to
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further increase the overall accuracy of the static dielectric methods (for an overview see e.g. Ref. [13]), and even the
extension to a more consistent formulation based on a dynamical local field correction has been achieved [244, 245].
However, regarding the interaction energy, the static STLS scheme turned out to give the most accurate results.

Due to a former lack of experimental motivation, the extension of some of the dielectric approaches to finite
temperature and their application to the UEG were carried out much later. The first calculations in the RPA
have been carried out by Gupta and Rajagopal [246, 247, 137], which have later been revised and parametrized by
Perrot and Dharma-wardana [248]. After that, countless important contributions to this field have been made by
Tanaka and Ichimaru [203, 204, 205, 206, 207, 208], who applied many of the static dielectric methods, i.e. with
some static ansatz for the LFC, to the quantum and classical UEG at finite temperature. Among these works is the
finite temperature STLS scheme [204], which, likewise to the ground state, predicted the exact exchange-correlation
energy [227, 242, 249] with a similar impressive accuracy of ∼ 1%, cf. Sec. 7. However, a consistent extension of
the static finite temperature VS scheme [250] could only be achieved much later [213], since the fulfillment of the
compressibility sum rule turned out to be more elaborate here. Furthermore, Schweng and Böhm developed the
finite temperature version of the dynamical STLS scheme [251] and successfully used it for a detailed investigation
of the static LFC of the UEG, while a generalization to arbitrary spin-polarization of this formalism has been
provided only very recently [252].

We mention that, regarding the benefits and merits of the specific variants of the dielectric methods, the
qualitative statements for the ground state given above also apply to their finite temperature extensions. Moreover,
in addition to its predictive capabilities prior to the advent of the more accurate QMC simulations, in particular
the RPA and STLS approach played an important role in the extrapolation of the results obtained from a finite
simulation system (finite particle number N and simulation box with volume V ) to the thermodynamic limit,

i.e. N,V
n=const−−−−−→ ∞ (see Sec. 6). In addition, very recently, the temperature dependence of the STLS interaction

energy has been successfully used to bridge the gap between the ground state and finite temperature QMC data
which are available only above half the Fermi temperature (see Sec. 8).

3.2. Density response, dielectric function, local field correction, and structure factor

The dielectric formulation is derived within the framework of the linear density-density response theory, where
we are interested in the change of the electron density when a periodic (both in space and time) external potential
with wavenumber q, frequency ω, and amplitude Φ(q, ω) is applied to the system, i.e.,

Φext(r, t) =
1

V
Φ(q, ω) ei[qr−(ω−iη)t] + c.c. (14)

The infinitesemal positive constant η = 0+ ensures that the perturbation vanishes at t → −∞ so that we can
assume that the system has been in thermal equilibrium in the past and the external field has been switched on
adiabatically. Provided that the amplitude is sufficiently small and the unperturbed system is homogeneous, one
can show that the resulting change in the electron density is given by [1, 207]

δn(r, t) = n(r, t)− n(r)0 =
1

V
Φ(q, ω)χ(q, ω)ei(qr−ωt) + c.c. , (15)

where we have introduced the Fourier transform of the density-density response function

χ(ω,q) = lim
η→0

∫ ∞

−∞
dτ e(iω−η)τ χ̃(q, τ) . (16)

with its standard definition1

χ̃(q, τ) = −i 〈[n̂(q, τ), n̂(−q, 0)]〉0 Θ(τ) . (17)

Here, 〈·〉0 denotes the ensemble average of the unperturbed system, and the time dependence of the Fourier transform
of the density operator n̂(q) =

∑
i e
−iqr̂i is determined by the Heisenberg picture with respect to the unperturbed

Hamiltonian, i.e., n̂(q, t) = eiĤ0tn̂(q)e−iĤ0t. From Eq. (15) we immediately see that the amplitude of the induced
density fluctuations is simply

n(q, ω) =
1

V
Φ(q, ω)χ(q, ω) . (18)

1Note that we restrict ourselves to the unpolarized case throughout the present section. Therefore, the response function χ is equal
to the total response function of both spin-up and -down electrons.
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Hence, all information of the system’s response to the external perturbation, Eq. (14), is contained in the density-
density response function χ(q, ω). Via the polarization potential approach [207] it can be shown that the exact
density response function can always be expressed in terms of the ideal (Lindhard) response function, χ0, and the
so-called local field correction (LFC), G, as

χ(q, ω) =
χ0(q, ω)

1− 4π
q2 [1−G(q, ω)]χ0(q, ω)

, (19)

where the RPA response function is recovered when setting G ≡ 0, i.e.,

χRPA(q, ω) =
χ0(q, ω)

1− 4π
q2 χ0(q, ω)

. (20)

Thus, the LFC covers all correlation effects in the response of the system to a weak external potential. The imaginary
part of the response function is linked to the dynamic structure factor S(q, ω) via the fluctuation dissipation
theorem [1]

Imχ(q, ω) = − π
V

(
1− e−βω

)
S(q, ω) , (21)

which can in turn be utilized to express the static structure factor

S(q) =
1

N

∫
dω S(q, ω) =

1

N
〈n̂(q)n̂(−q)〉0 (22)

in terms of the response function

S(q) = − 1

2πn
P
∫ ∞

−∞
dω coth

( ω
2T

)
Imχ(q, ω) , (23)

where P denotes the principal value, which is necessary due to the poles of the integrand on the real axis. Thereby
we have obtained a direct connection between the dynamic properties of the system, i.e., within the linear response
regime, and its thermodynamic properties. Note that the response function obeys the Kramers-Kronig relations

Reχ(q, ω) =
2

π
P
∫ ∞

0

dν
ν Imχ(q, ω)

ν2 − ω2
, (24)

Imχ(q, ω) = −2ω

π
P
∫ ∞

0

dν
Reχ(q, ω)

ν2 − ω2
,

and hence, the real part of the response function can always be computed from its imaginary part and vice versa.
The central idea of all dielectric approaches consists in deriving an approximate expression for the LFC so that it is
expressed as a functional of the static structure factor, i.e. G = G[S]. Then, together with Eqs. (19) and (24), one
has a closed set of equations, which, in principal can be solved iteratively starting from the RPA (G = 0), where
the real and imaginary part of the ideal (Lindhard) response function, χ0, are readily evaluated numerically [1].
However, from a numerical point of view this approach is highly inconvenient due to the infinitely many poles of the
integrands in the Eqs. (23) and (24). A solution to this problem has been provided by Tanaka and Ichimaru [204],
who reformulated the aforementioned set of equations for the complex valued density-density response function
defined by

χ̃(q, z) :=

∫ ∞

−∞

dν

π

Imχ(q, ν)

ν − z , (25)

which, under the frequency integral, fulfills 2iImχ(q, ω) = limη→0+ χ̃(q, ω + iη) − χ̃(q, ω − iη), so that Eq. (23)
becomes

S(q) = − 1

4πin
P lim
η→0

∫ ∞

−∞
dω coth

( ω
2T

)
[χ̃(q, ω + iη)− χ̃(q, ω − iη)] . (26)

Now the integral can be interpreted as a closed contour integral

S(q) = − 1

4πin
lim
ε→0+

lim
η→0+

lim
R→∞

∮

C

dz coth
( z

2T

)
Imχ̃(q, z) , (27)
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Figure 2: Illustration of the integration contour C in Eq. (27). Crosses indicate the poles of the hyperbolic cotangent.

with the explicit form of the contour being depicted in Fig. 2, where the limit R → ∞ is taken prior to the
integration whereas ε, η → 0+ is taken afterwards. Since the integrand is analytic on C, the contour integral can
be solved by applying the residue theorem yielding

S(q) = −T
n

∞∑

l=−∞
χ̃(q, zl) , (28)

with the Matsubara frequencies zl representing the poles of the cotangent hyperbolic function on the imaginary
axis,

zl = 2πilT . (29)

Hence, the frequency integral in Eq. (23) can be replaced by a sum over the Matsubara frequencies, which is much
more convenient for numerical evaluation.

Similar to the real frequency dependent response function, cf. Eq. (19), the exact complex valued response
function can be rewritten in terms of the complex valued ideal response function and LFC [203, 251],

χ̃(q, z) =
χ̃0(q, z)

1− 4π
q2 [1− G̃(q, z)]χ̃0(q, z)

. (30)

In the thermodynamic limit2, the finite temperature complex valued ideal response function is given by

χ̃0(q, z) = −2

∫
dk

(2π)3

f(k + q)− f(k)

z − εk+q + εk
, (31)

with εk = k2/2 and f being the Fermi distribution

f(k) =
1

ek2/(2T )−α + 1
, (32)

2As usual, replacing 1
V

∑
q by

∫ dq
(2π)3

transforms the expressions for the finite system (with periodic boundary conditions) to the

thermodynamic limit.
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where the reduced chemical potential α = µ/T is determined by the normalization condition

∫
dk

(2π)3
f(k) =

n

2
. (33)

For numerical evaluation of the ideal response function at the different Matsubara frequencies the following form is
most suitable [203, 204]:

χ̃0(q, zl) = −2

q

∫ ∞

0

dk

(2π)2

k

ek2/(T2)−α + 1
ln

[
(4πlT )2 + (q2 + 2qk)2

(4πlT )2 + (q2 − 2qk)2

]
. (34)

3.3. Approximations for the local field correction

In the static dielectric approaches one approximates the dynamic LFC by its static value, i.e., replacing G̃(q, z)
by G̃(q, 0) in Eq. (30), which turns out to be highly accurate in many cases. The most successful and widely used
approximation for the static LFC is given by the one utilized in the STLS scheme [9]

GSTLS(q, 0) = − 1

n

∫
dk

(2π)3

q · k
k2

[S(q− k)− 1] (35)

= − 1

n

∫ ∞

0

dk

(2π)2
k2[S(k)− 1]

[
q2 − k2

4kq
ln

(
(q + k)2

(q − k)2

)
+ 1

]
.

This expression is derived from the classical equation of motion of the one-particle distribution function, f(r1,p1, t),
by making the following product ansatz for the two-particle distribution function3:

f(r1,p1, r2,p2, t) ≈ f(r1,p1, t)f(r2,p2, t)geq(r1 − r2) , (36)

where geq(r) denotes the exact equilibrium pair-distribution function. Since the two-particle distribution function
couples to the three-particle distribution function and so on, Eq. (36) serves as a closure relation of the hierarchy.

The equations (28), (30), and (35) now form a closed set of equations, which are self-consistently solved as
follows:

1. Compute the reduced chemical potential α by solving Eq. (33).

2. Compute and store the values of the ideal response function, χ0(q, zl), for sufficiently large values of l ensuring
that Eq. (28) always converges throughout the iteration.

3. Compute the response function from Eq. (30), initially by setting G = 0.

4. Compute the static structure factor S(q) from Eq. (28).

5. Compute the new LFC GSTLS(q, 0) from Eq. (35).

6. Repeat steps 3 to 5 until convergence is reached.

For completeness we mention that, in particular at low temperature, the sum in Eq. (28) may only converge for
extremely large values of l, but this obstacle can be overcome by separating those contributions for which the
summation can be performed analytically beforehand, see Ref. [203] for details.

Naturally, from the converged static structure factor we directly obtain the interaction energy (per particle) for
the corresponding temperature and density parameter,

v(θ, rs) =
1

π

∫ ∞

0

dk [S(k; rs, θ)− 1] , (37)

which can in turn be used to compute the exchange-correlation free energy via the standard coupling constant
integration

fxc(rs, θ) =
1

r2
s

∫ rs

0

dr̄s v(θ, r̄s) . (38)

As mentioned before, both in the ground state and at finite temperature, the STLS scheme provides highly accurate
interaction energies, which is partly the result of a favourable error cancellation in Eq. (37) as the STLS static

3Note that this ansatz can be further improved by considering an explicitly time-dependent pair distribution function, see Refs. [253,
254].
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structure factor tends to be slightly too large for small k-vector and vice versa, see Fig. 31 in Sec. 6. It is important
to note that, compared to the RPA, the STLS structure factor and related thermodynamic properties are of
substantially higher accuracy. In particular, the negative values of the pair-distribution function at zero distance,
g(0), are significantly reduced, although it still becomes slightly negative at lower densities [204]. However, there
is a well-known drawback regarding the consistency of the STLS results: the compressibility sum rule (CSR) is
violated. The CSR is an exact property of the UEG linking the long-wavelength limit of the static LFC G(q, 0) to
the second derivative of the exchange-correlation free energy:

lim
q→0

G(q, 0) = − q
2

4π

∂2

∂n2
(nfxc) . (39)

Substituting GSTLS(q, 0) and fSTLS
xc on the left- and right-hand side of Eq. (39) gives different results, which

demonstrates that the STLS scheme does not provide a consistent physical description of the UEG. Moreover, the
long range limit of the LFC differs significantly from the exact QMC result, which is shown in Fig. 43 in Sec. 9. In
the ground state, Vashishta and Singwi [10] proposed to modify the STLS expression, Eq. (35), for the LFC such
that

GVS(q, 0) =

(
1 + an

∂

∂n

)
GSTLS(q, 0) , (40)

where the right choice of the additional free parameter a, in principle, allows for the exact fulfillment of Eq. (39). In
fact, they empirically found that setting a = 2/3 reasonably satisfies the CSR for all densities in the ground state.
Only recently, Sjostrom and Dufty [213] successfully extended this approach to the finite temperature UEG. They
even refined the approach by making the free parameter dependent on density and temperature, i.e., a = a(rs, θ),
and actually included the CSR, Eq. (39), into the self-consistent scheme, which requires to simultaneously perform
calculations for different values of rs. Thereby, the obtained results are physically more consistent in that they do
exactly fulfill the CSR. However, the overall quality of the thermodynamic quantities is decreased compared to the
STLS scheme; for example, g(0) becomes more negative [213].

Since the accuracy of the STLS scheme decreases when the density parameter becomes too large, rs & 20, there
have been many attempts to derive more refined expressions for the static LFC that perform better in the strong
coupling regime (see e.g. [206, 13]). Among them are the so-called (modified) convolution [(M)CA] and hypernetted
chain approximations [(M)HNC] for the LFC. Both are known to be highly accurate for the description of the
classical one-component plasma over the entire fluid regime [206]. While the MCA scheme has been used earlier
for the construction of a temperature, density, and spin-dependent parametrization of the exchange-correlation
free energy of the UEG [205], the HNC scheme has only recently been applied to the UEG at warm dense matter
conditions [242] and, compared to the STLS scheme, showed overall improved results for the thermodynamic
properties but not for the interaction energy. The LFC in the HNC approximation is derived from the hypernetted
chain equation for classical liquids [255, 256], which yields [242]

GHNC(q, 0) = GSTLS(q, 0) +
1

n

∫
dk

(2π)3

q · k
k2

[S(q− k)− 1][G(k, 0)− 1][S(k)− 1] , (41)

where the CA expression is recovered by setting G(k, 0) ≡ 0 on the left-hand side of Eq. (41). Further, the
corresponding modified versions, MCA and MHNC, are obtained by replacing S(q− k) by a screening function

S̄(q) =
q2

q2 + q2
s

. (42)

The screening parameter qs is determined consistently from the condition

1

2

∫
dq

(2π)3

4π

q2
[S̄(q)− 1] =

1

2

∫
dq

(2π)3

4π

q2
[S(q)− 1] , (43)

so that S and S̄ must correspond to the same interaction energy. Using the modified versions with the screening
function has the practical advantage that, like the STLS contribution to the total LFC, cf. Eq. (35), also the second
term in Eq. (41) can be recast into a one-dimensional integral [242], i.e.,

GMHNC(q, 0) = GSTLS(q, 0) +
q2
s

n

∫ ∞

0

dk

(2π)2

[
1 +

k2 + q2 + q2
s

4qk
ln

(
(k − q)2 + q2

s

(k + q)2 + q2
s

)]
[G(k)− 1][S(k)− 1] , (44)
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which significantly speeds up the convergence process. Unfortunately, this is not possible for the full HNC LFC,
Eq. (41), and thus, one actually must carry out the three dimensional integration.

At this point it is important to note that all the above static dielectric schemes are somewhat classical in spirit
since the utilized approximate expressions for the static LFC are all derived within purely classical theories. In
other words, the discussed methods may be interpreted as being quantum mechanically only on the level of the
RPA, while correlation effects are treated classically. In accordance to Eqs. (19) and (34) the exact LFC must
also depend on the frequency. First, Hasegawa and Shimizu [244] performed the formal derivation of the dynamic
STLS LFC by closing the hierarchy for the equation of motion of the Wigner distribution with the same product
ansatz, Eq. (36), that has been used in the static STLS formalism for the classical distribution function. Due to its
consistent quantum mechanical derivation, this approach has been termed quantum STLS (qSTLS). In the ground
state, the first numerical calculations and detailed investigations have been carried out by Holas and Rahman [245].
Later, the qSTLS scheme has also been applied to the finite temperature UEG, and more recently, it has been
generalized to allow for the calculation of spin-resolved quantities [251, 252]. The dynamical LFC in the qSTLS
scheme is given by

GqSTLS(q, zl) = − 1

n

∫
dk

(2π)3

χ̄0(q,k, zl)

χ̄0(q, zl)

k2

q2
[S(k− q)− 1] , (45)

with the generalized response function (two arguments) being defined as

χ0(q,k, zl) = −2

∫
dp

(2π)3

f(p + k/2)− f(p− k/2)

z − εp+q/2 + εp−q/2
(46)

= −2

q

∫ ∞

0

dp

(2π)2
p f(p) ln

[
(4πlT )2 + (2pq + qk)

(4πlT )2 + (2pq − qk)

]
.

For practical purposes, the qSTLS LFC, Eq. (45), can be reduced to a three-dimensional integral [251]. Overall,
compared to the static STLS approach, the qSTLS approach significantly improves the short-range behavior of the
pair-correlation function. Most notably, the obtained results for the static LFC are physically more reasonable as
they can exhibit important physical features. For example, they can actually have a maximum larger than one, a
necessary condition for the occurrence of charge density waves [251]. This is in stark contrast to the static dielectric
approaches where the static LFC usually converges monotonically to unity with increasing k−vector. Yet, the
improvement of the interaction energy due to the qSTLS scheme is rather small.

An exhaustive overview of comparison between the dielectric approximation and recent, highly accurate quantum
Monte Carlo data can be found in Sec. 7 for the static structure factor and the interaction energy and, in Sec. 9,
for the static density response function and local field correction.

4. Other approximate approaches

4.1. Finite-temperature (Matsubara) Green functions

An alternative derivation of the dielectric function encountered in the previous section can be achieved within
the framework of quantum kinetic theory [239]. In this formalism, correlation effects are usually incorporated by
approximating the collision integrals, which take the role of the local field correction in the dielectric formulation. For
instance, completely neglecting collisions gives the random phase approximation, whereas invoking the relaxation
time approximation [257, 258] leads to the well-known Mermin dielectric function.

A closely related strategy is used in Green functions theory where a suitable approximation of the so-called
self-energy is used to truncate the Martin-Schwinger hierarchy [259]. In the following, we briefly outline the
approximation introduced by Montroll and Ward [260] and also the additional e4-contribution (see Ref. [218] for
a recent application to the warm dense UEG). For simplicity, we restrict ourselves to the spin-polarized case and
write the total energy as a perturbation expansion with respect to coupling strength (dropping terms beyond second
order) as [195, 196]

E = Eid
0 (T, αe) + EHF + EMW + Ee4

. (47)

Here E0 denotes the ideal energy

E0 =
3

2

T

λ3
DB

I3/2(α) , (48)
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with λDB =
√

2π~2β/m being the thermal wavelength, and EHF corresponds to the well-known Hartree-Fock energy

EHF = λ−4
DB

∫ α

−∞
dα′ I2

−1/2(α′)− 3

2λ4
DB

I−1/2(α)I1/2(α) , (49)

where Ik is the Fermi integral of order k, see, e.g., Ref. [195], and α = βµ. As usual, the chemical potential µ is
defined by the normalization of the Fermi function to the total density, see Eq. (33). To compute the Montroll-Ward
(MW) and e4-contribution, it is convenient to utilize the pressure p, which is connected to the different parts of the
total energy by

Ej = −pj + T
∂

∂T
pj , j = MW, e4. (50)

The MW-component of the pressure is then given by

pMW =
−1

4π3

∞∫

0

dp p2 P
∞∫

0

dω coth

(
βω

2

)[
arctan

Im εRPA(p, ω)

Re εRPA(p, ω)
− Im εRPA(p, ω)

]
, (51)

with εRPA(p, ω) denoting the dielectric function in the random phase approximation, see Sec. 3. Therefore, neglecting
the e4-term in Eq. (47) gives the total energy in the RPA. To include second order contributions, we compute

pe
4

=

∫
dpdq1dq2

64π7

1

p2(p + q1 + q2)2

fq1fq2 f̄q1+pf̄q2+p − fq1+pfq2+pf̄q1 f̄q2
q2
1 + q2

2 − (p + q1)2 − (p + q2)2
(52)

with fp = [exp(βp2/2−βµ)+1]−1 being the Fermi function, and f̄p = [1−fp] denotes the Pauli blocking factor.
Detailed benchmarks of the energy computed from Eq. (47) will be presented in Sec. 7.

For completeness, we also mention the recent finite-temperature extension of the retarded cumulant Green
function approach [197] that is predicted to allow, both, for the computation of thermodynamic properties of the
UEG (see Sec. 8.4 for a comparison to QMC data) and, in addition, spectral properties.

4.2. Classical mapping approaches

In addition to the dielectric formalism (Sec. 3) and the quantum Monte Carlo methods introduced in Sec. 5,
quantum-classical mappings constitute a third independent class of approaches to a thermodynamic description
of the electron gas. In this section, we give a concise overview of two different formulations, namely the works
by F. Perrot and M.W.C Dharma-wardana [210, 209] and the more recent and rigorous works by S. Dutta and
J.W. Dufty [261, 262, 263].

4.2.1. Classical mapping approach by Perrot and Dharma-wardana

The basic idea of the formalism by Perrot and Dharma-wardana [210, 209] (hereafter denoted as PDW ) is to
define a classical system of charged particles at an effective quantum temperature Tq, such that an input value for the
ground state exchange-correlation energy Exc obtained from outside the theory is reproduced. While, in principle,
data from any theory could be used, PDW chose the then most accurate data based on quantum Monte Carlo
calculations by Ortiz and Ballone [34]. The properties of the effective classical system are approximately computed
by solving the corresponding hyppernetted chain (HNC) equations [255, 256]. A potentially more accurate albeit
computationally considerably more demanding treatment using the classical Monte Carlo or Molecular Dynamics
methods, e.g. Ref. [264], was deemed unnecessary as the error due to the HNC approximation was expected to
be negligible for the densities of interest. For completeness, we mention that this assumption was somewhat
contradicted by the recent works of Liu and Wu [265], who found that a more accurate inclusion of short-range
correlations is important to describe the first peak in the pair distribution function at low density. Once the classical
system is solved (thereby recovering the input value for Exc), it is straightforward to obtain other observables such
as the pair distribution function (or, equivalently, the static structure factor, cf. Sec. 6) or the static density response
function χ(k), cf. Sec. 3. A particular advantage of the classical mapping approach is that the resulting PDF is
always positive. This is in stark contrast to the dielectric approximations from Sec. 3, where the PDF tends to
become negative at small distances for intermediate to strong coupling. Further, a comparison of the classical
mapping with the ground state QMC results revealed quantitative agreement.

To extend this formalism to finite temperature T , for which back in the early 2000s no accurate data for
Exc(rs, T ) existed, PDW introduced a modified classical temperature

Tcf =
(
T 2 + T 2

q

)1/2
, (53)

16



which is motivated by the fact that the leading dependence of the energy on T is quadratic. Note that the expression
for Tq in Eq. (53) depends only on the density parameter rs,

Tq =
1

a+ b
√
rs + crs

, (54)

where the free parameters a, b, and c were obtained to reproduce the ground state data for Exc as explained
above. It is easy to see that Eq. (53) becomes exact for high and low temperature, but constitutes an uncontrolled
approximation for intermediate temperatures, most notably in the warm dense matter regime.

In their seminal paper from 2000, PDW [210] provided extensive results for the uniform electron gas at finite
temperature, including a parametrization of the exchange-correlation free energy fxc with respect to temperature,
density, and spin-polarization. A concise introduction of the latter is presented in Sec. 4.2.1, where it is compared
to the recent, highly accurate parametrization by Groth, Dornheim and co-workers [227].

Further, the PDW formalism for the classical-mapping has subsequently been employed in numerous calculations
of more realistic (and, thus, more complicated) systems, e.g., Refs. [181, 182, 183], and an excellent review can be
found in Ref. [184]. Finally, we mention that the shortcoming of the PDW classical-mapping at intermediate
temperature was recently somewhat remedied by Liu and Wu [266], who replaced the simple interpolation for Tcf

from Eq. (53) by the explicitly temperature-dependent expression

Tcf =
1

a(T ) + b(T )
√
rs + c(T )rs

, (55)

where the functions a(T ), b(T ), and c(T ) where chosen to reproduce the RPIMC data by Brown et al. [211] for
Exc, see Ref. [266] for more details. It was found that this gives better data for the pair correlation function, in
particular for the description of long-range correlations.

4.2.2. Classical mapping approach by Dutta and Dufty

Recently, Dufty and Dutta [267, 263] presented a more rigorous classical-mapping formalism operating in the
grand canonical ensemble (volume V , chemical potential µ, and inverse temperature β are fixed). While the volume
V is equal both for the true quantum system and the effective classical one, a modified inverse temperature βc,
chemical potential µc, and pair potential φc(r) are introduced. To determine these two parameters and one function,
we enforce the equivalence of pressure p, electron number density n and of the pair distribution function g(r) for
the true and effective systems,

pc(βc, V, µc|φc(r)) ≡ p(β, V, µ|φ(r)) (56)

nc(βc, V, µc|φc(r)) ≡ n(β, V, µ|φ(r))

gc(r, βc, V, µc|φc(r)) ≡ g(r, β, V, µ|φ(r)) ,

where, for the uniform electron gas, φ(r) is simply given by the Coulomb potential. Observe that the vertical bars
in Eq. (56) indicate that all three quantities are in fact functionals of the classical or quantum pair potentials,
in addition to the functional dependence on the three thermodynamic variables. In practice, one has to provide
expressions for p, n and g(r) of the quantum system, starting from which the relations in Eq. (56) can be inverted
for µc, βc, and φc(r).

Since providing two thermodynamic and one structural property of the system of interest as input for an
approximate many-body formalism might admittedly seem like circular reasoning, we must ask ourselves what kind
of information has been gained at which point. The answer is as follows: in practice, we provide the quantum input
computed from the random phase approximation (see Sec. 3), and subsequently compute the classical parameters
βc, µc, and φc(r) by solving Eq. (56) in the classical weak-coupling approximation. The main assumption is that
the quantum effects are either local (such as diffraction) or weakly nonideal (such as antisymmetry under particle-
exchange). In this case, the bulk of the more pronounced nonideality effects would be captured by subsequently
feeding the obtained results for βc, µc, and φc(r) into a more accurate classical many-body method, such as
the classical Monte-Carlo method, molecular dynamics, or, like in the PDW approach, the hypernetted chain
approximation.

Overall, the application of the Dufty-Dutta formalism to the UEG at warm dense matter conditions [262, 261] has
given results of similar accuracy as the PDW formalism, although not nearly as extensive data have been presented.
For completeness, we mention that this approach is not limited to the UEG or, in general, to homogeneous systems.
For example, first results for charges in a harmonic confinement have been reported in Refs. [262, 268]. The
application to a realistic electron-ion plasma remains an important task for the future.
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5. Quantum Monte Carlo Methods

In the following section, we will discuss in detail various quantum Monte Carlo methods and discuss the
fermion sign problem, which emerges for the simulations of electrons. In particular, we introduce the Metropo-
lis algorithm [269], which constitutes the backbone of all subsequent path inegral Monte Carlo methods except
the density matrix QMC paradigm. Not mentioned are the multilevel blocking idea by Mak, Egger and co-
workers [270, 271, 272, 273, 274] and the expanded-ensemble approach by Vorontsov-Velyaminov et al. [275, 276].

5.1. The Metropolis algorithm

Due to its fundamental importance for the understanding of the quantum Monte Carlo methods introduced
below, in this section we give a comprehensive introduction of the widely used Metropolis algorithm [269].

5.1.1. Problem statement

In statistical many-body physics, we often encounter probabilities of the form

P (X) =
W (X)

Z
. (57)

For example, the multi-dimensional variable X might correspond to a configuration of classical particles, or spin-
alignments in an Ising model, and W = exp(−E(X)β) to the corresponding ”Boltzmann distribution” describing
the probability of X to occur (with E(X) being the energy of said configuration). The aim of a Monte Carlo
simulation is then to generate a set of random configurations {Xi} that are distributed according to Eq. (57), which
can subsequently be used to compute averages such as the internal energy.

Usually, the problem with such a statistical description of a system is that the normalization of Eq. (57),

Z =

∫
dX W (X) , (58)

is not readily known. For the canonical ensemble (volume V , particle number N and inverse temperature β are
fixed), to which we will restrict ourselves throughout this work, Z corresponds to the canonical partition function.
In this case, the exact knowledge of Z allows to directly compute all observables (e.g., energies, pressure, etc.)
via thermodynamic relations, thereby eliminating the need for a Monte Carlo simulation in the first place. The
paramount achievement by Metropolis et al. [269] was to introduce an algorithm that allows to generate a set of
random variables {Xi} with an unknown normalization Z. The significance of this accomplishment can hardly be
overstated and the Metropolis algorithm has emerged as one of the most successful algorithms in computational
physics and beyond.

5.1.2. The detailed balance condition

The starting point is the imposition of the so-called detailed balance condition,

T (X→ X̃) = T (X̃→ X) , (59)

which states that the transition probability T to go from a state X to another state X̃ is equal to the same
probability the other way around. While Eq. (59) constitutes an unnecessary rigorous restriction, it allows for a
simple straightforward solution. Prior to that, we split the transition probability into a product of three separate
parts,

T (X→ X̃) = P (X) S(X→ X̃) A(X→ X̃) , (60)

specifically the probabilities to occupy the initial state X, P (X), to propose the target state X̃ starting from X,
S(X → X̃), and finally to accept the proposed transition, A(X → X̃). Inserting Eq. (60) into (59) leads to the
generalized form of the detailed balance equation,

P (X) S(X→ X̃) A(X→ X̃) = P (X̃) S(X̃→ X) A(X̃→ X) , (61)

which is of central importance for the development and design of state of the art quantum Monte Carlo algorithms.
The solution of Eq. (61) for the acceptance probability by Metropolis et al. [269] is given by

A(X→ X̃) = min

(
1,
P (X̃)

P (X)

S(X̃→ X)

S(X→ X̃)

)
, (62)

= min

(
1,
W (X̃)

W (X)

S(X̃→ X)

S(X→ X̃)

)
,
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which can be easily verified by considering Eq. (60) for the cases P (X̃)S(X̃ → X) > P (X)S(X → X̃) and vice
versa. Observe that the unknown normalization Z cancels in Eq. (62), which means that the acceptance probability
can be readily evaluated.

We conclude this section with a sketch of a practical implementation of the Metropolis algorithm:

1. Start with an (in principle arbitrary) initial configuration X0.

2. Propose a new configuration X̃ according to some pre-defined sampling probability S(Xi → X̃).

3. Evaluate the corresponding acceptance probability A(Xi → X̃), see Eq. (62), and subsequently draw a uniform
random number y ∈ [0, 1). If we have y ≤ A(Xi → X̃), the update is accepted and the configuration is updated
to Xi+1 = X̃. Otherwise, we reject the update and the ”new” configuration is equal to the old one, Xi+1 = Xi.

4. Repeat steps 2 and 3 until we have generated sufficiently many configurations.

Assuming an ergodic set of Monte Carlo updates (random ways to change between different configurations), the
outlined algorithm can be used to generate a Markov chain of configurations {Xi} that are distributed according
to P (X), as asked in the problem statement. The concept of ergodicity is of central importance for the design of
QMC algorithms and updates and means that (i) all possible configurations must be reachable in a finite (though,
in principle, arbitrarily large) number of updates and (ii) the probability to go from one configuration X to another
configuration X̃ must only depend on X itself (no memory effects). A possible segment of such a Markov chain as
generated by the Metropolis algorithm is given by

X0 = a→ X1 = a→ X2 = b→ X3 = . . . .

Starting at an initial configuration X0, a new configuration is proposed, but the update is rejected. Therefore the
second element of the Markov chain is equal to the first one, X0 = X1 = a. The second update is accepted, meaning
that the third element is changed to the new configuration, X2 = b. It is important to understand that, even if
a proposed update from X to X̃ is rejected, the old configuration must still be counted as a new element in the
Markov chain. Appending the Markov chain only after an update has been accepted is plainly wrong.

5.2. Path Integral Monte Carlo

The path integral Monte Carlo approach [277] (see Ref. [278] for a review) is one of the most successful methods
in quantum many body physics at finite temperature. The underlying basic idea is to map the complicated quantum
system onto a classical system of interacting ring polymers [279]. The high dimensionality of the resulting partition
function (each particle is now represented by an entire ring polymer consisting of potentially hundreds of parts)
requires a stochastic treatment, i.e., the application of the Metropolis Monte Carlo method [269]. In particular,
PIMC allows for quasi-exact simulations of up to N ∼ 104 bosons (and distinguishable, spinless particles, often
referred to as boltzmannons, e.g., Ref. [280]) and has played a crucial role for the theoretical understanding of such
important phenomena as superfluidity [281, 282, 283, 284], Bose-Einstein condensation [285, 286, 287] or the theory
of collective excitations [288, 289]. Unfortunately, as we will see, PIMC simulations of electrons (and fermions, in
general) are severely limited by the so-called fermion sign problem [290, 291].

5.2.1. Distinguishable particles

Let us start the discussion of the PIMC method by considering the partition function of N distinguishable
particles (so-called boltzmannons), in the canonical ensemble (i.e., volume V and and inverse temperature β =
1/kBT are fixed)

Z = Tr ρ̂ . (63)

Here ρ̂ = e−βĤ denotes the canonical density operator and the Hamiltonian is given by the sum of a kinetic and
potential part,

Ĥ = K̂ + V̂ . (64)

In coordinate space, Eq. (63) reads

Z =

∫
dR 〈R| e−βĤ |R〉 , (65)

with R = {r1, . . . , rN} containing all 3N particle coordinates. The problem is that the matrix elements are not
known, as K̂ and V̂ do not commute

e−β(K̂+V̂ ) = e−βV̂ e−βK̂e−β
2Ĉ , (66)
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where the error term is obtained from the Baker-Campbell-Hausdorff formula as [292]

Ĉ =
1

2
[V̂ , K̂]− β

(
1

6
[V̂ , [V̂ , K̂]]− 1

3
[[V̂ , K̂], K̂]

)
+ . . . . (67)

To overcome this obstacle, we exploit the group property of the exponential function

e−βĤ =

P−1∏

α=0

e−εĤ , (68)

where ε = β/P . By using Eq. (68) and simultaneously inserting P − 1 unity operators of the form

1̂ =

∫
dRα |Rα〉 〈Rα| , (69)

we obtain

Z =

∫
dX 〈R0| e−εĤ |R1〉 〈R1| . . . |RP−1〉 〈RP−1| e−εĤ |R0〉 . (70)

Observe that Eq. (70) is still exact and the integration is carried out over P sets of particle coordinates, dX =
dR0 . . . dRP−1. Despite the increased dimensionality of the integral, this re-casting proves to be advantageous since
each of the matrix elements must now be evaluated at a P times higher temperature, and for sufficiently many
factors we can introduce a high temperature approximation, e.g., the primitive factorization

e−εĤ ≈ e−εK̂e−εV̂ , (71)

which, according to the Trotter formula [293, 294], becomes exact in the limit of P →∞

e−β(K̂+V̂ ) = lim
P→∞

(
e−εK̂e−εV̂

)P
. (72)

A more vivid interpretation of Eq. (68) is given in terms of imaginary time path integrals. In particular, we note
that the density operator is equivalent to a propagation in imaginary time by τ = −iβ (henceforth, we shall adopt
the more conventional definition τ → τ/(−i) ∈ [0, β]). Therefore, Eq. (68) corresponds to the introduction of P
imaginary ”time slices” of length ε and a factorization like Eq. (71) to an imaginary time propagator. Inserting
Eq. (71) into (70) finally gives

Z =

∫
dX

P−1∏

α=0

(
e−εV (Rα)ρ0(Rα,Rα+1, ε)

)
, (73)

where V (Rα) denotes all potential energy terms on time slice α,

V (Rα) =

N∑

i=1

Vext(rα,i) +

N∑

k>i

W (|rα,i − rα,k|) , (74)

and W (r) is an arbitrary pair interaction, e.g., the Coulomb repulsion, WC(r) = 1/r, and Vext(r) denotes an external
potential. The ideal part of the density matrix is given by

ρ0(Rα,Rα+1, ε) =
1

λ3N
ε

N∏

i=1

[∑

n

exp

(
− π

λ2
ε

(rα,k − rα+1,k + nL)2

)]
, (75)

with λε =
√

2πε being the thermal wavelength corresponding to the P -fold increased temperature. The sum over
n = (nx, ny, nz)

T , ni ∈ Z, is due to the periodic boundary conditions. For completeness, we note that, technically,
Eq. (75) constitutes an approximation as the correct ideal density matrix in a periodic box is given by an elliptic
theta function [278]. However, this difference is of no practical consequence and, for P → ∞, Eq. (75) becomes
exact.

Following Chandler and Wolynes [279], Eq. (73) can be visualized as interacting ring polymers via the so-called
“classical isomorphism”, which is illustrated in Fig 3. The complicated quantum many-body system has been
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Figure 3: Schematic illustration of path integral Monte Carlo: The left panel shows a random configuration of three particles in a 3D
simulation box. The right panel shows the same configuration, but the z-axis has been replaced by the imaginary time τ . Beads on
adjacent slices are harmonically linked by the free particle density matrix (see Eq. (75), red lines) and beads from different particles on
the same time slice are subject to the pair interactions (dashed blue lines).

mapped onto a classical system of interacting ring polymers. Each particle is represented by a closed path of P
“beads” (i.e., the polymer), see the left panel. Beads on adjacent time slices are effectively linked by a harmonic
interaction, see Eq. (75). This is further illustrated in the right panel of Fig. 3, where the z-axis has been replaced
by the imaginary time τ . In addition, we note that beads from different particles on the same time slice interact
via the given pair interaction W (r), cf. the dashed blue lines. The extension of the paths of each particle roughly
corresponds to the thermal wavelength λβ . At high temperature, the paths resemble point particles and quantum
effects are negligible. With increasing β, however, the ring polymers become more extended and the quantum
nature of the system of interest starts to dominate. In practice, Eq. (73) requires a high dimensional integration,
which is most effectively achieved using Monte Carlo methods. In particular, we employ the Metropolis algorithm
to generate all possible configurations X according to the corresponding configuration weight W ,

Z =

∫
dX W (X) , (76)

where W (X) is defined by Eq. (73).
Furthermore, we stress that we are not interested in the partition function itself, but instead in thermodynamic

expectation values of an (in principle arbitrary) observable Â,

〈Â〉 =
1

Z

∫
dR 〈R| Âρ̂ |R〉 . (77)

In practice, we have to derive a Monte Carlo estimator A(X) so that we can estimate 〈Â〉 from the set of NMC

randomly generated configurations {X}MC

〈Â〉 ≈ AMC and (78)

AMC =
1

NMC

∑

X

A(X) . (79)

Eq. (78) seems to imply that the path integral Monte Carlo approach does not allow to obtain the exact thermody-
namic expectation value of interest, but, instead, constitutes an approximation. More precisely, the MC estimate
from a PIMC calculation is afflicted with a statistical uncertainty

∆A =

√
〈Â2〉 − 〈Â〉2

NMC
. (80)

The statistical interpretation of Eq. (80) is that AMC is with a probability of 66% within ±∆A of the exact result.
Furthermore, this uncertainty interval decreases with an increasing number of MC samples NMC so that, in principle,
an arbitrary accuracy is possible. Therefore, PIMC is often described as “quasi-exact”.
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Figure 4: Schematic illustration of path integral Monte Carlo: Shown are two PIMC configurations in the τ -x-plane with no pair
exchange (left) and a single pair exchange (right). The corresponding configuration weights W (X) are positive and negative.

5.2.2. PIMC simulations of fermions

Let us now extend our considerations to the PIMC simulation of N = N↑ + N↓ electrons, with N↑ and N↓

denoting the number of spin-up and spin-down electrons, respectively. To take into account the antisymmetric
nature due to the indistinguishability of fermions, we must extend the PIMC partition function from Eq. (73) by
the sum over all permutations of electrons from the same species (SN↑ and SN↓)

Z =
1

(N↑! N↓!)P

∫
dX

P−1∏

α=0




∑

σ↑α∈SN↑

∑

σ↓α∈SN↓

sgn(σ↑α)sgn
(
σ↓α
)
e−εV (Rα)ρ0(Rα, π̂σ↑α π̂σ↓αRα+1, ε)


 . (81)

Here π̂σ↑,↓α denotes the exchange operator corresponding to a particular permutation σ↑,↓α and sgn(σ↑,↓α ) denotes
the corresponding signum. Note that, due to the idempotency of the antisymmetry operator, the sum over all
permutations can be carried out on each time slice without changing the result. In practice, the sum over all
possible configurations X in the PIMC simulation must now be extended to include paths incorporating more than
a single particle. This is illustrated in Fig. 4 where two PIMC configurations with N = N↑ = 2 spin-polarized
electrons are shown. In the left panel, there are two distinct paths. Hence, there is no pair exchange and the sign
sgn(W (X)) is positive. In contrast, in the right panel, the paths cross and a single path incorporates both particles.
Due to this single pair exchange, the sign of the configuration weight is negative.

5.2.3. The fermion sign problem

At this point, we must ask ourselves how to generate the configurations X when the corresponding weights can
be both positive and negative. Obviously, this cannot be done using the Metropolis algorithm in a straightforward
way, since probabilities must be strictly positive. To circumvent this issue, we switch to a modified configuration
space, where we generate paths according to the absolute value of their weights, and define the modified partition
function

Z ′ =

∫
dX W ′(X) =

∫
dX |W (X)| . (82)

The correct fermionic observables are then calculated as

〈Â〉 =
〈ŜÂ〉′

〈Ŝ〉′
, (83)

where 〈. . .〉′ denotes the expectation value corresponding to the modulus weights

〈Â〉′ =
1

Z ′

∫
dX |W (X)|A(X) , (84)
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and Ŝ measures the sign of a configuration,

〈Ŝ〉′ =
1

Z ′

∫
dX S(X)|W (X)| = Z

Z ′
, (85)

with S(X) = W (X)/|W (X)|. The problem with Eq. (83) is that for a decreasing average sign S = 〈Ŝ〉′, both
the enumerator and the denominator vanish simultaneously. This, in turn, leads to an exponentially increasing
statistical uncertainty [225, 295]

∆A

A
∼ 1√

NMC 〈S〉′
∼ eβN(f−f ′)
√
NMC

, (86)

where f and f ′ denote the free energies per particle of the original and modified systems, respectively. In particular,
Eq. (86) implies that the statistical uncertainty exponentially increases with the particle number N . However, even
for a fixed system size the simulations can become infeasible towards low temperature and weak coupling. Note that
Troyer and Wiese [291] have shown that the FSP is NP -hard for a certain class of Hamiltonians. Therefore, a general
solution to this problem is unlikely. The FSP within fermionic path integral Monte Carlo simulations is illustrated
in Fig. 5, where we show two random configurations from a PIMC simulation of the uniform electron gas with
N = 33 spin-polarized electrons, P = 100 imaginary time slices and a density parameter rs = 1 (for completeness,
we mention that we use a sampling scheme based on the worm algorithm [296, 297]). In the top panel, we chose
θ = 4, i.e., a relatively high temperature. Therefore, the particle paths are only slightly extended and the thermal
wavelength is significantly smaller than the average inter-particle distance. This, in turn, means that pair exchange
only seldom occurs within the simulation and the average sign is large, rendering such conditions perfectly suitable
for PIMC simulations. In the bottom panel, the temperature is decreased to θ = 1. At such conditions, λβ is
comparable to the particle distance and fermionic exchange plays an important role. This is manifest in the many
exchange cycles, i.e., the paths that contain more than a single particle. Since each pair exchange leads to a sign
change in the weight function, positive and negative weights occur with a nearly equal frequency, resulting an
average sign of S ∼ 10−3, cf. Fig. 6. For this reason, standard PIMC simulations are confined to relatively high
temperature or strong coupling where the exchange effects are suppressed by the Coulomb repulsion of the electrons.

This is investigated more quantitatively in Fig. 6. In the left panel, we show the rs-dependence of the average sign
of PIMC simulations of the UEG of N = 33 spin-polarized electrons, which corresponds to a closed momentum shell
and, therefore, is often used in QMC studies [211, 218, 220, 217, 223]. The number of imaginary time propagators
was chosen as P = 50 and the green, red, and blue points correspond to θ = 4, θ = 1, and θ = 0.5, respectively.
All three curves exhibit the same qualitative behavior, that is, a decreasing sign towards smaller rs (i.e, towards
high density). This can be understood by recalling that the density parameter rs plays the role of the coupling
parameter for the UEG [298]: For strong coupling, the paths of different particles in the PIMC simulation are
spatially separated and, hence, exchange cycles are not very probable. With decreasing rs, the system becomes
more ideal and the occurring pair exchanges lead to smaller values of S. Furthermore, we observe that this effect is
significantly increased for lower temperatures, see the discussion of Fig. 5 above. For θ = 4, the sign does not drop
below S = 0.3 and standard PIMC simulations are efficient over the entire density range. For θ = 1, simulations
for rs = 4 are barely feasible with reasonable computational effort, whereas for θ = 0.5, even rs = 10, which
corresponds to relatively strong coupling, is difficult.

In the right panel, we show the dependence of the average sign on system size for a constant density parameter
rs = 1. For all three depicted temperatures, S exhibits an exponential decay with N as predicted by Eq. (86),
which becomes significantly more steep for low θ. For θ = 4, simulations of N ∼ 100 spin-polarized electrons are
feasible. Yet, we stress that even at such high temperatures, fermionic exchange leads to an exponential increase
of computation time with respect to N . For θ = 1, the situation is considerably worse and the decay of S restricts
PIMC simulations to N < 20. Finally, for θ = 0.5, even simulations of N = 10 electrons are not feasible.

We thus conclude that standard PIMC cannot be used to obtain an accurate description of the UEG at warm
dense matter conditions since the FSP renders simulations unfeasible towards high density and low temperature.

5.3. Restricted Path Integral Monte Carlo

A relatively common strategy to avoid the fermion sign problem is the so-called fixed node approximation, which
is also known as the restricted PIMC (RPIMC) method [133]. On the one hand, RPIMC gets completely rid of the
FSP and, therefore, simulations are feasible at low temperature and strong degeneracy. On the other hand, as we
shall see, this comes at the cost of an uncontrollable systematic error so that the exact ab initio character of the
quantum Monte Carlo paradigm is lost.
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Figure 5: Screenshots from PIMC simulations of the warm dense electron gas with N = 33 spin-polarized electrons, P = 100, and
rs = 1 with θ = 4 (top) and θ = 1 (bottom).
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In statistical mechanics, the fermionic density matrix elements in coordinate space ρ(R,R′, β) are often intro-
duced as the solution to the Bloch equation

− d

dβ
ρ(R,R′, β) = Ĥρ(R,R′, β) , (87)

with the initial condition

ρ(R,R′, 0) = Âδ(R−R′) , (88)

where Â denotes the antisymmetrization operator. For the restricted path integral Monte Carlo approach developed
by Ceperley [133, 134], the initial condition from Eq. (88) is replaced with a zero boundary condition. Following
Ref. [133], we denote the second argument of the density matrix as the reference slice R0. Assuming that Eq. (88)
holds, we can define a nodal surface

γ(R0, τ) = {R | ρ(R,R0, τ) = 0} , (89)

for all imaginary times 0 ≤ τ ≤ β. Obviously, Eq. (89) divides the total configuration space into sub-regions of a
fixed sign, described by the so-called reach

Γ(R0, τ) = {Rτ | ρ(R,R0, τ) 6= 0} . (90)

Equation (90) can be interpreted as the set of all paths Rτ → R0 avoiding the nodes, which are the only paths
contributing to the thermal density matrix. Odd permutations cross the nodal surface an odd number of times and,
therefore, do not satisfy Eq. (90). They do not contribute to ρ(R,R0, τ) as they cancel with the node-crossing paths
of even permutation, which is sometimes denoted as the tiling property proved in Ref. [133]. This, in turn, means
that all contributions to the thermal density matrix of a fixed reference slice R0 are strictly positive and, thus,
perfectly suited for a Metropolis Monte Carlo simulation similar to Sec. 5.2 without the sign problem. The fermionic
expectation value of an arbitrary observable can then be computed by averaging over R0 itself. In principle, this
re-casting of the fermionic path integral Monte Carlo scheme in terms of different nodal regions is exact, given
complete knowledge of the nodes. However, this information can only be obtained from a solution of the full
fermionic many-body problem in the first place and, thus, little seems to be gained. In practice, we introduce an
approximate trial ansatz for the density matrix, most commonly from the ideal system (i.e., a Slater determinant
or, for multiple particle species, a product thereof). Naturally, one would assume that the ideal nodes work best for
weak coupling, i.e., at high temperature and density. In particular, RPIMC simulations of the UEG should become
exact for rs → 0.

In practice, within a RPIMC simulation we propose a new path and subsequently enforce the nodal constraint,
Eq. (90), by computing the sign of the new configuration weight and by rejecting the move if the sign is negative.
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This becomes particularly problematic when the reference slice R0 is changed (remember that RPIMC simulations
require us to average over R0) since the constraint then has to be checked on all time slices. The problem is that
for low temperature (i.e., for long paths, see Sec. 5.2) the nodal surface for large distances in imaginary time τ
to the reference slice can significantly change for small changes of the latter. This means that even small updates
of R0 can be rejected most of the time and the reference point freezes. This purely practical ergodicity problem
potentially introduces a second source of systematic bias to RPIMC simulations. A comprehensive comparison of
RPIMC data to other QMC methods can be found in Sec. 5.7.

As a final note, we mention that, in contrast to the ground state, the fixed node approximation as outlined above
constitutes an uncontrolled approximation since the total energy is not variational. A possible strategy to overcome
this issue is to perform an additional coupling constant integration (see Sec. 8) to compute the free energy f . The
next step would then be to introduce a parametrization of the nodes with respect to a set of free parameters, which
can be used to minimize f . However, this is substantially more complicated than at T = 0 and, to the best of
our knowledge, has not yet been pursued in practice. Furthermore, we mention that RPIMC has nevertheless been
applied to various realistic systems (such as deuterium, neon, or carbon plasmas) at warm dense matter conditions,
e.g., Refs. [135, 149, 150, 151].

5.4. Permutation Blocking Path Integral Monte Carlo

The permutation blocking PIMC (PB-PIMC) approach [219, 220, 217, 221, 299] can be viewed as a further
development of the standard PIMC method from Sec. 5.2 and allows to go both towards lower temperature and
increased density, i.e., towards the WDM regime where fermionic exchange is crucial. Here ’blocking’ refers to the
combination of multiple configurations with different signs into a single weight, which means that some part of
the cancellation due to the fermion sign problem is carried out analytically. To further explore this point, let us
consider an illustrative example. Let us split the partition function into the two parts

Z =

∫

X−
dX W (X) +

∫

X+

dX W (X) , (91)

where X− (X+) denotes those configurations with a negative (positive) weight W . Now suppose that you could
pair each negative weight X−i with a positive weight X+

i with a larger (or equal) modulus weight and, in this way,

obtain a new ’meta-configuration’ X̃i with a meta-configuration weight

W̃ (X̃i) = W (X−i ) +W (X+
i ) ≥ 0 . (92)

In this way, we have recasted the partition function as the integral over terms that are strictly positive,

Z =

∫
dX̃ W̃ (X̃), (93)

and the fermion sign problem would be solved. Unfortunately, in practice, such a perfect implementation of
the blocking idea is not possible. Instead, we combine positive and negative permutations from the fermionic
partition function, Eq. (81), within determinants both for the spin-up and down electrons. The benefits due to such
intrinsically antisymmetric imaginary time propagators have long been known, see e.g. Refs. [300, 301, 302, 303].
In particular, they have been successfully exploited within the PIMC simulations by Filinov and co-workers [124,
125, 126, 127, 128, 129, 130, 131, 132]. As we will see, the problem with this approach is that with an increasing
number of time slices P [which are needed to decrease the commutator errors due to the primitive factorization,
cf. Eq. (67)], the effect of the blocking due to the determinant vanishes and the original sign problem is recovered.
For this reason, the second key ingredient of the PB-PIMC approach is the introduction of a more sophisticated
fourth-order factorization scheme that allows for sufficient accuracy with fewer time slices [304, 305, 306, 307, 308].
The simulation scheme is completed by an efficient update scheme that allows for ergodic sampling in the new
configuration space [219].

Let us begin the derivation of the PB-PIMC partition function with an introduction of the fourth-order factor-
ization of the density matrix [305]

e−εĤ ≈ e−v1εŴa1 e−t1εK̂e−v2εŴ1−2a1 e−t1εK̂e−v1εŴa1 e−2t0εK̂ , (94)

which has been studied extensively by Sakkos et al. [307]. First and foremost, we note that there occur three factors
involving the kinetic energy operator K̂. Therefore, for each imaginary time propagator there are three time slices.
This is illustrated in the left panel of Fig. 7, where the path of a single particle is shown in the τ -x-plane with
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Figure 7: Schematic illustration of the PB-PIMC approach – Left panel: Illustration of the fourth-order factorization from Eq. (94) in
the τ -x-plane. Beads of different colors correspond to the main (green), ancilla A (blue), and ancilla B (purple) slices, which occur for
each of the P = 3 imaginary time propagators. The ratio t0/t1 is not fixed and can be used for optimization. Right panel: Combination
of 3PN ! configurations from standard PIMC into a new ’meta-configuration’ due to the determinants on all time slices.

P = 3 fourth-order factors. For each propagator of length ε, there are two equidistant slices of length t1ε, which
we denote as the main slice (green beads) and ancilla slice A (blue beads). Furthermore, there is a third slice of
length 2t0ε = ε(1 − 2t1), i.e., ancilla slice B (purple beads). Note that the ratio of t0/t1 is not fixed and t0 can
be chosen freely within 0 ≤ t0 ≤ (1 − 1/

√
3), which can be exploited to further accelerate the convergence with

P [307]. In order to fully cancel the first error terms from the factorization error, Eq. (67), the Ŵ -operators in
Eq. (94) combine the potential energy V̂ with double commutator terms

[[V̂ , K̂], V̂ ] =
N∑

i=1

|Fi|2 , (95)

with Fi = −∇iV (R) denoting the entire force on particle i. In particular, it holds

Ŵa1
= V̂ +

u0

v1
a1ε

2
N∑

i=1

|Fi|2 , (96)

Ŵ1−2a1
= V̂ +

u0

v2
(1− 2a1)ε2

N∑

i=1

|Fi|2 ,

and the coefficients u0, v1, and v2 are fully determined by the choice for t0 and 0 ≤ a1 ≤ 1,

u0 =
1

12

(
1− 1

1− 2t0
+

1

6(1− 2t0)3

)
, (97)

v1 =
1

6(1− 2t0)2
, (98)

v2 = 1− 2v1 . (99)

Eq. (96) implies that, in addition to the potential energy, we have to evaluate all forces (both due to an external
potential and pair interactions) on all slices for each propagator, albeit the weight of the individual contributions
from the different kind of slices can be adjusted. For example, by choosing a1 = 0, the forces are only relevant
on ancilla slice A, whereas for a1 = 1/3 all three slices contribute equally. Again, we stress that this second free
parameter (in addition to t0) can be used for optimization.

Incorporating the fourth-order partition function into the expression for Z from Eq. (81) leads to the final result
for the PB-PIMC partition function [221]

Z =
1

(N↑!N↓!)3P

∫
dX̃

P−1∏

α=0

(
e−εṼαe−ε

3u0F̃αD↑αD
↓
α

)
, (100)
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where Ṽα and F̃α contain all contributions due to the potential energy and the forces for a specific propagator α,

Ṽα = v1V (Rα) + v2V (RαA) + v1V (RαB) , (101)

F̃α =
N∑

i=1

(a1|Fα,i|2 + (1− 2a1)|FαA,i|2 + a1|FαB,i|2) . (102)

Further, we stress that the integration has to be carried out over all possible coordinates on the ancilla slices as
well, i.e.,

dX̃ =
P−1∏

α=0

dRαdRαAdRαB . (103)

All fermionic exchange is contained within the exchange-diffusion functions

D↑α = det(ρ↑α)det(ρ↑αA)det(ρ↑αB) , (104)

D↓α = det(ρ↓α)det(ρ↓αA)det(ρ↓αB) , (105)

which constitute a product of the determinants of the free particle (diffusion) matrices between particles i and j on
two adjacent time slices (not propagators)

ρ↑α(i, j) =
1

λ3
t1ε

∑

n

exp

(
− π

λ2
t1ε

(r↑α,j − r↑αA,i + nL)2

)
, (106)

ρ↑αA(i, j) =
1

λ3
t1ε

∑

n

exp

(
− π

λ2
t1ε

(r↑αA,j − r↑αB,i + nL)2

)
, (107)

ρ↑αB(i, j) =
1

λ3
2t0ε

∑

n

exp

(
− π

λ2
2t0ε

(r↑αB,j − r↑α+1,i + nL)2

)
, (108)

with an analogous definition for the spin-down electrons. Note that we have again exploited the idempotency
property of the antisymmetrization operator to introduce determinants on all the ancilla time slices as well. The
reason for this choice becomes obvious by closely examining the new configuration space, which is illustrated in the
right panel of Fig. 7. Shown is a configuration of two particles in the τ -x-plane and beads on different types of time
slices are distinguished by the different colors. For standard PIMC, a typical configuration would be given by the
two red paths, which would correspond to two separate paths without a pair exchange. In addition, one would also
have to consider all configurations with the same positions of the individual beads, but different connections between
beads on adjacent slices, which would lead to contributions with different signs. By introducing the determinants
within the PB-PIMC scheme, we combine all N ! possible connections between beads on adjacent slices into a single
configuration weight. As explained in the beginning of this section, this analytic blocking of configurations with
different signs results in a drastically less severe sign problem and, therefore, to perform simulations in substantial
parts of the WDM regime.

This is further illustrated in Fig. 8, where we show a random screenshot from a PB-PIMC simulation with P = 4
fourth-order propagators and N = 33 spin-polarized electrons at rs = 1 and θ = 1. Again, the beads of different
color correspond to different kind of time slices. The different line width of the red connections between some beads
on adjacent slices symbolize the magnitude of the diffusion matrix elements, Eq. (106). Without the determinants,
each bead would have exactly two connections. Hence, beads with more than two visible links in Fig. 8 significantly
contribute to the permutation blocking, which, in stark contrast to standard PIMC, makes simulations feasible
under such conditions.

As explained in Sec. 5.1, we use the Metropolis Monte Carlo algorithm [269] to generate all possible paths X̃
according to the appropriate configuration weight defined by Eq. (100). Let us now discuss how we can compute
physical expectation values from this Markov chain of configurations. For example, the total energy of the system
can be computed from the partition function via the well-known relation

E = − 1

Z

∂Z

∂β
, (109)

and plugging in the PB-PIMC expression for Z, Eq. (100), into (109) gives the desired Monte Carlo estimator (for
N spin-polarized electrons, the generalization to an arbitrary degree of spin polarization is obvious),

E =
1

P

P−1∑

α=0

(
Ṽα + 3ε2u0F̃k

)
+

3DN

2ε
− π

β

P−1∑

α=0

N∑

i=1

N∑

k=1

(
ηαk,iλ

−2
t1ε + ηαAk,i λ

−2
t1ε + ηαBk,i λ

−2
2t0ε

)
, (110)
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Figure 8: Screenshot of a PB-PIMC simulation of the spin-polarized UEG with N = 33, P = 4, rs = 1, and θ = 1. The green, blue, and
purple beads correspond to main, ancilla A, and ancilla B slices, respectively. The different width of the red connections symbolizes
the magnitude of the diffusion matrix elements, cf. Eq. (106). Beads with more than two visible links significantly contribute to the
permutation blocking.
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Figure 9: Effect of an increasing number of imaginary time slices on the permutation blocking – Shown are configurations with two
spin-polarized electrons in the τ -x-plane with P = 2 (left) and P = 5 (right) fourth-order propagators. For P = 2, the thermal
wavelength of a single time slice, λt1ε =

√
2πt1ε , is comparable to the average particle distance. Therefore, the off-diagonal (blue)

diffusion matrix elements [cf. Eq. (106)] are comparable in magnitude to the diagonal (red) elements, and the permutation blocking
within the determinants is efficient. In contrast, for P = 5 there are either large diagonal (as in the depicted configuration) or large
off-diagonal elements, but not both simultaneously, and the permutation blocking will have almost no effect.

with the definitions

ηαk,i =
(ρ−1
α )k,i
λ3
t1ε

∑

n

(
e
− π

λ2
t1ε

(rα,k−rαA,i+Ln)2

(rα,k − rαA,i + Ln)2

)
(111)

ηαAk,i =
(ρ−1
αA)k,i
λ3
t1ε

∑

n

(
e
− π

λ2
t1ε

(rαA,k−rαB,i+Ln)2

(rαA,k − rαB,i + Ln)2

)
(112)

ηαBk,i =
(ρ−1
αB)k,i
λ3

2t0ε

∑

n

(
e
− π

λ2
2t0ε

(rαB,k−rα+1,i+Ln)2

(rαB,k − rα+1,i + Ln)2

)
. (113)

Here the notation (ρ−1
α )k,i indicates the (k, i)-element of the inverse diffusion matrix. Interestingly, the contribution

of the force-terms to E in Eq. (110) splits to both the kinetic and potential energy, see Refs. [307, 219] for more
details.

Finally, let us consider the effect on the permutation blocking of an increasing number of imaginary time
propagators P , which is illustrated in Fig. 9. In the left panel, we show a configuration of two spin-polarized
electrons in the τ -x-plane with P = 2 fourth-order propagators. In this case, the thermal wavelength of a single
time slice, λt1ε =

√
2πt1ε, is comparable to the average particle distance. Hence, the off-diagonal diffusion matrix

elements (blue connections) are similar in magnitude to the diagonal elements (red connections) and the permutation
blocking within the determinants is effective. However, this situation is drastically changed for increasing P , cf. the
right panel where a similar configuration is depicted for P = 5. Evidently, in this case λt1ε is much smaller than the
particle distance and there are either large diagonal [which is the case in the depicted configuration] or off-diagonal
diffusion matrix elements, but not both simultaneously. Therefore, the permutation blocking will be ineffective and
for P → ∞ the original sign problem from standard PIMC will be recovered. In a nutshell, the introduction of
antisymmetric imaginary time propagators allows to significantly alleviate the FSP and therefore to extend standard
PIMC towards more degenerate systems. However, since this effect vanishes with increasing P , it is vital to combine
the permutation blocking with a sophisticated factorization of the density matrix that allows for sufficient accuracy
with only few propagators.

Let us conclude this section with a more quantitative discussion of the fermion sign problem within PB-PIMC
simulations of the spin-polarized UEG at warm dense matter conditions. In the left panel of Fig. 10, we show the
dependence of the average sign on the density parameter rs for PB-PIMC simulations of N = 33 spin-polarized
electrons with P = 2 imaginary time propagators at θ = 1 (red), θ = 2 (blue), and θ = 4 (black). All three curves
exhibit a qualitatively similar behavior, i.e., a decreasing sign towards higher density, see also the discussion of
Fig. 6 above. However, in stark contrast to standard PIMC (green curve for θ = 1), the sign stays finite for all
rs. Thus, it has been demonstrated that, for the present conditions, PB-PIMC simulations are feasible over the
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Figure 10: Average sign in PB-PIMC simulations of N = 33 spin-polarized electrons at warm dense matter conditions – Left panel:
Density-dependence of S for P = 2 propagators for θ = 1 (red), θ = 2 (blue), and θ = 4 (black). Right panel: Temperature-dependence
of S for P = 2 for rs = 10 (red), rs = 1 (blue), and rs = 0.1 (black). All standard PIMC results for S (green curves) have been taken
from the Supplemental Material of Ref. [211]. Both panels are reproduced with the permissions of the authors of Ref. [220].

entire density range. In the right panel, the dependence of the average sign on θ is shown for the same system for
rs = 10 (red), rs = 1 (blue), and rs = 0.1 (black). For large temperatures, the sign is nearly equal to unity and
the computational effort is small. With decreasing θ, both the diagonal and off-diagonal diffusion matrix elements
become larger and both positive and negative determinants appear within the PB-PIMC simulations, eventually
leading to a steep drop of S, which is more pronounced at weak coupling. Still, we stress that it is precisely at such
conditions that the permutation blocking is most effective as well. Therefore, the sign problem is much less severe
compared to standard PIMC (green curve). Overall, it can be seen that for warm dense matter conditions, i.e., for
rs = 1, . . . , 6, PB-PIMC simulations are feasible down to θ = 0.5.

5.5. Configuration Path Integral Monte Carlo

Another PIMC variant that has been proven to be highly valuable for the simulation of the UEG is the Config-
uration PIMC (CPIMC) method [215, 216, 218, 227]. It belongs to the class of continuous time world line Monte
Carlo algorithms (CTWL-MC), which avoid the imaginary time discretization error by switching to the interaction
picture with respect to a suitable part of the Hamiltonian. The basic idea of CTWL-MC stems from the works
of Prokofev et al. [309] and Beard and Wiese [310]. Subsequently, many system specific CTWL-MC algorithms
had been developed and highly optimized for fermionic as well as bosonic lattice models, most importantly for
different variants of Hubbard and impurity models. A comprehensive review of the existing CTWL-MC algorithms
and their applications can be found in Ref. [311]. However, until the development of CPIMC, continuous fermionic
systems with long range Coulomb interactions have not been tackled with the CTWL-MC formailism mainly for
two reasons: 1) the long range Coulomb interaction causes a severe sign problem and 2) it introduces new complex
classes of diagrams which require a significantly more elaborate Monte-Carlo algorithm.

Essentially, CPIMC can be viewed as performing Metropolis Monte Carlo with the complete (infinite) perturba-
tion expansion of the partition function with respect to the coupling strength of the system. As such, this method
is most efficient at weak coupling and becomes infeasible at strong coupling where it suffers from a severe sign prob-
lem; yet, the critical coupling parameter lies well beyond the failure of analytical approaches. Moreover, CPIMC
is practically applicable over the entire temperature range, even down to the ground state. Thus, regarding the
range of applicability with respect to density and temperature, CPIMC is highly complementary to the PB-PIMC
approach discussed in Sec. 5.4.

5.5.1. CPIMC representation of the partition function

For the derivation of both the standard PIMC and the PB-PIMC expansion of the partition function we started
with utilizing N−particle states in coordinate representation to perform the trace over the density operator in
Eq. (63). The correct Fermi statistics are then taken into account via a subsequent anti-symmetrization of the
density operator, which causes the weight function to alter the sign with each pair exchange and, hence, can be
regarded as the source of the FSP. To avoid this particular source, in CPIMC, we switch gears by making use of
the second quantization representation of quantum mechanics for the UEG, which has been introduced in Sec. 2.3.
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Here, the N-particle states, Eq. (13), are given by Slater determinants, which form a complete basis set of the
N−particle states in Fock space. Thus, we can compute the partition function, Eq. (63), by carrying out the trace
over the density operator with these states, yielding

Z =
∑

{n}
〈{n}|e−βĤ |{n}〉 . (114)

Unfortunately, the evaluation of the matrix elements of the density operator is not straightforward since the Slater
determinants of plane waves are no eigenstates of the interacting UEG Hamiltonian, Eq. (11), but only of the ideal
UEG. One solution to this problem is to use the series expansion of the exponential function

Z =
∞∑

K=0

∑

{n}
〈{n}| (−β)K

K!
ĤK |{n}〉

=

∞∑

K=0

∑

{n}(0)

∑

{n}(1)

· · ·
∑

{n}((K−1))

(−β)K

K!
〈{n}(0)|Ĥ|{n}(1)〉 〈{n}(1)|Ĥ|{n}(2)〉 · · · · · 〈{n}(K−1)|Ĥ|{n}(K)〉 , (115)

where we have inserted K−1 unities of the form 1̂ =
∑
{n}(i) |{n}(i)〉 〈{n}(i)| so that {n}(0) = {n}(K) holds implicitly.

Applying the Slater-Condon rules to the UEG Hamiltonian we readily compute its matrix elements according to

〈{n}|Ĥ|{n̄}〉 =





D{n} =
1

2

∑

l

k2
l nl +

1

2

∑

l<k

w−lklknlnk, {n} = {n̄} ,

Y{n},{n̄} = w−pqrs(−1)α{n},pq+α{n̄},rs , {n} = {n̄}p<qr<s ,

(116)

with the phase factor

α{n},pq =

max(p,q)−1∑

l=min(p,q)+1

nl , (117)

and the two-particle integrals being defined in Eq. (12). In this notation, |{n̄}p<qr<s〉 refers to the Slater determinant
that is obtained by exciting two electrons from the orbitals r and s to p and q in |{n̄}〉. Performing Metropolis
Monte Carlo with the derived expression for the partition function, Eq. (115), has been termed the Stochastic
Series Expansion (SSE) method. In particular, this approach has been successfully used for the simulation of the
Heisenberg model [312, 313, 314, 315, 316], for which Eq. (115) can be recast into a form that has solely positive
addends, thereby completely avoiding the sign problem. However, this is not possible for the UEG and, in addition
to the factor (−β)K , we observe that the matrix elements can also attain both positive and negative values, which
causes a serious sign problem. In CPIMC, we therefore follow a different strategy and separate the diagonal part
D̂ of the Hamiltonian by exploiting the following identity of the density operator

e−βĤ = e−βD̂T̂τe
−

∫ β
0
Ŷ (τ)dτ = e−βD̂

∞∑

K=0

β∫

0

dτ1

β∫

τ1

dτ2 . . .

β∫

τK−1

dτK(−1)K Ŷ (τK)Ŷ (τK−1) · . . . · Ŷ (τ1) , (118)

where T̂τ denotes the time-ordering operator and the time-dependence of the off-diagonal operator Ŷ refers to the
interaction picture in imaginary time with respect to the diagonal operator D̂,

Ŷ (τ) = eτD̂Ŷ e−τD̂ . (119)

Note that, independent of the underlying one-particle basis of the quantization, according to the Slater-Condon
rules the Hamiltonian can always be split into a diagonal and off-diagonal contribution such that Ĥ = D̂+ Ŷ . After
inserting Eq. (118) into Eq. (115) and re-ordering some terms, the partition function becomes

Z =

∞∑

K=0
K 6=1

∑

{n}(0)

∑

{n}(1)

· · ·
∑

{n}(K−1)

β∫

0

dτ1

β∫

τ1

dτ2 . . .

β∫

τK−1

dτK(−1)Ke
−

K∑
i=0

D{n(i)}(τi+1−τi) K∏

i=1

Y{n(i)},{n(i−1)} . (120)
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Figure 11: Sketch of a typical CPIMC path of N = 4 unpolarized electrons in Slater determinant (Fock) space in imaginary time. The
starting determinant {n}(0 at τ = 0 undergoes three two-particle excitations at times τ1, τ2, and τ3, where the last excitation defined by
the involved orbitals s3 = (0, 1, 2, 7) must always ensure that the last state {n}(3) is equivalent to {n}(0). Reproduced from Ref. [221]
with permission of the authors.

Taking into account that the off-diagonal matrix elements do not vanish only if the occupation numbers of the left
and right state, i.e. {n}(i) and {n}(i−1), differ in exactly four orbitals p,q,r,s, cf. Eq. (116), we may introduce a
multi-index si = (pqrs) defining these four orbitals and re-write the summation as follows

Z =
∞∑

K=0
K 6=1

∑

{n}

∑

s1...sK−1

β∫

0

dτ1

β∫

τ1

dτ2 . . .

β∫

τK−1

dτK(−1)Ke
−

K∑
i=0

D{n(i)}(τi+1−τi) K∏

i=1

Y{n(i)},{n(i−1)}(si) , (121)

where {n} = {n}(0) = {n}(K) always holds. This is the exact CPIMC expansion of the partition function. Regarding
the application of the Metropolis algorithm, the benefit of Eq. (121) over the SSE, Eq. (115), is obvious: by switching
to the interaction picture we got rid of all sign changes that are caused by the diagonal matrix elements since in
Eq. (121) these solely enter in the exponential function, which is always positive. Nevertheless, the sign changes due
to the off-diagonal matrix elements are still present and are the source of the sign problem in the CPIMC method.

Similar to the standard PIMC and PB-PIMC approach, each contribution to the CPIMC expansion of the
partition function, Eq. (121), can be interpreted as a path in imaginary time, X, that is entirely defined by the
starting set of occupation numbers {n} and all subsequent excitations {s1, s2 . . . , sK} with their corresponding
times {τ1, τ2 . . . , τK}, i.e.,

X = (K, {n}, s1, . . . , sK−1, τ1, . . . , τK) . (122)

In contrast to the standard PIMC formulation, these paths now evolve in the discrete Fock space instead of the
continuous coordinate space. Moreover, there is no time discretization in the CPIMC formulation as the excitations
occur at continuous times τi. Hence, unlike PIMC in coordinate space, there is no time discretization error. A
sketch of a typical path occurring in the simulation of N = 4 unpolarized electrons is depicted in Fig. 11, where
we chose the ordering of the spin orbitals such that even (odd) numbers correspond to up (down) spin projections.
In correspondence to their visual appearance in these paths we refer to the excitations as “kinks”. According to
Eq. (121), the corresponding weight of each paths is given by

W (X) = (−1)Ke
−

K∑
i=0

D{n(i)}(τi+1−τi) K∏

i=1

Y{n(i)},{n(i−1)}(si) . (123)

Note that, as discussed in detail in Sec. 5.2.3, the Metropolos algorithm can only be applied when using the
modulus of the weight function. As usual, the Monte Carlo estimator of an observable, cf. Eq. (78), is derived from
its thermodynamic relation to the partition function. For example, for the energy we have

〈Ĥ〉 = − ∂

∂β
lnZ =

∞∑

K=0
K 6=1

∑

{n}

∑

s1...sK−1

β∫

0

dτ1

β∫

τ1

dτ2 . . .

β∫

τK−1

dτK

(
1

β

K∑

i=0

D{n(i)}(τi+1 − τi)−
K

β

)
W (X) . (124)
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Figure 12: Snap shots of CPIMC paths from the simulation of N = 4 unpolarized electrons at rs = 1 ant θ = 1 in NB = 14 plane wave
spin-orbitals (indicated by the grey lines). The orbitals are ordered according to their corresponding kinetic energy k2

i /2. Depicted
are the occupied orbitals (red lines) in dependence of the imaginary time, which sum up to 4 at any specific time τ ∈ [0, β]. Panel a)
shows the initial path that is used as the starting configuration in the Markov chain: no kinks with the lowest orbitals being occupied.
In panel b) an entire orbital is excited, after which a pair of kinks is added in panel c). Only then is it possible add single kinks by
changing another kink in the path, which is depicted in panel d). This way, depending on the density and temperature, the CPIMC
algorithm eventually generates paths with more complicated structures as shown in panels e) and d).
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Figure 13: Average sign a) and average number of kinks b) in CPIMC simulation in dependence on the density parameter for N =
4, 14, 66 at θ = 1. Shown are the results from the simulation of the spin-polarized (circles) and unpolarized (dots) UEG. Reproduced
from Ref. [221] with permission of the authors.

In practice, in CPIMC simulations, we start the generation of the Markov chain from an initial path without kinks
and with the lowest N plane wave spin-orbitals being occupied, where we choose the ordering of the orbitals in
accordance to their kinetic energy k2

i /2. Fig. 12 a) shows a snap shot of such a starting path from a CPIMC
simulation of N = 4 unpolarized electrons in NB = 14 spin orbitals. Due to the fact that there are no β−periodic
(closed) paths containing only a single kink, only two possible changes can be proposed to proceed: either an
entire occupied orbital can be excited to an unoccupied orbital, see Fig. 12 b), or a symmetric pair of kinks can be
added at once, see Fig. 12 c). These proposed changes are accepted or rejected with the corresponding Metropolis
acceptance probability, cf. Eq. (62), which is computed using the modulus of the weight function |W (X)|. Only
after a symmetric pair of kinks has been successfully added is it possible to add single kinks by changing another as
demonstrated in Fig. 12 d). Depending on the temperature and density parameter in the simulation, the CPIMC
algorithm eventually generates paths containing more kinks and more complex structures, see Figs. 12 e) and f).

5.5.2. The sign problem in the CPIMC approach

As discussed in Sec. 5.2.3, we can only apply the Metropolis algorithm to a partition function that has a weight
function with alternating signs by simulating a modified system defined by the modulus of the weight function,
cf. Eq. (82). Yet, this procedure comes at the cost of introducing the FSP. It is important to note that each kink
enters the CPMC weight function, Eq. (121), with three possible sign changes: 1) the factor (−1)K , 2) the sign
of the corresponding two-particle integral, Eq. (12), and 3) the phase factor, Eq. (117), that depends on the set
of occupation numbers at the time of the kink. To investigate the FSP in the CPIMC approach, Fig. 13 shows
the average sign, a), and the average number of kinks, b), of all sampled paths in the generated Markov chain for
simulations of N = 4 (red), N = 14 (green), and N = 66 (blue) electrons at θ = 1 in dependence of the density
parameter rs, both for the polarized (circles) and unpolarized (dots) UEG. Since simulations with an average sign
below ∼ 10−3 are not feasible, these quantities determine the applicable regime of the basic CPIMC method in the
density-temperature plane. Independent from the number of electrons, the average sign is always unity in the ideal
limit rs → 0, since here the UEG Hamiltonian is diagonal in the utilized plane wave basis. Hence, there cannot be
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Figure 14: Snapshot of a typical path occurring in a CPIMC simulation of N = 14 unpolarized electrons at rs = 0.7 (panel a)) and
rs = 1 (panel b)), both at θ = 1 in NB = 778 plane wave spin-orbitals, which are ordered according to their corresponding kinetic energy
k2
i /2. Plotted is the occupation of each orbital (red and grey indicate occupied and unoccupied orbitals, respectively) in dependence

on the imaginary time. Note that the density of the 778 orbitals (grey lines) appears to be continuous on this scale but when further
zooming into the path it is of course discrete like in Fig. 12 where NB = 14.
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Figure 15: Snapshot of a typical path occurring in a CPIMC simulation of N = 14 unpolarized electrons at rs = 0.7 (panel a)) and
rs = 0.4 (panel b)) both at θ = 0.01 in NB = 778 plane wave spin-orbitals, which are ordered according to their corresponding
kinetic energy k2

i /2. Plotted is the occupation of each orbital (red and grey indicate occupied and unoccupied orbitals, respectively) in
dependence on the imaginary time.
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Figure 16: Convergence of a) the internal energy, b) the average sign and c) the average number of kinks with the kink potential
parameter κ. Each point results from a complete CPIMC simulation of N = 66 unpolarized electrons at rs = 2 and θ = 4 (left) and
rs = 0.8 and θ = 1 (right). The blue (green) line shows a horizontal (linear) fit to the last points. The asymptotic value (black point)
in the limit 1/κ → 0 is enclosed between the blue and green lines and, within error bars, coincides with the PB-PIMC result (orange
points). Left (right) graphic reproduced (modified) from Ref. [221] with permission of the authors.

any kinks in the paths and their weight is always positive.
However, with decreasing density, i.e., increasing rs, we observe that the average sign drops drastically at some

critical density that strongly depends on the number of electrons, temperature, as well as the spin-polarization.
This drop is caused by an enormous increment of the average number of kinks at this critical density (note the
logarithmic scale). For example, in case of N = 14 unpolarized electrons (green), at this temperature, the critical
density is at rs ∼ 0.8. In Fig. 14, we further explore this case by showing snap shots of typical CPIMC paths
occurring in the simulation of N = 14 electrons in NB = 778 basis functions at rs = 0.7, a), and rs = 1, b), both
at θ = 1. While at rs = 0.7 the paths contain only very few kinks, at rs = 1, many paths contain ∼ 100 kinks
which are highly entangled and thereby induce many sign changes. When lowering the temperature while keeping
the other system parameters constant this critical value of rs becomes even smaller, wich is illustrated by the two
simulation snap shots in Fig. 15 for rs = 0.7, a), and rs = 0.4, b), now at θ = 0.01. At these low temperatures close
to the ground state, even a density parameter of rs = 0.7 is clearly not feasible with the basic CPIMC method as
the paths typically contain about 500 kinks, while, at rs = 0.4, the average number of kinks is reduced by two orders
of magnitude so that simulations pose no problem here. Further, we point out that the structure of the generated
CPIMC paths changes significantly with the temperature: at high temperature, see Fig. 14, the average occupation
of higher orbitals is much larger due to the increased kinetic energy of the electrons, while at low temperatures,
see Fig. 15, most of the kinks tend to occur in symmetric pairs with only very short imaginary time in between,
so that theses structures appear as needles in the paths. Interestingly, the overall sign change of these symmetric
pairs always exactly compensates to one and thus they do not worsen the FSP.

Finally, we stress that the linear dependence of the average number of kinks in Fig. 13 b) before and after the
critical density is not an artefact due to the inevitable practical restriction to a finite number of basis functions
in the simulation. In particular, this demonstrates that the modified CPIMC partition function with the modulus
weight function is actually a convergent sum for any finite system parameters of the UEG. Mathematically this
must not necessarily be the case, since if a sum with alternating signs of its summands converges, of course, the
same sum with the modulus of the summands can be divergent. Nevertheless, the fact that the FSP in the basic
CPIMC approach has a ”hard-wall-like” character is rather unsatisfactory: there is either none when there are on
average less than ∼ 2 kinks in the paths or it is so strong that simulations are not feasible due to hundreds or even
thousands of kinks. A problem which we will strongly mitigate in the next section.
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5.5.3. Reduction of the FSP with an auxiliary kink potential

The restriction of the CPIMC approach to the nearly ideal regime, i.e. very large densities, due to a severe FSP
at some critical value of rs can be significantly alleviated by the use of a Fermi-like auxiliary kink potential

Vκ(K) =
1

e−(κ−K+0.5) + 1
, (125)

by replacing the modulus of the weight function |W (X)|, cf. Eq. (123), by the modified weight

|Wκ(X)| = |W (X) · Vκ(K)| . (126)

When performing simulations for fixed values of κ, this potential acts as a smoothly increasing penalty of paths
with a large number of kinks K, thereby effectively suppressing the occurrence of these paths in the simulation.
Since it is limκ→∞ Vκ(K) = 1, we can extrapolate the results from CPIMC simulation with different values of κ
to the exact limit 1/κ → 0, which is illustrated in in the left panel of Fig. 16 for N = 66 electrons at rs = 2 and
θ = 4. Indeed we observe that the total energy, a), is well converged at κ ∼ 10 while the average sign, b), and the
average number of kinks, c), are clearly not. In fact, for these parameters, the basic CPIMC simulation without
the kink potential equilibrates at an average number of several hundreds of kinks. This fortunate behavior can be
explained by a complete cancellation of all contributions to the energy of all paths that contain a larger number
of kinks than about 10. In other words, the simulated modified partition function with the modulus of the weight
function converges at much larger values of K than the physical partition function due to a complete cancellation
of the weights. In this sense one may also call this circumstance a ”sign blessing” rather than a ”sign problem”.

Since the convergence with the potential parameter 1/κ is monotonic, we can obtain a highly accurate upper
and lower bound of the exact result even in those cases where convergence is not entirely reached, which is shown
in the right panel of Fig. 16 for the example of N = 66 electrons at rs = 0.8 and θ = 1. For these parameters
the bare CPIMC method generates paths that contain about a thousand kinks [see solid blue points in Fig. 13
b)]. Nevertheless, within the given error bars, the resulting value (black) agrees well with that from the PB-
PIMC simulation (orange). Overall, at a fixed number of electrons N and temperature θ, the usage of the kink
potential, Eq. (125), increases the feasible rs parameter in CPIMC simulations by at least a factor of two. Thus,
the applicability of the method is pushed into density regimes where common analytical perturbation theories break
down.

5.6. Density Matrix Quantum Monte Carlo

The density matrix quantum Monte Carlo (DMQMC) approach developed by Foulkes, Malone, and co-workers [224,
222, 223] is similar to the CPIMC method from the previous section in so far as both are formulated in antisym-
metrized Fock space. As we shall see, this leads to a similar range of applicability (see Sec. 5.7). However, in
contrast to the path integral Monte Carlo paradigm, in DMQMC we directly sample the unnormalized thermal
density matrix (expanded in a basis of Slater determinants). Therefore, it constitutes a direct extension of the full
configuration interaction quantum Monte Carlo (FCIQMC) method [317, 19, 18, 20], which has proven to be highly
successful in the ground state [318], to finite temperature. Furthermore, it can be viewed as the diffusion Monte
Carlo analogue of CPIMC.

Following Ref. [222], we write the Bloch equation [cf. Eq. (87)] in a symmetrized form,

dρ̂

dβ
= −1

2
(Ĥρ̂+ ρ̂Ĥ) . (127)

Thus, propagating the density matrix in imaginary time by an amount of ∆β using a simple (explicit) Euler scheme
gives

ρ̂(β + ∆β) = ρ̂(β)− ∆β

2
(Ĥρ̂(β) + ρ̂(β)Ĥ) +O(∆β2) . (128)

The basic idea of the density matrix QMC method is to stochastically solve Eq. (128) by evolving a population
of positive and negative walkers (sometimes denoted as ”particles”, ”psi-particles”, or ”psips”) in the operator
space spanned by tensor products of Slater determinants. Writing down Eq. (128) in terms of matrix elements
ρij = 〈i| ρ̂ |j〉 (with |i〉 being a Slater determinant of plane waves) leads to

ρij(β + ∆β) = ρij(β)− ∆β

2

∑

k

[(Hik − Sδik)ρkj − ρik(Hkj − Sδkj)] , (129)
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with S being an, in principle, arbitrary shift that can be used to control the population of walkers [319, 317, 222].
Furthermore, it is convenient to introduce the update matrix

Tij = −(Hij − Sδij) , (130)

which allows us to write Eq. (129) as

ρij(β + ∆β) = ρij(β) +
∆β

2

∑

k

(Tikρkj + ρikTkj) . (131)

The update scheme governing the stochastic evolution of the walkers can be summarized in three straightforward
rules:

1. Spawning – A walker can spawn from matrix element ρik to ρij with the probability pspawn(ik → ij) =
∆β|Tkj |/2 (the spawning process from ρkj to ρij is similar).

2. Clone/Die – Walkers on ρij can clone or die, leading to an increase or decrease of the population with the
probability pd(ij) = ∆β|Tii+Tjj |/2. In particular, the population is increased if sign(Tii+Tjj)×sign(ρij) > 0
and decreased otherwise.

3. Annihilation – Walkers on the same matrix elements, but with an opposite sign, are annihilated. This
drastically improves the efficiency of the algorithm.

Starting at β = 0 (where ρij = δij , realized by populating the diagonal density matrix elements with uniform
probability), the above algorithm is used to propagate ρ to the desired (inverse) temperature of interest. The full
DMQMC simulation, i.e., the computation of thermodynamic expectation values, is then given by averaging over
many independent of such ”β-loops”.

Regarding simulations of the electron gas using this basic version of DMQMC there appear two practical prob-
lems: (i) the distribution within the thermal density matrix changes rapidly with β and (ii) important determinants
are often not present in the initial configuration. To overcome these obstacles, Malone and co-workers [222] proposed
to solve a different differential equation, describing the evolution of a mean-field density matrix to the exact, fully
correlated density matrix, both at inverse temperature β. This so-called interaction picture DMQMC method has
turned out to be dramatically more efficient and was used to obtain all DMQMC data shown in Sec. 5.7.

As a final note, we mention that the fermion sign problem in DMQMC manifests as an exponential growth of
the number of walkers needed to resolve the exact thermal density matrix, eventually rendering even a stochastical
approach unfeasible. To delay this ”exponential wall”, the exact DMQMC simulation scheme can be used as a
starting point for approximations. In particular, one can exploit the extreme degree of sparsity of the thermal
density matrix to reduce the computational demands [223]. This, in turn, allows to significantly increase the range
of applicability in terms of coupling strength, similar to the controlled kink extrapolation in the CPIMC method, see
Sec. 5.5. The basic idea of this initiator approximation [223] is to prevent walkers on density matrix elements with
a comparatively small weight from spawning off-spring on other small elements. Spawning events to unpopulated
matrix elements are only possible from the set of so-called initiator determinants, which are occupied by a number
of walkers above a certain threshold ninit, or if they result from multiple sign-coherent spawning events from other
determinants. It is important to note that the bias due to the initiator approximation can be reduced by increasing
the total number of walkers within the simulation, Nwalker, and vanishes completely in the limit Nwalker → ∞.
Therefore, this ”i-DMQMC” algorithm can be viewed as a controlled approximation, although a non-monotonic
convergence towards the exact result with Nwalker is possible. Furthermore, the accuracy for any finite number
Nwalker is significantly reduced for quantities that do not commute with the Hamiltonian.

5.7. Comparison of QMC methods

In this section, we present comparisons between data from different QMC methods in a chronological order,
starting with the investigation by Schoof et al. [218] and finishing with the most recent comparison in Ref. [225],
where all four methods had been included into the same plot. It is important to note that all results in this section
have been obtained for a finite model system of N = 33 (spin-polarized) or N = 66 (unpolarized) electrons. An
exhaustive introduction, explanation and discussion of finite-size errors, i.e., the extrapolation to the thermodynamic
limit, can be found in section 6.
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Figure 17: Low-temperature results for the exchange-correlation energy of the spin-polarized UEG with N = 33 electrons. The filled
circles correspond to the configuration PIMC data by Schoof et al. [218] and the empty circles have been obtained by subtracting the
finite-size correction from the restricted PIMC data in the Supplemental Material of Ref. [211]. The black diamond corresponds to
θ = 0.0625 and has been obtained via an approximation based on the extrapolation of permutation cycles introduced by DuBois et
al. [320]. Reproduced from Ref. [218] with the permission of the authors.

5.7.1. The limits of the fixed node approximation

In 2013, Brown and co-workers [211] published the first QMC data for the UEG using the restricted PIMC
method both for ξ = 0 and ξ = 1 covering substantial parts of the warm dense matter regime (θ = 0.0625, 0.125, 0.25, . . . , 8
and 1 ≤ rs ≤ 40). It is well known that employing a nodal constraint (using the free particle nodes) constitutes an
uncontrolled approximation so that the accuracy of the RPIMC data was not clear. However, the remarkably high
accuracy of the fixed node approximation in ground state calculations [16, 38, 17] lead to a high confidence in their
results, which were subsequently used as input for various applications, e.g., Refs. [213, 212, 214, 321, 185]. In their
seminal 2015 paper, Schoof et al. [218] were able to obtain exact CPIMC data for the spin-polarized electron gas
up to rs = 1, . . . , 4 (depending on temperature), thus enabling them to gauge the bias in the RPIMC data. The
results are shown in Fig. 17, where the exchange-correlation energy Exc = E − U0 (with U0 being the energy of
the ideal system) is plotted versus rs for N = 33 electrons and four different temperatures in the low temperature
regime, θ = 0.0625, 0.125, 0.25, 0.5. The filled and empty circles correspond to the CPIMC and RPIMC data, re-
spectively. For completeness, we mention that the black diamond corresponds to a single data point for θ = 0.0625
from Ref. [320], which was obtained by performing an approximate extrapolation over the permutation cycles in the
PIMC simulation; yet, it is not relevant in the present context. Although the sign problem is practically absent in
the CPIMC simulations at rs < 0.1, the statistical uncertainty (error bars) increases towards even higher density.
The explanation for this behaviour is simple: with decreasing rs the system becomes more similar to the ideal case,
thereby making Exc the difference between two large numbers, which naturally leads to an increased relative error.
On the other hand, the relative CPIMC errors also increase in magnitude for rs ≥ 0.6 due to the fermion sign
problem, which eventually leads to an exponential wall at some critical value of rs, at which CPIMC simulations
are no longer feasible. However, at rs = 1 the error bars in the CPIMC data is clearly an order of magnitude smaller
than those of the RPIMC data.

The most interesting feature of Fig. 17 is the striking disagreement between the exact CPIMC and RPIMC
points where the data overlap. In particular, the fixed node approximation leads to an unphysical drop towards
high density and the bias in Exc exceeds 10%. This is in stark contrast to ground state results, where already the
data by Ceperley and Alder from 1980 [16] had an accuracy of the order of 0.1%. Furthermore, the decreasing
quality of the RPIMC data towards high density and weaker coupling contradicts the usual assumption that the
systematic error due to the free particle nodes should be most pronounced at stronger nonideality, but vanish for
rs = 0 (ideal case). While we do not have a definitive explanation of this finding, a possible answer might be a lack
of ergodicity within the RPIMC simulation due to the reference point freezing, see Sec. 5.3, an explanation that
would be in good agreement with the observed increment of the RPIMC error bars towards higher density. Finally,
we mention that Filinov [322, 323] called into question the validity of the fixed node approximation even for the
ideal case.
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Figure 18: Combination of the configuration PIMC and permutation blocking PIMC methods. Shown is the exchange-correlation energy
of N = 33 spin-polarized electrons in dependence of the density parameter rs (left) and the reduced temperature θ (right). The colored
filled circles and crosses correspond to the CPIMC and PB-PIMC data, respectively, and the faded empty circles to the RPIMC data
by Brown et al. [211]. Reproduced from Ref. [217] with the permission of the authors.

5.7.2. Combining CPIMC and PB-PIMC

The important findings by Schoof et al. [218] from the previous section seriously called into question the utility
of the RPIMC data as a basis for density functional theory or other applications at warm dense matter conditions
(even more so when considering the additional need for a sufficiently accurate finite-size correction, see Sec. 6).
The problem is that the exact CPIMC method (see Sec. 5.5), due to its formulation as an infinite perturbation
expansion around the ideal system, is limited to moderate coupling (around rs = 1, depending on temperature) and,
therefore, cannot be used over substantial parts of the relevant WDM regime. To overcome this issue, Dornheim et
al. [219] introduced the permutation blocking PIMC idea (see Sec. 5.4 for a detailed introduction) and subsequently
demonstrated its utility for simulation of the electron gas [220]. In particular, it was suggested that the combination
of CPIMC and PB-PIMC at complementary parameters could be used to obtain highly accurate results over the
entire density range [217, 221].

This is demonstrated in the left panel of Fig. 18, where the exchange-correlation energy is shown in dependence
of the density parameter rs [217]. The faded empty circles correspond to the RPIMC data by Brown et al. [211], the
filled circles to CPIMC and the crosses to PB-PIMC data. Note that we show either a CPIMC or a PB-PIMC point,
depending on which method provides the smaller statistical uncertainty at a given rs-θ-combination. Again, we
mention that the comparatively large error bars in Exc at small rs and high temperature are due to its nature as the
difference between two large numbers, the total and ideal energies E and U0, respectively. Evidently, the PB-PIMC
data is in excellent agreement with and smoothly connects to the CPIMC results for all depicted temperatures.
This means that the combination allows for a highly accurate description down to θ = 0.5. While CPIMC is also
available for lower temperature, cf. Fig. 17, the permutation blocking PIMC approach eventually becomes infeasible
due to the FSP, which is the reason for the relatively large error bar at rs = 2 and θ = 0.5. For completeness, we
mention that the interaction energy V , which is sufficient to construct a parametrization of the exchange-correlation
free energy fxc (see Sec. 8), can be obtained with a significantly higher accuracy at θ = 0.5, see Refs. [220, 221, 226].

The RPIMC data, on the other hand, exhibit an unphysical behavior even at moderate to high temperature. In
particular, both for θ = 0.5 and θ = 1 there occurs a drop in Exc, while for θ = 2 and θ = 4 there are pronounced
bumps in the region 1 ≤ rs ≤ 6.

In the right panel of Fig. 18, we show the temperature dependence of Exc for four different values of the density
parameter, rs = 0.2, 0.6, 1, 4. The RPIMC data are available for the two largest rs-values, but again there appears
a substantial disagreement to the combined CPIMC and PB-PIMC data. While all methods find a minimum in
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Figure 19: Combination of the configuration PIMC and permutation blocking PIMC methods for the unpolarized electron gas with
N = 66 electrons. In the top left panel, we show results for the density-dependence of the exchange-correlation energy from configuration
PIMC (filled circles), permutation blocking PIMC (crosses), and restricted PIMC (empty circles, taken from Ref. [211]). The bottom
left panel shows all Exc data for θ = 1 both from PB-PIMC and CPIMC, where they are available. In the top right and center right
panel, we show the kinetic energy (in units of the ideal result, U0) and interaction energy from all three methods. Finally, the bottom
right panel shows the relative deviation between RPIMC and our data for V . Reproduced from Ref. [221] with the permission of the
authors.

Exc around θ = 0.3 for all depicted densities, the fixed node approximation leads to a drastically deeper minimum
for rs = 1 (see also Fig. 17 above). Groth and co-workers [217] gave a possible explanation of this non-monotonic
behavior as the competition of two effects: on the one hand, thermal broadening of the particle density leads to
a reduction of the interaction energy with temperature, while, on the other hand, Coulomb interactions might be
partly increased as the thermal deBroglie wavelength (see Sec. 5.2) decreases with increasing θ. Note that a similar
trend has been predicted in the vicinity of Wigner crystallization in 2D, see Ref. [324].

Up to this point, all depicted results had been obtained for the spin-polarized case, i.e., ξ = 1. However, as real
systems are found predominantly in an unpolarized state, the ξ = 0 case is arguably even more important for real
applications. For this reason, in the left panel of Fig. 19, we show the rs-dependence of Exc for N = 66 unpolarized
electrons. Again, we show either a CPIMC or PB-PIMC data point, depending on the statistical uncertainty. Due
to the two-fold increase in system size (it is conventional to use a closed momentum shell, i.e., N↑ = N↓ = 33
spin-up and -down electrons), PB-PIMC results for the exchange-correlation energy are only available above half
the Fermi temperature. Regarding the CPIMC approach, there is an additional issue which further reduces the
feasible rs parameter: electrons with opposite spin do not exchange which leads to an increased weight of kinks
between those electrons (compared to the same corresponding to two electrons of equal spin) [221]. The bottom left
panel of Fig. 19 shows data for θ = 1 only, but both from PB-PIMC and CPIMC where they are available. Again,
we stress the excellent agreement between the two independent methods as all data agree within error bars and no
systematic deviations can be resolved. The comparion to the RPIMC data by Brown and co-workers [211] reveals
that, for the unpolarized case and for moderate temperatures, there is no systematic bias of the same order as for
the spin-polarized case. Only for the lowest depicted temperature, θ = 0.5, there seems to appear a systematic drop
of the RPIMC data towards high density.

In the right part of Fig. 19, we consider separately both the kinetic and the potential (interaction) contribution
to the total energy. Specifically, in the top right panel, we plot the rs-dependence of the kinetic energy (here labelled
T and given in units of the ideal energy U0) for θ = 1, 2, 4, 8. Surprisingly, we find significantly larger disagreement
than in Exc for all depicted temperatures as the RPIMC data are systematically too small. Furthermore, these
deviations do not vanish entirely even for large rs.

The center right panel of the same figure shows the same information for the Ewald interaction energy V ,
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Figure 20: Comparison of all QMC methods for the spin-polarized electron gas at warm dense matter conditions. Shown are results
for the rs-dependence of the exchange-correlation energy for N = 33 electrons from CPIMC (red circles, data taken from Ref. [217]),
PB-PIMC (red crosses, data taken from Ref. [217]), DMQMC (filled green diamonds) and initiator DMQMC (empty green diamonds,
data taken from Ref. [223]) and RPIMC (blue squares, data taken from Ref. [211]). For θ = 0.5, all data have been shifted by 0.05
Hartree. Reproduced from Ref. [225] with the permission of the authors.

although, on the given scale, no deviations are visible with the naked eye. For this reason, in the bottom right
panel, we show the relative deviation between our data and RPIMC in V . Unsurprisingly, we find deviations of a
similar magnitude than in the kinetic part, but of an opposite sign, i.e., here the RPIMC data are always too large.

In a nutshell, our analysis of the unpolarized electron gas has revealed that (i) the fixed node approximation
gives significantly more accurate results for the exchange-correlation energy than for the spin-polarized case, but
(ii) the separate kinetic and potential contributions are systematically biased for all temperatures, even for large
rs. Finding (ii) is a common property of approximations in quantum Monte Carlo methods for quantities that
do not commute with the Hamiltonian. Similar behaviors have been reported in ground state diffusion Monte
Carlo calculations using the fixed node approximation4, e.g., Refs. [325, 326], or in finite-temperature DMQMC
calculations employing the initiator approximation [223].

5.7.3. Emerging consensus of QMC methods

Shortly after the findings of the previous subsections had been reported, Malone and co-workers [223] achieved
major breakthroughs regarding the application of the density matrix QMC method to the electron gas at WDM
conditions. Their valuable set of additional, independent data has been included in Fig. 20 (green diamonds),
where the rs-dependence of Exc is shown for all four QMC methods introduced above [225]. Note that the θ = 2
data corresponds to the exact DMQMC algorithm whereas, for θ = 0.5, the initiator approximation was employed.
Evidently, the green points fully confirm our data up to rs = 1 within error bars, although, at larger values of rs,
the initiator approximation apparently cause Exc to be systematically to large.

We thus conclude that over the last two years there has emerged a consensus between different, independent
QMC methods regarding the simulation of the UEG for a finite number of electrons. Naturally, the next step that
had to be accomplished was the extrapolation of these results to the thermodynamic limit without a significant loss
of accuracy. This turned out to be a surprisingly challenging task, which will be discussed and explained in detail
in the next section.

Finally, in Fig. 21, we show the density-temperature combinations where the different QMC methods are feasible.
Evidently, standard PIMC is only available at high temperature and strong coupling (due to the FSP). Our recent
PB-PIMC method extends this regime significantly towards lower temperature and high density, i.e., towards strong
degeneracy. In contrast, both the CPIMC and DMQMC methods, which are formulated in Fock space, excel at
weak coupling but break down when correlation effects start to dominate. Observe that the apparent advantage of
DMQMC over CPIMC at low temperature and intermediate rs is due to the utilized initiator approximation that
can lead to a significant bias for quantities that do not commute with the Hamiltonian, see Sec. 5.6 for details.

4In DMC, the bias can be removed by the Hellmann-Feynman operator sampling [325].
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Figure 21: Density-temperature plane around the warm dense matter regime. Shown are the parameter ranges where standard PIMC
(black), DMQMC (blue), CPIMC (red) and PB-PIMC (green) are feasible. Reproduced from Ref. [225] with the permission of the
authors.

6. Finite-size correction of QMC data

6.1. Introduction and problem statement

The big advantage of using the quantum Monte Carlo methods introduced in Sec. 5 is that they – in stark
contrast to the dielectric approximations or quantum classical mappings – allow to obtain an exact solution to the
UEG Hamiltonian, Eq. (7). However, this is only possible for a model system with a finite number of particles N
and a finite box length L. In practice, we are interested in the thermodynamic limit [327], i.e., the limit where both
L and N go to infinity while the density n (and, therefore, the density parameter rs) remain constant. To mimic as
closely as possible the infinite electron gas in our QMC simulations, we employ periodic boundary conditions and
incorporate the interaction of a single electron with an infinite array of periodic images via the Ewald interaction.
Nevertheless, the interaction energy per particle, VN/N , does not remain constant for different N and is not equal
to the thermodynamic limit, which is defined as

ν = lim
N→∞

VN
N

∣∣∣∣
rs=const

. (132)

The difference between ν and V/N is the so-called finite-size error

∆VN
N

= ν − VN
N

, (133)

which needs to be compensated for by adding a so-called finite-size correction to the QMC results, i.e., an estimation
for ∆VN/N . This is illustrated in Fig. 22, where, in the left panel, we plot the interaction energy per particle of
the unpolarized electron gas with θ = 2 and rs = 0.5 versus the inverse number of particles 1/N . The green
crosses correspond to the bare QMC results and, obviously, are not converged with respect to N . More precisely,
for N = 38 particles, there appears a finite-size error exceeding 10%. For a higher density, rs = 0.1 (see the right
panel), things appear to be even more dire and, for N = 38, ∆VN/N is comparable in magnitude to ν and V/N
themselves. In this situation it might seem natural to perform a a direct extrapolation to the TDL by performing a
fit to the QMC data. However, the problem is that the exact functional form of the finite-size error in dependence
of N is not known. The solid black and dashed yellow lines correspond to two fits with different functional forms,
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Figure 22: System size dependence of the potential energy per particle of the unpolarized UEG at θ = 2 and rs = 0.5 (left) and rs = 0.1
(right) – Shown are bare QMC (CPIMC) results (green crosses) and the QMC results plus the finite-size correction proposed by Brown
et al. [211] (∆BCDC, red circles). The solid black and dashed yellow curves correspond to two equally reasonable fits to the QMC data
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of the authors.

specifically

f(N−1) = a+
b

N c
, (134)

g(N−1) = a+
b

N
+

c

Nd
, (135)

with a, b, c and d being the free parameters. Evidently, for rs = 0.5 both fit functions are equally appropriate
and reproduce the QMC data quite well. Still, the estimation of the value in the TDL differs by several per
cent. This clearly demonstrates that a reliable extrapolation of the QMC data is not possible without knowing
the exact N -dependence of the finite-size error, which is not the case. Therefore, we need to derive a readily
evaluable approximation to Eq. (133). In the ground state, finite-size effects are relatively well understood, see, e.g.,
Refs. [231, 328, 329, 330, 331]. In their pioneering work, Brown et al. [211] introduced a straightforward extension
of the finite-size correction for the interaction energy by Chiesa et al. [329] to finite temperature [cf. Eq. (142)].
Adding this correction to the QMC results leads to the red circles in Fig. 22. Obviously, the finite-size errors are
overestimated and the remaining bias is of the same order as the original one. Even worse, for rs = 0.1 and N < 100
the corrected data exhibit a larger N -dependence than the bare QMC results. Hence, we conclude that in order to
obtain accurate interaction energies in the thermodynamic limit we need to derive an improved finite-size correction.
This requires us to analyze and understand the source of the finite-size error and find an accurate estimation for it.

6.2. Theory of finite-size effects

To derive an expression for the finite-size error due to the final simulation box [329, 330, 226, 225], it is convenient
to express V/N in terms of the static structure factor S(k)

VN
N

=
1

2L3

∑

G6=0

[SN (G)− 1]
4π

G2
+
ξM
2

, (136)

where the subscripts ’N ’ denote quantities computed for a finite number of particles, and the sum is to be carried
out over the discrete reciprocal lattice vectors G. In the thermodynamic limit, the Madelung constant vanishes,
ξM → 0, and the potential energy per particle, Eq. (132), can be written as a continuous integral

ν =
1

2

∫

k<∞

dk

(2π)3
[S(k)− 1]

4π

k2
, (137)

where we have made use of the fact that for a uniform system the static structure factor solely depends on the
modulus of the wave vector, S(k) = S(k). Obviously, the finite-size error is given by the difference of Eqs. (137)
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and (136),

∆VN
N

[S(k), SN (k)] = ν − VN
N

(138)

=
1

2

∫

k<∞

dk

(2π)3
[S(k)− 1]

4π

k2

︸ ︷︷ ︸
v

−


 1

2L3

∑

G6=0

[SN (G)− 1]
4π

G2
+
ξM
2




︸ ︷︷ ︸
VN/N

,

and, thus, is a functional of the SFs of the infinite and finite systems, respectively. To derive a more easily workable
expression for Eq. (138), we approximate the Madelung energy by [330]

ξM ≈
1

L3

∑

G6=0

4π

G2
e−εG

2 − 1

(2π)3

∫

k<∞
dk

4π

k2
e−εk

2

, (139)

which becomes exact for ε→ 0. Inserting Eq. (139) into (138) gives

∆VN
N

[S(k), SN (k)] =
1

2

∫

k<∞

dk

(2π)3
S(k)

4π

k2
− 1

2L3

∑

G6=0

SN (G)
4π

G2
. (140)

Evidently, in Eq. (140) there are two possible sources for the finite-size error of V : (i) the difference between the
SFs of the finite and infinite system, i.e., a finite-size effect in the actual functional form of S(k) itself, or (ii)
the approximation of the continuous integral from Eq. (137) by a discrete sum. Chiesa et al. [329] pointed out
that, in the ground state, the SF converges remarkably fast with system size (this also holds at finite temperature,
see Refs. [226, 225] and the discussion of Fig. 23), leaving (ii) as the sole explanation. In fact, the same authors
suggested that the main contribution to Eq. (140) is the G = 0 term, which is completely omitted from the sum. To
derive an analytic expression of this term, one makes use of the fact that the random phase approximation becomes
exact in the long wave length limit, k → 0, which is valid at finite temperatures as well [332]. In particular, an
expansion of the RPA static structure factor around k = 0 gives a parabolic expression,

SRPA
0 (k) =

k2

2ωp
coth

(
βωp

2

)
, (141)

with ωp =
√

3/r
3/2
s being the plasma frequency. These considerations lead to the finite-T extension of the FSC

from Ref. [329], hereafter labelled as ’BCDC’ [211]

∆VBCDC(N) = lim
k→0

SRPA
0 (k)

2L3

4π

k2
(142)

=
ωp
4N

coth

(
βωp

2

)
.

Thus, the first order finite-size correction used by Brown and co-workers predicts a finite-size error with a simple
1/N behavior. However, this ansatz is not appropriate for the conditions encountered in Fig. 22, as we shall now
explain in detail.

In Fig. 23, we show the static structure factor for the unpolarized UEG at θ = 2 and rs = 0.5, i.e., the same
conditions as in the left panel of Fig. 22 above. The blue, green, and yellow crosses correspond to QMC results for
N = 100, N = 66, and N = 38 electrons, respectively and the grey solid line to a cubic spline fit to the largest
depicted particle number. Due to momentum quantization in a finite simulation cell, data for SN (k) are available
on an N -dependent discrete k-grid, and restricted to k ≥ kmin = 2π/L. Nevertheless, the functional form of SN (k)
is remarkably well converged with system size for as few as N = 38 electrons, see also the inset. This means that
the finite-size errors in the interaction energy are indeed the consequence of a discretization error as explained
above. The light blue curve in Fig. 23 corresponds to the RPA expansion around k = 0, i.e., Eq. (141). Evidently,
the parabola does not connect to the QMC data even for the largest particle number. Therefore, Eq. (142) is not
sufficient to correct for the finite size error. In sum, the construction of a more accurate FSC requires accurate
knowledge of S(k) for k < 2π/L, i.e., for those wave vectors that are not accessible within the QMC simulations.
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Figure 23: Static structure factor of the unpolarized UEG at θ = 2 and rs = 0.5 – Shown are QMC data for N = 100 (blue), N = 66
(green), and N = 38 (yellow) particles and the parabolic RPA expansion around k = 0 (light blue), cf. Eq. (141). The solid grey line
corresponds to a cubic spline fit to the N = 100 data and the inset shows a magnified segment. Adapted from Ref. [226] with the
permission of the authors.
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6.3. Improved finite-size correction of the interaction energy

To obtain accurate data for the static structure factor for small k, we carry out full calculations within RPA
and also with a static local field correction from the STLS formalism [204, 213], see Sec. 3. The results are shown
in Fig. 24, where S(k) is shown for the same conditions as in Fig. 23. The dashed red and dash-dotted green lines
correspond to the full RPA and STLS data, respectively, and the blue crosses to the exact QMC results for N = 100.
In the limit k → 0, both the RPA and STLS curves are in perfect agreement with the parabolic form from Eq. (141),
but strongly deviate for k & 0.5. Further, both dielectric approximations exhibit a fairly good agreement with the
QMC point at kmin and the STLS result is within the statistical uncertainty. Therefore, the combination of STLS
at small k with the exact QMC data elsewhere allows for exact, unbiased structure factor over the entire k-range.
In practice, this is realized by a (cubic) spline, cf. the solid grey line in Fig. 24. Further, we note that the accuracy
of both STLS and RPA decreases for larger k, see the inset, although the static local field correction from STLS
constitutes a significant improvement. This complementarity of QMC and the dielectric approximations allows
for a rather vivid interpretation: Quantum Monte Carlo methods provide an exact treatment of all short-range
exchange and correlation effects within the finite simulation box. However, due to the finite number of particles,
the long-range limit cannot be resolved. In contrast, both RPA and STLS are formulated in the thermodynamic
limit. Since the effect of correlations decreases for large distances, the small k-behavior is described accurately,
whereas short-range XC effects are treated insufficiently. For completeness, we note that an accurate knowledge
of S(k) would allow to obtain an unbiased result for the interaction energy per particle in the TDL by directly
evaluating Eq. (137). However, as we will see below, the detour over the finite-size corrections turns out to be
advantageous for multiple reasons.

The thusly obtained model function for the static structure factor [i.e., the spline, SSpline(k)] allows us to
accurately estimate the finite-size error by straightforwardly evaluating Eq. (138) as

∆VN

[
Smodel(k)

]
=

∆VN
N

[
Smodel(k), Smodel(k)

]
, (143)

which we compute numerically. The resulting FSC is shown in Fig. 25, where we again show the N -dependence of
the interaction energy per particle for the same conditions as above. Let us first consider the black stars, which have
been obtained by adding to the bare QMC results ∆VN [Sspline(k)]. Evidently, the dependence on system size has
been decreased by two orders of magnitude. The right panel shows a magnified segment around the new corrected
results and we detect a small remaining finite-size error with a linear behavior. The main source of this residual
error is the small N -dependence of SN (k) itself. However, even for as few as N = 38 particles, this bias is of the
order of ∆V/V ∼ 10−3. In practice, we always remove any residual errors by performing an additional extrapolation
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of the corrected data. In particular, we perform a linear fit over all N and a constant fit to the last few points that
are converged with N within twice the error bars (the latter corresponds to the assumption that the small system
size dependence in SN (k) vanishes for large N , which it might), see the solid black lines. Our final estimation of
the interaction energy per particle in the thermodynamic limit is then obtained as the mean of both fits, and the
difference between the two constitutes the remaining uncertainty interval. Let us now consider the blue squares
and yellow triangles, which have been obtained by evaluating Eq. (143) solely using the static structure factors
from STLS and RPA, respectively, over the entire k-range. Surprisingly, both data sets are in good agreement with
the black stars. This means that – despite the rather significant bias for intermediate k – both the full RPA and
STLS SFs are sufficient model functions to estimate the discretization error in the interaction energy per particle.
Therefore, it is not necessary to perform a spline interpolation for each case, and, in the following, we will compute
∆VN using STLS. It is important to note that while the dielectric approximations allow to accurately estimate the
discretization error in VN/N , we still need a QMC result for VN/N itself, i.e.,

ν =
V QMC
N

N
+ ∆VN

[
SSTLS(k)

]
. (144)

Replacing VN/N by the STLS value, which is equivalent to evaluating Eq. (137) using SSTLS(k), would neglect the
short-range exchange-correlation effects and induce a systematic bias of the order of ∆V/V ∼ 10−2, see Sec. 7.

6.4. Examples of finite-size corrections of QMC data

6.4.1. Coupling strength dependence of the finite-size correction of QMC data

To demonstrate the universal applicability of the improved finite-size correction, in Fig. 26 we show results both
for the static structure factor and the interaction energy per particle for the unpolarized UEG over three orders of
magnitude of the coupling parameter rs at θ = 2. In the top row, results are depicted for rs = 10, i.e., a relatively
strongly coupled system. The left panel shows the static structure factor, where the QMC results for N = 140
electrons are depicted by the black crosses. Furthermore, the dashed blue line corresponds to the parabolic RPA
expansion around k = 0 [see Eq. (141)], the dash-dotted green and dotted yellow lines to the full STLS and RPA
results, respectively, and the solid red line to the spline connecting STLS for small k with QMC data elsewhere.
For such parameters, QMC results for S(k) range down to small S and for kmin all depicted data sets – even the
RPA expansion – are in excellent agreement. Therefore, the finite-size correction proposed by Brown et al. [211] is
appropriate, cf. the right panel. Overall, we observe substantial errors in the RPA curve for intermediate k starting
around k & 0.1. The STLS curve is in much better agreement to the QMC data everywhere, although it is too large
for k . 0.35 and too small for larger k. The inset shows a magnified segment where, in addition to the QMC data
for N = 140, we also show results for N = 80 (squares) and N = 66 (circles). Evidently, no system size dependence
of SN (k) can be resolved within the given statistical uncertainty. Let us now consider the interaction energy per
particle, which is depicted as a function of 1/N in the right panel. As usual, the green crosses correspond to the
bare QMC results and, even for as few as N = 34 electrons, the finite-size error does not exceed ∆V/V = 1%. This
can be explained by recalling the interpretation of finite-size effects as a discretization error in the integration of
S(k), which is densely sampled by the QMC points down to small values of S, cf. the left panel. Further, we note
that the QMC points seem to exhibit a linear behavior as predicted by the BCDC-FSC, Eq. (142). Consequently,
adding ∆BCDC to the QMC data (red circles) removes the finite-size error and no system size dependence can be
resolved within the given statistical uncertainty. Furthermore, we note that the improved FSC [Eq. (143)] using
SSTLS as a model function leads to the same results.

In the center row, we show results for intermediate coupling, rs = 1. Here, in contrast to the previous case, the
RPA expansion does clearly not connect to the QMC results, which are not available down to such small S-values
as above. Furthermore, we note that both the full RPA and STLS curves exhibit much smaller deviation to the
QMC data, as it is expected. In fact, the STLS curve is only seldom not within twice the statistical uncertainty of
the QMC points. For completeness, we mention that again no difference between QMC data for different particle
numbers can be resolved, see the inset. The interaction energy per particle exhibits a rather peculiar behavior.
First and foremost, we note that the finite-size error for N = 34 is of the order of 10% and, thus, larger than
for the strong coupling case. Again this comes as no surprise when comparing the static structure factors and
re-calling the discretization error. In addition, the bare QMC results seem to exhibit a linear dependence in 1/N .
This is further substantiated by a linear fit, cf. the solid green line, which reproduces all points within error bars.
Interestingly, however, the calculated slope is not equal to the BCDC prediction by Eq. (142). Consequently, the
red circles exhibit a distinct system size dependence and are not in agreement with the linear extrapolation. Finally,
the improved FSC leads to significantly reduced finite-size errors, which we subsequently remove by an additional
extrapolation as explained in the discussion of Fig. 25. The thusly obtained final result for the TDL significantly
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Figure 26: Coupling dependence of static structure factors (left) and interaction energies per particle (right) of the unpolarized electron
gas at θ = 2 – Top row: rs = 10, center row: rs = 1, bottom row: rs = 0.1. Shown are results for the static SF from QMC simulations
with three different particle numbers (black symbols, the data for the two smallest N appear in the inset only), the RPA expansion
around k = 0 (dashed blue), cf. Eq. (141), and full RPA and STLS data (dotted yellow and dashed dotted green lines, respectively).
The solid red line corresponds to a spline connecting STLS for small k with QMC data elsewhere and the insets depict a magnified
segment. The interaction energies per particle correspond to the bare QMC results (green crosses), and finite-size corrected data using
∆BCDC (red circles) and the new improved FSC by Dornheim et al. [226] using SSTLS (blue squares). The solid black line corresponds
to an extrapolation of the residual finite-size error and the black diamond depicts the extrapolated result for V/N in the TDL.
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deviates from the linear extrapolation as well, which again demonstrates the problems with a direct extrapolation
without knowing the exact functional form of the N -dependence.

Finally, in the bottom row we show results for rs = 0.1, which corresponds to weak coupling and high density.
Even for as many as N = 700 electrons, the QMC results are not available for the k-range where S is small. Hence,
the RPA expansion does come nowhere near the QMC point at kmin and the BCDC-FSC is not expected to work.
Further, both the full RPA and STLS curves are in good agreement with the QMC data and each other over the
entire k-range. Again, we note that SN (k) converges remarkably fast with system size, see the inset. The large
value of SN (k) at kmin indicates that the wave vector range where S varies most is not sampled sufficiently, or not
accessed by QMC points at all. Consequently, the finite-size errors are substantially increased compared to rs = 10
and rs = 1 and, for N = 38 particles, are comparable in magnitude to VN/N itself. Furthermore, the BCDC-FSC
is not useful and severly overestimates the discretization error. In particular, for N . 100, the thusly ’corrected’
data exhibit a larger system size dependence than the original bare QMC data. The improved FSC computed from
SSTLS again works remarkably well even for small N , and reduces the system-size dependence by two orders of
magnitude.

6.4.2. Temperature dependence of the finite-size correction of QMC data

As a second demonstration of the versatility of the improved finite-size correction, in Fig. 27 we investigate the
temperature dependence of the static structure factor and the interaction energy per particle of the spin-polarized
UEG at rs = 0.3. The top row shows results for θ = 0.5, which is the lowest temperature considered in the
recent QMC simulations by Dornheim, Groth, and co-workers [226, 227]. The QMC results for S(k) range down
to intermediate values of S, but do not connect to the RPA expansion. Further, we note that both the full RPA
and STLS curves are in good agreement with each other and the QMC data over the entire k-range. As usual, the
largest deviations occur for intermediate k but are of the order of 0.1%. The bare QMC results for the interaction
energy per particle seem to exhibit a linear behavior, but, similar to the observation in the center row of Fig. 26,
not with the slope predicted by Eq. (142). Consequently, adding the BCDC-FSC does not remove the system-size
dependence, as expected from the discussion of the static structure factors. The improved FSC from Eq. (143) using
SSTLS as a model function to estimate the discretization error immediately improves the system size dependence
by two orders of magnitude and no residual errors can be resolved with the naked eye.

The center and bottom rows show the same information for θ = 1 and θ = 4, respectively. First and foremost, we
observe that the decline of S(k) becomes steeper for increasing temperatures. This means that more QMC points
are needed to accurately sample S, which, in turn, leads to increased discretization errors. In particular, for θ = 4
and N = 33, the finite-size error is comparable in magnitude to VN/N itself, and, even for N = 1000 electrons,
no QMC results are available for S . 0.6. Further, we note that both the full RPA and STLS results for the
static structure factor become increasingly accurate for large θ. This is, of course, expected as large temperatures
render correlation effects less important. Finally, we mention that, while the BCDC-FSC becomes significantly less
accurate, the improved FSC from Eq. (143) works well for all temperatures (and densities).

7. Benchmarks of other methods

The improved finite-size correction introduced in this section has subsequently been used to obtain an exhaustive
and very accurate data set for the interaction energy for different temperature-density combinations and four
different spin-polarizations (ξ = 0, ξ = 1/3, ξ = 0.6, and ξ = 1), see Refs. [226, 227]. This puts us, for the first
time, in a position to gauge the accuracy of previously developed theories and approximations, most importantly
that of the dielectric methods from Sec. 3.

7.1. Benchmarks of the interaction energy

In Fig. 28, we show the rs-dependence of the interaction energy per particle of the unpolarized electron gas at
two relevant temperatures, θ = 0.5 (left) and θ = 1 (right). The red diamonds correspond to our recent finite-size
corrected QMC data and the solid red lines to simple fits at constant temperature θ, see Ref. [226] for details. Let
us start our investigation by considering the most simple dielectric approach, i.e., the random phase approximation
(brown dots). As expected, RPA only allows for a qualitative description at weak coupling, and even at extreme
densities, rs = 0.1, there appear deviations exceeding 2% in v. At moderate coupling, rs = 1, we find relative errors
of ∆v/v ≈ 9% for both depicted temperatures, indicating that RPA is of limited use for the description of electrons
in the warm dense matter regime. The same applies for both depicted finite-temperature Green function data sets,
where the Montroll-Ward approximation (MW, dotted pink line) closely follows RPA and the e4-approximation
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Figure 27: Temperature dependence of static structure factors (left) and interaction energies per particle (right) of the spin-polarized
electron gas at rs = 0.3 – Top row: θ = 0.5, center row: θ = 1, bottom row: θ = 4. Shown are results for the static SF from QMC
simulations with three different particle numbers (black symbols, the data for the two smallest N appear in the inset only), the RPA
expansion around k = 0 (dashed blue), cf. Eq. (141), and full RPA and STLS data (dotted yellow and dashed dotted green lines,
respectively). The solid red line corresponds to a spline connecting STLS for small k with QMC data elsewhere and the insets depict a
magnified segment. The interaction energies per particle correspond to the bare QMC results (green crosses), and finite-size corrected
data using ∆BCDC (red circles) and the new improved FSC from Ref. [226] using SSTLS (blue squares). The solid black line corresponds
to an extrapolation of the residual finite-size error and the black diamond depicts the extrapolated result for V/N in the TDL.
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Figure 28: Comparison of the interaction energies for the unpolarized electron gas at θ = 0.5 (left) and θ = 1 (right). The red diamonds
correspond to the finite-size corrected QMC data by Dornheim, Groth and co-workers [226] and the red lines depict fits to these data (see
Ref. [226]). Further shown are the RPIMC data by Brown et al. [211] (blue circles), finite-temperature Green function data computed
in the Montroll-Ward (MW, dotted pink) and e4-approximation (dashed light blue), cf. Sec. 4, and various dielectric approximations,
specifically RPA (brown dots), STLS (black squares), quantum STLS (green crosses, data obtained via integration of structure factors
provided in Ref. [252]), Vashista-Singwi (VS, purple downward triangles) [213], and the recent static local field correction based on the
hypernetted chain (HNC) equation by Tanaka [242].
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exhibits a similar systematic error of the opposite sign (for more details on MW and e4, see the Supplemental
Material of Ref. [218]).

Let us next consider the STLS approximation, both using the static (black squares) and dynamic (so-called
quantum STLS or qSTLS, green crosses) versions of the local field correction. Obviously, this inclusion of correlation
effects via G(q) leads to a remarkable improvement in the interaction energy even up to relatively strong coupling,
rs = 10. In particular, we find a maximum deviation of ∆v/v ≈ 2%, which, for θ = 1, are most pronounced
around rs = 1. This might seem surprising as the STLS closure relation for the LFC is expected to worsen towards
increasing correlation effects. This is indeed the case both for the local field correction [and thus for the static density
response function χ(q)] as well as for the static structure factor. However, the interaction energy per particle is
obtained from S(k) via integration, cf. Eq. (37), and benefits from an error cancellation. For more details, see
the investigation of the static structure factor in the next section. Furthermore, we note that the inclusion of the
frequency dependency of the STLS local field correction has only a minor effect on v and even leads to slightly worse
results compared to the static version introduced in Ref. [204]. At θ = 1, we can also investigate the performance
of a recently introduced (static) local field correction that is based on the hypernetted chain equation [242]. The
results for the interaction energy are shown as the yellow triangles in the right panel of Fig. 28. For weak coupling,
rs < 1, the results are similar to both STLS versions, whereas for stronger coupling there appear differences between
these dielectric methods of up to δv/v = 3%. However, while the SLTS results for v intersect with the exact QMC
results, the HNC data are always too low by up to 3%, making STLS the dielectric approximation of choice for
the interaction energy. Again, this is in contrast to S(k) and G(k), where the new HNC-based formalism turns out
to be superior, cf. Figs. 31 and 43. The purple downwards triangles correspond to the Vashista-Singwi formalism
computed by Sjostrom and Dufty [213], which, for the present conditions, constitutes the least accurate dielectric
approximation (excluding RPA) regarding v. Finally, let us consider the restricted PIMC results by Brown et
al. [211] (blue circles), which are available down to rs = 1. For the two depicted temperatures, these data are more
accurate than the dielectric approximations with a maximum deviation of ∆v/v ≈ 1.5% at rs = 1 and θ = 0.5.

Next, we consider the spin-polarized case, which is shown in Fig. 29. While RPA turns out to be similarly
inaccurate as for the unpolarized case, we find a slightly worse performance of both STLS variants in this case. In
particular, there appear maximum deviations of around ∆v/v = 4% at rs = 2, and the curves do not intersect with
the exact results. Again, both STLS and qSTLS lead to almost indistinguishable results in the interaction energy,
although at ξ = 1 the qSTLS is slightly superior to STLS at large rs. The RPIMC data from Ref. [211] are also
slightly worse with a maximum deviation of ∆v/v ≈ 3.5% at rs = 4 and θ = 1. In fact, this point constitutes an
outlier, which has already been reported for the investigation of the finite model system [220].

Let us conclude this section with the investigation of the electron gas at high temperature, θ = 8, which is shown
in Fig. 30. Both for the paramagnetic (left panel) and ferromagnetic (right panel) case, STLS and qSTLS lead to
systematically too small results over the entire depicted density-range (the same is true for the VS data shown for
ξ = 0) with a maximum deviation slightly exceeding 2% around rs = 4 for ξ = 1. For completeness, we mention
that coupling effects decrease with increasing θ, leading to a large ratio of kinetic and interaction contribution to
the total energy. However, this does not necessarily have to result in an improved relative accuracy in v of the
dielectric approximations, although, obviously, the total energy will be more accurate in this case. The random
phase approximation exhibits a significantly improved performance compared to the previous figures, although there
still appear errors of ∆v/v ≈ 4% at rs = 1, which are rapidly increasing towards stronger coupling. In contrast to
the lower temperature case, the finite-temperature Green function data, exhibits a pronounced unphysical bump in
v around rs = 0.7 with a maximum deviation of 7% and 10% for MW and e4, respectively. Finally, the RPIMC
data are considerably less accurate at high temperature and exhibit an increasing systematic bias towards high
density with a maxium error of ∆v/v ≈ 12% at rs = 1 and ξ = 1. This is mainly a consequence of the inappropriate
finite-size correction, which becomes more severe both towards high density and temperature. The effect is more
pronounced for the ferromagnetic case, since (i) θ = 8 constitutes a higher temperature than for ξ = 0 due to the
different Fermi energies, cf. Eq. (4), and (ii) only N = 33 electrons were simulated in contrast to N = 66 for the
paramagnetic case.

7.2. Static structure factor

Finally, let us evaluate the accuracy of different theories regarding the static structure factor S(k), which is of
central importance for the dielectric approximations introduced in Sec. 3. In the left panel of Fig. 31, we show
S(k) for the unpolarized electron gas at θ = 1 and rs = 1. The solid black line corresponds to a cubic basis
spline connecting the STLS data for the limit of small k with our QMC data elsewhere, see Ref. [333] and the
explanation of finite-size effects in v above. At these conditions, all dielectric approximations give the correct
qualitative description of the SSF. The most pronounced systematic deviations occur for intermediate k, with a
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Figure 29: Gauging the accuracy of the interaction energy (per particle) of different approximations for the spin-polarized electron
gas at θ = 0.5 (left) and θ = 1 (right). The red diamonds correspond to the finite-size corrected QMC data by Groth, Dornheim
and co-workers [227] and the red lines depict corresponding fits to these data (see the Supplemental Material of Ref. [226] for more
details). Further shown are the RPIMC data by Brown et al. [211] (blue circles) and various dielectric approximations, specifically RPA
(brown dots), STLS (black squares), and quantum STLS (green crosses, data obtained via integration of structure factors provided in
Ref. [252]).
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Figure 30: Gauging the accuracy of the interaction energy (per particle) of different approximations for the unpolarized (left) and
spin-polarized (right) electron gas at θ = 8. The red diamonds correspond to the finite-size corrected QMC data by Dornheim, Groth
and co-workers [226, 227] and the red lines depict corresponding fits to these data (see the Supplemental Material of Ref. [226] for more
details). Further shown are the RPIMC data by Brown et al. [211] (blue circles), finite-temperature Green function data computed
in the Montroll-Ward (MW, dotted pink) and e4-approximation (dashed light blue), cf. Sec. 4, and various dielectric approximations,
specifically RPA (brown dots), STLS (black squares), quantum STLS (green crosses, data obtained via integration of structure factors
provided in Ref. [252]), and, for ξ = 0, recent Vashista-Singwi based data by Sjostrom and Dufty [213] (purple downward triangles).
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Figure 31: Gauging the accuracy of different approximations for the static structure factor of the unpolarized electron gas at θ = 1
and rs = 1 (left) and rs = 10 (right). The solid black line corresponds to cubic spline fits connecting STLS at small k with our
QMC data elsewhere [333], the double-dashed purple line to RPA, the dash-dotted red line to Vashista-Singwi (VS) [213], the dashed
blue line to STLS, the dotted green line to qSTLS [252], and the dashed orange line to the recent local field correction based on the
hypernetted-chain (HNC) approximation by Tanaka [242]. The bottom panels depict the relative deviations to our spline.
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maximum deviation of ∆S/S ≈ 10% for RPA. On the other hand, STLS, qSTLS, and HNC exhibit a very similar
behavior with maximum inaccuracies of 2%, and standard STLS being the most accurate approximation in this
case. Further, the VS curve is significantly less accurate, albeit the overall behavior resembles the other LFC-based
data.

In the right panel of Fig. 31, the same information is shown for stronger coupling, rs = 10. In this case, our
QMC-based spline exhibits a pronounced maximum around k = 0.45, which is due to Coulomb correlation effects,
and cannot be accurately resolved by any of the dielectric methods. The random phase approximation breaks down,
with a systematically too small structure factor over the entire k-range and deviations exceeding 25%. Again, STLS
and qSTLS are very similar and give too large results for k . 0.35 and too small results elsewhere. The maximum
deviations occur around k = 0.2 with ∆S/S ≈ 10%, although qSTLS performs slightly better everywhere. The
observed deviation ∆S (bottom panel) towards our spline is of high importance to understand the observed high
performance of STLS in the interaction energy v. Since the latter is, for a uniform system, simply given by a one-
dimensional integral over S(k)−1, the area under the ∆S curve is directly proportional to the error in v. Evidently,
the negative area for small k is of a similar magnitude as the positive one for larger k, which leads to a beneficial
cancellation of errors and, thus, accurate results in v. In contrast, the recent HNC results for S(k) by Tanaka [242]
are significantly better than STLS almost over the entire k-range. Nevertheless, the corresponding results for v do
not enjoy the error cancellation to the same degree. Finally, let us consider the VS curve from Ref. [213], which
exhibits a qualitatively different behavior from the other dielectric approximations. More specifically, the results for
S(k) are too low for small k and slightly too large in the vicinity of large wave vectors. While the overall accuracy is
again better than for STLS, there is almost no cancellation of errors when one is interested in v or, via an additional
coupling-constant integration, in fxc.

8. Parametrizations of the XC free energy

8.1. Introduction

In the ground state, the first parametrization of the exchange-correlation energy, exc(rs), of the unpolarized UEG
on the basis of QMC data (by Ceperley and Alder [15, 16]) has been obtained in 1981 by Perdew and Zunger [29].
Shortly afterwards, Vosko, Wilk, and Nusair [28] extended the parametrization to arbitrary spin-polarizations ξ,
and provided a functional for exc(rs, ξ) in the entire parameter regime relevant to DFT calculations in the LSDA.

At finite temperature, a parametrization of the exchange-correlation free energy, fxc(rs, θ, ξ), in dependence of
density, temperature and spin-polarization is required. In lieu of accurate finite temperature QMC data, in 1982,
Ebeling et al. [198, 199, 200, 201, 202] carried out first attempts to obtain such a functional for the unpolarized
case in terms of Pade approximations that interpolate between the known limits, i.e., the ground state limit,

limθ→0 fxc(rs, θ) = exc(rs, 0), and the Debye-Hückel limit [334], limθ→∞ fxc(rs, θ) = − 1√
3
r
−3/2
s T−1/2. After that,

various approximate functionals have been obatained on the basis of the results from different dielectric approaches
(see Sec. 3). Starting in the mid 1980s, Ichimaru, Tanaka and co-workers constructed a functional of fxc(rs, θ)
by fitting a complex Pade approximation to the finite temperature STLS data [203], which has subsequently been
improved (IIT) by incorporating the exact ground state limit via a suitable bridge function [206]. Only very recently,
this functional has been extended to arbitrary polarizations [249]. In addition to the STLS approach, the Vashishta-
Singwi [213], hypernetted chain [242] (HNC), and the modified convolution approximation [205] (MCA) have been
successfully explored in the construction of parametrizations of the exchange correlation free energy. However, a
suitable spin-interpolation function has only been deduced from the MCA results. This MCA spin-interpolation
function is also utilized for the generalization of the IIT and HNC functionals to arbtitrary spin-polarizations.

Further, Dharama-wardana and Perrot presented [210, 209] another widely used functional [181, 182, 183] based
on data from their classical mapping approximation (see Sec. 4.2.1). Then, after the first finite temperature QMC
data by Brown et al. [211] became available in 2013, several attempts have been made to obtain functionals from
these [213, 214, 212]. Among these, the most refined parametrization has been presented by Karasiev et al. [212]
(KSDT), who, following the IIT functional, incorporated all known limits: ground state, Debye-Hückel and the high-
density Hartree-Fock limit [248]. Yet, since Brown applied the RPIMC method solely to the fully polarized and
unpolarized cases, the spin-interpolation of the KSDT functional has been constructed from the classical mapping
data, for intermediate spin-polarizations. In addition, even for ξ = 0 and ξ = 1 the RPIMC data has turned out to
be unreliable, as was shown in Sec. 7.

Only recently, Groth, Dornheim et al. [227] presented a complete ab initio parametrization of the exchange-
correlation free energy, fxc(rs, θ, ξ), that is based on highly accurate data obtained from two novel finite temperature
QMC methods, CPIMC and PB-PIMC see Sec. 5.5 and Sec. 5.4 and references therein.
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8.2. Parametrizations

In the following, we will provide the concrete functional form of all parametrizations, which are shown in the
comparison plots in Sec. 8.4. Further, the precise way in which these were constructed as well as the included
limits are discussed in detail. To be as concise as possible, we have restricted ourselves to the 5 most accurate
functionals: IIT, HNC, PDW, KSDT, and GDB. For a discussion of the accuracy of the parametrization by Ebeling
and co-workers, see Ref. [335].

8.2.1. IIT parametrization

Since the dielectric methods are based on a self-consistency loop for the static structure factor and the local field
correction, the natural thermodynamic quantity within this framework is given by the interaction energy computed
from the static structure factor according to Eq. (37). For fixed spin-polarization ξ = (n↑ − n↓)/n with the total
electron density n = (n↑ + n↓), the interaction energy is linked to the exchange-correlation free energy via the
well-known coupling constant integration formula

fξxc(rs, θ) =
1

r2
s

∫ rs

0

drs rs v
ξ(rs, θ) . (145)

In the literature, the classical coupling parameter Γ = 1/(rsaBT ) is often utilized, so that Eq. (145) reads

fξxc(rs, θ) =
1

Γ2

∫ Γ

0

dΓ Γ vξ(Γ, θ) . (146)

For the unpolarized (ξ = 0) and polarized (ξ = 1) case, Ichimaru, Tanaka and co-workers [206, 249] proposed the
following Pade fit function for the interaction energy:

vξ(Γ, θ) = − 1

rs

ωξa(θ/ω2
ξ ) + bξ(θ)

√
θ
√

Γ + cξ(θ)θΓ

1 + dξ(θ)
√
θ
√

Γ + eξ(θ)θΓ
, (147)

with the spin-factor ωξ = (1 + ξ)1/3 and

a(θ) =0.610887 tanh (θ−1)
0.75 + 3.04363θ2 − 0.09227θ3 + 1.7035θ4

1 + 8.31051θ2 + 5.1105θ4
(148)

ensures that the correct Hartree-Fock limit, i.e., limrs→0 v
ξ = − 1

rs
ωξa(θ/ω2

ξ ), as parametrized in Ref. [248] is
fulfilled. The remaining functions b, c, d, and e are of the form

bξ(θ) = tanh

(
1√
θ

)
bξ1 + bξ2θ

2 + bξ3θ
4

1 + bξ4θ
2 + bξ5θ

4

cξ(θ) =
[
cξ1 + cξ2 · exp

(
−θ−1

)]
eξ(θ)

dξ(θ) = tanh

(
1√
θ

)
dξ1 + dξ2θ

2 + dξ3θ
4

1 + dξ4θ
2 + dξ5θ

4

eξ(θ) = tanh

(
1

θ

)
eξ1 + eξ2θ

2 + eξ3θ
4

1 + eξ4θ
2 + eξ5θ

4
,

where the constants bξ1, . . . , e
ξ
5 are determined by a fit to the modified STLS data for the interaction energy. These

modified results have been obtained by correcting the raw STLS interaction energy such that the exact ground
state limit (θ = 0), that is known from the QMC simulations by Ceperly and Alder [15, 16, 28], and the classical
limit (θ →∞) are restored. This is achieved via a hypothetically assumed interpolation function that interpolates
between these two limits [249], so that the accuracy for intermediate values of θ is naturally unclear. Once the fitting
constants in Eq. (147) are known (for their concrete values see Ref. [249]), the corresponding exchange-correlation
free energy is immediately computed by analytically carrying out the coupling constant integration in Eq. (146),
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yielding

fξxc(rs, θ) = − 1

rs

c(θ)

e(θ)
(149)

− θ

2e(θ)r2
sλ

2

[(
ωξa(θ/ω2

ξ )− c(θ)

e(θ)

)
− d(θ)

e(θ)

(
b(θ)− c(θ)d(θ)

e(θ)

)]

× log

∣∣∣∣
2e(θ)λ2rs

θ
+
√

2d(θ)λr1/2
s θ−1/2 + 1

∣∣∣∣

−
√

2

e(θ)

(
b(θ)− c(θ)d(θ)

e(θ)

)
θ1/2

r
1/2
s λ

+
θ

r2
sλ

2e(θ)
√

4e(θ)− d2(θ)

[
d(θ)

(
ωξa(θ/ω2

ξ )− c(θ)

e(θ)

)

+

(
2− d2(θ)

e(θ)

)(
b(θ)− c(θ)d(θ)

e(θ)

)]

×
[

arctan

(
23/2e(θ)λr

1/2
s θ−1/2 + d(θ)√

4e(θ)− d2(θ)

)
− arctan

(
d(θ)√

4e(θ)− d2(θ)

)]
,

where the relation Γθ = 2λ2rs with λ = (4/(9π))1/3 may be used to recast this into a modified function fξxc(Γ, θ). We
mention that although the IIT parametrization for the unpolarized case (ξ = 0) has been provided long ago [206],
the polarized case (ξ = 1) became available only recently [249]. Furthermore, we again stress that the IIT functional
exactly fulfills all three know limits: classical, ground state and Hartree-Fock.

It is important to note that there are two different definitions of the degeneracy parameter for polarizations other
than the fully unpolarized case. First, regardless of the polarization ξ, one may always use θ̄ = 2kBTme/~2k2

F with
kF = (3π2n)1/3 where n = n↑ + n↓ is the total density of the system. This way, the parameter θ̄ is independent of
the spin-polarization at constant values of rs, but its physical meaning is somewhat unclear. The second possibility,
which we employ, is to define the Fermi vector as k↑F = (6π2n↑), corresponding to the particle species with the
higher density, n↑ ≥ n↓, cf. Eq. (4). Naturally, in the unpolarized case, where n↑ = n↓ = n/2, both definitions
are equal, whereas at arbitrary polarizations the relation θ̄ = θ(1 + ξ)2/3 = θω2

ξ holds. Since the authors of the

IIT parametrizations chose the definition of θ̄ for the degeneracy parameter in the determination of the fitting
constants5, we must evaluate Eq. (149) at θ(1 + ξ)2/3. For completeness, we mention that Sjostrom and Dufty [213]
used the same Pade ansatz for the interaction energy, Eq. (147), to obtain a functional of fxc both from the VS
scheme (see Sec. 3) and the RPIMC data by Brown et al. [211].

8.2.2. PDW parametrization

Perrot and Dharma-wardana [210] came up with a different idea to parametrize f0
xc(rs, θ) that is more suitable for

their classical mapping approach, see Sec. 4.2.1, which allows for the direct computation of the exchange-correlation
free energy. These values have been directly fitted to the following parametrization

f0
xc(rs, θ) =

exc(rs, 0)− P1(rs, θ)

P2(rs, θ)
, (150)

P1(rs, θ) = (A2(rs)u1(rs) +A3(rs)u2(rs)) θ
2Q2(rs) +A2(rs)u2(rs)θ

5/2Q5/2(rs),

P2(rs, θ) = 1 +A1(rs)θ
2Q2(rs) +A3(rs)θ

5/2Q5/2(rs) +A2(rs)θ
3Q3(rs),

Q(rs) =
(
2r2
sλ

2
)−1

, n(rs) =
3

4πr3
s

, u1(rs) =
πn(rs)

2
, u2(rs) =

2
√
πn(rs)

3
,

Ak(rs) = exp

(
yk(rs) + βk(rs)zk(rs)

1 + βk(rs)

)
, βk(rs) = exp (5(rs − rk)) ,

yk(rs) = νk log(rs) +
a1,k + b1,krs + c1,kr

2
s

1 + r2
s/5

, zk(rs) = rs
a2,k + b2,krs
1 + c2,kr2

s

,

5Note that the authors of Ref. [248] also chose the definition of θ that is used here, which is the reason for the temperature scaling
factor ω−2

ξ in the Hartree-Fock parametrization a.
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where the fitting constants are provided in Ref. [210]. This functional recovers the correct QMC ground state limit,
exc(rs, 0), as θ → 0 and the Debye-Hückel limit as θ → ∞. However, the Hartree-Fock limit at rs → 0 has not
been included even though it were the very same authors who presented the Hartree-Fock parametrization [248] 16
years earlier. For completeness, we mention that an ansatz of the form Eq. (150) has also been utilized by Brown
et al. [214] to obtain the first parametrization from a fit to their RPIMC data [211], yet, the overall functional
behavior of this parametrization has later been shown to be unsatisfactory [212].

8.2.3. HNC parametrization

In the recently proposed HNC functional [242], Tanaka exploited the same Pade ansatz for the rs-dependency
of the HNC interaction energy as the IIT parametrization, cf. Eq. (147):

vξ(rs, θ) = − 1

rs

āξ(θ) + b̄ξ(θ)
√
rs + c̄ξ(θ)rs

1 + d̄ξ(θ)
√
rs + ēξ(θ)rs

, (151)

but slightly modified the θ-dependence by using the general form

g(θ) = G(θ)
1 + x2θ

2 + x3θ
3 + x4θ

4

1 + y2θ2 + y3θ3 + y4θ4
, (152)

for all functions b̄ξ, c̄ξ, d̄ξ, ēξ. The major difference is that also terms with θ3 are included in the fit. The Hartree-
Fock limit of the HNC parametrizations is incorporated in āξ(θ). After fitting Eq. (151) to the interaction energy
from the HNC scheme (values of the fitting constants can be found in Ref. [242]), the functional for the exchange-
correlation free energy is again obtained by analytically carrying out the coupling constant integration, Eq. (145),
which leads to a very similar expression as Eq. (149). While the thus constructed HNC functional properly fulfills
the classical Debye-Hückel limit, it does of course not include the exact QMC ground state limit.

8.2.4. KSDT parametrization

The KSDT functional is based on the RPIMC data by Brown et al. [214]. These data have been obtained for the
interaction, kinetic, and exchange-correlation energy covering the relevant warm dense matter regime of the UEG.
Therefore, Karasiev et al. came up with a slightly different strategy to construct a parametrization by utilizing the
IIT Pade anastz, Eq. (147), directly for the exchange-correlation free energy instead of the interaction energy, i.e.,

fξxc(rs, θ) = − 1

rs

ωξa(θ) + bξ(θ)
√
rs + cξ(θ)rs

1 + dξ(θ)
√
rs + eξ(θ)rs

, (153)

with the temperature Pade functions b− e of Eq. (149) and the Hartree-Fock parametrization, a, Eq. (148). First,
they fitted the ground state limit of Eq. (153)

lim
θ→0

fξxc(rs, θ) = eξxc(rs, 0) = − 1

rs

ωξa1 + bξ1
√
rs + cξ1e

ξ
1rs

1 + dξ1
√
rs + eξ1rs

, (154)

to the most recent QMC data by Spink et al. [38], separately for ξ = 0 and ξ = 1, which determines the four ground

state coefficients bξ1, c
ξ
1, d

ξ
1, e

ξ
1. The exchange-correlation free energy, fξxc, is linked to the interaction (vξ), kinetic,

(kξ), and exchange-correlation energy eξxc via the standard thermodynamic relations

vξ(rs, θ) = 2fξxc(rs, θ) + rs
∂fξxc(rs, θ)

∂rs

∣∣∣∣
θ

(155)

eξxc(rs, θ) = fξxc(rs, θ)− θ
∂fξxc(rs, θ)

∂θ

∣∣∣∣
rs

(156)

kξ(rs, θ) = kξs(rs, θ)− θ
∂fξxc(rs, θ)

∂θ

∣∣∣∣
rs

−fξxc(rs, θ)− rs
∂fξxc(rs, θ)

∂rs

∣∣∣∣
θ

, (157)

with kξs(rs, θ) being the ideal kinetic energy. Therefore, the RPIMC data sets for each of these quantities can be
used for a fit of the right hand sides to these data, thereby determining the remaining coefficients in Eq. (153) that
contain the temperature dependency. By carrying out all three of these fits both for ξ = 0 and ξ = 1, the authors
of Ref. [212] found that using RPIMC data for eξxc results in the smallest average and maximum deviation of the
fit function to the data. Moreover, they performed the consistency checks of re-computing the two thermodynamic
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quantities from fξxc that have not been used for the fit, and then compared the result to the corresponding RPIMC
data. Again, the deviations were smallest when using eξxc as input for the fit. In addition to the exact Hartree-Fock
and ground state limit, the KSDT functional also fulfills the Debey-Hückel limit as θ → ∞ by simply fixing b5 to
(3/2)1/2λ−1b3 for ξ = 0 and to (3/2)1/221/3λ−1b3 with λ = (4/(9π))1/3 for ξ = 1. Finally, we mention that one of
the temperature Pade functions, cξ(θ) [cf. Eq. (149)], had to be modified in the KSDT functional to reproduce the
RPIMC data sufficiently well. Naturally, this has been accomplished by adding an additional parameter c3 in the
exponent, i.e.,

cξ(θ) =
[
cξ1 + cξ2 · exp

(
−c3θ−1

)]
eξ(θ) . (158)

The concrete values of all fitting constants of the KSDT functional are to be found in Ref. [212].

8.2.5. GDB Parametrization

In the construction of the GDB parametrization [227], we followed the same strategy as the previously discussed
KSDT functional (Sec. 8.2.4), but instead used our new finite size corrected QMC data for the interaction energy
(see Sec. 6), which, due to the fermion sign problem, are available down to θ = 0.5. To close the remaining gap to
the ground state, we computed a small temperature correction

∆STLS
θ (rs, θ, ξ) = vSTLS(rs, θ, ξ)− vSTLS(rs, 0, ξ), (159)

from the STLS method, (see Sec. 3), and added this onto the most accurate ground state QMC data by Spink et
al. [38] for temperatures θ ≤ 0.25. Thereby, we obtained a highly accurate data set for the interaction energy over
the entire relevant warm dense matter regime, which we fitted to the right hand side of Eq. (155) with the Pade
ansatz, Eq. (153) for the exchange-correlation free energy. However, we found that the additional parameter c3 in
Eq. (158) is not necessary for a smooth fit through our data set. The values of the fitting constants in Eq. (153)
can be found in Ref. [227].

8.3. Spin-interpolation

8.3.1. Spin-interpolation of the KSDT and GDB functional

To obtain an accurate parametrization of fxc at arbitrary spin polarization 0 ≤ ξ ≤ 1, the KSDT and GDB
functional employ the ansatz [210]

fxc(rs, θ, ξ) = f0
xc(rs, θ̄) +

[
f1

xc(rs, θ̄ · 2−2/3)− f0
xc(rs, θ̄)

]
Φ(rs, θ̄, ξ) , (160)

with θ̄ = θ(1 + ξ)2/3 ensuring that the right hand side is evaluated at the same temperature T for the given density
parameter rs. Knowing that the exact ground state spin-interpolation function in the ideal limit, rs → 0, is given
by

Φ(rs = 0, θ = 0, ξ) =
(1 + ξ)4/3 + (1− ξ)4/3 − 2

24/3 − 2
, (161)

Perrot and Dharama-wardana [210] proposed to extend this to the correlated system at finite temperature with the
ansatz:

Φ(rs, θ, ξ) =
(1 + ξ)α(rs,θ) + (1− ξ)α(rs,θ) − 2

2α(rs,θ) − 2
, (162)

α(rs, θ) = 2− h(rs)e
−θλ(rs,θ),

h(rs) =
2/3 + h1rs
1 + h2rs

,

λ(rs, θ) = λ1 + λ2θr
1/2
s ,

which fulfills the ground state limit of the ideal system, Eq. (161). Both in the GDB and KSDT functional the
parameters h1 and h2 are obtained by fitting fxc(rs, 0, ξ) to the ground state data of Ref. [38] for ξ = 0.34 and
ξ = 0.66. Then, in the case of the KSDT functional, the remaining two parameters λ1 and λ2, which carry the
temperature dependent information of the interpolation function, had to be determined by a subsequent fit to the
approximate hypernetted chain data [210] of fxc at intermediate spin-polarization ξ since Brown et al. did not
provide these data. Whereas in case of the GDB functional [227], we performed vast additional QMC simulations
to obtain ab initio data for the interaction energy vξ(rs, θ) at ξ = 1/3 and ξ = 0.66, which we utilized to determine
the parameters λ1 and λ2 via Eq. (155). Interestingly, we find that the spin interpolation depends only very weakly
on θ, and in contrast to KSDT, λ2 in fact vanishes within the accuracy of the fit and, thus, we set λ2 = 0.
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8.3.2. Spin-interpolation of the IIT and HNC functional

In 1989, Tanaka and Ichimaru [205] introduced a different spin-interpolation for the warm dense electron gas on
the basis of the modified convolution approximation (MCA) (see Sec. 3). Specifically, their ansatz for the interaction
energy is given by

v(rs, θ, ξ) = (1− ξ6)v0(rs, θ) + ξ6v1(rs, θ) +

(
1

2
ξ2 +

5

108
ξ4 − 59

108
ξ6

)
s(rs, θ)

rs
, (163)

with the definition

s(rs, θ) = − as(θ) + bs(θ)rs
1 + cs(θ)rs + ds(θ)r2

s

. (164)

Note that the temperature-dependent coefficients as(θ), bs(θ), cs(θ), ds(θ) are of the same form as Eq. (152), see
Ref. [205] for the appropriate fitting constants. This, in turn, leads to the spin-interpolation for the exchange-
correlation free energy

fxc(rs, θ, ξ) = (1− ξ6)f0
xc(rs, θ) + ξ6f1

xc(rs, θ) +

(
1

2
ξ2 +

5

108
ξ4 − 59

108
ξ6

)
Σ(rs, θ) , (165)

and plugging Eq. (163) into (145) immediately gives

Σ(rs, θ) =
1

r2
s

∫ rs

0

drs s(rs, θ) , (166)

which (up to moderate temperature, see the discussion of Fig. 39 below) can be evaluated analytically as

Σ(rs, θ) =





Σ<(rs, θ), if c2s < 4ds

Σ=(rs, θ), if c2s = 4ds

Σ>(rs, θ), otherwise

, (167)

with

Σ<(rs, θ) = − 1

r2
s

[
bs

2ds
log
∣∣1 + csrs + dsr

2
s

∣∣ (168)

+
2asds − bscs
ds
√

4ds − c2s

[
atan

(
2dsrs + cs√

4ds − c2s

)
− atan

(
cs√

4ds − c2s

)]
,

Σ=(rs, θ) = − 1

r2
s

[
bs

2ds
log
∣∣1 + csrs + dsr

2
s

∣∣− 2asds − bscs
ds(2dsrs + cs)

]
, (169)

Σ>(rs, θ) = − 1

r2
s

[
bs

2ds
log|1 + csrs + dsr

2
s | (170)

+
2asds − bscs

2ds
√
c2s − 4ds

(
log

∣∣∣∣∣
2dsrs + cs −

√
c2s − 4ds

2dsrs + cs +
√
c2s − 4ds

∣∣∣∣∣− log

∣∣∣∣∣
cs −

√
c2s − 4ds

cs +
√
c2s − 4ds

∣∣∣∣∣

)]
.

As the spin-dependence of MCA is expected to be similar both to STLS and also the recent HNC-based LFC by
Tanaka, Eqs. (163) and (165) are used for both of these parametrization with the same fitting constants as in the
original reference [205].

8.4. Comparison of parametrizations

8.4.1. Interaction energy

In Fig. 32, we compare various results for the temperature-dependence of the interaction energy per particle of
the unpolarized electron gas for different densities. The red crosses correspond to the finite-size corrected (using
our new, improved finite-size correction, see Sec. 6) thermodynamic QMC results by Groth, Dornheim and co-
workers [226, 227] and the red diamonds to the ground state QMC data [38] with an STLS temperature correction
obtained from Eq. (159). Observe the smooth connection between the two data sets over the entire density-range.
Thus, in combination, these constitute the most accurate existing data for the interaction energy over the entire
warm dense matter regime and have subsequently been used as input for our recent parametrization, i.e., the red
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Figure 32: Temperature dependence of the interaction energy of the unpolarized electron gas for rs = 0.1, 1, 4, 10 – Shown are the recent
QMC results from Refs. [226, 227] (red crosses), STLS temperature-corrected ground state QMC data (see Eq. (159), red diamonds),
the parametrization by Groth, Dornheim and co-workers (GDB, red line) [227], RPIMC data (blue circles, BCDC, Ref. [211]) and the
corresponding parametrization by Karasiev and co-workers (blue line, KSDT, Ref. [212]), data from an improved local field correction
based on the hypernetted-chain approximation (green squares, HNC, Ref. [242]) and a corresponding parametrization (green line), the
improved STLS parametriprzation by Ichimaru and co-workers (black line, IIT, Ref. [206, 249]), and the parametrization by Perrot
and Dharma-wardana (yellow line, PDW, Ref. [210]). The bottom panels depict the relative deviation towards the GDB curve and the
insets correspond to magnified segments.
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line (GDB, Ref. [227]). Evidently, the employed Pade ansatz is an appropriate fit function, as the input data are
accurately reproduced with a mean and maximum deviation of 0.12% and 0.63%, see also the corresponding bottom
panels where we show the relative deviations of all data sets to the GDB curve.

Although the parametrization of the interaction energy is, for the most part, just a means to obtain the exchange-
correlation free energy fxc, cf. Eq. (155), it is still worth to consider, at this point, v itself to gauge the accuracy
of various previous approximations and XC-functionals. The blue circles correspond to the RPIMC data from
Ref. [211] (BCDC) and the blue line to the corresponding parametrization by Karasiev et al. [212] (KSDT). First
and foremost, we note that the BCDC data are available for low to moderate densities, rs ≥ 1, and exhibit the
largest deviations for the smallest rs-value. This is a combination of two different effects. At low temperature,
the observed systematic bias is mostly a consequence of the employed fixed node approximation (and, possibly,
related to ergodicity problems in the QMC algorithm, see Sec. 5.3), whereas at high temperature the effects of
the inappropriate finite-size correction dominate (cf. Sec. 6), leading to a maximum error of ∆v/v ≈ 7% for the
unpolarized case. In contrast, the BCDC data are substantially more accurate at stronger coupling, with maximum
deviations of 2% and 1% for rs = 4 and rs = 10, respectively.

The KSDT parametrization has been obtained from a fit to the BCDC data for Exc, i.e., the sum of v and the
exchange-correlation part of the kinetic energy kxc. However, the results for the interaction energy computed from
fxc [cf. Eq. (155)] do not agree with the blue circles, which means that the parametrization and input data are
not consistent as the exact thermodynamic relations, Eqs. (155)-(157), are strongly violated. In particular, there
appear pronounced deviations between the two at low temperature as the KSDT functional incorporates the correct
ground state limit. The largest deviations (∆V/V ≈ 11%) between the KSDT and GDB curves appear at high
density, rs = 0.1. This is a consequence of the lack of input data for the former in this regime, which is bridged by
an interpolation between the RPIMC data at rs ≥ 1 and the correct Hartree Fock limit at rs = 0. Furthermore,
we stress the surprisingly large errors at high temperature both for rs = 4 and rs = 10, and the unphysical bump
at low temperature in the latter case.

The black line depicts the widely used improved STLS parametrization that is due to Ichimaru and co-workers
(IIT, Ref. [206, 249]). Given the incorporation of the exact behavior for rs → 0, θ → ∞ and θ → 0, and the
remarkable accuracy of the STLS formalism inbetween (cf. Sec.6), the overall good performance of this functional
does not come as a surprise. In particular, the most severe systematic errors occur for intermediate density (rs = 1)
and temperature, but do not exceed ∆v/v ≈ 4%.

Next, let us consider the green curve corresponding to a fit to the recent data based on the improved local
field correction derived from the hypernetted-chain approximation (HNC, green squares) by Tanaka [242]. While
this new LFC does constitute an improvement, both, for the static structure factor (see Sec. 7.2) and G(q) itself
(Sec. 9), the same does not apply for the interaction energy, as for this quantity STLS benefits from a fortunate
error cancellation in the integration, in particular at large rs, cf. Fig. 31. Furthermore, the HNC parametrization
exhibits a pronounced minimum around θ = 0.5, the origin of which is probably an artifact of the lack of HNC input
data for these parameters, see the insets for rs = 4 and rs = 10. In addition, the ground state limit is obtained
from the zero temperature HNC data and not from the more accurate QMC results, which leads to relative errors
of around 1% towards θ = 0. Hence, we conclude that the green curve does not improve the twenty years older IIT
parametrization, although it exhibits an overall similar accuracy.

Finally, we include the interaction energy computed from the parametrization of classical-mapping data (cf. Sec. 4.2.1)
by Perrot and Dharma-wardana (yellow line, PDW, Ref. [210]). This curve was constructed from input data in the
range 1 ≤ rs ≤ 10, and, somewhat ironically, the Hartree-Fock limit that was parametrized by the same authors in
1984 [248], was not incorporated. For this reason, the functional exhibits large deviations at high density and should
not be used below rs = 1. While PDW did include the correct ground state limit, the lowest finite temperature
values correspond to θ = 0.25, which explains the unphysical behavior of the yellow curve at low temperature for
rs = 1. Overall, we find that the PDW parametrization exhibits the largest systematic errors (with ∆v/v & 6%) at
intermediate temperatures around θ = 1, which is not surprsing given the employed interpolation of the quantum
temperature parameter in the classical mapping formalism, cf. Eq. (53).

In Fig. 33, we show the same comparison but for the spin-polarized case, ξ = 1. While we do find similar
trends as in the previous figure, the relative biases of the different approximations are, overall, increased. In
particular, the KSDT curve exhibits a maximum deviation exceeding 15% at high density, and even at rs = 1 we
find ∆v/v ≈ 8% around θ = 5. Furthermore, this parametrization exhibits an unphysical plateau-like behavior in
the low-temperature regime both at rs = 4 and rs = 10. In addition, the BCDC data are substantially more biased
both at low and high temperature, with a maximum deviation of ∆v/v ≈ 14% at rs = 1 and θ = 8. The increased
deviation for the latter case is a consequence of the definition of the reduced temperature, resulting in a larger
temperature at equal θ-values for the spin-polarized case. This, in turn, exacerbates the inaccuracy of the employed
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Figure 33: Temperature dependence of the interaction energy of the spin-polarized electron gas for rs = 0.1, 1, 4, 10 – Shown are
the recent QMC results from Refs. [226, 227] (red crosses), STLS temperature-corrected ground state QMC data (see Eq. (159), red
diamonds), the parametrization by Groth, Dornheim and co-workers (GDB, red line) [227], RPIMC data (blue circles, BCDC, Ref. [211])
and the corresponding parametrization by Karasiev and co-workers (blue line, KSDT, Ref. [212]), data from an improved local field
correction based on the hypernetted-chain approximation (green squares, HNC, Ref. [242]) and a corresponding parametrization (green
line), and the improved STLS parametriprzation by Ichimaru and co-workers (black line, IIT, Ref. [206, 249]). The bottom panels
depict the relative deviation towards the GDB curve and the insets correspond to magnified segments.
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finite-size correction, cf. Sec. 6. At low temperature, the fixed node approximation exhibits a worse performance
even for a finite model system [221]. The HNC and IIT parametrizations are of a similar quality, but the latter
appears to be superior due to the incorporation of the correct ground state limit. The main difference compared to
the unpolarized case is the significantly larger deviation for large temperature at rs = 10. Interestingly, this is not
a consequence of a worse performance of the STLS approximation itself, cf. Fig. 30 but, instead, of the a posteriori
modification of the STLS data to incorporate the exact high and low temperatuere limit. Finally, we mention the
excellent agreement between the GDB parametrization and its input data with a mean and maximum deviation of
0.17% and 0.63%, respectively.

8.4.2. Exchange-correlation free energy

Let us now consider the main quantity of interest, i.e., the exchange-correlation free energy fxc. In Fig. 34, we
compare the temperature dependence of the five most accurate functionals for the unpolarized case and at the same
densities as in the previous section. All curves exhibit a qualitatively similar behavior except PDW at rs = 0.1,
which is again a consequence of the not incorporated Hartree-Fock limit and the density range of the input data
(1 ≤ rs ≤ 10). Overall, the KSDT parametrization is relatively accurate at low temperature (θ < 1) although there
appears a bump in both v and fxc at large rs, which leads to an unphysical slightly negative entropy [336]. In
contrast, at intermediate to high temperature we find substantial systematic deviations (exceeding 10% at rs = 0.1),
which are a direct consequence of the utilized RPIMC input data. Again, the IIT and HNC curves exhibit a very
similar performance, with the former being superior due to the correct ground state limit. More specifically, for the
unpolarized case we find maximum deviations of around 3% at intermediate rs-values and temperatures. Finally,
the classical-mapping based PDW parametrization by Perrot and Dharma-wardana [210] exhibits deviations of up
to ∆fxc/fxc ≈ 5% around the Fermi temperature.

For completeness, in Fig. 35 we show the same information for the spin-polarized electron gas. Again, we
find an overall qualitatively similar behavior as for ξ = 0, but with increased systematic biases in the various
approximations. The KSDT fit exhibits maximum deviations of up to 15% and 12% at the highest depicted
densities, rs = 0.1 and rs = 1, respectively, around θ = 6. With increasing coupling strength, these errors decrease
with a maximum of ∆fxc/fxc ≈ 2% at rs = 10 around θ = 0.4. Moreover, there again appears an unphysical bump
in the low temperature limit at low density. The IIT and HNC parametrizations roughly follow the same behavior
as the interaction energy for the ferromagnetic case, cf. Fig. 33. Interestingly, the maximum deviation of the IIT
curve does not appear at intermediate temperature, as for the paramagnetic case, but towards θ > 10 at rs = 10.
Further, we note that the green curve also exhibits some unphysical behavior towards low θ and large rs, which
is similar to the KSDT function. Finally, let us consider the four PDW data points that are available at rs = 1.
Somewhat surprisingly, at the present conditions the employed classical mapping constitutes the most accurate of
all depicted approximations with a maximum error of ∆fxc/fxc ≈ 3% around the Fermi temperature.

8.4.3. Exchange-correlation energy

Let us now consider another important thermodynamic quantity, i.e., the exchange-correlation energy exc, which
is connected to fxc via Eq. (156). Recall that the KSDT functional is actually based on the RPIMC data for exc,
whereas our GDB parametrization was based on our QMC (and temperature corrected ground state QMC) data
for the interaction energy alone. The main reason for our choice was the, in general, higher statistical uncertainty
and greater difficulty of the finite-size correction for the kinetic contribution to the total energy. Nevertheless,
for the ferromagnetic case we were able to obtain accurate QMC data for exc (using CPIMC for θ ≤ 0.5 and
PB-PIMC elsewhere) over the entire temperature-range at rs = 1. For completeness, we mention that we applied
a twist-averaging procedure [328, 330] for θ ≤ 0.5 and added an additional finite-size correction onto the QMC
data, see Ref. [227] for details. The results are depicted as the red points in Fig. 36 and are compared to the
exchange-correlation energy that has been computed from the GDB parametrization via Eq. (156) (solid red line).
Evidently, those independent data are in striking agreement over the entire temperature-range. This is an important
cross-check for our functional and, in particular, for the temperature-corrected ground state data used for θ ≤ 0.25,
see also the inset showing a magnified segments around the low-temperature regime. The blue circles correspond to
the RPIMC data by Brown et al. [211] and are consistently too low over the entire depicted temperature range. The
KSDT parametrization (blue solid line), which corresponds to a direct fit to these data, reproduces them for θ ≥ 1,
leading to an unphysical dent for 4 . θ . 20 until the correct Debye-Hückel limit is attained. At low temperature,
the KSDT curve does not reproduce the RPIMC input data, but performs significantly better, which is due to the
incorporation of the exact ground state and high-density limits, which preclude this unphysically deep minimum at
rs = 1.

Next, we investigate the performance and consistency of the various parametrizations with respect to exc at
rs = 10, starting with the unpolarized case (Fig. 37, left panel). For these conditions, we were able to obtain
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Figure 34: Temperature dependence of the exchange-correlation free energy of the unpolarized electron gas for rs = 0.1, 1, 4, 10 – Shown
are the parametrizations by Groth, Dornheim et al. (red line, GDB, Ref. [227]), Karasiev et al. (blue line, KSDT, Ref. [212]), Tanaka
(green line, HNC, Ref. [242]), Ichimaru et al. (black line, IIT, Ref. [206, 249]) and Perrot and Dharma-wardana (yellow line, PDW,
Ref. [210]). The bottom panels depict the relative deviation towards the GDB curve and the insets correspond to magnified segments.
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Figure 35: Temperature dependence of the exchange-correlation free energy of the spin-polarized electron gas for rs = 0.1, 1, 4, 10 –
Shown are the parametrizations by Groth, Dornheim et al. (red line, GDB, Ref. [227]), Karasiev et al. (blue line, KSDT, Ref. [212]),
Tanaka (green line, HNC, Ref. [242]), and Ichimaru et al. (black line, IIT, Ref. [206, 249]) and, for rs = 1, data points by Perrot and
Dharma-wardana (yellow triangles, PDW, Ref. [210]). The bottom panels depict the relative deviation towards the GDB curve and the
insets correspond to magnified segments.
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Figure 36: Cross-check of the GDB-parametrization via the exchange-correlation energy – Shown are the temperature dependence of
exc (solid lines and points) and fxc (dash-dotted lines) for the spin-polarized electron gas at rs = 1. The red and blue lines correspond
to the parametrizations by Groth, Dornheim et al. [227] and Karasiev et al. [212] and the red and blue points to our finite-size corrected
QMC data (red) and the RPIMC data by Brown et al. [211]. Reproduced from Ref. [227] with the permission of the authors.
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Figure 37: Temperature dependence of the exchange-correlation energy of the unpolarized (left) and spin-polarized (right) electron gas
at rs = 10 – Shown are results computed from the parametrizations by Groth, Dornheim et al. (red line, GDB, Ref. [227]), Karasiev et
al. (blue line, KSDT, Ref. [212]), Tanaka (green line, HNC, Ref. [242]), Ichimaru et al. (black line, IIT, Ref. [206, 249]), and Perrot and
Dharma-wardana (yellow line, PDW, Ref. [210]). In addition, we include the RPIMC data by Brown et al. [211] (BCDC, blue circles)
and our recent finite-size corrected QMC results (red points, QMC). For completeness, we also compare with the very recent results of
Kas and Rehr [197], which have been obtained from a refined finite temperature Green’s function approach.
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independent finite-size corrected QMC data down to θ = 0.5 that has not been included in the construction of the
functional. Again, the exchange-correlation energy computed from our GDB-parametrization via Eq. (156) is in
perfect agreement with our QMC data for all temperatures. The RPIMC data (blue circles) and the KSDT fit to
these data (blue line) are also in good agreement even at low temperature, which is in contrast to rs = 1. Overall,
there occur only small deviations to our data, although there does appear a small bump towards low temperature,
which is connected to an unphysical negative entropy [336]. The improved STLS parametrization by Ichimaru et
al. [206, 249] (black line) is of a similar quality to the KSDT curve and gives systematically too low results for
θ & 1. In constrast, the green line, which corresponds to the recent parametrization of the HNC-LFC data by
Tanaka [242], exhibits a substantially different behavior. While it is quite accurate for θ & 2, it shows a significantly
too deep minimum around θ = 0.8 followed by a pronounced unphysical bump at θ = 0.25. The classical-mapping
based parametrization by Perrot and Dharma-wardana [210] (yellow curve) clearly gives the least accurate data for
θ ≥ 1.

In addition, for the exchange-corrlation energy, we can also compare with the very recent results by Kas and
Rehr [197] (brown crosses), which have been computed via a refined finite temperature Green’s function procedure
(FT-GF). For the exchange-correlation energy of the unpolarized UEG, we can also perform the comparison for this
quantity and thereby gauge the accuracy of this new approach. Surprisingly, at these parameters, the corresponding
data exhibit a completely unphysical behavior with an additional local maximum in exc at θ ∼ 1, where both our
ab initio functional and independent QMC data (red points) predict a minimum. Even at higher temperatures, the
systematic bias of the FT-GF results is largest compared to all other depicted approaches.

Let us conclude this section with a brief discussion of the spin-polarized case, which is shown in the right
panel of Fig. 37. Again, we observe perfect agreement between our QMC data and the GDB-parametrization
for all temperatures. While the KSDT curve is also in good agreement with the underlying RPIMC data, there
appear significantly larger deviations towards our results. In particular, there abruptly appears a plateau between
θ ≈ 0.9 and θ = 0.1, followed by an unphysical bump before the ground state limit is reached. In contrast, the
IIT parametrization gives a qualitatively more similar behavior with respect to the red curve, although the overall
accuracy is comparable to KSDT. Finally, the HNC parametrization again exhibits a too deep minimum and, in
addition, does not incorporate the correct ground state limit.

8.4.4. Spin-dependency of the parametrizations

In Fig. 38, we show the spin-dependency of the interaction energy of the uniform electron gas for four different
densities and six relevant temperatures. Note that we always define the Fermi energy entering the reduced temper-
ature θ with respect to the spin-up electrons, cf. Eq. (4), which is different from definitions in parts of the relevant
literature [205, 242, 210, 212]. The red points correspond to our recent finite-size corrected thermodynamic QMC
data [226, 227], which is available at two intermediate spin-polarizations, ξ = 1/3 and ξ = 0.6. We stress that
these data still constitute the only ab initio investigation of the ξ-dependency of the warm dense electron gas. The
solid red line depicts our GDB-parametrization [227], which utilizes the spin-interpolation between the para- and
ferromagnetic limits from Eq. (162). Surprisingly, we find that a single free parameter [λ1 in Eq. (162)] is sufficient
to accurately describe the temperature-dependence of the spin-interpolation, resulting in an average and maximum
deviation between parametrization and QMC data of 0.15% and 0.8%, respectively, at intermediate ξ. The dot-
ted blue curve corresponds to the functional by Karasiev et al. [212], who used the same functional form as the
GDB-parametrization. However, due to the lack of RPIMC data for 0 < ξ < 1, they determined the θ-dependent
parameters in Eq. (162) from a fit to the sparse classical-mapping data from Perrot and Dharma-wardana [210] (12
values for fxc at rs = 1, 3, 6 and ξ = 0.6). At zero temperature, KSDT and GDB are in excellent agreement as both
utilize the same ground state QMC data [38] to construct the ground state limit for all values of ξ. Towards higher
temperatures, there occur increasing deviations that are most pronounced (in terms of the relative deviation) at
rs = 0.1 and θ = 4, 8. This is again a consequence of the lack of input data for the KSDT functional for rs < 1 at
finite temperature, and the poor quality of the RPIMC data at rs = 1 for the ξ = 0, 1 limits.

The dashed-dotted black and dashed green lines correspond to the improved STLS parametrization by Ichimaru,
Tanaka, et al. [206, 205, 249] and the recent HNC-based parametriztion by Tanaka [242], respectively. Both use
the finite-temperature spin-interpolation from Eq. (163) that has been constructed on the basis of the modified
convolution approximation, see Ref. [205]. First and foremost, we note that the two curves do not agree, even in the
ground state, since the ξ = 0 and ξ = 1 limits in IIT incorporate ground state QMC data, whereas the HNC limits
have been constructed solely on the basis of the HNC data. Further, the IIT ground state limit for the ξ-dependence,
at rs = 10, is slightly non-monotonic, with a shallow minimum around ξ ≈ 0.8. Towards high temperature, the
deviations between the IIT and Tanaka parametrizations vanish, since both the STLS and HNC input data sets for
the interaction energy eventually converge. At high density and temperature, we find an excellent agreement to our
GDB curve, which is expected in this weak coupling regime. In contrast, towards lower density and temperature,
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Figure 38: Spin-dependency of the interaction energy of the uniform electron gas – Shown are the parametrizations by Groth,
Dornheim et al. (GDB, Ref. [227], red solid line), Karasiev et al. (KSDT, Ref. [212], blue dotted line), Ichimaru, Tanaka et al. (IIT,
Refs. [206, 205, 249], black dash-dotted line), and the recent HNC-based function by Tanaka (Ref. [242], dashed green). The red points
correspond to our finite-size corrected thermodynamic QMC data from Refs. [226, 227]. Note that we define the Fermi energy in the
reduced temperature with respect to the spin-up electrons for all polarizations, cf. Eq. (4), which is different from the definitions in
parts of the literature [205, 212, 210]. At rs = 4 and rs = 10, the θ = 0 curves are shifted downward by 0.05 Hartree for better visibility.
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Figure 39: Spin-dependency of the exchange-correlation free energy of the uniform electron gas – Shown are the parametrizations by
Groth, Dornheim et al. (GDB, Ref. [227], red solid line), Karasiev et al. (KSDT, Ref. [212], blue dotted line), Ichimaru, Tanaka et
al. (IIT, Refs. [206, 205, 249], black dash-dotted line), and the recent HNC-based function by Tanaka (Ref. [242], dashed green). Note
that we define the Fermi energy in the reduced temperature with respect to the spin-up electrons for all polarizations, cf. Eq. (4), which
is different from the definitions in parts of the literature [205, 212, 210].
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there occur substantial deviations and, in addition, unphysical dents around ξ ≈ 0.8. In summary, we find that the
KSDT, IIT and Tanaka curves exhibit, overall, a similar degree of accuracy.

Let us conclude the discussion of the different parametrizations with a comparison of the relative spin-dependency
of the exchange-correlation free energy of the uniform electron gas at warm dense matter conditions which is
presented in Fig. 39. In the ground state, all four depicted curves are close, although IIT and Tanaka substantially
deviate from the other two at rs = 10. In this case, IIT attains the correct limit for ξ = 1 due to the incorporation
of ground state QMC data, which is lacking for Tanaka. Furthermore,, similar to our findings for the interaction
energy in Fig. 38, there occur unphysical dents in fxc for IIT and Tanaka around ξ = 0.8, even at rs = 1, which are
caused by the MCA-based spin-interpolation for fxc, cf. Eq. (165). Finally, the KSDT results are best at rs = 10,
whereas there occur substantial deviations, both, towards high temperature and high density.

9. Inhomogeneous Electron Gas: QMC study of the static density response

9.1. Introduction

In Sec. 3, we gave a comprehensive introduction to the linear response theory of the uniform electron gas at warm
dense matter conditions. In particular, we introduced several suitable approximations for the density response of
the system to an external harmonic perturbation, which is fully characterized by the frequency-dependent response
function χ(q, ω), cf. Eq. (19). The gist has been that the consideration of the perturbed system served as a means
to an end, as complete knowledge of χ(q, ω) allows to compute all static properties of the unperturbed electron gas,
such as the static structure factor, S(k), or the interaction energy, v.

In contrast, in the following we will consider the calculation of the density response function as an end in itself,
as this information is of high importance for many applications [1]. First and foremost, the local field correction,
G(q, ω), defined by Eq. (19) is directly related to the exchange-correlation kernel

Kxc(q, ω) = −4π

q2
G(q, ω) , (171)

which is the main input for density functional theory calculations in the adiabatic-connection fluctuation-dissipation
formulation [337, 338, 339]. Albeit computationally demanding, this formulation of a true non-local XC-functional
is a promising approach to go beyond widespread gradient approximations such as PBE [32] or its recent extension
to finite temperature by Karasiev et al. [185]. In addition, accurate data for the LFCs of the warm dense electron
gas are needed for the calculation of the dynamic structure factor S(q, ω) of real systems (such as two-component
plasmas), e.g. Refs. [340, 341, 342, 66]. We stress that the cutting-edge theoretical description of S(q, ω) is among
the most pressing goals of current warm dense matter research, as it is nowadays routinely obtained in experiments
from x-ray Thomson scattering measurements for many systems, see Ref. [112] for a review. Further applications
of G(q, ω) include the calculation of electrical and optical conductivities [343, 344], energy transfer rates [345, 346],
EOS models of ionized plasmas [195, 347, 189], and the construction of pseudo-potentials [348, 349, 350, 351, 352]
that can be used, e.g., within simple molecular dynamics simulations.

In the following, we will explain how the static limit of the density response function,

χ(q) ≡ lim
ω→0

χ(q, ω) , (172)

can be obtained with high precision from ab initio quantum Monte Carlo simulations at warm dense matter condi-
tions.

9.2. Theory

At zero temperature, the static density response function was computed from ground state QMC simulations
of the harmonically perturbed (and, thus, inhomogeneous) electron gas [57, 58, 55, 56] back in the first half of the
1990s. Further, these accurate ab initio data have subsequently been parametrized by Corradini et al. [59]. In
contrast, at warm dense matter conditions, until very recently, there were no ab initio data available, and one had
to rely on interpolations between known limits, e.g. Ref. [353]. In the following, we will demonstrate how this gap
was closed by extending the idea from Refs. [58, 57] to finite temperature, in the recent work by Dornheim and
co-workers [354].

Consider a modified Hamiltonian of the form

Ĥ = Ĥ0 + Ĥext(t) , (173)
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where Ĥ0 corresponds to the standard Hamiltonian of the unperturbed uniform electron gas, cf. Eq. (7), and Ĥext(t)
denotes an, in general, time-dependent perturbation. In particular, we choose

Ĥext(t) = 2A
N∑

i=1

cos (ri · q− Ω t) , (174)

i.e., a sinusoidal external charge density (of perturbation wave vector q and frequency Ω) with the potential

φext(r, t) = 2A cos (r · q− Ω t) . (175)

Let us recall the standard definition of the density response function as [1]

χ̃(q, τ) =
−i
~
〈[ρ(q, τ), ρ(−q, 0)]〉0 Θ(τ) , (176)

with 〈. . .〉0 indicating that the thermodynamic expectation value has to be carried out with respect to the unper-
turbed system. Naturally, Eq. (176) solely depends on the time difference, τ = t − t′, and on the modulus of the
wave vector, i.e. the wavenumber q. Further, it is often convenient to consider the Fourier transform of Eq. (176)
with respect to the second argument,

χ(q, ω) = lim
η→0

∫ ∞

−∞
dτ e(iω−η)τ χ̃(q, τ) . (177)

However, at the time of this writing, time-dependent QMC simulations are still severely limited by an additional
dynamical sign problem, e.g. Refs. [355, 356, 357]. Therefore, in the present work, we restrict ourselves to the static
limit χ(q) [cf. Eq. (172)], i.e., the density response to a constant (time-independent) perturbation,

φext(r) = 2A cos(r · q) . (178)

Still, we stress that the basic idea that is explained below can be applied within time-dependent simulations, such
as the nonequilibrium Green functions technique [358, 259, 239], in exactly the same way. Note that all time-
dependencies are, in the following, dropped for simplicity. In particular, χ(q) characterizes the linear relation
between the induced and external charge densities,

ρind(q) =
4π

q2
χ(q) ρext(q) . (179)

The external density is straightforwardly obtained from the Poisson equation as

ρext(q) =
q2A

4π
(δk,q + δk,−q) , (180)

and, by definition, the induced density is given by the difference between the densities of the perturbed and
unperturbed systems,

ρind(q) = 〈ρ̂q〉A − 〈ρ̂q〉0 (181)

=
1

V

〈
N∑

j=1

e−iq·rj

〉

A

.

We note that the notation 〈. . .〉A indicates that the thermodynamic expectation value has to be computed in the
perturbed system, and that, for the second equality in Eq. (181) we made use of the fact that 〈ρ̂q〉0 = 0. Finally,
this gives a simple, direct expression for the static density response function,

χ(q) =
1

A
〈ρ̂q〉A . (182)

In practice, we carry out several ab initio quantum Monte Carlo calculations of the harmonically perturbed
electron gas for each perturbation wave vector q = 2πL−1(a, b, c)T (with a, b, c ∈ Z), for a variety of amplitudes A.
This allows us to compute the exact induced density for arbitrarily strong perturbations. In the small A-regime,
linear response theory is accurate and, thus, Eq. (182) holds, implying that 〈ρq〉A is linear in A, with χ(q) being
the slope.
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Figure 40: Density profile n(r) along the x-direction of a har-
monically perturbed electron gas with rs = 10 and θ = 1
for N = 54 unpolarized electrons. The results have been
obtained using the PB-PIMC method for a wave vector of
q = 2πL−1(2, 0, 0)T . The solid black lines depict fits accord-
ing to Eq. (183) and panels (a), (b), and (c) correspond to
weak, medium, and strong perturbation amplitudes A, re-
spectively. Reproduced from Ref. [354] with the permission
of the authors.

For completeness, we mention a second, closely related way to estimate χ(q) from a QMC simulation of the
inhomogeneous system. In linear response theory, the perturbed density profile is given by

〈n(r)〉A = n0 + 2A cos (q · r)χ(q) , (183)

with n0 being the density of the unperturbed system. In particular, the LHS. of Eq. (183) is easily obtained within
a QMC simulation in coordinate space (such as PB-PIMC, but also standard PIMC), and a subsequent cosinusoidal
fit gives another estimation of the desired static density response function.

9.3. Ab initio QMC results for the static density response

In the following section, we will demonstrate the feasibility of computing ab initio data for the static density
response using QMC methods. In particular, we will focus on two exemplary test cases at low and high density and
moderate temperatures to illustrate the range of validity of linear response theory. We will discuss the necessity of
finite-size corrections at certain parameters and demonstrate how this can be accomplished, and compare our new
data for χ(q) to the dielectric approximations introduced in Sec. 3.

9.3.1. Strong coupling: PB-PIMC results

In Fig. 40, we show ab initio PB-PIMC results [354] for the density profile along the x direction (i.e., along
the direction of the perturbation wave vector q = 2πL−1(2, 0, 0)T ). The simulation was carried out for N = 54
spin-unpolarized electrons at rs = 10 and θ = 1, which corresponds to moderate to strong coupling at a moderate
temperature. The results for relatively weak perturbation amplitudes A are depicted in panel a). The solid
black lines correspond to the cosinusoidal fits according to Eq. (183). Evidently, for the two smallest perturbations
(A = 0.001, green crosses and A = 0.005, yellow asterisks) no deviations from linear response theory can be resolved.
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Figure 41: PB-PIMC results for the perturbation strength dependence of the induced density modulation ρq for N = 54 unpolarized
electrons at rs = 10 and θ = 1. The panels (a) and (b) correspond to the perturbation wave vectors q = 2πL−1(qx, 0, 0)T with qx = 2
and qx = 1, respectively. The black squares correspond to the direct evaluation of Eq. (182), the green crosses have been obtained from
the cosine-fits, cf. Eq. (183), and the red lines depict linear fits to the QMC points. Reproduced from Ref. [354] with the permission of
the authors.

This is a rather remarkable result, as the yellow points exhibit maximum deviations from the mean value, n0, of
more than 10%, i.e., the system is already moderately inhomogeneous. A doubling of the perturbation amplitude to
A = 0.01 (red circles) leads to density modulations of the order of 25%, and deviations from the cosine-fit are clearly
visible around the maxima and minima. Still, these differences between data and fit are of the order of 1%. In panel
b), we show density profiles for further increased perturbation amplitudes, A = 0.015 (blue crosses) and A = 0.02
(light blue triangles). Evidently, the observed shell structure further departs from the cosinusoidal prediction from
LRT, as it is expected. Nevertheless, even at strong inhomogeneity, with density modulations exceeding 50% of
the mean value, LRT provides a good quantitative description as the maximum error around the maxima does still
not exceed 10%. Finally, in panel c) of Fig. 40, we show results for strong perturbations, namely A = 0.05 (blue
crosses) and A = 0.1 (light blue triangles). Eventually, the system is dominated by the external potential and, for
the strongest depicted perturbation amplitude, two distinct shells with negligible overlap are formed. Obviously,
Eq. (183) is no longer appropriate and LRT does not capture the dominant physical effects. For completeness, we
mention that the relatively large statistical uncertainty in the light blue triangles, in particular around the maxima,
is a consequence of the fact that the fermion sign problem becomes more severe towards increasing inhomogeneity,
see Ref. [354] for a more detailed explanation.

In Fig. 41, we show a comparison of the QMC results for the static density response function χ(q) as obtained
from cosinusoidal fits to the density profile (green crosses), cf. Fig. 40, or via the direct evaluation of Eq. (182)
(black squares). More specifically, we show the perturbation strength dependence of the induced density ρind(q) for
two different wave vectors (q = 2πL−1(2, 0, 0)T , panel a) and q = 2πL−1(1, 0, 0)T , panel b). Further, the solid red
line corresponds to a linear fit of the black squares in the small A regime (A < 0.01). Let us start by considering the
same q-vector as in the previous figure, i.e., with panel a). We note the perfect agreement between the cosine-fit
and direct results for ρind for weak perturbations. Interestingly, this still holds for A = 0.01, where we found visible
deviations between density profile and fit, cf. Fig. 40 a). With increasing A, both sets of data differ from the linear
fit, although the deviations of the black squares are significantly smaller. In panel b), the same information is shown
for a smaller wave vector, q = 2πL−1(1, 0, 0)T . Overall, we observe the same trends as in panel a), although the
density response is considerably smaller. This is a consequence of screening effects inherent to the uniform electron
gas, e.g. Ref. [332]. As a consequence, the system is less inhomogeneous, and linear response theory holds up to
larger A-values than in the former case.

Let us now continue the discussion of the PB-PIMC results for the static density response function by considering
the full wave vector dependence of χ(q), which is depicted in Fig. 42 for the same parameters as in the previous
figures. The different symbols correspond to N = 54 (blue crosses), N = 34 (light blue circles), N = 20 (yellow
squares), N = 14 (black triangles) and N = 8 (green diamonds) unpolarized electrons. The main effect of the
different system size is the unique q-grid for each N , which is a direct consequence of the momentum quantization
in the finite simulation cell, cf. Sec. 6. The functional form of χ(q) itself, however, is, for the current set of
parameters, remarkably well converged with system size. Even in the right panel, where a magnified segment
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Figure 42: PB-PIMC results for the wave vector dependence of the static density response function χ for the unpolarized electron
gas at rs = 10 and θ = 1. Shown are QMC results [cf. Eq. (182)] for different particle numbers N (symbols), and results from
dielectric approximations, namely RPA (grey line) and STLS (red line). Further, the black arrow indicated the Fermi wave vector,
kF = (9π/4)1/3/rs. Panel (b) shows a magnified segment. Reproduced from Ref. [354] with the permission of the authors.

around the smallest q-values is shown, no finite-size effects in the density response function can be resolved (note
that this changes for higher densities, see Sec. 9.3.2). Furthermore, we note that the increased error bars towards
large wave vectors are a consequence of the quickly oscillating nature of the external potential in this regime, see
Ref. [354] for more details. The solid grey and red lines correspond to dielectric approximations, namely RPA and
STLS, respectively. In the small q-regime, both curves are in excellent agreement with each other and the parabolic
asymptotic behavior known from the literature [332]. With increasing q, however, they substantially deviate with
a maximum difference of ∆χ ∼ 50% around twice the Fermi vector kF. In particular, we find that the inclusion of
an appropriate local field correction is crucial to account for the pronounced coupling effects at these parameters.
Consequently, the STLS approximation (see Sec. 3) gives significantly improved data for the static density response
function, although the agreement with the QMC data is still only qualitative.

We conclude this section with a discussion of the static local field correction, G(q), which is readily computed
from χ(q), cf. Eq. (185) below. The results are shown in Fig. 43, where we compare the QMC data for N = 34
(light blue circles) and N = 54 (blue crosses) to the static local field correction from STLS theory (solid black line).
First and foremost, we note that no system-size dependence can be resolved within the given statistical uncertainty,
as expected. Furthermore, the systematic bias in the STLS results is substantially larger than in the total density
response function, since G(q) is dominated by exchange-correlation effects. In addition, we note that the recent
LFC based on the hypernetted chain equation by Tanaka [242] is significantly more accurate than STLS, which is
in stark contrast to the corresponding results for the interaction energy v, cf. Sec. 6. Moreover, the solid purple
curve depicts the LFC obtained in the Vashista-Singwi scheme [213] and, overall, exhibits a similar accuracy as the
HNC curve. The dotted yellow and dash-dotted green lines are predictions for the asymptotic behavior of the local
field correction based on the compressibility sum-rule, cf. Eq. (39), using as input the parametrization of fxc(rs, θ)
by Groth, Dornheim et al. [227] or Karasiev et al. [212], respectively (for a review on sum rules in classical and
quantum mechanical charged fluids, see Ref. [359]).

For completeness, we mention that it is well known that the local field correction from STLS (and also from
HNC) does not fulfill Eq. (39) and, thus, does not give the correct long-range behavior [in contrast to the total
static density response function χ(q)]. In stark contrast, the VS curve is in perfect agreement to the asymptotic
expansion, which is somewhat surprising given the systematic bias in the interaction energy itself. Although both
utilized parametrizations for fxc deviate by less than four percent, at the present conditions, the pre-factors of the
parabolic behavior of G differ by more than a factor of two. The reason for this striking deviation is that the
compressibility sum-rule is not sensitive to fxc itself, but to its second derivative with respect to the density (or the
density parameter rs). Evidently, the yellow curve is consistent with the QMC results for the smallest wave vectors,
whereas the KSDT prediction does not appear to be better than the STLS curve. Therefore, this investigation of
the compressibility sum-rule convincingly demonstrates that a highly accurate parametrization of fxc is not only
important as input to finite-temperature DFT calculations in the local density approximation. These data are
equally important for observables that are related to derivatives of fxc, e.g., Ref. [360].
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Figure 43: PB-PIMC results for the wave vector dependence of the static local field correction G for the unpolarized electron gas at
rs = 10 and θ = 1. Shown are QMC results [cf. Eq. (185)] for N = 54 (blue crosses) and N = 34 (light blue circles), data from STLS
(solid black line), the recent LFC based on the HNC equation by Tanaka [242] (red dashed line) and Vashista-Singwi (solid purple
line, Ref. [213]), and asymptotic long-range predictions from the compressibility sum-rule [cf. Eq. (39)] using the exchange-correlation
functionals by Groth, Dornheim et al. [227] (yellow dotted) and Karasiev et al. [212] (green dash-dotted, KSDT).

9.3.2. Moderate coupling: CPIMC results

To obtain highly accurate data for the static density response function of the UEG at high densities, we also
extended the CPIMC method to the simulation of the inhomogeneous electron gas, which leads to a significantly
more complicated algorithm, compared to the unifrom electron gas. This is due to the substantially larger number of
possible diagrams that have to be taken into account. Most importantly, in addition to the two-partical excitations
(so-called type-4 kinks) in the CPIMC simulation paths, which are already present in the homogeneous case (see
Sec. 5.5), there also occur one-partical excitations (type-2 kinks). For more details on the specific changes of the
CPIMC algorithm we refer to Ref. [361].

In the top panel of Fig. 44, we show CPIMC results for the induced density, ρind(q), for N = 14 unpolarized
electrons at moderate coupling and temperature, rs = 0.5 and θ = 0.5 (red crosses), for the perturbation wave
vector q = 2πL−1(1, 0, 0)T . The solid grey line corresponds to the linear response prediction for an ideal system
and the dashed black line to a linear fit according to Eq. (182). Clearly, linear response theory provides a remarkably
accurate description of the static density response over the entire depicted A-range. The bottom panel of Fig. 44
shows the corresponding simulation results for the average sign and the numbers of type-2 and type-4 kinks. First,
we observe that the sign (yellow dash-dotted line) attains an almost constant value for A < 0.5 and does not drop
below S = 0.3, even for the largest considered perturbation amplitude, explaining the small statistical uncertainty
in the results for ρind. The average number of type-4 kinks (green dotted line) exhibits a qualitatively similar
behavior, although with a slight increase towards increasing A. In stark contrast, the average number of type-2
kinks (red solid line) distinctly increases with the perturbation strength, as expected. Further, we note that, for
weak inhomogeneity, the CPIMC simulation is dominated by Coulomb interaction effects, which manifests itself
in the occurrence of type-4 kinks. With increasing A (around A ∼ 0.8), there are on average more type-2 kinks
present as the system becomes increasingly altered by the external potential.

As we have seen above (cf. Fig. 42), at rs = 10 no system size dependence has been resolved for as few as four
electrons. However, it is well known that finite-size effects become more pronounced at higher densities. This is
investigated in Fig. 45, where we show the wave vector dependence of the static density response function for the
same conditions as in Fig. 44. The red circles, blue diamonds, yellow squares, and purple crosses correspond to the
raw CPIMC simulation results for N = 38, N = 20, N = 14, and N = 4 electrons, respectively. Further, we show
results from RPA (dashed black) and STLS (solid brown), as well as the static response function of the corresponding
noninteracting system (solid black line). The dielectric approximations exhibit the same exact parabolic behavior
for small q values [332], whereas the ideal function attains a maximum at q = 0. This contrast is a consequence of
the absence of Coulomb screening effects in the latter case. Further, we note that the inclusion of the static local

80



Figure 44: In the top panel, we show CPIMC results for the perturbation strength dependence of the induced density modulation, ρq ,
for N = 14 unpolarized electrons at rs = 0.5 and θ = 0.5 with the perturbation wave vector q = 2πL−1(1, 0, 0)T . The red crosses
depict the CPIMC data and the dotted black line depicts a corresponding linear fit. Also shown is the linear response of ideal fermions
at the same parameters (solid grey line). In the bottom panel, we show data for the average numbers of type-2 (red) and type-4 (green)
kinks and the average sign (yellow) corresponding to the CPIMC simulations from the top panel. Reproduced from Ref. [361] with the
permission of the authors.

field correction from STLS theory leads to differences in χ(q) of around 5%, which are most pronounced around the
Fermi wave vector kF. Let us now consider the uncorrected CPIMC simulation results. Evidently, these data are
not converged with respect to system size (see in particular the bottom panel where we show a magnified segment)
and, without further improvement, no systematic errors in the STLS curve can be resolved.

At the same time, it is well known from ground state QMC calculations of the static density response function [55,
56] that the static local field correction, G, which contains all information about short-range exchange-correlation
effects, can be accurately obtained from simulations of few electrons in a small box, i.e., GN (q) ≈ G(q). Therefore,
the bulk of the system size dependence observed in Fig. 45 is due to finite-size effects in the ideal density response
function, i.e., χN0 (q) 6= χ0(q). In the following, we will exploit this fact to compute the density response function,
χTDL(q), in the thermodynamic limit from the QMC result for a specific, finite number of electrons N , χN (q). For
this purpose, we rewrite Eq. (19) in terms of finite-size quantities,

χN (q) =
χN0 (q)

1− 4π/q2[1−GN (q)]χN0 (q)
, (184)

and solve Eq. (184) for the local field correction,

GN (q) = 1 +
q2

4π

(
1

χN (q)
− 1

χN0 (q)

)
. (185)

The finite-size corrected result for the density response function is then obtained by plugging the QMC result for
the static local field correction, Eq. (185), into Eq. (19),

χTDL(q) =
χ0(q)

1 + q2

4π

(
1

χN (q)
− 1

χN0 (q)

)
χ0(q)

. (186)

Let us now verify the underlying assumption of this finite-size correction procedure, i.e., that GN (q) does not
depend on system size. In Fig. 46, we show the wave vector dependence of the local field correction computed
from the QMC results for χN (q) depicted in Fig. 45. The black symbols correspond to the direct evaluation of
Eq. (186). Evidently, no finite-size effects can be resolved within the statistical uncertainty over the entire depicted
q-range. We note that the increasing error bars towards large wave vectors are a consequence of the reduced impact
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Figure 45: Wave vector dependence of the static density response function χ of the unpolarized electron gas at rs = 0.5 and θ = 0.5.
The colored circles, diamonds, squared and crosses depict the bare CPIMC data for N = 38, N = 20, N = 14, and N = 4 electrons,
respectively, and the corresponding black symbols have been obtained by applying the finite-size correction using the N -consistent data
for the ideal density response function as explained in the text. The solid green line depicts a spline fit to the black points. Further
shown are the ideal response function χ0(q) (solid black), and dielectric approximations in RPA (dotted black) and STLS (solid brown).
The bottom panel shows a magnified segment. Reproduced from Ref. [361] with the permission of the authors.

82



Figure 46: Wave vector dependence of the static local field correction G(q) for the unpolarized electron gas at θ = 0.5 and rs = 0.5.
The circles, diamonds, and squares have been obtained from CPIMC calculations with N = 38, N = 20, and M = 14 electrons,
respectively. The colored symbols correspond to the results using the ideal response function in the thermodynamic limit [i.e., by
replacing in Eq. (185) χN0 by χ0] whereas the black symbols were computed directly from Eq. (185) in a consistent manner by using
the ideal response function with the same finite number of electrons as the CPIMC simulations. Reproduced from Ref. [361] with the
permission of the authors.
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of G(q) on the total density response function, as it becomes the decreasing difference between two almost equal,
large numbers, amplified by the factor of q2. The green line corresponds to a spline fitted to the black symbols
and the brown line depicts the local field correction from the STLS formalism. Again, note that the STLS theory
does not give the correct asymptotic behavior for G [in contrast to χ(q)] as the compressibility sum-rule is violated,
cf. Sec. 3. In addition, we observe increasing deviations between the green and brown curves that start around
the Fermi wave vector, kF, and reach values of the order of 50%. Despite the good quality of STLS data for, e.g.,
interaction energies and static structure factors, this is not surprising since G(q) constitutes one of the quantities
in many-body theory that is most sensitive to exchange-correlation effects. For completeness, we mention that the
colored symbols in Fig. 46 were obtained by replacing in Eq. (184) the size-consistent ideal density response function,
χN0 (q), by the analogue in the thermodynamic limit, χ0(q). This inconsistency results in significantly biased data
for the local field correction, which highlights the necessity to use χN0 (q). We point out that the calculation of
the latter is surprisingly involved at finite temperature as, to the best of our knowledge, no readily computable
expression (such as the usual spectral representation in the ground state) exists. However, a detailed discussion of
this issue is beyond the scope of the present work, for a comprehensive analysis, we refer to Ref. [361].

Finally, let us examine the thus finite-size corrected data for the static density response function itself, i.e., the
black symbols in Fig. 45. Evidently, no system size dependence can be resolved for N ≥ 14, over the entire wave
vector range. This allows us to construct a smooth spline fit of these data, which is depicted by the solid green line.
In addition, we note that even the results obtained from a CPIMC simulation of as few as four electrons exhibit
only minor deviations for intermediate q-values. We conclude this discussion with a brief comparison of our new
accurate data for the static density response function to dielectric theories, namely the above mentioned RPA and
STLS curves. Specifically, all curves (apart from the ideal result) exhibit the correct behavior for the limits q → 0
and q → ∞, as it is expected. Further, neglecting correlation effects causes substantial errors in the RPA results
over a broad range of wave vectors, whereas the STLS data exhibit a maximum bias of around one percent between
one and two Fermi wave vectors.

10. Summary and Outlook

10.1. Summary and Discussion

The present work has been devoted to the thermodynamic description of the uniform electron gas at warm
dense matter conditions – a topic of high current interest in many fields including astrophysics, laser plasmas and
material science. Accurate thermodynamic data for these systems are crucial for comparison with experiments
and for the development of improved theoretical methods. Of particular importance are such data as input for
many-body simulations such as the ubiquitous density functional theory. Our data are also highly valuable as input
for other models such as quantum hydrodynamics, e.g. [362, 193], in order to study screening effects and effective
potentials, e.g. [363] and transport and wave phenomena. We have discussed a variety of theoretical approaches
that are broadly used to compute the static properties of the electron gas, which include the dielectric formalism
(Sec. 3), various quantum Monte Carlo methods (Sec. 5), quantum-classical mappings, and finite-temperature Green
functions (Sec. 4). Among these approaches, the most accurate results are provided by path integral Monte Carlo
(PIMC) calculations (Sec. 5), which, for the UEG, however, are severely limited by the fermion sign problem. For
this reason, over the last years, much effort has been undertaken to develop improved fermionic QMC simulations
at finite temperature that were reviewed in Sec. 5.2. Particular progress was achieved by the present authors which
we summarize in the following:

1. We introduced two novel QMC methods – CPIMC (Configuration PIMC, Sec. 5.5) and PB-PIMC (Permuta-
tion blocking PIMC, Sec. 5.4) – that are accurate and efficient in complementary parameter regions.

2. We have demonstrated in detail that the combination of CPIMC and PB-PIMC allows for a highly accurate
description of electrons in the warm dense matter regime over the entire density range, down to half the Fermi
temperature without the use of uncontrolled approximations such as the fixed node approximation (RPIMC,
see Sec. 5.3).

3. Our results have been fully confirmed by a third, independent new method—DMQMC (Density matrix QMC,
Sec. 5.6), thereby leading to a consensus regarding the thermodynamic properties of the warm dense UEG for
a finite number N of electrons.

4. The next natural step has been the extrapolation of the finite N -simulations to the thermodynamic limit
(Sec. 6) – a task that turned out to be surprisingly nontrivial. We have shown that the previously used finite-
size correction is not appropriate over substantial parts of the WDM regime. Further, we demonstrated that
the major finite-size error is due to the missing long-range contribution, which cannot be accessed directly
within QMC simulations of a finite number of electrons in a finite simulation cell.
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5. To compensate for this, we combined the exact treatment of short-range exchange-correlation effects from
QMC with the dielectric formalism (specifically, with the STLS approximation), that is known to be exact
precisely in the long wavelength limit, q → 0. This combination of QMC and STLS data allows (i) for a highly
accurate description of the static structure factor, S(q), in the thermodynamic limit over the entire q-range,
and (ii) for an improved finite-size correction that is efficient over the entire WDM regime.

6. Applying this scheme, we have performed extensive simulations for a broad parameter range and, thus,
obtained the first ab initio thermodynamic results for the warm dense UEG in the thermodynamic limit, with
an unprecedented accuracy of 0.3%.

7. Using these new data, for the first time, it became possible to benchmark previous approximations, including
RPIMC and dielectric methods such as RPA, STLS, and the recent improved HNC-scheme by Tanaka (Sec. 7).

8. For practical applications, we constructed – based on an exhaustive QMC data set – a new parametrization
(GDB parametrization) of the exchange-correlation free energy of the warm dense UEG with respect to
density, temperature, and spin-polarization, i.e., fxc(rs, θ, ξ), that bridges the gap to the well-known ground
state limit, see Sec. 8.

9. Based on the new GDB parametrization we performed unambiguous tests of the accuracy and applicatbility
limits of earlier parametrizations and fits.

10. Finally, we have outlined strategies how to extend our ab initio approach to the inhomogeneous electron gas.
This was achieved by performing, both, PB-PIMC and the CPIMC simulations for harmonically perturbed
systems (Sec. 9).

11. These simulations were utilized to compute the first ab inito results for the static density response function,
χ(q), and for the static local field correction, G(q).

Even though the results for the inhomogeneous electron gas are still preliminary they demonstrate that the present
approach is very promising. They also demonstrate that accurate QMC data are not only important for the exchange
correlation free energy. Of possibly even greater importance is their use for quantities that are derivatives of the
free energy that are much more sensitive to incaccuracies. This includes the compressibility and the local field
corrections.

10.2. Outlook

A natural extension of our work is given by the thorough investigation of the static density response of the
warm dense electron gas as outlined in Sec. 9. Similar to the parametrization of fxc, the construction of a complete
parametrization of the static local field correction with respect to density, temperature, and wave vector, G(q, rs, θ),
constitutes a highly desirable goal, since it allows, e.g., for the computation of a true nonlocal exchange-correlation
functional within the adiabatic connection fluctuation dissipation formulation of density functional theory [339, 337,
338]. Interesting open questions in this direction include the large q-behavior of G and the possible existence of
charge- and spin-density waves [1, 251].

A further topic of high importance is the investigation of the dynamic properties of warm dense electrons such
as the single-particle spectrum [364, 197], A(q, ω), the single-particle dispersion, ω(q), or the density of states. The
spectral function A(q, ω) is a key quantity of many-body theories such as Matsubara and nonequilibrium Green
functions theory, e.g. [365, 195], that are extensively applied to describe the properties of correlated macroscopic
systems [366], atoms and molecules [367], Hubbard clusters [368], or ultracold atoms in traps [369]. Unbiased QMC
results may play a crucial role to test and improve selfenergy approximations. Moreover, to probe the collective
properties of correlated electrons, the dynamic structure factor, S(q, ω), plays a key role. It is of particular
importance, e.g., for the description of collective excitations of realistic warm dense matter within the Chihara
decomposition [370, 112]. Furthermore, the dynamic structure factor is directly linked to other dynamic and optical
properties such as the dielectric function or the dynamic conductivity and reflectivity. Also, the dynamic structure
factor yields the plasmon spectrum which is an important experimental diagnostic of warm dense matter. For
correlated charged particles in traps, the plasmon spectrum transforms into discrete normal modes that contain
important information on the state of the system. Of particular importance are the center of mass (dipole or Kohn)
mode e.g. [371], and the breathing (monopole) mode [372, 373], and may serve as a diagnostic tool for electrons
in quantum dots or ultracold atoms in traps, e.g. [374, 375] and references therein. Here, exact solutions of the
Schrödinger equation are limited to a few particles, and QMC may provide the necessary ab initio results.

In principle, dynamical properties and spectra of correlated electrons in equilibrium and nonequilibrium can be
directly computed via time-propagation, as demonstrated with nonequilibrium Green functions in Ref. [358, 376],
calling for similar approaches using Monte Carlo methods. Unfortunately, time-dependent QMC simulations are
severely hampered by the so-called dynamical sign problem [356, 357] that permits only very short simulations that
are not suitable to generate spectra. An alternative strategy is given by the approximate method of moments [377],
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where the possibility to include our ab initio results for the static structure factor is currently being investigated. In
addition, it is straightforward to utilize our QMC methods to compute imaginary-time correlation functions [378].
These can be used as the basis for the reconstruction of dynamic quantities [379], such as S(q, ω), which is a
well established procedure for the investigation of bosons, e.g., Refs. [380, 288, 289]. A particular advantage of
this strategy is the exact treatment of correlation effects, which allows to benchmark other approaches including
the above mentioned method of moments, (dynamic) RPA and STLS, or the interpolation between various limits
proposed by Gregori et al. [353]. For completeness, we note that a similar strategy has recently been explored by
Motta et al. [381, 382] for the 2D electron gas in the ground state, and the recent remarkable progress in the field
of reconstruction, in general, Refs. [383, 384, 385, 386, 387].

Another important quantity is the momentum distribution, n(k), of warm dense matter which is directly ac-
cessible experimentally via photoionization of atoms and molecules [388, 389] or photoemission from solids and
liquids, e.g. [390]. The tail of n(k) is crucial for impact excitation and ionization processes and directly reflects
correlation and quantum effects in the system. Knowledge of the exact large-k asymptotics of n(k) is crucial
for accurate predictions of impact excitation and ionization rates of chemical reactions and of nuclear fusion
rates in a dense plasma environment, such as in the solar interior [46], in compact stars or in laser fusion ex-
periments. The momentum distribution of the UEG has been extensively investigated at zero temperature, e.g.,
Refs. [34, 35, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 391]. However, at warm dense matter conditions, to our
knowledge, no similar studies exist. Due to its formulation in momentum space, the CPIMC method is perfectly
suited to compute highly accurate results for the momentum distribution in dense quantum systems.

We further note that, in many ultracompact astrophysical objects such as dwarf stars or neutron stars, densities
are so high (small rs values), that relativistic effects become important [207, 208]. For this task, one can extend
our CPIMC method to the simulation of the relativistic Hamiltonian of the UEG (i.e., by using the appropriate
modified dispersion relation).

Finally, aside from its relevance as a model system in many-body physics and a benchmark tool for approxima-
tions and simulations, the warm dense electron gas constitutes the key contribution to real warm dense matter that
contains, in addition, heavy particle species. The extension to realistic multi-component simulations can be done
in various ways. One is to use the UEG data as an input to finite-temperature DFT simulations. Here the ab initio
data for the exchange-correlation free energy of the warm dense electron gas and the analytical parametrization
presented in this review are of direct importance. On the other hand, dense two-component plasmas have been
successfully investigated by path integral Monte Carlo methods by Ceperley amd Militzer and co-workers (RPIMC),
e.g. [164, 135, 86] and by Filinov and co-workers (direct fermionic PIMC), e.g. [392, 127]. The problems analyzed
include the thermodynamic functions, the pair distribution functions [393] and proton crystallization at high density
[394, 129]. For two-component plasmas, of course, the fermion sign problem is even more severe than for the UEG.
So the accuracy of the commonly used fixed node approximation remains to be verified against unbiased methods.
A powerful tool for these simulations is the use of effective quantum pair potentials, that incorporate many-body
and quantum effects and have been derived by Kelbg [395, 396, 397], Ebeling and co-workers and many others, see
e.g. refs. [398, 399] and references therein. Another promising strategy is to extend the coupled electron-ion Monte
Carlo method [166] to finite temperatures. Yet the high complexity and the vast parameter space of warm dense
matter requires the parallel development of independent theoretical and computational methods that can be used
to benchmark one against the other. The present ab initio data is expected to be a valuable reference for these
developments.

10.3. Open resources

Finally, we mention the paramount value of the UEG as a test bed for the development of simulation techniques,
as it requires an accurate treatment of (i) fermionic exchange, (ii) Coulomb correlation, and (iii) thermal excitations
at the same time. For this reason, our extensive QMC data set (for various energies and the static structure factor)
and the GDB parametrization of the free energy are openly available [400].
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11. References

References

[1] G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid, Masters Series in Physics and Astronomy,
Cambridge University Press, 2005.
URL https://books.google.de/books?id=kFkIKRfgUpsC

[2] T. Ott, H. Thomsen, J. Abraham, T. Dornheim, M. Bonitz, Recent progress in the theory and simulation of
strongly correlated plasmas: phase transitions, transport, quantum, and magnetic field effects, Eur. Phys. J. D
(in print).

[3] P.-F. Loos, P. M. W. Gill, The uniform electron gas, Comp. Mol. Sci. 6 (4) (2016) 410–429. doi:10.1002/

wcms.1257.
URL http://onlinelibrary.wiley.com/doi/10.1002/wcms.1257/abstract

[4] G. Mahan, Many-Particle Physics, Physics of Solids and Liquids, Springer US, 1990.
URL https://books.google.de/books?id=v8du6cp0vUAC

[5] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of Superconductivity, Phys. Rev. 108 (5) (1957) 1175–1204.
doi:10.1103/PhysRev.108.1175.
URL http://link.aps.org/doi/10.1103/PhysRev.108.1175

[6] G. Baym, C. Pethick, Landau Fermi-Liquid Theory: Concepts and Applications, Wiley, 2008.
URL https://books.google.de/books?id=xmiV4YSEjE4C

[7] D. Pines, D. Bohm, A Collective Description of Electron Interactions: II. Collective vs Individual Particle
Aspects of the Interactions, Phys. Rev. 85 (2) (1952) 338–353. doi:10.1103/PhysRev.85.338.
URL http://link.aps.org/doi/10.1103/PhysRev.85.338

[8] D. Bohm, D. Pines, A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degen-
erate Electron Gas, Phys. Rev. 92 (3) (1953) 609–625. doi:10.1103/PhysRev.92.609.
URL http://link.aps.org/doi/10.1103/PhysRev.92.609
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[21] P. López Ŕıos, A. Ma, N. D. Drummond, M. D. Towler, R. J. Needs, Inhomogeneous backflow transformations
in quantum Monte Carlo calculations, Phys. Rev. E 74 (6) (2006) 066701. doi:10.1103/PhysRevE.74.066701.
URL http://link.aps.org/doi/10.1103/PhysRevE.74.066701

[22] M. Holzmann, D. M. Ceperley, C. Pierleoni, K. Esler, Backflow correlations for the electron gas and metallic
hydrogen, Phys. Rev. E 68 (4) (2003) 046707. doi:10.1103/PhysRevE.68.046707.
URL http://link.aps.org/doi/10.1103/PhysRevE.68.046707

[23] W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev.
140 (4A) (1965) A1133–A1138. doi:10.1103/PhysRev.140.A1133.
URL http://link.aps.org/doi/10.1103/PhysRev.140.A1133

[24] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (3B) (1964) B864–B871. doi:10.

1103/PhysRev.136.B864.
URL http://link.aps.org/doi/10.1103/PhysRev.136.B864

[25] R. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys. 87 (3) (2015)
897–923. doi:10.1103/RevModPhys.87.897.
URL http://link.aps.org/doi/10.1103/RevModPhys.87.897

[26] K. Burke, Perspective on density functional theory, J. Chem. Phys. 136 (15) (2012) 150901. doi:10.1063/

1.4704546.
URL http://scitation.aip.org/content/aip/journal/jcp/136/15/10.1063/1.4704546

[27] R. O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys.
61 (3) (1989) 689–746. doi:10.1103/RevModPhys.61.689.
URL http://link.aps.org/doi/10.1103/RevModPhys.61.689

[28] S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin
density calculations: a critical analysis, Can. J. Phys. 58 (8) (1980) 1200–1211. doi:10.1139/p80-159.
URL http://www.nrcresearchpress.com/doi/abs/10.1139/p80-159

[29] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron
systems, Phys. Rev. B 23 (10) (1981) 5048–5079. doi:10.1103/PhysRevB.23.5048.
URL http://link.aps.org/doi/10.1103/PhysRevB.23.5048

88



[30] T. Chachiyo, Communication: Simple and accurate uniform electron gas correlation energy for the full range
of densities, J. Chem. Phys. 145 (2) (2016) 021101. doi:10.1063/1.4958669.
URL http://aip.scitation.org/doi/10.1063/1.4958669

[31] J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a
many-electron system, Phys. Rev. B 54 (23) (1996) 16533–16539. doi:10.1103/PhysRevB.54.16533.
URL https://link.aps.org/doi/10.1103/PhysRevB.54.16533

[32] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett.
77 (18) (1996) 3865–3868. doi:10.1103/PhysRevLett.77.3865.
URL http://link.aps.org/doi/10.1103/PhysRevLett.77.3865

[33] G. Ortiz, P. Ballone, The Correlation Energy of the Spin-Polarized Uniform Electron Gas, Europhys. Lett.
23 (1) (1993) 7. doi:10.1209/0295-5075/23/1/002.
URL http://stacks.iop.org/0295-5075/23/i=1/a=002

[34] G. Ortiz, P. Ballone, Correlation energy, structure factor, radial distribution function, and momentum
distribution of the spin-polarized uniform electron gas, Phys. Rev. B 50 (3) (1994) 1391–1405. doi:

10.1103/PhysRevB.50.1391.
URL http://link.aps.org/doi/10.1103/PhysRevB.50.1391

[35] G. Ortiz, P. Ballone, Erratum: Correlation energy, structure factor, radial distribution function, and mo-
mentum distribution of the spin-polarized uniform electron gas [Phys. Rev. B 50, 1391 (1994)], Phys. Rev. B
56 (15) (1997) 9970–9970. doi:10.1103/PhysRevB.56.9970.
URL https://link.aps.org/doi/10.1103/PhysRevB.56.9970

[36] G. Ortiz, M. Harris, P. Ballone, Zero Temperature Phases of the Electron Gas, Phys. Rev. Lett. 82 (26) (1999)
5317–5320. doi:10.1103/PhysRevLett.82.5317.
URL http://link.aps.org/doi/10.1103/PhysRevLett.82.5317

[37] N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler, R. J. Needs, Diffusion quantum Monte Carlo study of
three-dimensional Wigner crystals, Phys. Rev. B 69 (8) (2004) 085116. doi:10.1103/PhysRevB.69.085116.
URL http://link.aps.org/doi/10.1103/PhysRevB.69.085116

[38] G. G. Spink, R. J. Needs, N. D. Drummond, Quantum Monte Carlo study of the three-dimensional spin-
polarized homogeneous electron gas, Phys. Rev. B 88 (8) (2013) 085121. doi:10.1103/PhysRevB.88.085121.
URL http://link.aps.org/doi/10.1103/PhysRevB.88.085121

[39] A. W. Overhauser, Pair-correlation function of an electron gas, Can. J. Phys. 73 (11-12) (1995) 683–686.
arXiv:https://doi.org/10.1139/p95-101, doi:10.1139/p95-101.
URL https://doi.org/10.1139/p95-101

[40] J. P. Perdew, Y. Wang, Pair-distribution function and its coupling-constant average for the spin-polarized
electron gas, Phys. Rev. B 46 (20) (1992) 12947–12954. doi:10.1103/PhysRevB.46.12947.
URL http://link.aps.org/doi/10.1103/PhysRevB.46.12947

[41] P. Gori-Giorgi, F. Sacchetti, G. B. Bachelet, Analytic static structure factors and pair-correlation functions for
the unpolarized homogeneous electron gas, Phys. Rev. B 61 (11) (2000) 7353–7363. doi:10.1103/PhysRevB.
61.7353.
URL http://link.aps.org/doi/10.1103/PhysRevB.61.7353

[42] P. Gori-Giorgi, J. P. Perdew, Pair distribution function of the spin-polarized electron gas: A first-principles
analytic model for all uniform densities, Phys. Rev. B 66 (16) (2002) 165118. doi:10.1103/PhysRevB.66.

165118.
URL http://link.aps.org/doi/10.1103/PhysRevB.66.165118

[43] M. Holzmann, B. Bernu, C. Pierleoni, J. McMinis, D. M. Ceperley, V. Olevano, L. Delle Site, Momentum
Distribution of the Homogeneous Electron Gas, Phys. Rev. Lett. 107 (11) (2011) 110402. doi:10.1103/

PhysRevLett.107.110402.
URL http://link.aps.org/doi/10.1103/PhysRevLett.107.110402

89



[44] J. C. Kimball, Short-range correlations and the structure factor and momentum distribution of electrons,
J. Phys. A 8 (9) (1975) 1513. doi:10.1088/0305-4470/8/9/021.
URL http://stacks.iop.org/0305-4470/8/i=9/a=021

[45] H. Yasuhara, Y. Kawazoe, A note on the momentum distribution function for an electron gas, Phys. A 85 (2)
(1976) 416–424. doi:10.1016/0378-4371(76)90060-1.
URL http://www.sciencedirect.com/science/article/pii/0378437176900601

[46] A. N. Starostin, A. B. Mironov, N. L. Aleksandrov, N. J. Fisch, R. M. Kulsrud, Quantum corrections to
the distribution function of particles over momentum in dense media, Phys. A 305 (12) (2002) 287–296.
doi:10.1016/S0378-4371(01)00677-X.
URL http://www.sciencedirect.com/science/article/pii/S037843710100677X

[47] Y. Takada, H. Yasuhara, Momentum distribution function of the electron gas at metallic densities,
Phys. Rev. B 44 (15) (1991) 7879–7887. doi:10.1103/PhysRevB.44.7879.
URL https://link.aps.org/doi/10.1103/PhysRevB.44.7879

[48] Y. Takada, T. Kita, New self-consistency relation between the correlation energy and the momentum distri-
bution function with application to the one-dimensional hubbard model, J. Phys. Soc. Jpn. 60 (1991) 25.

[49] P. Ziesche, Momentum distribution and structure factors of a high-density homogeneous electron gas from its
cumulant two-body reduced density matrix, Phys. Rev. A 86 (1) (2012) 012508. doi:10.1103/PhysRevA.86.
012508.
URL http://link.aps.org/doi/10.1103/PhysRevA.86.012508

[50] P. Ziesche, The high-density electron gas: How momentum distribution n(k) and static structure factor
s(q) are mutually related through the off-shell self-energy

∑
(k, ω), Ann. Phys. 522 (10) (2010) 739–765.

doi:10.1002/andp.201000022.
URL http://onlinelibrary.wiley.com/doi/10.1002/andp.201000022/abstract

[51] P. Ziesche, J. Cioslowski, The three-dimensional electron gas at the weak-correlation limit: how peculiarities
of the momentum distribution and the static structure factor give rise to logarithmic non-analyticities in the
kinetic and potential correlation energies, Phys. A 356 (24) (2005) 598–608. doi:10.1016/j.physa.2005.

04.006.
URL http://www.sciencedirect.com/science/article/pii/S0378437105003407

[52] P. Gori-Giorgi, P. Ziesche, Momentum distribution of the uniform electron gas: Improved parametrization
and exact limits of the cumulant expansion, Phys. Rev. B 66 (23) (2002) 235116. doi:10.1103/PhysRevB.

66.235116.
URL https://link.aps.org/doi/10.1103/PhysRevB.66.235116

[53] H. Maebashi, Y. Takada, Analysis of exact vertex function for improving on the GWΓ scheme for first-
principles calculation of electron self-energy, Phys. Rev. B 84 (24) (2011) 245134. doi:10.1103/PhysRevB.

84.245134.
URL https://link.aps.org/doi/10.1103/PhysRevB.84.245134

[54] Y. Takada, Emergence of an excitonic collective mode in the dilute electron gas, Phys. Rev. B 94 (24) (2016)
245106. doi:10.1103/PhysRevB.94.245106.
URL http://link.aps.org/doi/10.1103/PhysRevB.94.245106

[55] S. Moroni, D. M. Ceperley, G. Senatore, Static response from quantum Monte Carlo calculations,
Phys. Rev. Lett. 69 (13) (1992) 1837–1840. doi:10.1103/PhysRevLett.69.1837.
URL http://link.aps.org/doi/10.1103/PhysRevLett.69.1837

[56] S. Moroni, D. M. Ceperley, G. Senatore, Static Response and Local Field Factor of the Electron Gas,
Phys. Rev. Lett. 75 (4) (1995) 689–692. doi:10.1103/PhysRevLett.75.689.
URL http://link.aps.org/doi/10.1103/PhysRevLett.75.689

[57] G. Sugiyama, C. Bowen, B. J. Alder, Static dielectric response of charged bosons, Phys. Rev. B 46 (20) (1992)
13042–13050. doi:10.1103/PhysRevB.46.13042.
URL http://link.aps.org/doi/10.1103/PhysRevB.46.13042

90



[58] C. Bowen, G. Sugiyama, B. J. Alder, Static dielectric response of the electron gas, Phys. Rev. B 50 (20)
(1994) 14838–14848. doi:10.1103/PhysRevB.50.14838.
URL https://link.aps.org/doi/10.1103/PhysRevB.50.14838

[59] M. Corradini, R. Del Sole, G. Onida, M. Palummo, Analytical expressions for the local-field factor G(q)
and the exchange-correlation kernel Kxc(r) of the homogeneous electron gas, Phys. Rev. B 57 (23) (1998)
14569–14571. doi:10.1103/PhysRevB.57.14569.
URL http://link.aps.org/doi/10.1103/PhysRevB.57.14569

[60] V. E. Fortov, Extreme states of matter on Earth and in space, Phys.-Usp. 52 (6) (2009) 615. doi:10.3367/

UFNe.0179.200906h.0653.
URL http://iopscience.iop.org/article/10.3367/UFNe.0179.200906h.0653/meta

[61] U. S. Department of Energy, Basic research needs for high energy density laboratory physics,
https://nnsa.energy.gov/sites/default/files/nnsa/01-13-inlinefiles/Basicoffice of Science and National Nuclear
Security Administration (2009).

[62] E. Wigner, On the Interaction of Electrons in Metals, Phys. Rev. 46 (11) (1934) 1002–1011. doi:10.1103/

PhysRev.46.1002.
URL https://link.aps.org/doi/10.1103/PhysRev.46.1002

[63] A. Filinov, M. Bonitz, Y. Lozovik, Wigner Crystallization in Mesoscopic 2d Electron Systems, Phys. Rev. Lett.
86 (17) (2001) 3851–3854. doi:10.1103/PhysRevLett.86.3851.
URL http://link.aps.org/doi/10.1103/PhysRevLett.86.3851

[64] A. Filinov, Y. Lozovik, M. Bonitz, Path integral simulations of crystallization of quantum confined electrons,
phys. stat. sol. (b) 221 (2000) 231.

[65] M. Bonitz, C. Henning, D. Block, Complex plasmas: a laboratory for strong correlations, Reports on Progress
in Physics 73 (6) (2010) 066501.
URL http://stacks.iop.org/0034-4885/73/i=6/a=066501

[66] F. Graziani, M. Desjarlais, R. Redmer, S. Trickey, Frontiers and Challenges in Warm Dense Matter, Lecture
Notes in Computational Science and Engineering, Springer International Publishing, 2014.
URL https://books.google.de/books?id=Hdm4BAAAQBAJ
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Tosi-Land-Sjölander and Vashishta-Singwi theories, Phys. Rev. B 35 (6) (1987) 2720–2731. doi:10.1103/

PhysRevB.35.2720.
URL http://link.aps.org/doi/10.1103/PhysRevB.35.2720

[246] U. Gupta, A. K. Rajagopal, Inhomogeneous electron gas at nonzero temperatures: Exchange effects, Phys.
Rev. A 21 (6) (1980) 2064–2068. doi:10.1103/PhysRevA.21.2064.
URL https://link.aps.org/doi/10.1103/PhysRevA.21.2064

[247] U. Gupta, A. K. Rajagopal, Exchange-correlation potential for inhomogeneous electron systems at finite
temperatures, Phys. Rev. A 22 (6) (1980) 2792–2797. doi:10.1103/PhysRevA.22.2792.
URL http://link.aps.org/doi/10.1103/PhysRevA.22.2792

104



[248] F. Perrot, M. W. C. Dharma-wardana, Exchange and correlation potentials for electron-ion systems at finite
temperatures, Phys. Rev. A 30 (5) (1984) 2619–2626. doi:10.1103/PhysRevA.30.2619.
URL http://link.aps.org/doi/10.1103/PhysRevA.30.2619

[249] S. Tanaka, Improved equation of state for finite-temperature spin-polarized electron liquids on the basis
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[251] H. K. Schweng, H. M. Böhm, Finite-temperature electron correlations in the framework of a dynamic local-
field correction, Phys. Rev. B 48 (4) (1993) 2037–2045. doi:10.1103/PhysRevB.48.2037.
URL http://link.aps.org/doi/10.1103/PhysRevB.48.2037

[252] P. Arora, K. Kumar, R. K. Moudgil, Spin-resolved correlations in the warm-dense homogeneous electron gas,
Eur. Phys. J. B 90 (4) (2017) 76. doi:10.1140/epjb/e2017-70532-y.
URL https://link.springer.com/article/10.1140/epjb/e2017-70532-y

[253] H. Kählert, G. J. Kalman, M. Bonitz, Dynamics of strongly correlated and strongly inhomogeneous plasmas,
Phys. Rev. E 90 (1) (2014) 011101. doi:10.1103/PhysRevE.90.011101.
URL https://link.aps.org/doi/10.1103/PhysRevE.90.011101
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[342] C. Fortmann, A. Wierling, G. Röpke, Influence of local-field corrections on Thomson scattering in collision-
dominated two-component plasmas, Phys. Rev. E 81 (2) (2010) 026405. doi:10.1103/PhysRevE.81.026405.
URL http://link.aps.org/doi/10.1103/PhysRevE.81.026405
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Chapter 3

Further Development of CPIMC and
Combination with PB-PIMC

3.1 Introduction

The exact computation of thermodynamic expectation values of generic fermionic systems
by means of quantum Monte Carlo (QMC) methods constitutes a non-trivial task since
all of the hitherto existing methods are strongly hampered by the notorious fermion sign
problem [27, 28]. In particular, the standard path integral Monte Carlo (standard PIMC)
approach [15] cannot be applied to strongly degenerate fermions, i.e., at low temperature
and weak to moderate coupling, where quantum effects play an important role. In this
unsatisfactory situation, it has been highly desirable to come up with an alternative QMC
approach that allows for the simulation of fermions at these challenging yet physically
interesting conditions. Precisely this was the goal of the configuration path integral Monte
Carlo method (CPIMC), the development of which was started by my colleague T. Schoof
and Prof. M. Bonitz in 2010.

In principle, CPIMC can be understood as a generalization of Prokof’ev’s continuous-
time QMC method for bosonic lattice models [48] to spatially continuous fermionic systems
with long-range interactions, including, most importantly, the Coulomb interaction. Being
formulated in second quantization, CPIMC is essentially a Metropolis Monte Carlo [19]
simulation on the infinite exact perturbation expansion of the partition function around the
ideal system. As such, it exhibits a fermion sign problem that is absent in the non-interacting
case but increases with coupling, eventually rendering simulations at strong interaction
impossible. This behavior is perfectly complementary to the aforementioned nature of the
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fermion sign problem within the standard PIMC approach, which, in contrast to CPIMC, is
formulated in coordinate representation of quantum mechanics.

In 2011, as a first test, the CPIMC method was applied to harmonically trapped electrons
in 1D [51] within the context of the diploma thesis of T. Schoof [116]. To improve the
efficiency of the CPIMC algorithm such that it can be utilized for more realistic systems,
T. Schoof continued to further develop this method in his PhD thesis [53], where the main
objective has been its reformulation in order to incorporate the worm-algorithm (WA)
paradigm [52]. Within the course of my master’s degree [54], I joined this project in
2013, which turned out to be more complicated and elaborate than originally expected. The
difficulties arise from the long-range Coulomb interaction, which introduces many additional
diagrams (compared to lattice models) that have to be taken into account. These render the
development of a set of Monte Carlo steps that actually allows for the construction of all
possible CPIMC paths (trajectories in Fock space) to be very challenging (see Ref. [54]
for details). Yet, the advantage of this reformulation is two-fold: first, the revised CPIMC
expansion of the partition function within the WA is well suited for the construction of more
efficient Monte Carlo steps, thus leading to a significant speed up compared to the former
algorithm, and second, the WA can be explored to compute expectation values not only of
standard thermodynamic observables but also of imaginary-time correlation functions such
as the Matsubara Green’s function [117, 118].

In addition to my participation in the development and implementation of the Monte
Carlo steps, I derived a highly effective estimator for said Matsubara Green’s function, which
I applied to electrons in a 2D harmonic trap in my master thesis [54] in July 2014.

3.2 Application of CPIMC to the Uniform Electron Gas

In the beginning of this PhD thesis in November 2014, in collaboration with T. Schoof, I
started to work on the application of the CPIMC method to a more interesting system: the
uniform electron gas (UEG) at finite temperature. In principle, the algorithm presented
in T. Schoof’s PhD [53] and my master thesis [54] is capable of simulating any fermionic
system; it solely requires the one- and two-particle matrix elements of the corresponding
Hamiltonian in second quantization as input. However, it turned out that some modifications
and optimizations were required for the efficient simulation of the UEG. First, due to the
spatial homogeneity and the natural choice of plane wave orbitals1 for the quantization, the
one-particle matrix elements are diagonal and the four involved orbitals of non-vanishing
two-particle integrals always fulfill momentum conservation. Within the CPIMC formulation,

1Note that in case of the UEG, plane waves constitute the natural, ideal and Hartree–Fock orbitals.
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this results in the absence of all one-particle excitations in the sampled paths. Consequently,
all program parts dealing with one-particle excitations are redundant for the UEG and thus
had to be removed for optimal performance.

Moreover, for the system sizes of interest (number of electrons and volume of the simula-
tion box), the number of plane wave basis functions NB that is necessary to reach convergence
can become extremely large, i.e. NB ≳ 106 for the highest temperatures considered in this
thesis. Since the number of two-particle integrals grows with N4

B, these cannot be stored in
the memory but must be computed on the fly instead.

As a further consequence of such large basis sets, the original set of Monte Carlo steps
becomes very inefficient since here the particular orbitals to create new excitations are simply
chosen uniformly from all NB orbitals. A straightforward solution to this problem is given by
the introducing of a maximum excitation energy so that excitations with a large momentum
transfer only build up progressively over the course of several Monte Carlo steps, which
greatly increases their overall acceptance probability as opposed to proposing said large
excitations at once in a single step.

Details of the entire CPIMC algorithm including all Monte Carlo steps that are used in
the simulation of the UEG are presented in the following Ref. [45]. As a demonstration of
the correctness of the implementation, the total energy of N = 4 spin-polarized electrons at
different temperatures and densities is compared to the results from an exact diagonalization
of the Hamiltonian (Configuration Interaction [119]2), which, in the considered case, is only
feasible up to NB = 19 plane wave basis functions. Furthermore, the CPIMC results are
carefully extrapolated to the NB → ∞ limit with an accuracy of up to six digits for the highest
densities, where the sign problem is practically absent. Overall, the following Ref. [45]
constitutes a proof of principle regarding the simulation of the UEG with the CPIMC method.

2A CI program implemented by D. Hochstuhl was used.
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Recently a number of theoretical studies of the uniform electron gas (UEG) at finite temperature have appeared
that are of relevance for dense plasmas, warm dense matter and laser excited solids and thermodynamic density
functional theory simulations. In particular, restricted path integral Monte Carlo (RPIMC) results became
available which, however, due to the Fermion sign problem, are confined to moderate quantum degeneracy,
i.e. low to moderate densities. We have recently developed an alternative approach—configuration PIMC
[T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011)] that allows one to study the so far not accessible
high degeneracy regime. Here we present the first step towards UEG simulations using CPIMC by studying
implementation and performance of the method for the model case of N = 4 particles. We also provide
benchmark data for the total energy.
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1 Introduction

Thermodynamic properties of quantum degenerate electrons are vital for the description of matter at high den-
sities, such as plasmas in compact stars or planet cores, as well as in laser fusion experiments at the National
Ignition Facility (NIF), e.g. [1, 2] or for the imploding z-pinch Liners at Sandia National Lab [3]. Besides, the
electron component is of crucial importance for understanding the properties of atoms, molecules and real ma-
terials. Since exact wave function based methods for solving the many-electron problem are hampered by an
exponential slowing down with increasing number of electrons, e.g. [4], many-body methods are of central im-
portance, e.g. [5,6]. However, these methods have a limited accuracy determined by the used approximation and
are usually limited to weak or moderate coupling. Alternatives, therefore, have been first principle simulations
such as path integral Monte Carlo (PIMC), e.g. [7], however, in the case of fermions they suffer from the fermion
sign problem (FSP). It prevents direct fermionic simulations, e.g. [8, 9] at strong degeneracy, χ = nλ3

DB � 1,
where λ2

DB = h2[2πmkBT ]
−1 denotes the thermal DeBroglie wave length and n is the density. The FSP can

be “avoided” by performing “restricted” PIMC (RPIMC) simulations using fixed nodes, e.g. [10] and references
therein, but the introduced error is difficult to assess. Recently finite temperature RPIMC (DPIMC) simula-
tions have also been performed for the uniform electron gas [12] ( [13]), but due to the FSP, reliable results are,
most likely, restricted to moderate densities, rs � 1.5 [rs = r̄/aB , where r̄ is the mean interparticle distance,
n−1 = 4πr̄3/3 and aB the Bohr radius] and temperatures above Θ = kBT/EF = 0.0625, where EF is the
Fermi energy. However, this leaves out the high-density range that is of high importance, e.g. for deuterium-
tritium implosions at NIF where mass densities of 400 gcm−3 have recently been reported [2], corresponding to
rs ≈ 0.24. To bridge the gap between the known analytical result for the ideal Fermi gas and the RPIMC data,
recently several fits have been proposed [14, 15] but they also require reliable first-principle data at low rs. We
have recently demonstrated [16] that a suitable approach to PIMC simulations at high degeneracy is given by
simulations in Slater determinant space (configuration PIMC, CPIMC). For the model of fermions in a harmonic
oscillator we could report CPIMC results that are uncaccessible for DPIMC and are essentially complementary
with respect to the FSP [17]. We are presently adapting this approach to the uniform electron gas and here present

∗ Corresponding author. E-mail: bonitz@physik.uni-kiel.de, Phone: +49 431 8804122, Fax: +49 431 8804094
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first results. For illustration we analyze a small system of N = 4 spin polarized fermions as this allows for com-
prehensive tests of the behavior of the sign as a function of density, temperature and basis size and to compare to
exact diagonalization results.

2 Configuration path integral Monte Carlo (CPIMC)

The thermodynamic properties of a quantum mechanical many-body system in equilibrium are fully determined
by the density operator ρ which, in the canonical ensemble, is given by1 ρ̂ = Z−1e−βĤ , with the inverse tem-
perature β, the Hamiltonian Ĥ , and the partition function Z = Tr ρ̂. As the internal energy and many other
thermodynamic quantities can be derived from Z we are looking for a numerically tractable expression. The
usual approach is to expand the trace in the coordinate representation, decomposing the exponential e−βĤ into a
product of M factors, each defined at an M -times higher temperature, and approximating these using the Trot-
ter formula or a higher order scheme. This leads to the well-known path integral formulation of the partition
function. Because the many-body coordinate states are simple product states, they do not fulfill the appropriate
particle statistics for fermions or bosons, and one has to apply the (anti-)symmetrization operator to at least one of
the states. For fermions this introduces a sign change for odd permutations of particles making the calculation of
the integral exponentially difficult with increasing particle number and inverse temperature—this is the fermion
sign problem.

The basic idea of CPIMC is to use, for evaluation of the trace, an arbitrary complete orthonormal set of basis
functions that fulfills the correct symmetry under particle exchange. We will use occupation number (Fock) states

|{n}〉 := |n1n2 . . .〉 , ni = 0, 1. (1)

In Ref. [16] we derived the expression for Z in analogy to the derivation of the path integral in coordinate
representation outlined above. Here we sketch the main steps following another approach that is close to the
formulation of Ref. [18]. We start with a general many-body Hamiltonian with arbitrary pair interaction in
second quantization

Ĥ =
∑

i,j

hij â
†
i âj +

∑

i<j,k<l

w−ijklâ
†
i â
†
j âlâk = Ĥ0 + Ŵ with w−ijkl := wijkl − wijlk, (2)

where hij and wijkl denote the one-particle and two-particle integrals in an arbitrary one-particle basis |i〉. We
split Ĥ uniquely into a diagonal and an off-diagonal part

〈{ni}|Ĥ|{nj}〉 =
{
〈{ni}|D̂|{ni}〉 = D{ni}, if i = j

〈{ni}|Ŷ |{nj}〉 = Y{ni},{nj}, if i �= j
, (3)

where the matrix elements are given by the Slater-Condon rules [19]

〈{n}|D̂|{n}〉 =
∑

i

hiini +
∑

i<j

w−ijijninj , (4)

〈{n}|Ŷ |{n̄}〉 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
hpq +

∑

i �=p,q

w−ipiqni

)
(−1)

∑max(p,q)−1

m=min(p,q)+1
nm , {n} = {n̄}pq

w−pqrs(−1)
∑q−1

m=p nm+
∑s−1

m=r n̄m , {n} = {n̄}p<q
r<s

0, else

(5)

1 Our definition ensures the correct normalization, Tr ρ̂ = 1. We note that in PIMC ρ is often defined without the factor Z−1.
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138 T. Schoof et al.: CPIMC results for the electron gas at strong degeneracy

that are non-zero only if the states |{n}〉 and {n̄} differ by a one-particle or two-particle excitation from |q〉 to
|p〉 or from |r〉 and |s〉 to |p〉 and |q〉, respectively. This makes it possible to define an excitation operator by

q̂(s) :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝hpq +

∞∑

j=0
j �=p,q

w−pjqj n̂j

⎞
⎟⎟⎠ â†pâq if s = (p, q)

w−pqrsâ
†
pâ
†
qârâs if s = (p, q, r, s)

, (6)

for all p �= q and r �= s and express Ŷ in terms of all possible one- and two-particle excitations, Ŷ =
∑

s q̂(s).
Note that the action of the excitation operator q̂(s) |{n}〉 = q{n̄},{n}(s) |{n̄}〉 is completely determined by |{n}〉
and s with the resulting state |{n̄}〉 = |{n}pq〉 or |{n̄}〉 = |{n}p<q

r<s〉. Switching to the interaction picture with

Ĥ(t) = D̂ + Ŷ (t) and Ŷ (t) = eitD̂Ŷ e−itD̂ one can write the time evolution operator as (T̂ denotes the time
ordering operator)

Û(t, t0) = e−iD̂(t−t0)T̂ e
−i

∫ t
t0

dt′Ŷ (t′)
. (7)

Its action on the exponential function is given by the Dyson series

T̂ e
−i

∫ t
t0

dt′Ŷ (t′)
=

∞∑

K=0

(−i)K
∫ t

t0

dt1· · ·
∫ tK−1

t0

dtK

K∏

j=1

Ŷ (tj). (8)

As the density operator is proportional to the time evolution operator in imaginary time, we arrive at our final
expression by carefully evaluating the repeated action of the excitation operators q̂(s, t) on the states in the trace

Z(β) =

∞∑

K=0,
K �=1

∑

{n}

∑

s1

∑

s2

. . .
∑

sK−1

β∫

0

dτ1

β∫

τ1

dτ2 . . .

β∫

τK−1

dτK ×

(−1)K exp

{
−

K∑

i=0

D{n(i)}(τi+1 − τi)

}
K∏

i=1

q{n(i)}{n(i−1)}(si)

=
∞∑

K=0,
K �=1

∑

{n}

∑

s1...sK−1

∫ ′
dKτ W (K, {n}, s1, . . . , sK−1, τ1, . . . , τK) , (9)

with {n0} = {nK} = {n} and, in the last step, we abbreviated the integral over τ = −it (the primed integral
denotes the time ordering) and introduced the weight W . The case K = 1 is forbidden by β-periodicity. This
formula can be interpreted as a sum over all possible paths of occupation number states in the Fock space in
imaginary time τ , as shown in Fig. 1. In this picture sudden changes in the occupation numbers (“kinks”) are
induced by one or two-particle excitations si at the times τi. The weight of each path is uniquely determined by
the number of kinks K, their times and the affected orbitals. Expectation values that are given by derivatives of
Z are readily obtained from Eq. (9). In particular, the internal energy is given by

〈Ĥ〉 =
∞∑

K=0,
K �=1

∑

{n}

∑

s1...sK−1

∫ ′
dKτ

(
1

β

K∑

i=0

D{n(i)}(τi+1 − τi)−
K

β

)
W, (10)

where, remarkably, the off-diagonal part of Ĥ enters only indirectly through the number of kinks K.
So far these expressions are exact. For the actual computations a finite number of basis functions NB has to

be chosen. This approximation introduces a basis set incompleteness error, and the convergence to the complete
basis set limit has to be carefully investigated. Additionally there is a theoretical limit in the number of kinks
that can be stored in memory, but as the FSP limits calculations to a few hundred kinks (see below), this limit
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is not of any practical relevance. To perform these high dimensional integrals and summations we implemented
a Metropolis MC scheme. For a general Hamiltonian, a large number of quite complicated Monte Carlo steps
is necessary to ensure ergodicity. Details on the general algorithm will be published elsewhere. In the case
of the HEG we choose plane waves as the underlying one-particle basis. These functions coincide with the
eigenfunctions of the interaction-free Hamiltonian, the Hartree-Fock basis functions and the natural orbitals. In
this basis the Hamiltonian, Ĥ = Ĥel + Ĥback + Ĥel−back, can be written as

Ĥ =
�2

2m

∑

�k

�k2â†�kâ�k +
1

2

4πe2

V

∑

�ki
�kj

�kk
�kl

�ki �=�kk

δ�ki+�kj ,�kk+�kl

1

(�ki − �kk)2
â†�ki

â†�kj
â�kl

â�kk
+ EM , (11)

where the �ki = �kk components cancel with the interactions of the positive background and the Madelung energy
EM accounts for the self-interaction of the Ewald summation in periodic boundary conditions [11]. Due to
momentum conservation all one-particle excitation operators q̂(i, j) vanish and only a subset of MC steps is
needed that are sketched below, cf. Figs. 2 and 3.

Fig. 1 Possible path |{n}〉 (τ) in imaginary time of three particles in six orbitals in the kink picture. Each kink s represents
either a one- or a two-particle excitation.

Fig. 2 Left: Add or remove pair of kinks. τmin and τmax correspond to the imaginary times of the neighbouring kinks on the
same orbitals. Right: Excite an orbital over the whole β range.

1. Add a pair of kinks: a) At a random imaginary time τa, select two occupied orbitals with the plane wave
vectors �ki and �kj . b) A random excitation vector �q is chosen with ‖�q ‖ ≤ ‖�qmax‖. It is sufficient to set ‖�qmax‖
to the minimal distance between two �k-vectors, resulting in 6 possible vectors. The step is rejected if one of
the new orbitals �kn = �ki + �q and �km = �ki − �q is occupied. c) Using a heat-bath sampling method, the time
τb for the second kink is chosen in the interval given by neighbouring kinks or in the whole β range if no
kinks are present. d) If accepted, the kink-pair (n,m, i, j) and (i, j, n,m) will be inserted at τa and τb.

2. Remove pair of kinks: a) choose a random kink sa, b) choose second kink sb, before or after sa. Reject the
step if the kinks do not form a pair of kinks. c) If accepted, the kinks will be removed.

3. Add one kink a) A random kink sa is chosen. b) Two occupied orbitals with �ki and �kj are chosen randomly
before or after the kink. c) Depending on the kink and the occupied orbitals one of three different cases
apply:

www.cpp-journal.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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i: The kink creates or annihilates particles in both orbitals: randomly choose excitation vector �q. Reject if
one of the new orbitals, �kn = �ki + �q, or �km = �ki − �q, is occupied.

ii: Only one of the occupied orbitals is affected by the kink: choose an orbital �kn from the two unoccupied
orbitals that are affected by the kink. The last orbital is determined by �km = �i+�j − �kn. Reject if this
orbital is occupied.

iii: Otherwise both new orbitals �kn and �km are set to the orbitals of the annihilation or creation operators
of the kink sa. Reject if the particle excitation does not conserve momentum.

d) In an interval determined by neighbouring kinks, the time τ for the new kink is chosen using a heat-bath
method. e) If accepted add a kink sb = (i, j, n,m) or sb = (n,m, i, j) at τ and change kink sa accordingly.

4. Remove a kink: a) choose random kink sa. b) This kink determines a set of kinks that can be removed
while changing sa. Choose sb from these kinks. Reject if the changed kink s′a does not fulfill momentum
conservation or is removed during the process. c) If accepted, remove sb and alter sa accordingly.

5. Change two kinks: a) Choose a kink sa randomly. b) Choose two occupied orbitals �ki and �kj before or after
sa. c) Determine two unoccupied orbitals �kn and �km analogously to 3. d) These orbitals determine a set of
kinks that can be changed together with sa. Choose sb from this set. e) If the step is accepted, the particles
in �ki and �kj are excited to �kn and �km and the appropriate changes are applied to both kinks.

6. Excite whole orbital: a) Choose an occupied orbital �ki and an unoccupied orbital �kj that are free of any
kinks and b) propose to invert the occupation number of both orbitals.

Fig. 3 All possibilities to add or remove a kink. From top to bottom rows correspond to cases i. to iii. The intervals are
determined by neighbouring kinks on the affected orbitals.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org
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3 Finite temperature CPIMC results for N = 4 spin polarized electrons

To demonstrate the validity of the method and its implementation we compare our results to finite temperature
configuration interaction (exact diagonalization, CI) results. Because the computational costs grow exponentially
with system size, CI calculations are limited to very small numbers of particles and basis functions. It is clear that
these results are dominated by finite size effects and are of limited physical value for the uniform electron gas, but
their comparison constitutes a rigorous test for CPIMC, as both methods are free of any further approximation
and should be numerically identical within statistical errors, if the same basis set is used. This is verified in Fig. 4
where the total energy of N = 4 particles in NB = 19 basis functions is shown for different rs values and
temperatures. The error bars correspond to a one-fold standard deviation and demonstrate perfect agreement for
all parameters. For a CPU time of just 1 hour the relative error is as low as 10−7, for the highest densities and
low T . At high densities the error is larger for higher T because of the increased thermal fluctuations. At low
densities the main source of the statistical error is the FSP, which is more severe for low T .

Fig. 4 Left: Total energy vs. rs for two temperatures. CPIMC results (points with error bars) are compared to exact
diagonalization results (CI) for the same basis size of NB = 19. The lower part shows the relative deviations. Error bars
show a one-fold standard deviation. Right: Average sign versus number of basis functions for Θ = 0.0625.

Fig. 5 Left (Right): Average sign versus temperature (Brueckner parameter) for NB = 515.

To further investigate the FSP we analyze the dependence of the average sign 〈s〉 on the the different param-
eters. In the left part of Fig. 5. 〈s〉 is plotted versus Θ. As for PIMC the sign decreases exponentially with 1/T ,
whereas the dependence on NB does not have a correspondence in coordinate space. Unfortunately, it can be
strong and poses a difficulty for finding the complete basis set limits of the observables. For high densities and
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moderate T , 〈s〉 converges and allows for a favorable scaling with NB which, in the current implementation, is
linear, cf, Fig. 4. The dependence of 〈s〉 on the density is shown in the right part of Fig. 5. There is no FSP
at all in the high density, interaction-free limit. With decreasing density the sign starts dropping very fast, at a
T -dependent threshold. The higher the temperature, the lower the density where calculations are feasible. This
behavior is complementary to PIMC in coordinate space, which yields accurate results for low densities while
suffering from the FSP at high densities.

Due to this complementarity with respect to the FSP there exists a density range where neither PIMC nore
CPIMC have a sufficiently large average sign, for larger particle numbers. This makes a direct comparison
between CPIMC and (R)PIMC difficult. In Tab. 1 we, therefore, present results for N = 4 particles, which is the
lowest particle number for which all MC steps described in Sec. 2 occur, and still has an acceptable average sign
for rs ≤ 5. Our results have been extrapolated to the complete basis set limit by a linear fit as shown in Fig. 6
and are considered exact within the given statistical error. The extrapolation assumes a linear convergence over
1/NB for sufficiently large NB , as it was found for the ground state HEG in [20] and is in good agreement also
for higher temperatures. We expect that system should also be accessible to direct PIMC in coordinate space, so
this appears to be a very useful test system.

To summarize, this paper presented the first application of CPIMC to the HEG at finite temperatures. Our
algorithm yields perfect agreement with CI results for small particle numbers and basis sizes, for a large range of
densities and temperatures. For N = 4 particles at high and moderate degeneracy it has been demonstrated that
an accurate extrapolation to the complete basis set limit is possible with small error bars (we underline that this is
not possible with CI). Our results can serve as a benchmark for other first-principle methods like (R)PIMC. The
FSP of the method has been investigated and found to be qualitatively similar to earlier findings for fermions in
a harmonic trap [16]. The complementary dependence of the average sign on the density, compared to PIMC in
coordinate space, allows to reduce the parameter range where the FSP prohibits accurate ab-initio calculations
for the HEG. More results for larger particle number and different spin polarizations will be presented elsewhere.

Fig. 6 Basis-size incompleteness error of the total energy vs. NB at temper-
ature Θ = 0.0625. Dashed lines are linear extrapolations to NB → ∞. Error
bars correspond to CPIMC runs with a duration of 12 CPU hours. CI results
(crosses) are available only for NB ≤ 19. The inset shows the region used for
fitting (for the example rs = 3).

Table 1 Converged total energy.

Θ rs E/N [Ryd]
0.0625 0.5 15.316652(20)

1 3.130643(13)
2 0.429597(10)
3 0.032051(12)
4 -0.07229(6)
5 -0.107(16)

0.25 0.5 16.2125(7)
1 3.34891(20)
2 0.48186(6)
3 0.05465(4)
4 -0.059892(34)
5 -0.09678(23)

1 0.5 36.3421(30)
1 8.3856(7)
2 1.74066(18)
3 0.61353(9)
4 0.25383(6)
5 0.10353(6)
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3.3 Quantification of the Systematic Error of the Fixed Node
Approximation

Motivated by the aforementioned high interest in the UEG at finite temperature, in 2013
Brown et al. [107] utilized the restricted path integral Monte Carlo (RPIMC) approach [35]
to obtain the first QMC data for this system over a broad range of temperature and density
parameters. Subsequently, several parametrizations of the exchange–correlation free energy
of the UEG [99, 36, 100] have been constructed on the basis of these data, which have
then been employed in DFT calculations of warm dense matter [85]. However, the RPIMC
approach relies on the so-called fixed node approximation to avoid the fermion sign problem,
which makes the simulation of strongly degenerate fermionic systems possible, but the
obtained results are afflicted with an uncontrolled systematic error. Although it is well-known
that this is negligible for many systems in the ground state [43, 72, 44], at finite temperature
the situation had been unclear. Furthermore, supposedly due to ergodicity issues of the QMC
algorithm, the RPIMC simulations were restricted to density parameters rs ≥ 1, thus leaving
open a gap to the well-known Hartree–Fock limit [120], rs → 0.

For these reasons, in the following paper3, Ref. [46], we carried out extensive CPIMC
simulations in the density range 0.01 ≤ rs ≤ 1 for the same temperatures and system size as
in Ref. [107], i.e., N = 33 spin-polarized electrons 4. This enabled us to directly compare
our exact CPIMC data for the exchange–correlation energy to the previous results, see Fig. 4
in Ref. [46]. The conclusion of this comparison has been very surprising: the RPIMC data
exhibit an increasingly unphysical behavior towards low temperature and high density, which
manifests in systematic deviations of up to 10%. This, in turn, called into question the
reliability of previous parametrizations based on said RPIMC data, thereby stressing the high
demand for improved QMC data over the entire warm dense matter regime—an ambitious
goal to which the remainder of this work is devoted.

My main contribution to this work has been the development, implementation and thor-
ough testing of the so-called kink potential, which more than doubles the density parameter
rs for which CPIMC simulations are feasible. Hence, a meaningful comparison with the
RPIMC approach would not have been possible without this enhancement. A more detailed
discussion of this kink potential has been provided in a follow-up paper of Ref. [55], which
is included in Sec. 3.5.

3T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 115, 130402 (2015). Copyright by the
American Physical Society (2015).

4This corresponds to a full momentum shell of the 3D spin-polarized electron gas.
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For completeness, it shall be mentioned that we also attempted to obtain results in the
thermodynamic limit5 via a direct extrapolation over the electron number N, which was only
possible for very high densities rs ≤ 0.3 (see supplement of Ref. [46]). However, later it
turned out that such a direct extrapolation is, in fact, highly uncontrolled since the exact
functional behavior of the convergence is unknown (see Sec. 4.1).

5That is, N → ∞ at constant density parameter rs.
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The uniform electron gas at finite temperature is of key relevance for many applications in dense
plasmas, warm dense matter, laser excited solids, and much more. Accurate thermodynamic data for the
uniform electron gas are an essential ingredient for many-body theories, in particular, density-functional
theory. Recently, first-principles restricted path integral Monte Carlo results became available, which,
however, had to be restricted to moderate degeneracy, i.e., low to moderate densities with rs ¼ r̄=aB ≳ 1.
Here we present novel first-principles configuration path integral Monte Carlo results for electrons for
rs ≤ 4. We also present quantum statistical data within the e4 approximation that are in good agreement
with the simulations at small to moderate rs.

DOI: 10.1103/PhysRevLett.115.130402 PACS numbers: 05.30.Fk, 71.10.Ca

Thermodynamic properties of quantum degenerate elec-
trons are vital for the description of matter at high densities
[1–3], such as dense plasmas in compact stars or planet
cores [4–6], as well as in laser fusion experiments at NIF
[7–9], Rochester [10], or Sandia [11,12]. Additionally, the
electron component is of crucial importance for under-
standing the properties of atoms, molecules, and existing
and novel materials. The most successful approach has
been density-functional theory (DFT) combined with an
approximation for the exchange-correlation potential. Its
success is based on the availability of accurate zero
temperature data for the uniform eledtron gas (UEG),
which is obtained from analytically known limiting cases
combined with first-principles quantum Monte Carlo
(QMC) data [13].
In recent years more and more applications have emerged

where the electrons are highly excited, e.g., by compression
of the material or by electromagnetic radiation. This has led
to an urgent need for accurate thermodynamic data of the
UEG at finite temperature. One known limiting case is the
highly degenerate ideal Fermi gas (IFG), and perturbation
theory results around the IFG, startingwith theHartree-Fock
and the first two correlation corrections (Montroll-Ward and
e4 approximation) [14–19], have long been known. They
break down when the Coulomb interaction energy among
the electrons becomes comparable to their kinetic energy,
requiring computer simulations such as path integral
Monte Carlo (PIMC) simulations [20]. While restricted
PIMC (RPIMC) results for dense multicomponent quantum
plasmas [21,22], as well as direct fermionic PIMC (DPIMC)
results [23–26], have been available for 15 years, only
recently finite-temperature RPIMC results for theUEGhave
been obtained [27]. It is well known that fermionic PIMC
simulations in continuous space are hampered by the
fermion sign problem (FSP), which is known to be NP
hard [28]. Thismeans, with increasing quantum degeneracy,
i.e., increasing parameter χ ¼ nλ3DB, which is the product

of density and thermal de Broglie wavelength cubed
(λ2DB ¼ h2½2πmkBT�−1), the simulations suffer an exponen-
tial loss of accuracy. The RPIMC method formally avoids
the FSP by an additional assumption on the nodes of the
density matrix; however, it also cannot access high densities
[29], rs < 1 (rs ¼ r̄=aB, where r̄ is the mean interparticle
distance,n−1 ¼ 4πr̄3=3, andaB is theBohr radius).Also, the
quality of the simulations around rs ¼ 1, at low temper-
atures Θ ¼ kBT=EF ≤ 1 (EF is the Fermi energy) is
unknown. However, this leaves out the high-density range
that is of high importance, e.g., for deuterium-tritium
implosions at NIF where mass densities of 400 g cm−3

were reported [9], corresponding to rs ≈ 0.24; see Fig. 1.

FIG. 1 (color online). Density-temperature plain in the warm
dense matter range. Typical inertial confinement fusion (ICF)
parameters [8]. Quantum (classical) behavior dominates below
(above) the line Θ ¼ 1. Γ ¼ e2=r̄kBT is the classical coupling
parameter. Red dots, available finite-temperature RPIMC [27]
andDPIMC[30] data for theUEG; blue dots, ground state data of
Ref. [31]; green crosses, CPIMC and analytical results of
this work.
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The authors of Ref. [27] also performed DPIMC sim-
ulations that confirmed that, for Θ < 0.5 and rs ≲ 4, these
simulations are practically not possible. We also mention
independent recent DPIMC simulations [30] that are over-
all in good agreement with the data of Ref. [27] but indicate
large deviations for the lowest temperatures and rs ≲ 2. To
bridge the gap between the known analytical result for the
IFG (rs ¼ 0) and previous simulations (rs ≳ 1) and to
provide comprehensive input data for finite-temperature
DFT, several fits have been proposed [32,33]. However,
they crucially depend on the quality of the underlying
simulation data.
In this Letter we present the first ab initio simulation

results that avoid a simplified treatment of fermionic
exchange for rs ≲ 1 and finite temperatures Θ≲ 1.0. We
apply the recently developed fermionic configuration path
integral Monte Carlo (CPIMC) approach to the UEG and
demonstrate its capabilities for 33 spin-polarized electrons
in a cubic box of side length L (as was studied in
Refs. [27,34]). Our simulations have no sign problem
for 0 ≤ rs ≤ 0.4 and are accurate up to rs ¼ 1;…; 4,
depending on temperature.
CPIMC approach for the UEG.—The Hamiltonian in

second quantization with respect to plane waves h~rj~ki ¼
ð1=L3=2Þei~k·~r, with ~k ¼ ð2π=LÞ ~m, ~m ∈ Z3, is (Rydberg
units)

Ĥ ¼
X

i

~k2i â
†
i âi þ 2

X

i<j;k<l
i≠k;j≠l

w−
ijklâ

†
i â

†
j âlâk þ EM; ð1Þ

with w−
ijkl ¼ wijkl − wijlk, wijkl ¼ ð4πe2=L3~k2ikÞδ~kiþ~kj;~kkþ~kl

,

where the first (second) term describes the kinetic (inter-

action) energy and ~kik ¼ ~ki − ~kk. The Madelung energy EM
accounts for the self-interaction of the Ewald summation in
periodic boundary conditions [35] for which we found
EM≈−2.837297ð3=4πÞ1=3N2=3r−1s . The operator â†i (âi)

creates (annihilates) a particle in the orbital j~kii. In the

interaction term, the ~ki ¼ ~kk and ~kj ¼ ~kl components cancel
with the interactions with the positive background. While

the complete (infinite) set of planewaves h~rj~kii forms a basis
in the single-particle Hilbert space, for simulations it has to
be truncated at a number NB of orbitals.
In conventional RPIMC and DPIMC simulations, the

system (1) is treated in the coordinate representation
allowing for a numerically exact description in the classical
strongly coupled limit and for weak degeneracy. The
CPIMC method [36], in contrast, is constructed in a way
that it allows for exact simulations in the opposite limit of
the ideal Fermi gas, rs ¼ 0 [37], and at weak to moderate
coupling and strong to moderate degeneracy. This is
achieved by representing the N-electron state in second
quantization [38] as a superposition of Slater determinants,
jfngi ¼ jn1; n2;…i, with the fermionic occupation

numbers, ni ¼ 0; 1, of the orbitals j~kii. In this way,
fermionic antisymmetry is “built in” exactly. The partition
function Z and quantum-statistical expectation values, such
as the internal energy U, are straightforwardly computed in
Fock space as

ZðΘ; rs;NÞ ¼ Trjfngie−βĤ; ð2Þ
UðΘ; rs;NÞ ¼ hĤi ¼ Z−1TrjfngiĤe−βĤ: ð3Þ

The trace is evaluated using the concept of the continuous
time PIMC method, which has been successfully applied
to bosonic lattice models [40–43]. We have generalized
this concept to continuous fermionic systems with long-
range interactions [36,44]. The main idea is to split the
Hamiltonian into a diagonal D̂ and an off-diagonal part Ŷ
and to sum up the entire perturbation series of the density
operator e−βĤ in terms of Ŷ. The final result, for the case of
the UEG, is [45]

Z ¼
X∞

K¼0;
K≠1

X

fng

X

s1…sK−1

Z
β

0

dτ1

Z
β

τ1

dτ2…
Z

β

τK−1

dτK

× ð−1ÞKe−
P

K
i¼0

DfnðiÞgðτiþ1−τiÞ Y
K

i¼1

ð−1Þαsi w−
si ; ð4Þ

DfnðiÞg ¼
X

l

~k2l n
ðiÞ
l þ

X

l<k

w−
lklkn

ðiÞ
l nðiÞk ;

αsi ¼ αðiÞpqrs ¼
Xq−1

l¼p

nði−1Þl þ
Xs−1

l¼r

nðiÞl ; ð5Þ

where si ¼ ðp; q; r; sÞ and p < q; r < s denotes a quad-
ruple of pairwise different orbital indices.
Thus, the partition function is represented as a sum over

β-periodic “paths” in Fock space, in imaginary time, which
we illustrate in Fig. 2: For an ideal Fermi system a path is
characterized by a single N-particle Slater determinant
jfngi. For a correlated Fermi system the original

FIG. 2. Typical closed path in Slater determinant (Fock) space.

The state with three occupied orbitals j~k0i; j~k1i; j~k3i undergoes a
two-particle excitation ðs1; τ1Þ that replaces the occupied orbitals

j~k0i; j~k3i by j~k2i; j~k5i. Two further excitations occur at τ2 and τ3.
The states at the “imaginary times” τ ¼ 0 and τ ¼ β coincide. All
possible paths contribute to the partition function Z, Eq. (4).
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determinant jfngi ¼ jfnð0Þgi (straight horizontal lines in
Fig. 2) is interrupted by excitations of the type ðs; τÞ: at
time τ, a pair of occupied orbitals j~kri; j~ksi is replaced by

the previously empty pair j~kpi; j~kqi. Paths differ by the
number K of excitations (“kinks”), their times τ1;…; τk on
the τ interval ½0; β�, and the involved quadruples of orbitals
s1;…; sK. The partition function clearly reflects this
summation over the different types of kinks, integration
over the kink times, and summation over K [cf. first line of
Eq. (4)]. The weight of each path [terms in the second line
of Eq. (4)] is determined by the Fock state matrix elements
of the Hamiltonian, where diagonal elements DfnðiÞg,
Eq. (5), arise from the kinetic energy and the mean-field
part of the Coulomb interaction, whereas off-diagonal
elements, ð−1Þαsi w−

si , are due to the remaining Coulomb
interaction (correlation part) [46]. Expression (4) is exact
for NB → ∞, allowing for ab initio thermodynamic sim-
ulations of the UEG.
Thermodynamic observables, such as the internal energy

(3) can be cast in a form similar to Eq. (4) [45] that can be
efficiently evaluated using the Metropolis Monte Carlo
algorithm. To this end, we developed an ergodic algorithm
that generates all possible paths in Slater determinant space.
For the UEG, a total of 6 different steps are required,
including addition and removal of a single kink and pairs of
kinks, modification of an existing kink, and excitation of
single orbitals; for details, see Ref. [45].
Numerical results.—Our CPIMC algorithm was exten-

sively tested for Coulomb interacting fermions in a 1D

harmonic trap [36]. A first test of the present algorithm for
the UEG for N ¼ 4 particles showed excellent agreement
with exact diagonalization data [45] and was exactly
reproduced by independent density matrix QMC calcula-
tions [47]. Here, we extend these simulations to N ¼ 33
particles. First, we check the convergence with respect to
the basis size NB and show a typical case in Fig. 3(a) for
rs ¼ 0.4. The scaling with respect to x ¼ 1=N−5=3

B [48]
allows for a reliable extrapolation to x → 0 and to set
NB to 2109 for all simulations, giving a relative basis
incompleteness error not exceeding the statistical error (1σ
standard deviation).
With these parameters, we have performed extensive

ab initio CPIMC simulations (the only approximation
being the choice of NB) for the ideal and weakly coupled
UEG, up to rs ∼ 0.4. For larger rs, we observe a rapid
decrease of the average sign, in analogy to the harmonic
oscillator case [36]. This gives rise to convergence prob-
lems of the MC algorithm in case a path with many kinks is
attempted. We, therefore, introduce an artificial kink
potential in Eq. (4), VκðKÞ¼½e−ðκþ0.5−KÞþ1�−1, for calcu-
lations with rs > 0.4, yielding the correct partition function
in the limit κ → ∞. Performing simulations for different κ,
we generally observe a rapid convergence of the total energy
allowing for an extrapolation to 1=κ → 0. This is demon-
strated for a particularly difficult case in Fig. 3(b). The
asymptotic value and the error estimate are computed from
the two extreme cases of a horizontal and linear extrapo-
lation. With this procedure the simulations could be
extended to rs ¼ 1, with the total error not exceeding 0.15%.
Our results for the exchange-correlation energy per

electron Exc are summarized in Fig. 4. The data cover
the whole range 0 ≤ rs ≤ 1 and include the ideal Fermi gas
where Excrs → const (Hartree-Fock limit). A detailed table

(a)

(b)

FIG. 3 (color online). Convergence of the CPIMC simulations.
(a) Convergence with the single-particle basis size NB for
rs ¼ 0.4. The expected scaling with N5=3

B [48] is well reproduced.
(b) Convergence with respect to the kink potential parameter κ
(see text) and extrapolation to 1=κ → 0, corresponding to
K → ∞, for rs ¼ 1.0 and θ ¼ 0.0625. The asymptotic value is
enclosed between the red line and the blue line.

FIG. 4 (color online). Exchange-correlation energy (times rs)
for 33 spin-polarized electrons and four temperatures. Compari-
son of our CPIMC results (full symbols with error bars [53]) and
RPIMC results of Ref. [27] (open symbols). The dotted line is an
interpolation between the CPIMC and RPIMC data for
Θ ¼ 0.0625. Also shown is the data point of DuBois et al.
[34] for Θ ¼ 0.125.
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of the various energy contributions as well as additional
data for larger values of Θ and rs are presented in the
Supplemental Material [49]. A nontrivial observation is
the nonmonotonic temperature dependence (cf. crossing of
the red and pink curves) that is in agreement with RPIMC
calculations and the macroscopic fit of Ref. [32].
Interestingly, all curves seem to cross over smoothly into
the RPIMC data [27,50], for rs ≳ 4, as indicated by the
dotted line. There is an obvious mismatch in the range
rs ∼ 1–4. Since our curves are accurate within the given
error, this discrepancy is expected to be due to the
(unknown) systematic error involved in the RPIMCmethod
[51]. Also, the energy obtained by DuBois et al. [34], for
rs ¼ 1 and Θ ¼ 0.125, is found to be too low.
Macroscopic results.—Predictions for a macroscopic

system, based on data for just 33 particles, will inevitably
lead to a loss of accuracy. Brown et al. published finite
size corrections (FSC) in the Supplemental Material of
Ref. [27], whereas a ground state formula [FSC(a)] has
been presented in Ref. [54]. We tested both FSCs, after
incorporating a twist-averaging procedure in our simula-
tions [55]. For the lowest temperature, Θ ¼ 0.0625 and
rs ¼ 1, FSC(a) leads to reasonable agreement with ana-
lytical approximations (see below), and smoothly connects
to the RPIMC data, for rs ≳ 5, cf. Fig. 5. For smaller rs and
higher Θ, the formula is not applicable. On the other hand,
the FSC of Brown produces energies that are systematically
too high [56]. Because of the lack of applicable high-
density FSC, we performed additional CPIMC simulations
for particle numbers up to Nmax ¼ 800, allowing for an
extrapolation to the macroscopic limit, for rs ¼ 0.1 and
Θ ¼ 0.0625;Θ ¼ 0.5 [49]. For Θ ¼ 0.0625, an additional
point at rs ¼ 0.3 could be obtained [57], cf. the crosses in
Fig. 5. These accurate data will be a suitable starting point

for the construction of FSC formulas that are applicable at
high densities.
To obtain independent analytical results for the macro-

scopic UEG, we now compute Exc including, in addition
to Hartree-Fock [15], the two second order diagrams
(Montroll Ward and e4) [49]. The two results (cf. Fig. 5)
converge for low rs, eventually reaching the Hartree-Fock
asymptote (horizontal line), whereas for rs ≳ 0.1 they start
to deviate from one another, and we expect the exact result
to be enclosed between the two [49]. Reliable predictions
are possible up to rs ∼ 0.8, for Θ ¼ 0.0625, and rs ∼ 0.55,
for Θ ¼ 0.5 [49]. In Fig. 5 we also include the fit of
Ref. [32] that shows, overall, a very good behavior, but is
too low at rs → 0, with the deviations growing with Θ [49].
To summarize, we have presented first-principles con-

figuration PIMC results for the UEG at finite temperature
that have no sign problem at high to moderate degeneracy,
rs ≲ 0.4, and allow for reliable predictions up to rs ¼ 4.
This makes CPIMC simulations a perfect complementary
approach to direct fermionic PIMC and to RPIMC simu-
lations that cannot access high densities, and our results
indicate that the previous RPIMC data are not reliable for
rs ≲ 4. The present results will be important for dense
quantum plasmas at finite temperatures that are relevant for
warm dense matter, in general, and for inertial confinement
fusion (ICF), in particular. Since here the electrons are
typically unpolarized, we tested our CPIMC approach for
this case. Although the sign problem is more severe than for
the polarized situation, the CPIMC approach is well capable
of producing very accurate ab initio finite-temperature
results that smoothly connect to available T ¼ 0 data [49].
Finally, the obtained accurate exchange-correlation

energies provide benchmarks for finite temperature DFT,
RPIMC [27], novel independent QMC simulations
[34,48,52] and analytical fits [32]. Even though the fermion
sign problem is not removed, the proposed combination of
the CPIMC approach with the DPIMC approach (or the
RPIMC approach) provides, for the UEG, a practical way
to avoid it.
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Supplementary material for manuscript
“Ab initio thermodynamic results for the

degenerate electron gas at finite temperature”

T. Schoof, S. Groth, J. Vorberger, and M. Bonitz

This supplement contains additional information on 1. CPIMC simulations for the polarized electron gas, 2.
Thermodynamic Green functions results and 3. the first CPIMC results for the unpolarized (paramagnetic)
electron gas.

1 First-principle CPIMC simulation results for the spin-polarized
electron gas

1.1 Energy contributions for the uniform electron gas at finite temperature and high
density

Here, we include the configuration path integral Monte Carlo (CPIMC) data for the uniform electron gas used
in the figures of the main text. Table 1 contains the total, kinetic and potential energy for 33 fully polarized
particles in the canonical ensemble for a broad range of temperatures and densities, together with the total
energy of the non-interacting Fermi gas. For rs ≥ 0.6, an additional potential Vκ restricting the number of
kinks was used and the total, kinetic and potential energies were each extrapolated to the unrestricted case, as
explained in the main text. Therefore, for these values, the sum of kinetic and potential energy equals the
total energy only within the given errors. The errors were constructed to include systematic uncertainties
due to the extrapolation. For the ideal Fermi gas, NB = 925 basis function were used. For all other cases the
calculations were performed using NB = 2109 basis functions. For θ = 1.0, the basis size used for the ideal
Fermi gas was increased to NB = 2109 and for the interacting system to NB = 4169. The basis incompleteness
error is less than the statistical error, as explained in the main text. All statistical errors correspond to a 1σ
standard deviation.
In Tab. 2 we present energies per particle for temperatures in the range of θ = 2 to θ = 8 as well as the

energy of the ideal Fermi gas. For the CPIMC simulations, NB = 5575, NB = 24 405, and NB = 44 473 basis
functions have been used for θ = 2, θ = 4, and θ = 8, respectively. An extrapolation with respect to the
additional potential Vκ was applied to rs ≥ 2 for θ = 2 and rs = 4 for θ = 4.

1.2 Finite size corrections
To map our data for N = 33 particles to the macroscopic limit we use the finite size corrections for the kinetic
and potential energy of Drummond et al. [1] for the spin polarized case

∆T (rs, β;N) =
1

N

(
ωp
4
− 5.264

πr2s(2N)1/3
2−2/3

)
(S1)

∆V (rs;N) =
ωp
4N

, (S2)

where β = 1/kBT , and we introduced the plasma frequency ωp = 2
√

3
r3s

(in units of Rydberg). These formulas
were derived for twist averaged boundary conditions [2], so we performed corresponding simulations for two
temperatures (θ = 0.0625 and θ = 0.5) and densities from rs = 0.01 to rs = 1.0. As N = 33 constitutes a
magic number, twist averaging has a small effect for lower densities but becomes more important for rs < 1.0.
Formulas (S1, S2) are called “FSC (a)” in the main manuscript and work well for not too high density, although
a small deviation from the e4 approximation and the fit of Ref. [9] remains. The deviations grow much faster
with density for θ = 0.5, which reflects the fact that these corrections are derived for the ground state.
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Figure S1: (Color online) Extrapolation to the macroscopic limit. Left, θ = 0.0625; right, θ = 0.5. Blue
symbols denote CPIMC total energies per particle for various particle numbers in twist-averaged
boundary conditions. The grey area visualizes the range of fits for different choices of the starting-
and endpoints. The resulting macroscopic energy is shown in black.

On the path to improve the available finite size corrections for high densities and finite temperatures we also
performed twist-averaged CPIMC calculations for up to N = 800 particles at rs = 0.1 and two temperatures
θ = 0.0625 and θ = 0.5, which allow for a reliable extrapolation of finite-size results to the macroscopic limit.
For rs = 0.3, approximate results were obtained for up to N = 150 particles by CPIMC calculations which
used only even kink numbers. This approach yields reasonable results for low temperatures. In all cases, at
least 128 random twist angles have been used. The dependence of the total energy on the particle numbers is
in good agreement with a power law of E(N) ∝ N−1 as used in [1].

Although being greatly reduced by twist-averaging, shell effects are still present in the energy data, introducing
a significant dependence on the starting- and endpoint of a fit. For this reason, we fitted the total energy for
all possible starting-points in the range N ∈ [80, 200] (N ∈ [100, 200]) and all possible endpoints in the range
N ∈ [300, 400] (N ∈ [600, 800]) for rs = 0.1 and θ = 0.0625 (θ = 0.5). For rs = 0.3 and θ = 0.0625 particle
numbers were chosen between N ∈ [80, 100] and N ∈ [120, 150]. As it is unclear how to weight the single fits,
the final result is simply taken to be the average between the minimal and the maximal extrapolated value
with their difference as uncertainty. This is shown in Fig. S1. As for all fits in this work, data points have
been weighted relative to their error bar.

Tab. 3 shows the resulting finite-size corrections for N = 33 particles, denoted by FSC (b) in the main text.
These differ from the analytic formulas Eq. (S1) and Eq. (S2), denoted by FSC (a), by more than 2.3 Ry in
the worst case of θ = 0.5, highlighting the importance of improved corrections at high densities and finite
temperatures.

2 Green functions results for the exchange-correlation energy of the
spin-polarized electron gas in Montroll-Ward and e4 approximation

To describe the spin-polarized electron gas in semi-analytical form, we employ the quantum statistical method
of thermodynamic Green functions [5, 6]. Its advantage is the ability to describe systems in the thermodynamic
limit with arbitrary temperatures including the correct T =0 physics, the transition to Boltzmann statistics,
and the correct high temperature (Debye-Hückel) law. Using this technique, a perturbation expansion in the
interaction strength can be established [6, 7]. Including terms up to the second order, one obtains

Uee(T, αe) = U id
e (T, αe) + UHF

e (T, αe) + UMW
ee (T, αe) + U e4n

e (T, αe) . (S3)

Here, αe = µe/kBT is the activity with the chemical potential µe, the temperature T , and the Boltzmann
constant kB. The terms are the ideal gas law, the Hartree-Fock (HF) quantum exchange term, the direct
Montroll-Ward (MW) term, and quantum exchange contributions of the second order (e4n), respectively.
Further, chemical potential and density are related via neλ3DB = I1/2(αe), where, λDB=

√
2π~2/mekBT is the

electron thermal deBroglie wavelength, and Iν is the Fermi integral of order ν [6]. The inversion (transition)
from the grand canonical ensemble to the canonical ensemble has already taken place in the golden rule
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Figure S2: Green functions results for the exchange-correlation energy (times rs) of the polarized uniform
electron gas: The Montroll-Ward (MW) and e4 approximation are compared to Hartree-Fock (HF)
and the fit of Karasiev et al. [9]. The exact result is unknown but expected to be inbetween
the e4 and MW curves (cf. shaded area). Due to the weak coupling expansion, the e4 and MW
approximations are restricted to small rs values. The width of the shaded area can be used to
judge the validity range of the analytical approximations: we terminate the shaded area when the
width exceeds 1% of the mean value of Etot. The points with the error bars denote the CPIMC
results for rs = 1, applying the finite size correction of Drummond et al. [1], Eqs. (S1, S2). The
crosses denote the CPIMC extrapolation over N , see text and Tab. 3.

approximation, and the resulting additional terms are given below together with the HF, MW and e4 terms.
We summarize the results used in the main text.

1. The ideal internal energy is given by

U id
e (T, αe) =

3

2

kBT

λ3DB
I3/2(αe) . (S4)

2. First order exchange contributions are contained in the HF term [6]

UHF
e (T, αe) =

e2

λ4DB

αe∫

−∞

dα I2−1/2(α)− 3e2

2λ4DB
I−1/2(αe)I1/2(αe), (S5)

where the 2nd term is a direct result of the inversion procedure or can be seen as resulting from the
temperature derivative of the free energy.

3. The Montroll-Ward contribution to the equation of state can be computed using the dielectric function of
the spin-polarized electron gas, εe(p, ω) = 1− Vee(p)Πee(p, ω), with the result [7]

pMW
e (T, µe) =

−1

4π3

∞∫

0

dp p2 P
∞∫

±0

dω coth

(
~ω

2kBT

)[
arctan

Im εe(p, ω)

Re εe(p, ω)
− Im εe(p, ω)

]
. (S6)

It is consistent with the expansion (S3) to use here the dielectric function in random phase approximation
(RPA).

4. The normal e4 exchange term for the equation of state, accounting for exchange effects of second order,
can be written as an integral over Fermi functions, fp=[exp(βp2/2me−βµe)+1]−1, and Pauli blocking
factors, denoted f̄p=[1−fp] [7],

pe
4n
e (T, µe) =

me

2

∫
dpdq1dq2

(2π)9
vee(p)vee(p + q1 + q2)

fq1fq2 f̄q1+pf̄q2+p − fq1+pfq2+pf̄q1 f̄q2
q21 + q22 − (p + q1)2 − (p + q2)2

,

(S7)

where, vee is the bare electron-electron Coulomb potential.
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Figure S3: (Color online) CPIMC results for the unpolarized UEG for N = 14. a: low temperature total
energy for rs = 0.5, compared to the ground state data of Ref. [10], horizontal black line, grey area
denotes the error bars. b: Density dependence of the exchange-correlation energy for Θ = 0.5.

5. From the two results for the pressure, Eqs. (S6, S7), the corresponding internal energy contributions follow
according to

Uke (T, αe) = −pke(T, αe) + T
∂

∂T
pke(T, αe), k = MW, e4n. (S8)

The expansion (S3) accounts for direct correlations and dynamic screening, incorporates collective oscillations
(plasmons) as well as quantum diffraction and exchange in the electron system. This expression is valid for
weakly coupled electrons of arbitrary degeneracy and, in particular, includes the low and high temperature
limiting cases of Debye-Hückel as well as Gell-Mann and Brueckner, respectively [7].
In the following, we use the notation “e4 approximation” for the complete expression (S3), whereas “MW”

denotes the result (S3) without the last term. Numerical results for the e4 approximation, for two temperatures,
are shown in Fig. 5 of the manuscript. Here we present additional data, extending the temperature range to
Θ = 1, and we also compare with the Hartree-Fock (HF) and Montroll-Ward (MW) approximations. Figure S2
shows the exchange-correlation energy (times rs) for four temperatures. In all cases, the high-density limit is a
horizontal line, approaching the Hartree-Fock approximation. For lower densities approaching rs = 1, MW and
e4 start to deviate from each other. Obviously, the series expansion contains sign alternating contributions so
we expect that the exact result will be enclosed between the MW- and e4 approximations where e4 yields an
upper bound to the exchange-correlation energy. Furthermore, we notice that the agreement between MW-
and e4 approximations improves with decreasing temperature.

The data for the total energy in the various analytical approximations are presented in table 1.

3 First CPIMC simulation results for the unpolarized electron gas
For the ideal Fermi gas, NB = 925 basis function were used. For all other cases, the calculations were performed
using NB = 2109 basis functions. The results for unpolarized electrons with N = 14 are shown in Figure S3
and in Table 4. No twist averaging and finite size extrapolation has been performed. The table also contains
thermodynamic Green functions results for the macroscopic unpolarized UEG with the same approximations
as explained above.
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Table 1: Left part: CPIMC energies per particle for N = 33 polarized electrons: ideal energy, U0, total energy, Etot, kinetic energy, Ekin, and potential energy, Epot.
Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy U0 (S4), Hartree-Fock (HF), Eq. (S5),
Montroll-Ward (MW), Eqs. (S6, S8) and e4 approximation (e4), Eqs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 33) Analytical approximations

θ rs U0 Etot Ekin Epot U0 HF MW e4

0.0625 0.01 35 458.07(4) 35 336.30(22) 35 457.65(22) −121.3612(4) 35 640.21 35 523.06 35 523.06 35 523.09
0.02 8864.517(9) 8803.59(4) 8864.32(4) −60.727 38(11) 8909.727 8851.156 8851.136 8851.168
0.05 1418.3227(15) 1393.918(9) 1418.264(9) −24.346 28(4) 1425.608 1402.179 1402.082 1402.114
0.10 354.5807(4) 342.358(5) 354.575(5) −12.217 61(9) 356.4021 344.6876 344.5623 344.5928
0.20 88.645 17(9) 82.5102(15) 88.6609(14) −6.150 73(5) 89.100 54 83.2433 83.128 84 83.160 94
0.30 39.397 85(4) 35.2933(8) 39.4197(8) −4.126 41(5) 39.600 23 35.695 41 35.586 07 35.617 42
0.40 22.161 292(23) 19.0740(5) 22.1871(5) −3.113 04(5) 22.275 13 19.346 51 19.241 05 19.272 65
0.60 9.849 463(10) 7.7787(14) 9.8776(11) −2.097 26(19) 9.900 058 7.947 647 7.848 245 7.880 411
0.80 5.540 323(6) 3.9779(22) 5.5693(32) −1.590(4) 5.568 787 4.104 478 4.009 63 4.040 199
1.00 3.545 807(4) 2.2898(15) 3.5745(34) −1.2835(34) 3.564 021 2.392 57 2.301 711 2.332 256

0.1250 0.01 37 217.14(6) 37 092.91(30) 37 212.95(30) −120.0438(4) 37 275.81 37 155.89 37 155.87 37 155.91
0.02 9304.284(16) 9242.12(6) 9302.19(6) −60.075 62(22) 9318.611 9258.653 9258.612 9258.648
0.05 1488.6854(25) 1463.827(11) 1487.920(11) −24.092 91(7) 1491.032 1467.049 1466.96 1466.995
0.10 372.1714(6) 359.715(4) 371.812(4) −12.096 87(11) 372.7581 360.7661 360.6584 360.6927
0.20 93.042 84(16) 86.8060(16) 92.9013(15) −6.095 27(6) 93.189 54 87.193 55 87.098 77 87.134 98
0.30 41.352 37(7) 37.1833(7) 41.2755(7) −4.092 22(6) 41.417 57 37.420 25 37.331 13 37.366 92
0.40 23.260 71(4) 20.1268(6) 23.2159(6) −3.089 07(7) 23.297 38 20.299 39 20.213 65 20.248 08
0.60 10.338 093(18) 8.2390(12) 10.3238(16) −2.0836(5) 10.354 39 8.355 732 8.273 912 8.309 463
0.80 5.815 177(10) 4.2334(29) 5.8139(19) −1.582(8) 5.824 351 4.325 353 4.246 401 4.281 027
1.00 3.721 714(6) 2.450(4) 3.729(5) −1.280(9) 3.727 581 2.528 384 2.452 161 2.487 229

0.2500 0.01 43 133.28(8) 43 005.3(5) 43 119.7(5) −114.3657(9) 43 073.15 42 951.16 42 950.94 42 951
0.02 10 783.320(19) 10 719.93(11) 10 777.18(11) −57.257 92(34) 10 767.89 10 706.89 10 706.58 10 706.64
0.05 1725.3312(30) 1699.891(18) 1722.883(18) −22.992 32(14) 1722.925 1698.526 1698.238 1698.301
0.10 431.3328(8) 418.612(7) 430.178(7) −11.566 46(15) 430.7315 418.5319 418.2997 418.3626
0.20 107.833 20(19) 101.4488(15) 107.2978(15) −5.849 05(8) 107.6829 101.5831 101.417 101.4799
0.30 47.925 87(8) 43.6591(8) 47.5981(8) −3.938 97(7) 47.859 03 43.7925 43.648 36 43.711 11
0.40 26.958 30(5) 23.7508(5) 26.7321(5) −2.981 32(7) 26.920 71 23.870 81 23.742 75 23.805 54
0.60 11.981 467(21) 9.8327(12) 11.8538(14) −2.0199(7) 11.964 76 9.931 492 9.821 115 9.884 106
0.80 6.739 575(12) 5.1215(21) 6.662(5) −1.542(10) 6.730 183 5.205 231 5.106 167 5.169 354
1.00 4.313 328(8) 3.014(4) 4.262(7) −1.249(11) 4.307 315 3.087 35 2.995 452 3.058 339
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Table 1: (continued). Left part: CPIMC energies per particle for N = 33 polarized electrons: ideal energy, U0, total energy, Etot, kinetic energy, Ekin, and potential
energy, Epot. Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy U0 (S4), Hartree-Fock (HF),
Eq. (S5), Montroll-Ward (MW), Eqs. (S6, S8) and e4 approximation (e4), Eqs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 33) Analytical approximations

θ rs U0 Etot Ekin Epot U0 HF MW e4

0.5000 0.01 59 504.77(16) 59 380.6(8) 59 483.0(8) −102.3978(9) 59 732.07 59 622.44 59 621.3 59 621.45
0.02 14 876.19(4) 14 814.74(18) 14 866.03(17) −51.2963(6) 14 932.47 14 877.66 14 876.23 14 876.38
0.05 2380.191(6) 2355.402(25) 2376.036(25) −20.634 13(16) 2389.282 2367.357 2366.254 2366.406
0.10 595.0477(16) 582.650(14) 593.058(14) −10.408 43(26) 597.3207 586.358 585.5635 585.7148
0.20 148.7619(4) 142.5160(35) 147.8068(35) −5.290 79(14) 149.3301 143.8488 143.3036 143.4549
0.30 66.116 41(18) 61.9353(14) 65.5152(14) −3.579 92(12) 66.368 94 62.714 72 62.277 54 62.4288
0.40 37.190 48(10) 34.0378(12) 36.7589(12) −2.721 07(9) 37.332 53 34.591 87 34.218 35 34.369 54
0.60 16.529 10(5) 14.4093(21) 16.2673(14) −1.8577(8) 16.592 24 14.765 13 14.466 16 14.6174
0.80 9.297 620(25) 7.6943(26) 9.1196(30) −1.424(4) 9.333 143 7.962 809 7.708 448 7.8597
1.00 5.950 477(16) 4.660(4) 5.823(6) −1.162(6) 5.973 207 4.876 941 4.652 623 4.803 846

1.0000 0.01 98 930.9(15) 98 821.7(26) 98 908.8(26) −87.0477(13) 99 202.77 99 124.46 99 122.08 99 122.22
0.02 24 732.7(4) 24 678.7(8) 24 722.3(8) −43.6217(6) 24 799.78 24 760.63 24 757.84 24 757.98
0.05 3957.24(6) 3935.63(13) 3953.20(13) −17.565 21(30) 3968.11 3952.448 3950.353 3950.488
0.10 989.309(15) 978.392(29) 987.269(29) −8.876 69(14) 992.0277 984.1968 982.7109 982.8453
0.20 247.327(4) 241.809(7) 246.337(7) −4.527 97(6) 248.0069 244.0914 243.0704 243.2047
0.30 109.9232(17) 106.2045(26) 109.2790(26) −3.074 50(5) 110.2253 107.6149 106.7979 106.9326
0.40 61.8318(9) 59.0190(15) 61.3643(15) −2.345 234(31) 62.001 72 60.043 98 59.347 61 59.481 75
0.60 27.4808(4) 25.5776(6) 27.1891(6) −1.611 536(25) 27.556 32 26.251 16 25.697 37 25.833 41
0.80 15.457 95(23) 14.0102(7) 15.2531(8) −1.2429(13) 15.500 45 14.521 58 14.051 82 14.186 54
1.00 9.893 09(15) 8.7214(8) 9.7379(8) −1.016 20(22) 9.920 273 9.137 178 8.725 332 8.860 601
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Table 2: Left part: CPIMC energies per particle for N = 33 polarized electrons: total energy, Etot, kinetic
energy, Ekin, and potential energy, Epot. Right part: total ideal energy per particle of the macroscopic
UEG U0, Eq. (S4). Energies in units of Ryd.

CPIMC (N = 33) Analytical

θ rs Etot Ekin Epot U0

2 0.01 183 285(5) 183 359(5) −74.0447(18) 183 606
0.02 45 798.6(13) 45 835.7(13) −37.1009(8) 45 901.49
0.05 7317.02(21) 7331.95(21) −14.931 82(29) 7344.238
0.10 1824.76(5) 1832.30(5) −7.540 91(15) 1836.06
0.20 453.875(11) 457.718(11) −3.843 04(7) 459.0149
0.30 200.673(5) 203.281(5) −2.608 21(5) 204.0066
0.40 112.2688(29) 114.2583(29) −1.989 45(4) 114.7537
0.60 49.3465(13) 50.7147(13) −1.368 156(27) 51.001 66
0.80 27.4380(7) 28.4931(7) −1.055 121(21) 28.688 43
1.00 17.3488(4) 18.2145(4) −0.865 710(24) 18.3606
2.00 4.0557(7) 4.5340(4) −0.4779(4) 4.590 149
3.00 1.662(9) 2.0104(33) −0.353(15) 2.040 066

4 0.01 356 381(29) 356 446(29) −65.4691(22) 356 620.9
0.02 89 058(6) 89 091(6) −32.7831(12) 89 155.23
0.05 14 242.9(11) 14 256.1(11) −13.1747(5) 14 264.84
0.10 3556.76(24) 3563.40(24) −6.638 01(24) 3566.209
0.20 887.28(5) 890.65(5) −3.367 82(10) 891.5523
0.30 393.479(21) 395.756(21) −2.277 09(7) 396.2455
0.40 220.847(10) 222.578(10) −1.731 12(5) 222.8881
0.60 97.685(5) 98.869(5) −1.184 028(28) 99.061 37
0.80 54.6867(25) 55.5962(25) −0.909 488(22) 55.722 02
1.00 34.8168(22) 35.5607(22) −0.743 913(29) 35.662 09
2.00 8.4690(4) 8.8769(4) −0.407 964(16) 8.915 523
4.00 1.9826(9) 2.2149(6) −0.2318(6) 2.228 881

8 1.00 69.840(33) 70.501(33) −0.660 83(11) 70.572 06

Table 3: Total energies per particle for N = 33 polarized electrons in twist-averaged boundary conditions,
extrapolated results for the corresponding macroscopic system, analytic FSC (a) from Eqs. (S1, S2),
FSC (b) obtained from CPIMC extrapolation, and analytic approximations, see Eqs. (S6, S8) and
Eqs. (S7, S8). Energies per particle in units of Ryd.

θ rs Etot (N = 33) Etot (N →∞) FSC (a) FSC (b) MW e4

0.0625 0.1 344.354(28) 344.61(7) 0.868 265 0.26(8) 344.5623 344.5928
0.3 35.5033(28) 35.631(26) 0.231 478 0.128(26) 35.586 07 35.617 42

0.5 0.1 582.39(7) 585.630(16) 0.868 265 3.24(7) 585.5635 585.7148
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Table 4: Left part: CPIMC energies per particle for N = 14 unpolarized electrons: ideal energy, U0, total energy, Etot, kinetic energy, Ekin, and potential energy, Epot.
Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy U0 (S4), Hartree-Fock (HF), Eq. (S5),
Montroll-Ward (MW), Eqs. (S6, S8) and e4 approximation (e4), Eqs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 14) Analytical approximations

θ rs U0 Etot Ekin Epot U0 HF MW e4

0.5 0.01 37 754.74(15) 37 649.45(16) 37 747.23(16) −97.779(4) 37 569.14 37 482.26 37 480.82 37 480.97
0.02 9438.68(4) 9386.07(14) 9435.18(14) −49.1027(7) 9391.883 9348.443 9346.659 9346.81
0.05 1510.189(6) 1489.029(26) 1508.803(26) −19.774 46(29) 1502.658 1485.283 1483.893 1484.044
0.10 377.5473(15) 366.905(5) 376.900(5) −9.995 01(13) 375.6689 366.9809 366.013 366.1639
0.20 94.3868(4) 89.0174(13) 94.1160(13) −5.098 68(8) 93.917 07 89.573 11 88.913 97 89.065 38
0.30 41.949 71(17) 38.3371(6) 41.7986(6) −3.461 52(6) 41.741 07 38.845 09 38.319 85 38.4714
0.40 23.596 71(10) 20.866 06(31) 23.505 55(31) −2.639 48(4) 23.4793 21.307 32 20.861 43 21.013 51
0.50 15.101 89(6) 12.900 26(18) 15.044 19(17) −2.143 93(5) 15.026 79 13.2892 12.896 86 13.048 51
0.60 10.487 43(4) 8.639 24(33) 10.451 21(26) −1.811 82(16) 10.435 26 8.987 27 8.633 526 8.790 687
0.80 5.899 177(24) 4.4947(4) 5.887 89(29) −1.393 05(28) 5.869 834 4.783 843 4.484 474 4.636 478
1.00 3.775 474(16) 2.6387(4) 3.7782(15) −1.1396(17) 3.756 692 2.8879 2.621 94 2.774 52
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3.4 The Role of CPIMC in the Development of PB-PIMC

The main drawback of the CPIMC approach is given by the fact that it is, by construction,
restricted to simulations of weakly to moderately interacting systems. In the case of the UEG,
this means that results for reasonable system sizes, as discussed in the previous Ref. [46],
can only be obtained up to density parameters of rs ∼ 1. Nevertheless, in those regimes
where CPIMC can be applied, its accuracy exceeds that of other approaches, i.e., the relative
statistical error bars are very small. In addition, the Monte Carlo steps of the algorithm have
been designed such that they are extremely efficient for the usage of a large number of basis
functions, so that the extrapolation to the desired limit NB → ∞ is always feasible. This is in
stark contrast to exact diagonalization methods (Configuration Interaction [119]), where the
computational effort scales with O

((NB
N

)3
)

with N being the number of electrons. For these
reasons, the CPIMC method is perfectly suited to provide reference data for the development,
testing and cross-checking of other many-body simulation techniques.

Most importantly, the permutation blocking PIMC (PB-PIMC) method [56, 57], which
was developed by my colleague T. Dornheim, greatly benefited from the availability of this
CPIMC data. Said Monte Carlo approach represents an improved version of the standard
PIMC formulation in coordinate space [15], which is based on Feynman’s path integral
formulation of quantum mechanics [17]. More specifically, it relies on a high-temperature
factorization of the N-particle density operator into a product of P density operators at
P-times higher temperature (often called imaginary-time propagators), which becomes exact
in the limit P → ∞. Moreover, in order to account for the correct quantum-statistics, an
additional sum over all N! particle permutations must be carried out, where, in the case of
fermions, the sign of each of these contributions to the partition function alters with the parity
of the permutation. As a consequence, most of the summands in the partition function cancel.
This is the cause of the fermion sign problem within the standard PIMC approach [29, 31]
and all other PIMC approaches that are formulated in coordinate space.

The PB-PIMC method alleviates this problem by making use of the fact that the pre-
viously mentioned summation over all particle permutations can be formally re-cast into
a computation of a single determinant. By directly performing Metropolis Monte Carlo
with these determinants, instead of explicitly computing the sum over all permutations,
the cancellation of contributions with opposite sign is carried out analytically beforehand.
Unfortunately, since the determinants itself can be both positive and negative, the described
strategy does not entirely remove but greatly reduce the fermion sign problem compared to
standard PIMC. However, a thorough study by T. Dornheim revealed that the benefit from the
determinants vanishes with increasing number of propagators P. This is a most inconvenient
observation regarding practical simulations of electrons in the warm dense regime, where the
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temperatures of interest are relatively low and thus, a large number of propagators is typically
needed.

Fortunately, this problem can be overcome by the usage of a higher order propagator, i.e.,
a more sophisticated factorization of the density matrix, which accelerates the convergence
with P. In practice, only very few of these improved propagators P are needed to reach the
desired accuracy, which, at the same time, maximizes the benefit from the determinants.

It shall be stressed that, while the general idea of rewriting the partition function as a sum
over determinants had already been successfully exploited long before, see e.g. Refs. [121–
129], it is the unique combination of the determinants with a sophisticated higher order
propagator that turns PB-PIMC into a game changer.

In principle, there exists a variety of such higher order propagators, but the one that is
explored in the PB-PIMC method [130, 131] has the major advantage that it contains two free
parameters that can be adjusted for optimal convergence with the number of propagators P.
This optimization is straightforwardly performed for system parameters where the fermion
sign problem still allows for the extrapolation to P → ∞. However, in situations where such
an extrapolation is not feasible, which is particularly the case at weak coupling and low
temperature, exact benchmark data are highly valuable. Since this is precisely the regime
where the CPIMC method excels, it is perfectly suited to optimize the free parameters and to
test the PB-PIMC results for a finite number of propagators.

In the following paper6, Ref. [56], PB-PIMC was first introduced and said procedure
to optimize the free parameters was carried out for the test case of Coulomb interacting
electrons in a 2D harmonic trap (see Fig. 6 in Ref. [56]).

In the subsequent Ref. [57], PB-PIMC was extended to the simulation of the UEG,
and again extensive cross-checks with CPIMC were performed (see Figs. 2, 3 and 6 in
Ref. [57]). For both systems it was found that, with the optimal (fixed) choice of the free
parameters, the accuracy of the PB-PIMC results is of the order of ∼ 0.1% even with only
two propagators—an unexpected outcome. Summarizing, this method can be applied to the
UEG at all relevant densities down to about half the Fermi temperature (θ ∼ 0.5), and hence,
compared to standard PIMC, it covers a considerably larger area of the WDM regime.

At this point, it is important to note that, due to its limitation to small basis sizes, the
Configuration Interaction method [119] cannot provide meaningful reference data for PIMC
approaches that operate in coordinate-space since these, by construction, always compute the
result in the limit of an infinite number of basis functions.

6T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, New J. Phys. 17, 073017 (2015), reproduced under the
Creative Commons 3.0 license.

https://creativecommons.org/licenses/by/3.0/
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In addition to the PB-PIMC approach, the CPIMC data has proven to be of high value
for the development of the density matrix QMC (DMQMC) approach [132, 133]. Similar to
CPIMC, it is also formulated in second quantization, but, instead of utilizing the Metropolis
algorithm, it stochastically solves the Bloch equation for the density operator with a diffusion
Monte Carlo algorithm. Moreover, at moderate coupling, the DMQMC relies on an approxi-
mation to reach convergence, which has been thoroughly tested against the available CPIMC
data (see also Ref. [111]).

Finally, it shall be clearly stated that I did not contribute to the development and imple-
mentation of the PB-PIMC algorithm, which is presented in the two following Refs. [56, 57],
but only carried out the CPIMC simulations.
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Abstract

Correlated fermions are of high interest in condensedmatter (Fermi liquids,Wignermolecules), cold

atomic gases and dense plasmas. Herewe propose a novel approach to path integralMonteCarlo

(PIMC) simulations of strongly degenerate non-ideal fermions atଏnite temperature by combining a

fourth-order factorization of the densitymatrix with antisymmetric propagators, i.e., determinants,

between all imaginary time slices. To efଏciently run through themodiଏed conଏguration space, we

introduce amodiଏcation of thewidely used continuous spaceworm algorithm, which allows for an

efଏcient sampling at arbitrary systemparameters.We demonstrate how the application of

determinants achieves an effective blocking of permutations with opposite signs, leading to a

signiଏcant relieve of the fermion sign problem. To benchmark the capability of ourmethod regarding

the simulation of degenerate fermions, we considermultiple electrons in a quantumdot and compare

our results with other ab initio techniques, where they are available. The present permutation blocking

PIMCapproach allows us to obtain accurate results even forN=20 electrons at low temperature and

arbitrary coupling, where no other ab initio results have been reported, so far.

1. Introduction

The ab initio simulation of strongly degenerate nonideal fermions atଏnite temperature is of high current

importance formany ଏelds. The numerous physical applications include electrons in a quantumdot [1–4],

fermionic bilayer systems [5–7], the homogeneous electron gas [8–10], dense two-component plasmas [11–13]

in stellar interiors andmodern laser compression experiments (warmdensematter) [14, 15] and inertial fusion

[16]. Despite remarkable recent progress, existing simulationmethods face serious problems.

Thewidely used path integralMonte Carlo (PIMC)method, e.g. [17], is a highly successful tool for the

ab initio simulation of both distinguishable particles (‘boltzmannons’, e.g. [18, 19]) and bosons [17] and allows

for the calculation of quasi-exact results for up to N 103Ȃ particles [20] atଏnite temperature. However, the

application of PIMC to fermions is hampered by the notorious sign problem [21], which renders even small

systems unfeasible for state of the art techniques and has been revealed to beNP-complete for a given

representation [22].With increasing exchange effects, permutation cycles with opposite signs appear with nearly

equal frequency and the statistical error increases exponentially. For this reason, standard PIMC is applicable to

fermions only at weak degeneracy, that is, at relatively high temperature or low density.

The recently introduced conଏguration path integralMonte Carlo (CPIMC)method [9, 23, 24] exhibits a

complementary behavior. This conceptually different approach can be interpreted as aMonteCarlo simulation

on a perturbation expansion around the ideal quantum system and, therefore, CPIMC excells at weak

nonideality and strong degeneracy. Unfortunately, the physicallymost interesting region, where both fermionic

exchange and interactions are strong simultaneously, remains out of reach.
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Apopular approach to extend standard PIMC to higher degeneracy is Restricted PIMC (RPIMC) [25], also

known asଏxed node approximation. This idea requires explicit knowledge of the nodal surfaces of the density

matrix, which are, in general, unknown and one has to rely on approximations, thereby introducing an

uncontrollable systematic error. In addition, it has been shown analytically [26, 27] that RPIMCdoes not

reproduce the exact densitymatrix in the limit of the ideal Fermi gas and, therefore, the results become

unreliable at increasing degeneracy [9].

Recently, DuBois et al [28] have suggested that, at least for homogeneous systems, the individual exchange

probabilities in PIMC are independent of the conଏguration of other permutations present and that permutation

frequencies of large exchange cycles can be extrapolated from few-particle permutations. This would allow for a

signiଏcant reduction of the conଏguration space and a drastic reduction of the sign problem.Whileଏrst

simulation results with this approximation for the short-range interacting 3He are in good agreementwith

experimental data [28], the existing comparison [9] for long-range Coulomb interaction is insufଏcient to assess

the accuracy and, in addition, inhomogeneous systems remain out of reach.

Another possibility to relieve the sign problem in fermionic PIMCwithout introducing any approximations

is the usage of antisymmetric imaginary time propagators, i.e., determinants [10, 29–31]. It is well known that

the sign problembecomesmore severe with an increasing number of propagators arising from the Trotter-type

factorization of the density operator. Consequently, it has been proposed to combine the antisymmetric

propagators with a higher order factorization [32–35] of the densitymatrix. This has recently allowed to obtain

an accurate estimate of the ground state energy of degenerate, strongly nonideal electrons in a quantumdot [36].

In the present work, we extend this idea toଏnite temperature. For this purpose, we combine a fourth-order

propagator derived in [37], which has already been succesfully applied to PIMCby Sakkos et al [38], with a full

antisymmetrization on all time slices to simulate fermions in the canonical ensemble.We demonstrate that the

introduction of determinants effectively allows for the combination of N! conଏgurations fromusual PIMC into

a single conଏgurationweight, thereby reducing the complexity of the problem and blocking both positive and

negative weights to drastically increase the sign. To efଏciently exploit the resulting conଏguration spacewith the

Metropolis algorithm [39] at arbitrary parameters, we develop a set ofMonte Carlo updates similar to the usual

continuous spaceworm algorithm (WA) [20, 40].

To demonstrate the capability of our permutation blocking (PB-PIMC)method, we consider Coulomb

interacting fermions in a 2Dharmonic conଏnement, cf equation (30), which can be experimentally realized e.g.

by spin-polarized electrons in a quantumdot [1–4]. Figure 1(A) shows the average sign S forN=20 electrons,

plotted versus the coupling strength λ, cf equation (31). CPIMC is applicable in theweakly nonideal regime [I],

where the system is predominantly shaped by the Fermi statistics. In contrast, standard PIMC allows one to

accurately simulate systems in the strongly coupled regime [III], where exchange effects are not yet dominating,

and bosons and fermions exhibit a very similar behavior. The PB-PIMCmethod, as will be shown in this work, is

applicable over the entire coupling range yielding reasonably accurate results with acceptable computational

effort. Interestingly, this includes the physicallymost interesting transition region [II], where both theCoulomb

repulsion and quantum statistics govern the system.Here no ab initio results have been reported to this date,

except for very small particle numbers, since PIMCandCPIMC fail, due to the sign problem. In panel (B), we

Figure 1. Illustration of the capability of PB-PIMC—in panel (A), the average sign S fromdifferentmethods is plotted versus the
coupling parameter λ, equation (31), forN=20 electrons in a quantumdot at 3.0̀ = (oscillator units). Region [I] denotes theweakly
nonideal Fermi gas, [II] the transition region and [III] the strongly correlated regime. CPIMC (PIMC) is limited toweak (strong)
coupling, i.e. to the region left (right) of the blue (green) line. Panel (B) shows a comparison of density proଏles n r( ), plotted versus the
distance to the center of the trap r, across the entire coupling range.
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showdensity proଏles from all three regimes. Evidently, the transition from the strongly coupled systemwith a

pronounced shell structure ( 15̀ = ) to the nearly ideal Fermi gaswith the characteristic weak density

modulations ( 0.1̀ = ) can be resolved.

In the remainder of this work, we introduce the PB-PIMCmethod in detail.We show that the optimal choice

of two free parameters of the fourth-order factorization allows for a calculation of energies and densities with an

accuracy of the order of 0.1%with as few as two or three propagators, even in the low temperature regime.We

calculate energies and densities fromPB-PIMC forN= 20 electrons at low temperature over the entire coupling

range.Weଏnd excellent agreementwith both PIMCandCPIMC in the limitting cases of strong andweak

coupling, respectively, and perform simulations in the transition regime, where no other ab initio results are

available. Finally, we investigate the performance behavior of ourmethodwhen the system size is varied.

2. Theory

2.1. Idea of PB-PIMC

Weconsider the canonical ensemble (the particle numberN, volumeV and inverse temperature k T1 B̀ = are

ଏxed) andwrite the partition function in coordinate representation as

Z
N

R R R
1

!
sgn( ) d e ˆ , (1)

S

Ĥ

N

ȂȂ ̀ ̀= ̂ Ȃ Ȃ ̂
̀

̀
̀

Ȃ
−

where R r r{ ,..., }N1= contains the coordinates of all particles and ˆ̀̀ denotes the exchange operator

corresponding to a particular element σ from the permutation group SN. TheHamiltonian is given by the sumof

the kinetic (K̂ ) and potential (V̂ ) energy, H K Vˆ ˆ ˆ= + . For the next step, we use the group property of the

density operator

ˆ e e , (2)H

P

Hˆ

0

1
ˆȂ̀ = =̀

̀

̀−
=

−
−

with P̀ ̀= , and insert P 1− unities of the form R R R1̂ dȂ= Ȃ ̂̂ Ȃ̀ ̀ ̀ . This gives

Z
N

R R R Rd ... d
1

!
sgn( ) e ˆ . (3)P

P

S

H
0 1

0

1
ˆ

1

N

̂

̂

̂
̂

̂

̂

̂
̂Ȃ Ȃ Ȃ ̀ ̀= ̂ Ȃ Ȃ ̂

̀ ̀
̀

̀
̀ ̀−

=

−

Ȃ
− +

Note that we have exploited the permutation operatorʼs idempotency property in equation (3) to introduce

antisymmetry on allP imaginary time slices. Following Sakkos et al [38], we introduce the factorization from

[37],

e e e e e e e , (4)H v W t K v W t K v W t Kˆ ˆ ˆ ˆ ˆ ˆ 2 ˆ
a a a1 1 1 2 1 2 1 1 1 1 0Ȃ̀ ̀ ̀ ̀ ̀ ̀ ̀− − − − − − −−

for each of the exponential functions in equation (3). By including double commutator terms of the form

V K V
m

Fˆ , ˆ , ˆ , (5)
i

N

i

2

1

2̂
̂

̂
̂

̂
̂

̂
̂ Ȃ= Ă Ȃ Ȃ

=

wehave to evaluate the total force on each particle, VF R( )i i�= − , and equation (4) is accurate to fourth order

in ̀. The explicit formof themodiଏed potential terms Ŵ is given by

( )

W V
u

v
a

m

W V
u

v
a

m

F

F

ˆ ˆ and

ˆ ˆ 1 . (6)

a

i

N

i

a

i

N

i

0

1
1

2
2

1

2

1
0

2
1

2
2

1

2

1

1

̂

̂
̂̂

̂

̂
̂̂

̂

̂
̂̂

̂

̂
̂̂

Ȃ

Ȃ

̀

̀

= + Ă Ȃ Ȃ

= + − Ă Ȃ Ȃ
=

−
=

There are two free parameters in equation (4), namely a0 11ਂ ਂ , which controls the relative weight of the

forces on a particular slice, and t0 (1 1 3 ) 20ਂ ਂ − , which determines the ratio of the, in general, non-

equidistant time steps between ‘daughter’ slices, cf ଏgure 2. All other factors are calculated from these choices:
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( )

( )

u
t t

v
t

v v

t t

1

12
1

1

1 2

1

6 1 2
,

1

6 1 2
,

1 2 and

1

2
. (7)

0
0

0
3

1

0
2

2 1

1 0

̂

̂

̂
̂̂

̂

̂

̂
̂̂= − − +

−
=

−
= −
= −

The fourth-order approximation of the imaginary time propagator e Ĥ̀− is visualized inଏgure 2. The inverse

temperature β has been split into P=4 intervals of length ̀, which are further divided into three, in general, non-

equidistant sub-intervals. Thus, for eachmain ‘bead’ ̀̀, there exist two daughter beads, À̀ and B̀̀ .

Let us for amoment ignore the antisymmetry in equation (3) and evaluate the imaginary time propagator in

a straightforwardway [38]:

i i i i i i

R R R Re d d e e

( , ) ( , ) ( , ) , (8)

H
A B

V u m F

i

N

A B

ˆ
1

˜ ˜

1

,

0
3

2̂

̂
̂

̂

̂
̂
̂

Ȃ
Ȃ ̀ ̀ ̀

̂ Ȃ Ȃ ̂ =̀
̀

̀ ̀ ̀
̀ ̀

̀ ̀ ̀

− + − − Ă

=

̀ ̀

with the deଏnitions of the potential terms
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F F F
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˜ 1 2 , (9)
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̀ ̀ ̀ ̀

̀ ̀ ̀ ̀
=

and the diffusionmatrices

i j

i j
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( , ) exp ( ) ,

( , ) exp ( ) ,

( , ) exp ( ) , (10)
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t
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̂̂

̂

̂
̂̂

̂

̂
̂̂

̂
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̀

̀ ̀ ̀
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−
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Figure 2. Illustration of the conଏguration space—in the left panel, the imaginary time is plotted versus the (arbitrary) spatial
coordiante x. Each time step of length ̀ is further divided into three non-equidistant subintervals, with two ‘daughter’ slicesA andB.
The right panel illustrates the combination of all PN3 !possible trajectories into a single conଏgurationweight W X( ). Between each
two adjacent time slices, both the connection between beads from the same particle (diagonal elements of the diffusionmatrix, the
blue and red lines) and between beads fromdifferent particles (off-diagonal elements, the green lines) are efଏciently grouped together
to improve the average sign.
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where ̀̀ denotes the thermal wavelength m22 2̀ ̀ ̀= Ằ andD is the dimensionality of the system. Thus, the

matrix elements of equation (10) are equal to the free particle densitymatrix, i j tr r( , ) ( , , )j A i0 , , 1̀ ̀ ̀=̀ ̀ ̀ .

The permutation operator commutes with both ˆ̀ and Ĥ and we are, therefore, allowed to artiଏcially

introduce the antisymmetrization between all P3 slices without changing the result. This transforms

equation (8) to

N

N

R R

R R

1

!
sgn( ) e ˆ

1

!
d d e e det( )det( )det( ) . (11)

S
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A B
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˜ ˜
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̂
̂
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Ȃ ̀ ̀

̀ ̀ ̀

̂ Ȃ Ȃ ̂

=
̀

̀
̀

̀ ̀

̀ ̀
̀ ̀

̀ ̀ ̀

Ȃ
− +

− − Ă
̀ ̀

Finally, this gives the partition function

Z
N

X
1

( !)
d e e det( )det( )det( ), (12)

P

P

V u m F
A B3

0

1
˜ ˜3

0

2Ȃ Ȃ ̀ ̀ ̀=
̀

̀ ̀
̀ ̀ ̀

=

−
− − Ă

̀ ̀

and the integration is carried out over all coordinates on all P3 slices:

X R R R R R Rd d ... d d ... d d ... d . (13)P A P A B P B0 1 0 1 0 1= − − −
The beneଏts of the partition function equation (12) are illustrated in the right panel of ଏgure 2 where

the beads of two particles are plotted in the τ–x-plane. In the usual PIMC formulation (without the

determinants), each of the particles would correspond to a single closed trajectory as visualized by the

blue and red connections. To take into account the antisymmetry of fermions, one would also need to

sample all conଏgurations with the same positions of the individual beads but different connections

between adjacent time slices, which have both positive and negative weights. By indroducing

determinants between all slices, we include all N! possible connections between beads on adjacent slices

(the green lines) into a single conଏguration weight and the usual interpretation of mapping a quantum

system onto an ensemble of interacting ringpolymers [41] is no longer appropriate. Therefore, a large

number of sign changes, due to different permutations, are grouped together resulting in an efଏcient

compensation of many terms (blocking), and the average sign (cf equation (22)) in our simulations is

signiଏcantly increased [31].

2.2. Energy estimator

The total energyE follows from the partition function via the familiar relation

E
Z

Z1
. (14)

̀
= − Ȃ

Ȃ
Substituting the expression from equation (12) into (14) and performing a lengthy but straightforward

calculation gives the ଏnal result for the thermodynamic (TD) estimator
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To split the total energy into a kinetic and a potential part, we evaluate

K
m

Z m
Z , (17)

̀
= Ȃ

Ȃ
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and ଏnd theTD estimator of the kinetic energy
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Thus, the estimator of the potential energy is given by

V E K
P

V u
m

F
1 ˜ 2 ˜ . (19)
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k k
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̂
̂

̂

̂
̂Ȃ ̀= − = + Ă

=

−

Wenotice that the forces contribute to both the kinetic and the potential energy. For completeness, wemention

that, for an increasing number of propagators, P Ă Ȃ, the ଏrst and second terms in equation (15) diverge,

which leads to a growing variance and, therefore, statistical uncertainty of bothE andK. To avoid this problem,

onemight derive a virial estimator, e.g. [42], which requires the evaluation of the derivative of the potential

terms instead.However, sincewe are explicitly interested in performing simulationswith fewpropagators to

relieve the fermion sign problem, the estimator from equation (15) is sufଏcient.

3.MonteCarlo algorithm

In section 2, we have derived an expression for the partition functionZ, equation (12), which incorporates

determinants of the diffusionmatrices between all P3 time slices, thereby combining PN3 ! different

conଏgurations from the usual PIMC into a single weightW X( ). However, each determinant can still be either

positive or negative, depending on the relativemagnitude of diagonal and off-diagonal elements. Hence, we

apply theMetropolis algorithm [39] to themodiଏed partition function

Z WX Xd ( ) , (20)Ȃ� = Ȃ Ȃ
and calculate fermionic expectation values as

O
OS

S
, (21)f̂ ̂ = ̂ �̂

̂ �̂
with the deଏnition of the average sign

S
Z

W SX X X
1

d ( ) ( ), (22)Ȃ̂ �̂ = � Ȃ Ȃ
and the signumof the conଏguration X ,

( ) ( ) ( )S X( ) sgn det( ) sgn det( ) sgn det( ) . (23)

P

A B

0

1
̂
̂

̂
̂Ȃ ̀ ̀ ̀=

̀
̀ ̀ ̀

=

−

Let us summarize some important facts about the conଏguration space deଏned by equation (20):

(i) With increasing number of propagators P, the effect of the blocking decreases and, for P Ă Ȃ, the sign

converges to the sign of standard PIMC. Blocking ismaximal if t1
̀ ̀ and t2 0

̀ ̀ are comparable to the average

interparticle distance d, cf ଏgure 3.Only in such a case, there can be both large diagonal and off-diagonal

elements in the diffusionmatrices.

(ii) Conଏguration weights W X( )Ȃ Ȃ can only be large, when at least one element in each row of each diffusion

matrix is large. Therefore, we sample either large diagonal or large off-diagonal elements. Blocking happens

naturally as a by-product and does not have to be speciଏcally included into the sampling. This alsomeans

that we have to implement amechanism to sample exchange, i.e., to switch between large diagonal and off-

diagonal diffusionmatrix elements.

(i) There are noଏxed trajectories. Therefore, beads do not have a previous or a next bead, as in standard PIMC.

For an efଏcient andଏexible sampling algorithm,we temporarily construct artiଏcial trajectories and choose

the included beads randomly.

Themost efଏcientmechanism for the sampling of exchange cycles in standard PIMC is the so-calledworm

algorithm [20, 40], wheremacroscopic trajectories are naturally realized by a small set of local updates which

6

New J. Phys. 17 (2015) 073017 TDornheim et al



enjoy a high acceptance probability. In the rest of the section, wemodify this algorithm to be applicable to the

new conଏguration spacewithout any ଏxed connections between individual beads.

3.1. Sampling scheme

To take advantage of themain beneଏts from the usual continuous spaceWA,wewill temporarily construct

artiଏcial trajectories and sample new beads according to standard PIMC techniques, e.g. [43]. The initial

situation for our considerations is illustrated in the left panel of ଏgure 4, where a pre-existing trajectory (pink

curve)with fourmissing beads in themiddle is shown in the τ–x-plane.We choose the sampling probability to

close the conଏguration as

T
r r

r r

( , , )

( , , )
, (24)i

M
i i i i

M M
sample

0

1

0 1 1

0 0 0
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−
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which results in the consecutive generation of M 1− new coordinates ri, i M[1, 1]Ȃ − , according to

( )
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r r r r
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which is aGaussian (cf the blue curves inଏgure 4)with the variance

m

( )( )
, (26)i
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around the intersection of the connection between the previous coordinate, ri 1− , with the end point rM and the

time slice ì

r r . (27)i
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3.2. Artiଏcial wormalgorithm

In the usualWA-PIMC, the conଏguration space is deଏned by theMatsubaraGreen function (e.g. [44]) which

implies that the algorithmdoes not only allow for the change of the particle numberN (grand canonical

ensemble) but, in addition, requires the generation of conଏgurationswith a single open path, the so-called

worm.However, in the PB-PIMC conଏguration space deଏned by equation (12), there are no trajectories and,

therefore, no direct realization of aworm is possible. Instead, we consider an extended ensemble, which

Figure 3. Inଏuence of the imaginary time step ̀ on the efଏciency of the permutation blocking—two conଏgurations ofN=2 particles
are visualized in the τ–x-plane. In the left and right panel, there areP=2 and P=5 time slices, respectively (daughter slices are
neglected for simplicity). Only with few propagators, the thermal wavelength ̀̀ of a single propagator is comparable to themean
interparticle distance d, which is crucial for an efଏcient grouping of permutations into a single conଏgurationweight.With increasing
P, diagonal (red and blue lines) and off-diagonal (green lines) distances are no longer of the same order and the permutation blocking
is inefଏcient.
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combines closed conଏgurationswith a total of NP3 beads and open conଏgurations, where on some consecutive

time slices the number of beads is reduced by one, to N 1− . Such a conଏguration is illustrated in the right panel

ofଏgure 4. There are two special beadswhich are denoted as ‘head’ and ‘tail’ and the triangles, circles and squares

symbolize beads from three different particles. There are eight beads fromdifferent particlesmissing (indicated

by the empty symbols at the right boundary) between Ahead 2̀ ̀= and Atail 1̀ ̀= , going forward in

imaginary time.

Formost slices, the computation of the diffusionmatrix allows for no degree of freedom in the extended

ensemble.We deଏne the latter in away, that the head bead does not serve as a starting point for the elements but

is treated as if it wasmissing. This is justiଏed because, otherwise, there does not necessarily exist a largematrix

element in this particular row because no artiଏcial connection has been sampled on the next slice. For the

conଏguration from ଏgure 4, the diffusionmatrix of the headʼs time slice is given by

( ) ( )

( ) ( )

( ) ( )
( ) ( )

t t

t t

t t

t t

r r r r

r r r r

r r r r

r r r r

, , , , 0

1 1 1

, , , , 0

det( ) det
, , , ,

, , , ,
. (28)

A

A B A B

A B A B

A

A B A B

A B A B

2

0 1,2 1,2 1 0 1,2 2,2 1

0 3,2 1,2 1 0 3,2 2,2 1

2

0 1,2 1,2 1 0 1,2 2,2 1

0 3,2 1,2 1 0 3,2 2,2 1

̂

̂

̂
̂
̂̂

̂

̂

̂
̂
̂̂

̂

̂

̂
̂

̂

̂

̂
̂

̀
̀ ̀ ̀ ̀

̀ ̀ ̀ ̀

̀
̀ ̀ ̀ ̀

̀ ̀ ̀ ̀

=

Ă =

All diffusionmatrices with N 1− beads on their slices are computed in the sameway. The other degree of

freedom for which the extended ensemble allows is the choicewhether the tail will be included as theଏnal

coordinate in the diffusionmatrix or not.Here, itmakes sense to allow for this possibility, because there does

exist at least a single large element in this particular row anyway. The correspondingmatrix for the conଏguration

fromଏgure 4 looks like

( ) ( ) ( )
( ) ( ) ( )

t t t

t t t

r r r r r r

r r r r r r

, , , , , ,

, , , , , ,

1 1 1

. (29)A

A A A

A A A
2

0 1,1 1,1 1 0 1,1 2,1 1 0 1,1 3,1 1

0 2,1 1,1 1 0 2,1 2,1 1 0 2,1 3,1 1

̂

̂

̂
̂
̂̂

̂

̂

̂
̂
̂̂

̀
̀ ̀ ̀ ̀ ̀ ̀

̀ ̀ ̀ ̀ ̀ ̀=

However, we emphasize that the particular choice of the extended ensemble does not inଏuence the extracted

canonical expectation values as long as detailed balance is fulଏlled in all updates.We have developed a simulation

schemewhich consists of four different types ofmoves that ensure detailed balance and ergodicity. The updates

are presented in detail in the appendix.

Figure 4. Illustration of the sampling scheme (left) and the extended conଏguration space (right)—in the left panel, an artiଏcial
trajectory (pink curve)with fourmissing beads is plotted in the τ–x-plane. The new coordinates (green circles) are sampled according
to aGaussian (blue curves) around the intersection of the connecting straight lines between the previous and last beadwith the current
time slice (black crosses). The right panel gives an example for an open conଏguration in the extended conଏguration spacewith two
special beadswhich are denoted as ‘head’ and ‘tail’. There are only N 1− beads on eight time slices, going forward in imaginary time
starting from Ahead 2̀ ̀= . The circles, triangles and squares distinguish beads from three different particles and the empty symbols at
the right boundary indicate themissing beads on a particular slice.
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4. Simulation results

As a test system to benchmark ourmethod, we considerN spin-polarized electrons in a quantumdot [1–4],

which can be described approximately by a harmonic conଏnementwith a frequencỳ.We use oscillator units,

i.e., the characteristic energy scale E0 ̀= Ă and oscillator length l m̀= Ă , and obtain the dimensionless

Hamiltonian

H r
r r

ˆ 1

2

1

2
, (30)

i

N

i

i

N

i

i j

N

i j1

2

1

2
�Ȃ Ȃ Ȃ ̀= − + + Ȃ − Ȃ= = <

with the coupling parameter

e

l
, (31)

2

0

̀
̀

= Ă
being deଏned as the ratio of Coulomb and oscillator energy. For large λ, the electrons are strongly coupled and

exchange effects become negligible (region [III] inଏgure 1), while, for 1̀ Ȃ , the ideal Fermi gaswill be

approached and the system is governed by the fermionic exchange (region [I] inଏgure 1). To conଏrm the quality

of our simulations, we compare the results at weak and strong couplingwithCPIMCand standard PIMC,

respectively, where they are available.

4.1.Optimal choice of a1 and t0
We start the discussion of the simulation results by investigating the effects of the two free parameters a1 and t0
on the convergence of two different observables, namely the energyE and radial density n r( ).

Inଏgure 5, results are summarized forN= 4 electronswith 1.3̀ = and 5̀ = , i.e., moderate coupling and

low temperature, and panel (A) shows the convergence of the total energy as a function of the inverse number of

propagators which is proportional to the imaginary time step, P1̀ Ȃ . The red diamonds [(a) t 0.040 = ,

a 0.01 = ] and blue circles [(b) t 0.130 = , a 0.331 = ] denote two different combinations of free parameters and

exhibit a clearly different convergence behavior towards the exact result known fromCPIMC, i.e., the black line.

ForP=2, the energywith parameter set (a) is too low by almost one percent.With increasing P,E increases and

reaches amaximumaround P=5, until the curves approach the exact energy fromabove. For parameter set (b),

the energy convergesmonotonically from above and, even forP= 2, the deviation from theCPIMC result is as

small as 0.2%. The selected energies which are listed in table 1 reveal that the total energy is converged forP=14

within the statistical uncertainty. For the panels (C) and (D), the energy has been split into a potential (V) and

kinetic (K) contribution. For both parameter combinations,V convergesmonotonically, although from

different directions. In addition, parameter set (b) gives amuch better result for small P. Panel (D) reveals, that

the kinetic energyK is responsible for the non-monotonous convergence ofE for parameter set (a), which again

delivers worse results forP=2, as compared to the blue circles. Finally, panel (B) shows the average sign S as a

function of P1 . Both curves exhibit a similar decrease with an increasing number of propagators, as it is

expected.However, parameter set (a) always allows for a better sign than (b). The reason for this behavior is the

free parameter t0, which controls the relative spacing between the three time slices of an imaginary time step ̀.

For t 0.040 = , there are a single small and two large steps. The latter allow formore blocking, since the

corresponding decay length t1
̀ ̀ in the diffusionmatrices is large aswell. For t 0.130 = , on the other hand, there

are three nearly equal steps, each of whichwith a smaller decay length than the two large ones for parameter set

(a). Therefore, less blocking is possible andmore determinants with a negative sign appear in theMarkov chain.

The different convergence behaviors of the two free parameter combinations for small P leads to the

question how to choose t0 and a1 for optimal results. To provide an answer, we consider the same system as in

ଏgure 5, and investigate the accuracy of the total energy as a function of t0, for aଏxed a 0.331 = . The simulation

results are shown in the left panel ofଏgure 6 forP=2 (red squares), P=3 (blue circles) andP=4 (green

diamonds). All three curves exhibit a similar decay towards the exact value starting from small t0, followed by a

minimumaround t 0.140 = andଏnally an increasing error for larger values.We note that as few as two

propagators allow for an accuracy of E E 2 10 3̀Ȃ Ȃ < × − for the best choice of the free parameters. Figure 6(B)

shows the dependency of the average sign S on t0. Again, we observe that S decreases with increasing t0 as

explained during the discussion of ଏgure 5. In addition, it is revealed that the combination ofP=4 and t 0.010 =
leads to a larger sign than P=3 and t 0.100 > . However, the optimum free parameters allow for a higher

accuracy even forP=2, compared to small t0withmore propagators. Therefore, it turns out to be advantagous

to use the fourth order factorizationwith the two free parameters despite the smaller average sign for the sameP

compared to the factorizationwith only a single daughter slice for each propagator, i.e., t 0.00 = .

Finally, wemention that the optimal choice of a1 and t0 depends on the observable of interest. Inଏgure 7, we

investigate the effects of the free parameters on the convergence of the radial density distribution n r( ) for the
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same system as inଏgures 5 and 6. The left panel shows n as a function of the distance to the center of the trap, r,

for four different P and the parameter combination a 0.331 = and t 0.130 = , which has been proven to allow for

nearly optimumenergy values atP=2, cf ଏgure 6. The black curve corresponds toP=10 and is convergedwithin

statistical uncertainty. ForP=2 (red diamonds), there appear signiଏcant deviations to the latter, in particular n

is too large around themaximum r 1.25Ȃ and too small at the boundary of the system. TheP= 3 results (blue

squares) exhibit the same trends although the differences towards the black curve are reduced. Finally, the

density forP=4 (green circles) can hardly be distinguished from the converged data. The right panel compares

the density forP=2with two different combinations of free parameters. The red diamonds (parameter set (a))

correspond to the curve from the left panel and the green circles (parameter set (b)) to a 0.01 = and t 0.040 = .

The latter parameters clearly allow for a density distributionwhich ismuch closer to the exact results than the a1
and t0 values which provide the optimal energy.

Figure 5.Convergence of the energy forN=4, 1.3̀ = and 5.0̀ = —panel (A) shows the convergence of the total energy versus the

inverse number of propagators P 1 ̀Ȃ− . Shown are the results for two different choices of the parameters, (a) t 0.040 = , a 0.01 = and
(b) t 0.130 = , a 0.331 = , and the correct energy fromCPIMCwith the corresponding conଏdence interval. Panel (B) shows the decay
of the average sign Swith increasing P and panels (C) and (D) display the potential and kinetic energyV andK, respectively, where
E V K= + .

Table 1.Convergence of the energy forN=4, 1.3̀ = and 5.0̀ = for selected
parameter combinations shown inଏgure 5.

Simulation E V K S

P 2= a 12.1924(3) 9.0283(3) 3.1641(3) 0.4907(3)

P 2= b 12.3186(2) 9.0927(2) 3.2258(2) 0.3771(2)

P 14= a 12.293(4) 9.083(1) 3.210(4) 0.02664(1)

P 14= b 12.292(2) 9.0831(6) 3.209(2) 0.020600(7)

CPIMC 12.293(3) — — —

a t 0.040 = , a 0.01 =
b t 0.130 = , a 0.331 =
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4.2. Temperature dependence

In the last section, we have demonstrated that the optimal choice of the free parameters a1 and t0 allows for the

calculation of energies with an accuracy of 0.1%with as few as two propagators, even at a relatively low

temperature, 5.0̀ = . However, with decreasingT (i.e., increasing β) the number of required propagatorsmust

be increased to keep the commutator errorଏxed. Inଏgure 8, we investigate the effect of a decreasing temperature

on the accuracy provided by a fewpropagators P forN=4 electrons at indermediate coupling, 1.3̀ = . The left

panel shows the total energy E as a function of the inverse temperature β.We compare results forP=2 (green

circles), P=3 (red diamonds) and P=4 (blue triangles) to exact results fromCPIMC (black stars). At larger

temperature, 7.0̀ ਂ , all four datasets nearly coincide and exhibit the expected decrease towards the energy of

the ground state.With increasing β, the P=2 results exhibit an unphysical drop because two propagators are not

sufଏcient and the commutator errors becomemore signiଏcant. The red and blue curves exhibit a qualitatively

similar trend, however, the energy drop is weaker and shifted to lower temperature. Even at 10.0̀ = , which is

already very close to the ground state, three propagators allow for an accurate description of the system.

In the right panel ofଏgure 8, the average sign S is plotted versus the inverse temperature. At small β, the

wavefunctions of the electrons do not overlap and, hence, the system is not degenerate.With decreasing

temperature, exchange effects become increasingly important which leads to a decrease of S. However, while for

standard PIMC the sign is expected to exponentially decrease with β, S seems to converge for PB-PIMCwith

P=3 andP=4 and exhibits an even slightly non-monotonous behavior forP=2. The application of

antisymmetric propagators leads to a competitionwith respect to S and β. On the one hand, with increasing

inverse temperature off-diagonalmatrix elements are increased, which leads tomore negative determinants and,

therefore,more negative weights in theMarkov chain. On the other hand, the thermal wavelengths t1
̀ ̀ and t2 0

̀ ̀

Figure 6. Inଏuence of the relative interslice spacing t0 forN=4, 1.3̀ = and 5.0̀ = —in the left panel, the total energy is plotted
versus the free parameter t0 forP=2,P=3 andP=4. The right panel shows the behavior of the average sign.

Figure 7.Convergence of the radial density forN=4, 1.3̀ = and 5.0̀ = —the radial density n is plotted versus the distance to the
center of the trap, r. In panel (A), the free parameters are chosen as t 0.130 = and a 0.331 = and the convergence withP is illustrated.
Panel (B) compares two different sets of free parameters, (a) t 0.130 = and a 0.331 = and (b) t 0.040 = and a 0.01 = , for P=2.
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are increasing with β, whichmakes the blocking of large diagonal and off-diagonal elementsmore effective.

Hence, the sign can even become larger with β once the systemhas reached the ground state, because the particle

distribution remains constant whilemore elements in the diffusionmatrix compensate each other in the

determinants.

We conclude that few propagators allow for the calculation of accurate results up to low temperature,

10.0̀ ਂ . For higher β, the system is in its ground state and ଏnite temperature PIMC is no longer themethod of

choice.

4.3.Dependence on the coupling strength

In the previous sections, we have restricted ourselves to the investigation of small systems to illustrate the

convergence and sign behavior depending on relevant parameters. In this section, we demonstrate that PB-

PIMCallows for the calculation of accurate results at parameters where no other ab initio results have been

reported, so far. Figure 9 shows results forN=8 andN= 20 electrons at 3.0̀ = over awide range of coupling

parameters, λ. In panel (A), the average sign S is plotted versus λ for standard PIMC (squares), CPIMC (circles)

and the present PB-PIMC (diamonds) withP=2 and the parameter sets t 0.140 = and a 0.331 = (N=8, blue

symbols) and t 0.100 = and a 0.331 = (N=20, red symbols), which are known to allow for accurate energies, cf

ଏgure 6. It is well understood that PIMC allows for the simulation of strongly coupled fermions, where exchange

effects do not play a dominant role.With decreasing λ, the sign exhibits a sharp drop and the sign problem

prevents the simulationwithin feasible computation time for 2.0̀ ਂ and 5.0̀ ਂ , respectively. Evidently,

larger systems lead to amore severe decrease of S at larger coupling strength. CPIMC, on the other hand, can be

interpreted as aMonte Carlo simulation on a perturbation expansion around the ideal quantum system, i.e.,

0.0̀ = . Hence, themethod efଏciently provides exact results for small coupling, where the system is close to an

ideal one. ForN=20 around 0.3̀ Ȃ , the sign almost instantly drops from S 0.97Ȃ towards zero, andCPIMC

is no longer applicable, without further approximation. Thismeans that, in particular for larger systems, there

have only been results for systems that are (a) almost ideal or (b) so strongly coupled that fermions and bosons

lead to nearly equal physical properties. The physically particularly interesting regimewhere Coulomb

correlations and Fermi statistics are signiଏcant simultaneously, has remained out of reach.

However, the average sign fromPB-PIMC exhibits amuch less severe dropwith decreasing λ than standard

PIMCand saturates for 0.7̀ ਂ . ForN= 8, the average sign remains above S 0.08= , which allows for good

accuracywith relatively low effort. The small sign, S 10 3Ȃ − , forN=20 indicates that the simulations are

computationally involved but, in contrast to PIMCandCPIMC, still feasible. In panel (B) ofଏgure 9, the total

energyE forN=20 is plotted versus λ over the entire coupling range and the statistical uncertainty from the PB-

PIMC results is smaller than the size of the data points. Both, at small and large λ, theP=2 results are in excellent

agreementwith the exact energy known from the othermethods and, in addition, results are obtained for the

particularly interesting transition region (region [II] inଏgure 1). In panel (C), we show the radial density for

N=20 and low coupling, 0.10̀ = , calculatedwith the parameter set t 0.040 = and a 0.01 = , which has been

proven effective for accurate densities n r( ). The PB-PIMC results (red diamonds) are in excellent agreement

with the exact CPIMCdata (blue squares) over the entire r-range. For completeness, wemention that this

combination of parameters allows for an approximately three times as high sign as the choice frompanels (A)

and (B), whichwas choosen to allow for a good energy, and the results have been obtainedwithin t 10CPU
3Ȃ

Figure 8.Temperature dependence forN=4 and 1.3̀ = with t 0.140 = and a 0.331 = —in the left panel, the total energy is plotted
versus the inverse temperature β forP=2,P=3 andP=4 propagators and compared to exact CPIMC results. The right panel shows
the behavior of the sign.
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core hours. Panel (D) shows the density of a strongly coupled system, 15.0̀ = , andN=20. Again, the two

propagators already provide very good agreementwith the exact curve. Inଏgure 1(B), we have shown density

proଏles for coupling parameters over the entire coupling range. At 15̀ = (red pluses), there are three distinct

shells and the physical behavior is dominated by the strongCoulomb repulsion. Decreasing the coupling to

5̀ = (green bars) leads to a reduced extension of the system, and the three shells exhibit amuch larger overlap.

At indermediate coupling, 2̀ = (blue crosses), both the interaction and fermionic exchange govern the system.

The density proଏle is still signiଏcantlymore extended than the ideal pendant, but n exhibitsmodulations instead

of aଏat curve. Decreasing the repulsion further to 0.7̀ = (pink circles) leads to a further reduction of the

extension.However, n does not approach aGaussian-like proଏle as for ideal boltzmannons or bosons, but

continues to exhibit the densitymodulationswhich are characteristic for fermions. For 0.1̀ = , the system is

almost ideal and the density is completely dominated by the quantum statistics.

Finally, inଏgure 10we compare density proଏles forN=20 particles at 3.0̀ = with Fermi-, Bose- and

Boltzmann statistics. Panel (A) shows results for intermediate coupling, 2.0̀ = . The distinguishable

boltzmannons (blue diamonds) exhibit a nearlyଏat proଏle without any shell structure, i.e., a liquid-like

behavior. The bosonic particles (green circles) lead to an even smoother curve, with a slightly reduced extension

of the system. For fermions (red squares), on the other hand, the exchange already plays a signiଏcant role, as the

particles exhibit an additional repulsion due to the Pauli principle, and n decays only at larger r. In addition, the

fermionic density proଏle exhibits distinctmodulations. In panel (B), we show a comparison for smaller

coupling, 0.7̀ = . Again, the boltzmannons and bosons lead to smooth density proଏles which are very similar,

despite a reduced extension of the Bose-system and an increased density around the center of the trap. The

fermions exhibit a different behavior as the system is signiଏcantlymore extended and the density proଏle again

features distinctmodulations.

In conclusion, we have presented ab initio results for the energy and the density for up to 20 electrons over

the entire coupling range. A comparisonwith standard PIMC andCPIMChas revealed excellent agreement in

Figure 9.Coupling dependence forN=8 andN=20 at 3.0̀ = —panel (A) shows the average sign as a function of λ for CPIMC,
PIMC andPB-PIMCwithN=8 (blue symbols, parameter set t 0.140 = and a 0.331 = ) andN=20 (red symbols, parameter set
t 0.100 = and a 0.331 = ) and panel (B) the corresponding total energies, E, for the latter. In panels (C) and (D), the radial density n is
plotted versus the distance to the center of the trap, r, forN=20with 0.1̀ = and 15.0̀ = , respectively, and the parameter set
a 0.01 = and t 0.040 = .
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both the limits of weak and strong coupling. Amore detailed investigation of the transition from the classical to

the degenerate regime, including systematic comparisons with bosons and boltzmannons, is beyond the scope of

this work andwill be published elsewhere.

4.4. Particle number dependence

In the last section, we have shown that the sign problem ismore severe for larger systems, cfଏgure 9(A).Here, we

provide amore detailed investigation of the performance of ourmethod in dependence on the particle number.

Inଏgure 11, the average sign S is plotted versusN for 0.1̀ = and 3.0̀ = , i.e., a very degenerate system, with

two different combinations of free parameters. It is revealed that S exhibits an exponential decaywith the system

size and, as usual, the smaller t0 leads to amore effective blocking. Therefore, the PB-PIMCapproach still suffers

from the fermion sign problem, and feasible system sizes for 2Dquantumdots at weak coupling are limited to

N 30ਂ . This is a remarkable result since standard PIMC simulations for 0.1̀ = and 3.0̀ = are possible only

for N 4ਂ .

5.Discussion

In summary, we have presented a novel approach to the PIMC simulation of degenerate fermions at ଏnite

temperature by combining a fourth-order factorization of the densitymatrix with a full antisymmetrization

between all imaginary time slices. The latter allows tomerge PN3 ! conଏgurations from the standard PIMC

formulation into a single conଏgurationweight, thereby efଏciently grouping together permutations of opposite

Figure 10. Inଏuence of quantum statistics forN=20 and 3.0̀ = —we show the radial density n r( ) for Fermi-, Bose- and
Boltzmann-statistics in the transition region for 2.0̀ = (A) and 0.7̀ = (B).

Figure 11.Particle number dependence of the average sign for 0.1̀ = and 3.0̀ = and two different combinations of the simulation
parameters.
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signswhich leads to a signiଏcant relieve of the fermion sign problem. To efଏciently run through the resulting

conଏguration space at arbitrary systemparameters, we havemodiଏed thewidely used continuous spaceWAby

introducing an extended ensemble with open conଏgurations and by temporarily constructing artiଏcial

trajectories.We have demonstrated the capabilities of ourmethod by simulating up toN=20 electrons in a

quantumdot. It has been revealed that the (empirical) optimal choice of the free parameters a1 and t0 from the

fourth order factorization allows for the calculation of energies with an accuracy of 0.1% even for just two

propagators. For completeness, wemention that different observables lead to different optimal parameters.We

have concluded, that it appears to be favourable to use two instead of a single daughter time slice for each time

step ̀, despite the reduced sign for the same number of propagators.

The investigation of the temperature dependence of the convergence with respect to the number of time

stepsPhas revealed, that as few as three propagators are sufଏcient to accurately simulate fermions, up to

10.0̀ ਂ . For larger inverse temperatures, the system approaches its ground state and ଏnite temperature PIMC

techniques are no longer themethods of choice.

To demonstrate that our PB-PIMC approach allows for the calculation of accurate results for systems

beyond the capability of any other quantumMonteCarlo technique, we have simulatedN=20 electrons at

relatively low temperature, 3.0̀ = , and arbitrary coupling strength. CPIMC excells at weak coupling and

provides exact results for 0.3̀ < , i.e., in the regionwhere the systems are still close to the ideal case. Standard

PIMC, on the other hand, is applicable at strong coupling 5.0̀ ਂ where exchange effects are not yet

dominating, until the rapid decrease of the sign renders any simulation unfeasible. For PB-PIMC, the sign

converges for 0.7̀ ਂ and, hence, computations are possible at arbitrary degeneracy, in particular, in the

physicallymost interesting transition region between classical and ideal quantumbehavior.Weଏnd excellent

agreementwith both PIMC andCPIMC in both the limits of strong andweak coupling. Finally, we have

demonstrated that PB-PIMC still suffers from the fermion sign problem, since, as expected, S decreases

exponentially with the particle number.

A possible future application of PB-PIMC to the quantum dot system might include the investigation

of the transition from the classical to the degenerate quantum regime, in particular a systematic

comparison of fermions to bosons and boltzmannons. To describe realistic quantum dots, it will be

important to include the spin degrees of freedom into the simulation. In particular, this should allow us

to recover, for weak coupling, Hundʼs rules physics and also to address the spin contamination problem

[45, 46]. Furthermore, it could be interesting to extend the considerations to 3D conଏnements, e.g.

[47, 48], and study the impact of quantum statistics on structural transitions [49]. In addition, we expect

our method to be of interest for the future investigation of numerous Fermi systems, including the ଏnite

temperature homogeneous electron gas [8–10], two-component plasmas [11–13] and fermionic bilayer

systems [5–7].
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Appendix.MonteCarlo updates

In this appendix, we present an ergodic set ofMonte Carlo updates which are based on the usual continuous

spaceWA [20, 40] from standard PIMC.

(i) Deform: this update is similar to standard PIMC techniques, e.g. [43], and deforms a randomly constructed

artiଏcial trajectory.

• Select a start time s̀ uniformly from all P3 slices.

• Select a ‘start’ bead on s̀.

• Select the number of beads to be changed, m M[1, ˜ ]Ȃ .
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• Select m 1+ beads on the next slices according to

( )
T

r r, ,
, (A.1)

i

m
i i i

i

select

0

0
old

1
old

old
Ȃ ̀ ̀

̀
=

=

+

with i
old̀ being the normalization and the label ’old’ indicates the conଏguration before the update.

• Resamplem beads in themiddle according to equation (24):

( )
T

r r

r r

, ,

( , , )
, (A.2)i

m

i i i

m
resample

0 0
new

1
new

0 0 1 tot

Ȃ ̀ ̀

̀ ̀
= = +

+

and tot̀ denotes the imaginary time difference between the ଏxed endpoints.The constant M̃ is a free

parameter and can be optimized to enhance the performance. The update is self-balanced and theMetropolis

solution for the acceptance probability is given by

( )A X X̃ min 1, e
det

det
, (A.3)

i

m
i

i

i

i

Deform

0

old

new

new

old

̂

̂

̂
̂

̂

̂

̂
̂Ȃ ̀

̀
̀

̀
Ă = ̀̀̀−

=

withΦ containing both the change in the potential energy and all forces.Deform is illustrated in the left panel

of ଏgure A1 .

(ii) Open/ Close: this update pair constitutes the only possibility to switch between open and closed

conଏgurations. TheOpenmove is executed as follows:

• Select the time slice of the newhead, head̀ , uniformly fromall P3 slices.

• Select the bead of the newhead, rhead.

• Select the total number of links to be erased as m M[1, ˜ ]Ȃ .

• Selectm beads on the next slices from

T
r r( , , )

, (A.4)
i

m
i i i

i
select

0

1
0 1Ȃ ̀ ̀

̀
=

=

− +

the last onewill be the new tail after the update.

• Delete m 1− beads between the newhead and tail.The reversemove closes an open conଏguration. Letm
denote the number ofmissing links between head and tail. If m M̃> , the update is rejected.

Figure A1. Illustration of the updatesDeform (left) and Swap (right)—in the left panel, theDeform update is executed in an open
conଏguration. The randomconstruction of an artiଏcial trajectory (the beadsmarked by black arrows) is followed by the re-sampling
of all beads between its ଏrst (start) and last (end) bead. In the right panel, the Swapmove is demonstrated. The current head is
‘connected’ to a random target bead on the time slice of the tail.
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• Sample m 1− newbeads according to equation (24)with head and tail being theଏxed endpoints:

T
r r

r r

( , , )

( , , )
. (A.5)i

m
i i i

sample
0

1

0 1

0 head tail tot

Ȃ ̀ ̀

̀ ̀
= =

−
+

The acceptance ratios are computed as

( )

( )

A

A

X X

X X

˜ min 1, e e
det

det

˜ min 1,
e e 1 det

det
, (A.6)
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− −
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−

−

=

−

with the deଏnition

CPMN

r r

3 ˜

( , , )
. (A.7)

0 tail head tot

̀
̀ ̀

=

The parameter ̀ is another degree of freedomof the algorithm and plays the same role as the chemical

potential in the usualWA-PIMC scheme.

(iii) Swap: the Swapmove very efଏciently generates exchange, i.e., allows for a switch between large off-diagonal

or diagonal diffusionmatrix elements as it is illustrated in the right panel ofଏgure A1. Letm denote the

number ofmissing beads between head and tail.

• Choose a target bead on the slice tail̀ according to

T
r r( , , )

, (A.8)
t

target
0 head tot

forward

̀ ̀
̀

=

with forward̀ being the normalization. The tail itself cannot be chosen.

• Choose backwards m 1+ beads according to

( )
T

r r, ,
. (A.9)

i

m
i i i

i
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0 1
old old

old
Ȃ ̀ ̀

̀
=

=

+

The head itself cannot be selected on the last slice and the last beadwill be the newhead after the update.

• ‘Connect’ the old headwith the target bead by re-sampling them beads between the slices of head and tail

according to

( )
T

r r

r r

, ,

( , , )
. (A.10)i

m

i i i

sample
0 0

new
1

new

0 head target tot

Ȃ ̀ ̀

̀ ̀
= = +

The update is self-balanced and the acceptance ratio is calculated as

( )A X X̃ min 1,
det

det
, (A.11)
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i
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̀
̀

̀

̀
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=

with the abbreviation

e , (A.12)
forward

reverse

̀
̀
̀

= ̀̀̀−

and reversè being the normalization of the selection of the target bead from the reversemove.

(iv) Advance/ Recede: these updates move the head forward (backward) in the imaginary time. However, they

are optional and, in principle, not needed for ergodicity. TheAdvancemove is executed as follows:

• Calculate the number ofmissing beads between head and tail,α. If 0̀ = , the update is rejected.

• Select the number of newbeads to be sampled, m [1, ]̀Ȃ .

• Sample the position of the new head from r r( , , )0 head head
new

tot̀ ̀ .
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• Sample the m 1− beads between old and newhead according to equation (24)

( )
( )

T
r r

r r

, ,

, ,
. (A.13)i

m

i i i

sample
0

1

0
new

1
new

0 head head
new

tot

Ȃ ̀ ̀

̀ ̀
= =

−
+

The reversemove is given byRecede. Let βdenote the total number of beadswhich can be removed. If 0̀ = , the

update is rejected.

• Select the total number of beads to be removed as m [1, ]̀Ȃ .

• Selectm beads backwards starting from the old head from

( )
T

r r, ,
, (A.14)

i

m
i i i

i
select

0

1
0

new
1

new

newȂ ̀ ̀

̀
=

=

− +

with i
neẁ being the normalization. The last onewill be the newhead after the update. Here ‘new’ denotes

newwith respect toAdvance, since the coordinates are pre-existing for theRecedemove. Delete them beads

between the newhead and tail.

This gives the acceptance ratios

( )
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A

X X
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with the deଏnition

e . (A.16)tot̀ ̀
̀

= ̀ ̀

The presented list ofMonte Carlomoves constitutes an ergodic set of local updates, which allows for an

efଏcient sampling of both the extended conଏguration space and a canonicalMarkov chain.

References

[1] Egger R,HäuslerW,MakCHandGrabertH 1999Crossover fromFermi liquid toWignermolecule behavior in quantumdots Phys.

Rev. Lett. 82 3320

[2] Filinov AV, BonitzM and Lozovik Y E 2001Wigner crystallization inmesoscopic 2D electron systems Phys. Rev. Lett. 86 3851

[3] RontaniM, Cavazzoni C, Bellucci D andGoldoni G 2006 Full conଏguration interaction approach to the few-electron problem in

artiଏcial atoms J. Chem. Phys. 124 124102

[4] Ghosal A, Güclü AD,Umrigar C J,UllmoDandBarangerHU2007 IncipientWigner localization in circular quantumdots Phys. Rev.

B 76 085341

[5] Filinov A, BonitzM, Ludwig P and Lozovik Y E 2006 Path integralMonte Carlo results for Bose condensation ofmesoscopic indirect

excitons Phys. Status Solidi 3 2457–60

[6] Ludwig P, Balzer K, FilinovA, StolzH andBonitzM2008On theCoulomb-dipole transition inmesoscopic classical and quantum

electron–hole bilayersNew J. Phys. 10 083031

[7] MatveevaN andGiorgini S 2014 Fixed-node diffusionMonte Carlo study of the BCS-BEC crossover in a bilayer systemof fermionic

dipoles Phys. Rev.A 90 053620

[8] BrownEW,Clark BK,DuBois J L andCeperleyDM2013 Path-IntegralMonte Carlo simulation of thewarmdense homogeneous

electron gas Phys. Rev. Lett. 110 146405

[9] Schoof T,Groth S, Vorberger J and BonitzM2015Ab initio thermodynamic results for the degenerate electron gas atଏnite temperature

(arXiv: 1502.04616)

[10] FilinovV S, Fortov VE, BonitzM andMoldabekov Z 2015 Fermionic path integralMonte Carlo results for the uniform electron gas at

ଏnite temperature Phys. Rev.E 91 033108

[11] BonitzM, FilinovV S, Fortov VE, Levashov PR and FehskeH2005Crystallization in two-component coulomb systems Phys. Rev. Lett.

95 235006

[12] MoralesMA, Pierleoni C andCeperleyD 2010 Equation of state ofmetallic hydrogen from coupled electron–ionMonte Carlo

simulations Phys. Rev.E 81 021202

[13] FilinovV S, BonitzM, FehskeH, Fortov VE and Levashov PR2012 Proton crystallization in a dense hydrogen plasmaContrib. Plasma

Phys. 52 224–8

[14] Fletcher L B et al 2014Observations of continuumdepression inwarmdensematter with x-ray Thomson scattering Phys. Rev. Lett. 112

145004

[15] KrausD et al 2013 Probing the complex ion structure in liquid carbon at 100GPaPhys. Rev. Lett. 111 255501

[16] HurricaneOA et al 2014Nature 506 343–8

[17] CeperleyDM1995 Path integrals in the theory of condensed heliumRev.Mod. Phys. 67 279–355

[18] Militzer B and Pollock E L 2005 Equilibrium contact probabilities in dense plasmasPhys. Rev.B 71 134303

18

New J. Phys. 17 (2015) 073017 TDornheim et al



[19] Clark BK,CasulaM andCeperleyDM2009Hexatic andmesoscopic phases in a 2DquantumCoulomb systemPhys. Rev. Lett. 103

055701

[20] BoninsegniM, Prokof’evN and Svistunov B 2006Worm algorithm for continuous-space path integralMonte Carlo simulations Phys.

Rev. Lett. 96 070601

[21] Loh EY,Gubernatis J E, Scalettar RT,White S R, ScalapinoD J and Sugar R L 1990 Sign problem in the numerical simulation ofmany-

electron systems Phys. Rev.B 41 9301–7

[22] TroyerM andWieseU J 2005Computational complexity and fundamental limitations to fermionic quantumMonteCarlo

simulations Phys. Rev. Lett. 94 170201

[23] Schoof T, BonitzM, FilinovAV,HochstuhlD andDufty JW2011Conଏguration path integralMonte CarloContrib. Plasma Phys. 51

687–97

[24] Schoof T,Groth S andBonitzM2015Towards ab initio thermodynamics of the electron gas at strong degeneracyContrib. Plasma Phys.

55 136–43

[25] CeperleyDM1991 Fermion nodes J. Stat. Phys. 63 1237–67

[26] FilinovV S 2001Cluster expansion for ideal Fermi systems in theଏxed-node approximation J. Phys. A:Math. Gen. 34 1665–77

[27] FilinovV S 2014Analytical contradictions of theଏxed-node densitymatrixHighTemp. 52 615–20

[28] DuBois J L, Alder B J andBrownEW2014Overcoming the fermion sign problem in homogeneous systems arXiv: 1409.3262

[29] TakahashiM and ImadaM1984Monte Carlo calculation of quantum systems J. Phys. Soc. Japan 53 963–74

[30] FilinovV S, BonitzM, Fortov VE, EbelingW, Levashov P and SchlangesM2004Thermodynamic properties and plasma phase

transition in dense hydrogenContrib. Plasma Phys. 44 388–94

[31] Lyubartsev A P 2005 Simulation of excited states and the sign problem in the path integralMonte Carlomethod J. Phys. A:Math. Gen.

38 6659–74

[32] SuzukiM1990 Fractal decomposition of exponential operators with applications tomany-body theories andMonte Carlo simulations

Phys. Lett.A 146 319–23

[33] SuzukiM1995Hybrid exponential product formulas for unbounded operators with possible applications toMonte Carlo simulations

Phys. Lett.A 201 425–8

[34] Chin SA 1997 Sympletic integrators from composite operator factorizations Phys. Lett.A 226 344–8

[35] TakahashiM and ImadaM1984Monte Carlo of quantum systems: II.Higher order correction J. Phys. Soc. Japan 53 3765–9

[36] Chin SA 2015High-order path integralMonte Carlomethods for solving quantumdot problems Phys. Rev.E 91 031301(R)

[37] Chin SA andChenCR2002Gradient symplectic algorithms for solving the Schrödinger equationwith time-dependent potentials

J. Chem. Phys. 117 1409

[38] Sakkos K, Casulleras J and Boronat J 2009High order chin actions in path integralMonte Carlo J. Chem. Phys. 130 204109

[39] Metropolis N, Rosenbluth AW,RosenbluthMN,Teller AHandTeller E 1953 Equation of state calculations by fast computing

machines J. Chem. Phys. 21 1087

[40] BoninsegniM, Prokov’evNV and Svistunov BV2006Worm algorithm and diagrammaticMonte Carlo: a new approach to

continuous-space path integralMonte Carlo simulations Phys. Rev.E 74 036701

[41] ChandlerD andWolynes PG 1981 Exploiting the isomorphismbetween quantum theory and classical statisticalmechanics of

polyatomic ଏuids J. Chem. Phys. 74 4078

[42] JankeWand Sauer T 1997Optimal energy estimation in path-integralMonte Carlo simulations J. Chem. Phys. 107 5821

[43] Filinov AV, Böning J and BonitzM2007 Path integralMonte Carlo simulation of charged particles in trapsComputationalMany-

Particle Physics (LectureNotes in Physics vol 739) edHFehske, R Schneider andAWeiße (Heidelberg: Springer)

[44] Fetter A L andWalecka JD 2003QuantumTheory ofMany-Particle Systems (NewYork: Dover)

[45] Egger R,HäuslerW,MakCHandGrabertH 1999 Erratum:Crossover fromFermi liquid toWignermolecule behavior in quantum

dots Phys. Rev. Lett. 83 462(E)

[46] Weiss S and Egger R 2005 Path-integralMonte Carlo simulations for interacting few-electron quantumdots with spin–orbit coupling

Phys. Rev.B 72 245301

[47] Ludwig P, Kosse S andBonitzM2005 Structure of spherical three-dimensional Coulomb crystals Phys. Rev.E 71 046403

[48] DornheimT, FilinovA andBonitzM2015 Superଏuidity of strongly correlated bosons in two- and three-dimensional trapsPhys. Rev.B

91 054503

[49] ThomsenHandBonitzM2015Resolving structural transitions in spherical dust clusters Phys. Rev.E 91 043104

19

New J. Phys. 17 (2015) 073017 TDornheim et al



THE JOURNAL OF CHEMICAL PHYSICS 143, 204101 (2015)

Permutation blocking path integral Monte Carlo approach to the uniform
electron gas at finite temperature

Tobias Dornheim,1,a) Tim Schoof,1 Simon Groth,1 Alexey Filinov,1,2 and Michael Bonitz1
1Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität, Leibnizstrasse 15,
Kiel D-24098, Germany
2Joint Institute for High Temperatures RAS, Izhorskaya Str. 13, 125412 Moscow, Russia

(Received 14 August 2015; accepted 6 November 2015; published online 23 November 2015)

The uniform electron gas (UEG) at finite temperature is of high current interest due to its key
relevance for many applications including dense plasmas and laser excited solids. In particular,
density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently,
the only existing first-principle results had been obtained for N = 33 electrons with restricted path
integral Monte Carlo (RPIMC), for low to moderate density, rs = r/aB & 1. These data have been
complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that
substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present
results from an independent third method—the recently developed permutation blocking path integral
Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we
extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density
range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results
to both aforementioned methods. While we find excellent agreement with CPIMC, where results are
available, we observe deviations from RPIMC that are beyond the statistical errors and increase with
density. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936145]

I. INTRODUCTION

Over the last years, there has been an increasing interest
in the thermodynamic properties of degenerate electrons in
the quantum mechanical regime. Such information is vital
for the description of highly compressed matter,1–3 including
plasmas in laser fusion experiments4–9 and in compact stars
and planet cores.10–12 In addition, the widespread density
functional theory (DFT) approach crucially depends on the
availability of accurate quantum Monte Carlo (QMC) data
for the exchange correlation energy of the uniform electron
gas (UEG), hitherto at zero temperature.13–17 However, in
recent years more and more applications with highly excited
electrons have emerged, which require to go beyond ground
state DFT. Hence, there exists a high current need for an ab
initio thermodynamic description of the UEG at finite T .

The widely used path integral Monte Carlo (PIMC)
method, e.g., Ref. 18, is a powerful tool for the ab initio
simulation of both distinguishable particles (often referred to
as “boltzmannons,” e.g., Refs. 19 and 20) and bosons and
allows for quasi exact results for up to N ∼ 103 particles at
finite temperature.21,22 However, the application of PIMC to
fermions is hampered by the notorious fermion sign problem
(FSP), e.g., Ref. 23, which might render even small systems
unfeasible for state of the art QMC methods and is known
to be NP-hard for a given representation.24 With increasing
degeneracy effects, permutation cycles with opposite signs
nearly cancel each other and the statistical uncertainty grows
exponentially. Hence, standard PIMC cannot provide the

a)Electronic mail: dornheim@theo-physik.uni-kiel.de

desired results without further improvement. Brown et al.25

have presented the first finite temperature results for the UEG
down to rs = 1 using restricted PIMC (RPIMC),26 a popular
approach to extend PIMC to higher degeneracy, that is, lower
temperature and higher density. To avoid the FSP, this method
requires explicit knowledge of the nodal surface of the density
matrix, which is, in general, unknown and one has to rely
on approximations. The use of the ideal nodes for a nonideal
system appears to be problematic, as has been shown for
the case of hydrogen.27,28 In addition, it has been shown
analytically that RPIMC does not reproduce the exact limit
of the ideal Fermi gas (rs → 0).29,30 Therefore, the quality of
the RPIMC data remains unclear. Indeed, recent configuration
PIMC (CPIMC)31,32 results for the highly degenerate UEG
by Schoof et al.33 have revealed a significant disagreement
between the two methods at small rs and low temperature.
While the first application of a novel density matrix QMC
(DMQMC) approach34 to the UEG for four particles reports
excellent agreement with CPIMC,35 additional simulations
of larger systems are needed to resolve the discrepancy
towards RPIMC. For completeness, we mention that QMC
results by Filinov et al.36 cannot be used as a benchmark
due to the different treatment of the homogeneous positive
background and a different account of the long-range Coulomb
interaction37,38 than the usual Ewald summation. In this
situation, an independent third first-principle method, capable
to treat warm dense matter (WDM) parameters, would be
highly desirable.

In this work we, therefore, investigate the applicability
of the recently developed permutation blocking PIMC (PB-
PIMC) approach39 to the uniform electron gas. We note

0021-9606/2015/143(20)/204101/8/$30.00 143, 204101-1 © 2015 AIP Publishing LLC
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that PB-PIMC is essentially standard PIMC but combines
two well known concepts: (1) antisymmetric imaginary time
propagators,40–42 i.e., determinants, between all “time slices”
and (2) a higher order factorization of the density matrix.43–46

This means that each particle is represented by a “path”
consisting of 3 × P coordinates (“beads”), where P is the
number of high-temperature factors (or propagators). (3)
To efficiently sample this more complicated configuration
space, PB-PIMC uses a novel Monte Carlo update scheme
which combines the worm algorithm idea21,22 with the
temporary construction of artificial trajectories, cf. Ref. 39.
The application of determinants leads to a relieve of the
FSP by an effective cancellation of positive and negative
terms in the partition function, which belong to permutation
cycles of different parity in standard PIMC. However, since
the blocking is most effective if the thermal wavelength of a
single propagator is of the same order as the mean interparticle
distance, it is crucial to employ a higher order factorization
scheme which allows for sufficient accuracy with only a few
time slices. Therefore, it is the combination of the above three
ingredients that allows us to significantly extend the range of
applicability of standard PIMC towards stronger degeneracy,
see also Fig. 1.

The details of our PB-PIMC scheme, for the UEG, are
described in Section II B, after a brief introduction of the
employed model in Section II A. In Section III A, we present
our simulation results starting with a detailed investigation of
the convergence behavior with respect to the factorization of
the density matrix. We proceed by simulating N = 33 spin-
polarized electrons, which is a commonly used model system
of the UEG, see Section III B. Interestingly, our PB-PIMC
approach allows us to obtain accurate results over the entire
density range and, therefore, to make a comparison with the
pre-existing RPIMC and CPIMC results for the UEG. Finally,
in Section III C we investigate the applicability of our method
with respect to the temperature. We find that PB-PIMC,
in combination with CPIMC, allows for the simulation of

FIG. 1. Density-temperature plain around the warm dense matter (WDM)
regime. PB-PIMC significantly extends the range of applicability of standard
PIMC (qualitatively shown by the red dashed line, see also Figs. 5 and 7)
towards lower temperature and higher density while CPIMC is applicable
to the highly degenerate and weakly nonideal UEG.33 RPIMC data25 are
available for rs ≥ 1. The orange area marks the conditions of WDM and
inertial confinement fusion (ICF).5

the UEG over a broad parameter range, which includes the
physically most interesting regime of warm dense matter, cf.
Fig. 1.

II. THEORY

A. Model Hamiltonian

The uniform electron gas, often referred to as “Jellium,”
is a model description of Coulomb interacting electrons
with a neutralizing background of positive charges which
are uncorrelated and homogeneously distributed. To describe
an infinite system based on a finite number of particles, one
implements periodic boundary conditions and includes the
interaction of the N electrons in the main cell with all their
images via Ewald summation. Following the notation from
Ref. 47, we express the Hamiltonian of the N electron UEG
(in atomic units) as

Ĥ = −1
2

N∑

i=1

∇2
i +

1
2

N∑

i=1

N∑

j,i

e2Ψ(ri,r j) +
Ne2

2
ξ,

with ξ being the Madelung constant and the periodic Ewald
pair potential

Ψ(r,s) = 1
V

∑

G,0

e−π
2G2/κ2

e2πiG(r−s)

πG2

− π
κ2V
+

∑

R

erfc(κ |r − s + R|)
|r − s + R| . (1)

Here, R = n1L and G = n2/L denote the real and reciprocal
space lattice vectors, respectively, with the box length L and
volume V = L3. The specific choice of the Ewald parameter
κ does not influence the outcome of Eq. (1) and, therefore,
can be used to optimize the convergence. PB-PIMC requires
explicit knowledge of all forces in the system, and the force
between the electrons i and j can be obtained from

Fi j = −∇iΨ(ri,r j). (2)

The evaluation of Eq. (2) is relatively straightforward and we
find

Fi j =
2
V

∑

G,0

(
G
G2 sin

�
2πG(ri − r j)

�
e−π

2G2/κ2
)

+
∑

R

ri − r j + R
α3

(
erfc(κα) + 2κα√

π
e−κ

2α2
)
,

with the definition α = |ri − r j + R|.

B. Simulation method

To calculate canonical expectation values with the PB-
PIMC approach,39 we write the partition function in coordinate
representation as

Z =
1

N!

∑

σ∈SN

sgn(σ)
∫

dR 〈R|e−βĤ |π̂σR〉, (3)

with R = r1, . . . ,rN containing the coordinates of all electrons,
π̂σ denoting the exchange operator which corresponds to
a specific element σ from the permutation group SN and
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β = 1/kBT . For the next step, we make use of the usual group
property of the density matrix in Eq. (3) and arrive at an
expression for Z which requires the evaluation of P density
matrices at P times higher temperature. However, instead of
the primitive approximation e−ǫĤ ≈ e−ǫK̂e−ǫV̂ , with ǫ = β/P
being the imaginary time step of a single propagator and the
kinetic and potential contributions to the Hamiltonian K̂ and
V̂ , respectively, we use the fourth order factorization,44,45

e−ǫĤ ≈ e−v1ǫŴa1e−t1ǫK̂e−v2ǫŴ1−2a1e−t1ǫK̂e−v1ǫŴa1e−2t0ǫK̂ . (4)

The Ŵ operators in Eq. (4) denote a modified potential, which
combines V̂ with double commutator terms of the form

[[V̂ , K̂],V̂ ] = ~
2

m

N∑

i=1

|Fi |2 (5)

and, therefore, requires the evaluation of all forces on each
particle, Fi = −∇iV (R). Our final result for the partition
function is given by

Z =
1

(N!)3P
∫

dX
P−1∏

α=0

e−ǫṼαe−ǫ
3u0
~2
m F̃α

× det(ρα)det(ραA)det(ραB), (6)

with the definition of the potential and force terms

Ṽα = v1V (Rα) + v2V (RαA) + v1V (RαB),

F̃α =

N∑

i=1

�
a1|Fα, i |2 + (1 − 2a1)|FαA, i |2 + a1|FαB, i |2

�
,

(7)

and the diffusion matrices

ρα(i, j) = λ−Dt1ǫ
∑

n
exp *,−

π

λ2
t1ǫ

(rα, j − rαA, i + nL)2+- ,
with D being the dimensionality, see, e.g., Ref. 40.
Eq. (6) contains two free coefficients, t0 and a1, which
can be used for optimization, cf. Fig. 2, and the
integration is carried out over 3P sets of coordinates, dX
= dR0 . . . dRP−1dR0A . . . dRP−1AdR0B . . . dRP−1B. Instead of
explicitly sampling each permutation individually, as in
standard PIMC, we combine configuration weights of both

FIG. 2. Influence of the relative interslice spacing t0 for N = 4, rs = 4, and
θ = 0.5 on the convergence of the propagator. The exact result known from
CPIMC (green line) is compared to the PB-PIMC results for P = 2, P = 3,
and P = 4 for the fixed free parameter a1= 0.33 over the entire t0 range. The
optimal value is located around t0= 0.14.

positive and negative signs in the determinants, which leads
to a cancellation of terms and, therefore, an effective blocking
of permutations. When the thermal wavelength of a single
time slice, λt1ǫ =

√
2πǫt1~2/m, is comparable to the mean

interparticle distance, the effect of the blocking is most
pronounced and the average sign in our simulations is
significantly increased. However, with an increasing number
of propagators P, λt1ǫ decreases and, eventually, the blocking
will have no effect and the sign converges towards the
sign from standard PIMC. Hence, it is crucial to employ
the high order factorization from Eq. (4), which allows for
reasonable accuracy even for only two or three propagators.
We simulate the canonical probability distribution defined by
Eq. (6) using the Metropolis algorithm.48 For this purpose,
we have introduced a set of efficient Monte Carlo updates
that combine the worm algorithm idea21,22 with the temporary
construction of artificial trajectories, see Ref. 39 for a more
detailed description.

C. Energy estimator

The consideration of periodicity in the diffusion matrices
requires minor modifications in the energy estimator presented
in Ref. 39, which can be derived from the partition function
via the familiar relation

E = − 1
Z
∂Z
∂ β
. (8)

Inserting the expression from Eq. (6) into (8) and performing
a lengthy but straightforward calculation leads to

E =
1
P

P−1∑

k=0

(
Ṽk + 3ǫ2u0

~2

m
F̃k

)
+

3DN
2ǫ

−
P−1∑

k=0

N∑

κ=1

N∑

ξ=1

*,
πηkκξ

ǫPλ2
t1ǫ

+
πηk Aκξ

ǫPλ2
t1ǫ

+
πηkBκξ

ǫPλ2
2t0ǫ

+- ,
with the definition

ηkκξ =

�
ρ−1
k

�
κξ

λDt1ǫ

∑

n
exp

−
π

λ2
t1ǫ

(rk,κ − rk A,ξ + Ln)2


× (rk,κ − rk A,ξ + Ln)2. (9)

For completeness, we note that the total energy E splits into
the kinetic and potential contributions, K and V , in precisely
the same way as before.39

III. RESULTS

A. Convergence

We begin the discussion of our simulation results by
investigating the convergence of the energy with the number
of imaginary time propagators P. To enhance the performance,
the free parameters from the propagator, a1 and t0, can be
optimized. In Fig. 2, we choose a1 = 0.33, which corresponds
to equally weighted forces on all time slices, and plot the
potential energy V , calculated with P = 2, P = 3, and P = 4,
versus t0 over the entire possible range for a benchmark
system of N = 4 spin-polarized electrons with θ = 0.5 and
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rs = 4. To assess the accuracy, we compare these results
with the exact energy known from CPIMC (green line).
Evidently, the optimal choice for this free parameter is located
around t0 = 0.14, which is consistent with previous findings
by Sakkos et al.45 and the application of PB-PIMC to electrons
in a quantum dot.39 For completeness, we mention that the
kinetic energy K exhibits the same behavior. Hence, we use
the combination a1 = 0.33 and t0 = 0.14 for all presented
simulations in this work. However, it should be noted that
our method converges for all possible choices of the free
parameters. In Fig. 3, we demonstrate the convergence of the
energy with respect to the number of propagators for the same
system as in Fig. 2. However, since V and K nearly cancel
for this particular combination of rs, θ, and N , we investigate
the convergence of both contributions separately. The top
panel shows the potential energy versus the inverse number of
propagators P−1 ∝ ǫ and we compare the PB-PIMC results to
the exact value (with the corresponding confidence interval)
from CPIMC. We find that as few as two propagators allow
for a relative accuracy ∆V/|V | ∼ 10−4 and with P = 4 the
potential energy is converged within error bars. In the bottom
panel, we show the same information for the kinetic energy K .
The variance of K is one order of magnitude larger than that
of V and, for two propagators, we find the relative time step
error ∆K/K ∼ 10−3. With increasing P, the PB-PIMC results
are fluctuating around the exact value, within error bars.

Finally, we address the rs–dependence of the time step
error by comparing PB-PIMC results for V with P = 2

FIG. 3. Convergence of the potential (top) and kinetic (bottom) energy for
N = 4, rs = 4, and θ = 0.5 with t0= 0.14 and a1= 0.33. In the top panel,
the potential energy V is plotted versus the inverse number of propagators
P−1∝ ǫ and the PB-PIMC results are compared to the exact value known
from CPIMC. The bottom panel shows the same information for the kinetic
energy K .

FIG. 4. Accuracy of two and three propagators over a broad rs range for
N = 4 and θ = 0.5 with t0= 0.14 and a1= 0.33. We show the relative differ-
ence between the potential energy from PB-PIMC and CPIMC, ∆V /|V |, for
the optimal parameters from the fourth order propagator.

(red crosses) and P = 3 (blue squares) to the exact values
from CPIMC. In Fig. 4, the relative error of the potential
energy ∆V/|V | is plotted versus rs for N = 4 spin-polarized
electrons at θ = 0.5. The increased errorbars for larger rs are a
manifestation of the sign problem from CPIMC,32 while for the
rest the statistical uncertainty from PB-PIMC predominates.
The time step error is smaller for three propagators over the
entire rs–range, as it is expected, and adopts a maximum
around rs = 1. This can be understood by recalling the source
of the systematic error in PB-PIMC. For rs → 0, the UEG
approaches an ideal system and the commutator error from K̂
and V̂ vanishes. For rs → ∞, on the other hand, the particles
are more separated and the system becomes more classical.
Therefore, the neglected commutator terms are most important
at intermediate rs, which is the case for the results in Fig. 4.

We conclude that as few as two or three propagators
provide sufficient accuracy to assess the discrepancy between
CPIMC and RPIMC observed in previous studies.33 In
particular, the selected benchmark temperature, θ = 0.5, is
even lower than for all other simulations to be presented in
this work. Hence, the observed time step error constitutes an
upper bound for the accuracy of our results in the remainder
of the paper.

B. Density parameter dependence

Among the most interesting questions regarding the
implementation of PB-PIMC for the UEG is the range
of applicability with respect to the density parameter rs.
To address this issue, we simulate N = 33 spin-polarized
electrons, which corresponds to a closed momentum shell and
is often used as a starting point for finite size corrections.
In Fig. 5, we show the average sign S versus rs for three
different temperatures over a broad density range. All PB-
PIMC data exhibit a qualitatively similar behavior, that is, a
smooth decrease of S towards smaller rs until it saturates.
At large rs, the coupling induced particle separation mostly
exceeds the extension of the single particle wavefunctions
and quantum exchange effects do not play a dominant role.
With decreasing rs, the UEG approaches an ideal system and
the particles begin to overlap, which leads to sign changes in
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FIG. 5. The average sign of PB-PIMC is plotted versus the density parameter
rs for three different temperatures and N = 33 spin-polarized electrons with
P = 2, a1= 0.33, and t0= 0.14. The standard PIMC data (green crosses) are
taken from the supplement of Ref. 25.

the determinants. However, due to the blocking, the average
sign, instead of dropping exponentially, remains finite which
implies that, for the three depicted temperatures, PB-PIMC
is applicable over the entire density range. This is in stark
contrast to standard PIMC (cf. the green curve), which exhibits
a significantly smaller average sign and, for θ = 1, is not
feasible for rs . 3. Nevertheless, with decreasing temperature
the sign of PB-PIMC drops and the FSP makes the simulations
more involved, cf. Section III C.

In Fig. 6, we compare the corresponding energies with
RPIMC49 and CPIMC,33 where they are available. The top
row displays the relative difference in the potential energy
towards PB-PIMC with two propagators. For θ = 4 and θ = 2,
we find excellent agreement with CPIMC. For the lowest
temperature, θ = 1, the CPIMC values are systematically
lower by ∆V/|V | . 10−3. However, this discrepancy can be

FIG. 6. Comparison of PB-PIMC with CPIMC and RPIMC for N = 33 spin-polarized electrons and three temperatures. In the top row, the relative deviation of
the potential energy from PB-PIMC with P = 2, t0= 0.14 and a1= 0.33 is plotted versus rs. The center and bottom rows display the same information for the
kinetic and total energy, respectively. The black dot in the bottom left panel (∆E/E for θ = 1) corresponds to standard PIMC and is taken from the supplement
of Ref. 25.
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explained by the convergence behavior of the propagator, cf.
Fig. 4, since the potential (and kinetic) energy is expected
to converge from above towards the exact result. To confirm
this assumption, we also plot results for P = 3 and θ = 1,
visualized by the grey triangles. Evidently, these points
coincide with the CPIMC data everywhere within the errorbars
and, thus, can be regarded as quasi-exact. The RPIMC data for
V , on the other hand, exhibit a systematic discrepancy with
respect to PB-PIMC and CPIMC.33 At rs = 1, the energies
approximately differ by ∆V/|V | ∼ 0.02, but the difference
decreases with increasing rs. In the center row, we display the
relative difference in the kinetic energy. Again, all PB-PIMC
results are in good agreement with CPIMC. On the other hand,
there is no clear systematic deviation between the PB-PIMC
and RPIMC data, although most RPIMC-values for θ = 1 are
lower while the opposite holds for most values for θ = 4.
Finally, the bottom row displays the relative difference in the
total energy. Interestingly, for θ = 1 the difference of RPIMC
in V and K towards PB-PIMC nearly cancels, so that E appears
to be in good agreement. In particular, even the value for θ = 1
and rs = 4, where the potential energy is an outlier, and both
V and K exhibit a maximum deviation, is almost within single
error bars. For completeness, we have also included the total
energy for θ = 1 and rs = 40 from standard PIMC,49 cf. the
black circle, which is in excellent agreement with PB-PIMC
as well. For θ = 2 and θ = 4, most RPIMC values for E are
higher than PB-PIMC, although the deviation hardly exceeds
twice the error bars.

C. Temperature dependence

Finally, we investigate the performance of PB-PIMC
with respect to the temperature. In Fig. 7, the average sign
of PB-PIMC is plotted versus θ for N = 33 spin-polarized
electrons at rs = 10, rs = 1, and rs = 0.1. All three curves
exhibit a similar behavior, that is, a large sign S at high
temperature and a monotonous decay for T → 0. However,
for rs = 10, the system is significantly less degenerate than
for both other density parameters, and even at θ = 0.5, the

FIG. 7. The average sign of PB-PIMC is plotted versus the temperature θ
for rs = 10, rs = 1, and rs = 0.1 and N = 33 spin-polarized electrons with
P = 2 and the free parameters t0= 0.14 and a1= 0.33. The standard PIMC
data (green crosses) are taken from the supplement of Ref. 25.

average sign of S ≈ 0.056 indicates that the simulations are
feasible. For rs = 1 and rs = 0.1, the decay of S is more rapid
and, at low temperature, the simulations are more involved.
In particular, half the Fermi temperature seems to constitute
the current limit down to which reasonable results can be
achieved for such rs–values (and this particle number) and,
for rs = 0.1, the sign is zero within error bars, cf. the dashed
line. For completeness, we also show the average sign of
standard PIMC for rs = 1, cf. the green curve. Evidently,
these simulations are significantly more severely affected by
the FSP and simulations are feasible only for θ & 2. Finally,
we note that the average signs of PB-PIMC for the two
smaller depicted rs parameters are more similar to each other
than to rs = 10. We characterize the temperature in units
of the ideal Fermi temperature, which is appropriate for
weak coupling. However, for large rs, the system becomes
increasingly nonideal and, therefore, θ does not constitute an
adequate measure for the degeneracy.

In Fig. 8, we compare the energies of the N = 33 electrons
at rs = 1 from PB-PIMC both to RPIMC49 and CPIMC. The
top panel displays the relative difference in the potential energy
versus θ. The CPIMC results for V are in good agreement
with PB-PIMC, while the RPIMC data are systematically
higher, by about 2%. Interestingly, this behavior appears to
be almost independent of the temperature. In the bottom
panel, the same information is shown for the kinetic energy
and, again, PB-PIMC agrees with CPIMC over the entire

FIG. 8. Comparison with CPIMC and RPIMC as a function of tempera-
ture. In the top panel, the relative deviation of the potential energy from
the PB-PIMC result is plotted versus θ for N = 33 spin-polarized electrons
and rs = 1. The bottom panel displays the same information for the kinetic
contribution.
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temperature range. The large statistical uncertainty at θ = 0.5
is a manifestation of the FSP in PB-PIMC, which prevents
us from obtaining more precise kinetic energies with feasible
computational effort. The RPIMC data for K are slightly
lower, at low temperature, which confirms the trend observed
by Schoof et al.,33 and seems to converge towards the other
methods for large θ.

IV. DISCUSSION

In summary, we have successfully extended the PB-PIMC
approach39 to the uniform electron gas at finite temperature.
We have started the discussion with a brief introduction
of our simulation scheme, which combines a fourth-order
factorization of the density matrix with the application of
antisymmetric imaginary time propagators, i.e., determinants.
This allows us to combine permutations, which appear as
individual configurations with positive and negative sign in
standard PIMC, into a single configuration weight (hence
the label permutation blocking). Furthermore, we employ an
efficient set of Monte Carlo updates which is based on the
temporary construction of artificial trajectories. Due to the
combination of these three concepts, the average sign in our
simulations is significantly increased.

To assert the quality of our numerical results, we have
investigated the optimization of the free parameters of our
propagator and demonstrated the convergence of both the
potential and kinetic energies with respect to the number of
imaginary time steps. We have found that even for the lowest
considered temperature, θ = 0.5, as few as two propagators
allow for a relative accuracy of 0.1% and 0.01% in the kinetic
and potential energies, respectively. After this preparatory
work, we have shown results for N = 33 spin-polarized
electrons, which is a commonly used model system as it
is well suited to be a starting point for the extrapolation to the
macroscopic limit (finite size corrections). In striking contrast
to previous implementations of standard PIMC, PB-PIMC is
feasible over the entire density range and, therefore, allows us
to compare our results to both CPIMC and RPIMC data, where
they are available. Our PB-PIMC data exhibit a very good
agreement with CPIMC, for both the potential and kinetic
energies, for all three investigated temperatures. On the other
hand, we observe deviations between PB-PIMC and RPIMC
of up to 3% in the potential energy, which decrease towards
strong coupling. For the kinetic energy, we find no systematic
trend although, for θ = 1, most of the RPIMC-values are
smaller while, for θ = 4, most are larger than the PB-PIMC
results. However, for both temperatures this deviation hardly
exceeds twice the RPIMC errorbars.

Finally, we have investigated the applicability of PB-
PIMC to the N = 33 spin-polarized electrons with respect to
the temperature. With decreasing θ, exchange effects lead to
more negative determinants in the configuration weights and,
therefore, a smaller average sign. For the physically most
interesting density regime, rs ∼ 1, simulations are feasible
above θ = 0.5 while for larger rs even lower temperatures
are possible. Therefore, it has once more been demonstrated
that the range of applicability of standard PIMC has been
significantly extended. A comparison of the energies for

rs = 1 over the entire applicable temperature range has again
revealed an excellent agreement with CPIMC. On the other
hand, we observe a nearly θ-independent relative deviation
between PB-PIMC and RPIMC in the potential energy of
approximately 2%, whereas differences in the kinetic energy
are observed only towards low temperature.

We conclude that our permutation blocking PIMC
approach is capable to provide accurate results for the UEG
over a broad parameter range. This approach is efficient
above a minimum temperature of about 0.5TF and, thus,
complements CPIMC. Even though PB-PIMC carries a small
systematic error (which is controllable and depends only on
the number of time slices), we expect it to be useful for
the development and test of other new techniques such as
DMQMC34,35 and other novel versions of fermionic PIMC,
such as the approximate treatment of exchange cycles by
DuBois et al.50 or a variational approach to the RPIMC nodes,
e.g., Ref. 51.

A natural follow-up of this work will be the extension
of PB-PIMC to unpolarized systems which, in combination
with CPIMC, should allow for a nearly complete description
of the finite temperature UEG over the entire density range.
In addition, we aim for the application or derivation of finite
size corrections in order to extrapolate our results to the
macroscopic limit47,52,53 which could be followed by the
construction of a new analytical fit formula for the UEG
at finite temperature, e.g., Refs. 54 and 55. Finally, since
PB-PIMC allows for efficient simulations in the warm dense
matter regime, applications to two-component plasmas, such
as dense hydrogen,56–58 are within reach.
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3.5 Pushing CPIMC Towards Stronger Coupling

The results that were presented in Ref. [46] in Sec. 3.3 could not have been obtained with the
bare CPIMC algorithm, which, in the case of N = 33 spin-polarized electrons, is limited to
density parameters rs ≲ 0.4. The improvement of the method such that it actually allows for
the simulation of the UEG at densities up to rs ∼ 1 constitutes a central achievement of the
present thesis. The main ideas of this enhancement are briefly summarized in the remainder
of this section, whereas I give an extensive discussion in the following Ref. [55].

First, I carried out a detailed analysis of the fermion sign problem to gain a precise
understanding about its manifestation within the method. This investigation lead to a
crucial observation: when increasing the density parameter rs at fixed electron number N
and temperature θ , the average sign7, s, abruptly drops from unity to a very small value
(s < 10−3) at some critical density rs,crit (see Fig. 3 in Ref. [55]). For such small values
of the average sign, no reliable results can be obtained with feasible computational effort.
Therefore, one may say that the sign problem in CPIMC exhibits a "hard wall" character.
This is much different to PIMC methods in coordinate representation, where the sign problem
increases rather steadily with the degeneracy of the simulated system.

The reason for this "hard wall" character of the sign problem lies in a sudden exponential
growth of the average number of excitations in the sampled paths from O(1) to O(100).
Due to their visual appearance in the graphical representation of the paths, we refer to
these excitations as "kinks". Since each of these kinks enters the weight function with
three potential sign changes, this explains the sudden drop of the average sign at the critical
coupling strength. Fortunately, it turns out that the actual number of kinks required to obtain
exact expectation values of physical observables is much smaller. Strictly speaking, when
performing CPIMC simulations with a fixed maximum number of kinks Kmax in the sampled
paths, the results converge for much smaller Kmax than those corresponding to a simulation
without restrictions. This means that all contributions from paths with a very large number
of kinks cancel.

However, the thus obtained convergence exhibits a zig-zag behavior alternating with even
and odd numbers of Kmax (Fig. 5 in Ref. [55]). This problem can be overcome by applying
a smooth penalty function—the so-called kink potential—to paths with a larger number of
kinks than Kmax, which causes the convergence to the exact result to be strictly monotonic.
In principle, there are many appropriate functional forms for such a kink potential, yet, as

7The average sign determines the signal to noise ratio in QMC methods that are afflicted with a fermion sign
problem and thus determines if simulations are feasible for a given system. It is computed as the expectation
value of the signum of all sampled CPIMC paths in the modified configuration space, see Ref. [55].
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it turns out, a Fermi-function-like form has the advantage that the onset of convergence is
clearly indicated by a change in curvature.

In a nutshell, the reason for the applicability of the kink potential is rooted in a simple
mathematical rule: a sum with sign-alternating terms (the physical partition function) may
converge much faster than the sum of the modulus of the terms (the modified partition
function that is actually simulated with the Metropolis algorithm). In fact, even if the former
is convergent, this must not necessarily be true for the latter, but, in case of CPIMC, it
fortunately is.

Overall, the kink potential more than doubles the accessible density parameter, thereby
extending the formalism to coupling parameters that are well beyond those where standard
perturbation theory approaches are reliable. Most importantly, this is achieved without
loosing the ab initio character of the method as the results are obtained from a controlled
extrapolation. This is demonstrated in Fig. 5 and Fig. 6 of the following Ref. [55], which
contains a comparison to an exact diagonalization (for a small system of N = 4 electrons).

3.6 Combination with PB-PIMC: the Spin-polarized Case

As was already pointed out in the previous Ref. [57] (see discussion of Fig. 1 therein),
PB-PIMC and CPIMC exhibit a complementary range of parameters where simulations of
the UEG are most efficient: PB-PIMC excels at low density (large values of rs), whereas
CPIMC is superior at high density (small rs). Besides the detailed explanation of the kink
potential, a second aspect of the following paper8, Ref. [55], lies in the demonstration that the
fermion sign problem can be effectively circumvented (at all densities) via the combination
of these two methods, although this strategy is restricted to temperatures θ ≥ 0.5.

Furthermore, in order to complement the parameter combinations shown in Refs. [46]
and [57], CPIMC and PB-PIMC simulations of the UEG with N = 33 spin-polarized electrons
were performed for density parameters in the range of 0.01 ≥ rs ≥ 10 and temperatures
0.5 ≥ θ ≥ 8. By always taking the best result of both methods (smallest statistical error bar),
we generated an extensive ab initio data set for the kinetic, potential and exchange–correlation
energy (see Tab. 1 in Ref [55]). Also, we demonstrated (see Fig. 7) that the results of both
methods smoothly run into each other and thereby confirmed their correctness. Further, the
comparison of our results for the exchange–correlation energy with the previous RPIMC data
by Brown et al. [107] revealed that the latter are afflicted with substantial systematic errors

8S. Groth, T. Schoof, T. Dornheim, and M. Bonitz, Phys. Rev. B 93, 085102 (2016). Copyright by the
American Physical Society (2016).
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even at these higher temperatures9 (θ ≥ 0.5) and moderate densities. This was somewhat
unexpected, since the induced errors due to the fixed node approximation are known to vanish
with increasing temperature and decreasing density.

9Note that the discussion of the systematic errors of the RPIMC data in Ref. [46] is restricted to a comparison
with the CPIMC results at rs ≤ 1 and θ ≤ 0.5.
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The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in the warm
dense matter regime, e.g., dense plasmas and laser excited solids. Also, the quality of density functional theory
calculations crucially relies on the availability of accurate data for the exchange-correlation energy. Recently,
results for N = 33 spin-polarized electrons at high density, rs = r̄/aB � 4, and low temperature have been
obtained with the configuration path integral Monte Carlo (CPIMC) method [T. Schoof et al., Phys. Rev. Lett.
115, 130402 (2015)]. To achieve these results, the original CPIMC algorithm [T. Schoof et al., Contrib. Plasma
Phys. 51, 687 (2011)] had to be further optimized to cope with the fermion sign problem (FSP). It is the purpose
of this paper to give detailed information on the manifestation of the FSP in CPIMC simulations of the UEG
and to demonstrate how it can be turned into a controllable convergence problem. In addition, we present new
thermodynamic results for higher temperatures. Finally, to overcome the limitations of CPIMC towards strong
coupling, we invoke an independent method—the recently developed permutation blocking path integral Monte
Carlo approach [T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015)]. The combination of both approaches
is able to yield ab initio data for the UEG over the entire density range, above a temperature of about one half
of the Fermi temperature. Comparison with restricted path integral Monte Carlo data [E. W. Brown et al., Phys.
Rev. Lett. 110, 146405 (2013)] allows us to quantify the systematic error arising from the free particle nodes.

DOI: 10.1103/PhysRevB.93.085102

I. INTRODUCTION

The uniform electron gas (UEG) constitutes a well-known
simple model for metals [1]. At finite temperature, the
spin-polarized UEG is described by the density parameter
rs = r̄/aB [r̄ is the mean interparticle distance related to
the density by n−1 = 4πr̄3/3, and aB is the Bohr radius]
and the dimensionless temperature (degeneracy parameter)
� = kBT /EF , with the Fermi energy EF . Besides being an
interesting theoretical model system for studying correlated
fermionic many-body systems, exact data for the exchange-
correlation energy of the UEG is essential for the construction
of exchange correlation functionals [2,3] for density functional
theory (DFT) calculations of more realistic systems, e.g.
atoms, molecules, and novel materials. For the ground state this
data has been provided many years ago by Ceperley and Alder
[4] utilizing the fixed node diffusion Monte Carlo approach.
Based on these calculations, Perdew and Zunger computed the
density functionals [5], which have been the basis for countless
DFT applications.

Often one is interested in properties of chemical systems
or condensed matter at low temperature, not exceeding room
temperature, for which it is justified to use ground state
results. However, in recent years more and more applications
have emerged where the electrons are highly excited, e.g., by
compression of the material or by electromagnetic radiation.
Examples are dense plasmas in compact stars or planet cores,
e.g., [6–8], and laser fusion experiments at the National
Ignition Facility, e.g. [9–11], at Rochester [12], or Sandia
[13,14]. It is now widely agreed upon that the theoretical
description of these experiments requires to go beyond ground
state DFT. This leads to a high demand for exact data for the
UEG at finite temperature and high to moderate density where
fermionic exchange and correlation effects play an important
role simultaneously, namely the warm dense matter (WDM)
regime, where both rs and � are of order one.

Quantum Monte Carlo (QMC) simulations are the method
of choice for the computation of exact thermodynamic
quantities at finite temperature. However, it is well known
that, when applied to fermions, path integral Monte Carlo
(PIMC) methods suffer the fermion sign problem (FSP),
which may render the simulation even of small fermionic
systems impossible and was shown to be NP hard [15]. In the
standard PIMC formulation in coordinate space, e.g. [16], the
FSP causes an exponential loss of accuracy with increasing
degeneracy, i.e., towards low temperature and high density
of the system. For this reason, standard fermionic PIMC
calculations of the commonly used N = 33 spin-polarized
UEG are not feasible in the warm dense matter regime [17].
Presently, the search for accurate and efficient strategies to
weaken the FSP is one of the most important questions in
condensed matter and dense plasma theory.

A popular approach to avoid the FSP is the restricted
(fixed-node) PIMC (RPIMC) method [18], which is claimed to
be exact if the true nodal surface of the density matrix would be
known. Usually this is not the case, and one has to rely on ap-
proximations, thereby introducing an uncontrolled systematic
error. Brown et al. [17] performed RPIMC calculations with
ideal nodes of the UEG in a broad density-temperature range
down to rs = 1 and � = 0.0625. These results have been used
by many groups, e.g., for the construction of analytical fits for
the exchange-correlation free energy [2,3] and as benchmarks
for models and simulations [19,20].

In a recent paper [21], we applied the configuration path
integral Monte Carlo (CPIMC) approach to the uniform
electron gas and were able to obtain ab initio simulation results
for finite temperatures and high degeneracy. These results
also showed that the RPIMC data of Ref. [17] are inaccurate
for high densities, rs � 4. As any fermionic PIMC approach,
CPIMC as well suffers from the FSP. But, being formulated in
Fock space of Slater determinants [22,23], CPIMC experiences
an increasing FSP with decreasing quantum degeneracy,

2469-9950/2016/93(8)/085102(12) 085102-1 ©2016 American Physical Society
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FIG. 1. Available ab initio quantum Monte Carlo data in the
warm dense matter range for N = 33 spin-polarized electrons. Dots:
CPIMC. Squares: PB-PIMC. Red: Additional combined CPIMC
and PB-PIMC results of this paper. Gray: Previous results from
CPIMC [21] and PB-PIMC [25], respectively. ICF: Typical inertial
confinement fusion parameters [10]. Quantum (classical) behavior
dominates below (above) the line � = 1. � = e2/r̄kBT is the
classical coupling parameter.

i.e., towards low density. In the case of the UEG with
N = 33 particles, direct CPIMC simulations were possible
only for rs � 0.4. Nevertheless, in Ref. [21] an extension to
substantially larger rs was achieved by introducing an auxiliary
kink potential which leads to a complication of the original
CPIMC algorithm.

For this reason, the present paper aims at giving a
comprehensive explanation of the modified CPIMC approach,
in particular of the details of the kink potential and the issues
of convergence and accuracy. In order to give a systematic
analysis of these concepts and their capabilities, we concen-
trate on the simplest situation—the polarized UEG. Also, we
restrict ourselves to finite particle numbers, deferring the issues
of finite size effects and extrapolation to the thermodynamics
limit to a future publication. Here, we explore in detail how
the algorithm performs with varying particle number and what
range of densities and temperatures is accessible. This allows
us to extend the range of ab initio CPIMC data presented in
Ref. [21] to temperatures as high as � = 8 and to larger rs

values, where the maximum accessible value is found to be
on the order of rmax

s ∼ �. However, we demonstrate that it is
possible to access the entire rs range without fixed nodes. To
this end, we invoke another ab initio approach—the recently
developed permutation blocking PIMC method (PB-PIMC)
[24,25] which has a complementary FSP, restricting the
simulations from the side of low temperatures. For N = 33
spin-polarized particles, the combination of CPIMC and PB-
PIMC allows us to present exact results for � � 0.5, for all
densities, without fixed nodes, see Fig. 1.

The paper is organized as follows. After introducing the
model Hamiltonian of the UEG in Sec. II A, we start with a
brief but self-contained derivation of the CPIMC expansion of
the partition function in Sec. II B and, in Sec. II C, explain the
interpretation of the latter as being a sum over closed paths
in Fock space, in imaginary time. In Sec. III A, we proceed

with addressing the FSP in direct CPIMC simulations, where
we find an abrupt drop of the average sign at a certain critical
value of rs depending on particle number and temperature.
Then, in Sec. III B, we demonstrate how the applicable
region of the CPIMC method can be extended to significantly
lower densities by the use of an auxiliary kink potential and
an appropriate extrapolation scheme. In Sec. IV, the main
ideas of PB-PIMC and its differences compared to standard
PIMC are explained. Finally, in Sec. V, we combine the two
complementary methods, CPIMC and PB-PIMC, to obtain
results for N = 33 spin-polarized particles over the whole
density range for several degeneracy parameters reaching from
θ = 0.5 to θ = 8.

II. THEORY

A. The Jellium Hamiltonian

In second quantization with respect to plane waves, 〈r |k〉 =
1

L3/2 e
ik·r with k = 2π

L
m, m ∈ Z3, the Hamiltonian of the finite

simulation-cell 3D uniform electron gas consisting of N

electrons on a uniform neutralizing background in a periodic
box of length L takes the familiar form (Rydberg units)

Ĥ =
∑

i

k2
i â

†
i âi + 2

∑
i<j,k<l

i �=k,j �=l

w−
ijkl â

†
i â

†
j âl âk + EM, (1)

with the antisymmetrized two-electron integrals, w−
ijkl =

wijkl − wijlk , where

wijkl = 4πe2

L3(ki − kk)2
δki+kj ,kk+kl

, (2)

and the delta function ensuring momentum conservation.
The first (second) term in the Hamiltonian Eq. (1) describes
the kinetic (interaction) energy. The Madelung energy EM

accounts for the self-interaction of the Ewald summation in
periodic boundary conditions [26], for which we found EM ≈
−2.837297 · (3/4π )

1
3 N

2
3 r−1

s . The operator â
†
i (âi) creates

(annihilates) a particle in the orbital |ki〉. The diverging
contributions in the interaction term, i.e., for ki = kk and
kj = kl , cancel with the contributions due to the positive
background. Note that choosing the plane wave basis, which
is the ideal, natural, and Hartree-Fock basis at the same time,
has the major advantage of having two-electron integrals that
can be computed analytically according to Eq. (2). In an
arbitrary basis one generally has to compute the two-electron
integrals prior to the simulation and store them in computer
memory, limiting the number of basis functions that can be
taken into account. Yet, it is well-known that plane waves
badly describe the Coulomb interaction, making a large
number of basis functions necessary to obtain converged
results.

B. CPIMC expansion of the partition function

In equilibrium many-body quantum statistics the central
quantity is the partition function, which is given by the trace
over the density operator

Z = Tr ρ̂ , (3)
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where, in the canonical ensemble,

ρ̂ = e−βĤ , (4)

with the inverse temperature β = [kBT ]−1. In standard PIMC,
the trace in Eq. (3) is evaluated in coordinate space expressing
the density operator in terms of a product of M density
operators at M-times higher temperature, which is justified
by the Trotter formula. To correctly take into account Fermi
statistics, one then has to antisymmetrize the density operator
thereby introducing a sign change in the weight function for
odd particle permutations. This is the source of the FSP in
standard PIMC. In CPIMC instead we perform the trace in
Eq. (3) directly with antisymmetrized N -particle states (Slater
determinants)

|{n}〉 = |n1,n2, . . . 〉, (5)

which form a complete basis of the Fock space. Here, the ni

denote the fermionic occupation numbers (ni = 0,1) of the
orbitals |ki〉.

To bring the partition function into a form suitable for a
Monte Carlo algorithm, one can split the Hamiltonian into
a diagonal and off-diagonal part, i.e., Ĥ = D̂ + Ŷ , which
is always possible for any arbitrary basis. In the interaction
picture in imaginary time with respect to the diagonal operator
D̂, i.e.,

Ŷ (τ ) = eτD̂Ŷ e−τD̂, τ ∈ (0,β), (6)

the density operator can be written in terms of a perturbation
expansion in orders of Ŷ

e−βĤ = e−βD̂T̂τ e
− ∫ β

0 Ŷ (τ )dτ

= e−βD̂

∞∑
K=0

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

× (−1)KŶ (τK )Ŷ (τK−1) · . . . · Ŷ (τ1), (7)

where T̂τ denotes the time-ordering operator. Inserting Eq. (7)
into Eq. (3), evaluating the trace and rearranging terms, yields
the following expansion of the partition function

Z =
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

× (−1)Ke− ∑K
i=0 D{n(i)}(τi+1−τi )

K∏
i=1

Y{n(i)},{n(i−1)}(si), (8)

where si denotes a multi-index defining the orbitals in which
the two sets of occupation numbers {n(i)} and {n(i−1)} differ.
Due to the trace in Eq. (3) it has to be {n} = {n(0)} = {n(K)}.
According to the Slater-Condon rules the Fock space matrix
elements of the UEG Hamiltonian do not vanish only if the
states differ in no (diagonal part) or exactly four occupation
numbers (off-diagonal part) so that

D{n(i)} =
∑

l

k2
l n

(i)
l +

∑
l<k

w−
lklkn

(i)
l n

(i)
k , (9)

Y{n(i)},{n(i−1)}(si) = w−
si

(−1)αsi (10)

with si = (pqrs) defining the four occupation numbers in
which {n(i)} and {n(i−1)} differ, where it is p < q and r < s.

In this notation, the exponent of the fermionic phase factor is
given by

αsi
= α(i)

pqrs =
q−1∑
l=p

n
(i−1)
l +

s−1∑
l=r

n
(i)
l .

Monte Carlo estimators of observables are readily computed
as derivatives of the partition function Eq. (8), e.g., for the
internal energy one obtains

〈Ĥ 〉 = − ∂

∂β
ln Z (11)

=
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

×
(

1

β

K∑
i=0

D{n(i)}(τi+1 − τi) − K

β

)
W. (12)

We point out that the expansion (8) is exact and system inde-
pendent. Monte Carlo methods using this expansion belong to
the so-called continuous time QMC methods (in the interaction
picture) since there is no imaginary time discretization left.
This concept has been developed by Prokofev et al. [27,28]
and extensively applied to lattice models, e.g., [27–30]. We
have presented an alternative derivation of Eq. (8) by starting
from the Trotter formula and developed an algorithm for
continuous systems [23] requiring more involved Monte Carlo
steps compared to lattice models.

C. Closed path in Fock space

A contribution to the partition function Eq. (8) can be
interpreted as a β− periodic path in Fock space, in imaginary
time, that is uniquely defined by the initial determinant
{n} = {n(0)} at β = 0 and the K two-particle excitations of
type si = (pqrs) at times τi , where two particles are excited
from the orbitals r and s to p and q. An example of such a
path is illustrated in Fig. 2. Due to their visual appearance,
the excitations are called “kinks.” The weight of each path is
determined by the weight function which, according to Eqs. (8)

0
1
2
3
4
5

τ1 τ2 τ30 β
imaginary time τ

or
b
it
al

i

|{n(2)}〉 = |001110 . . .〉s1 = (2, 5, 0, 3)

FIG. 2. Typical closed path in Slater determinant (Fock) space.
The state with three occupied orbitals |	k0〉,|	k1〉,|	k3〉 undergoes a
two-particle excitation s1 at time τ1 replacing the occupied orbitals
|	k0〉,|	k3〉 by |	k2〉,|	k5〉. Two further excitations occur at τ2 and τ3.
The states at the “imaginary times” τ = 0 and τ = β coincide.
All possible paths contribute to the partition function Z, Eq. (8).
(Figure from Ref. [21].)
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and (10), reads

W (K,{n},s1, . . . ,sK−1,τ1, . . . ,τK )

= (−1)Ke− ∑K
i=0 D{n(i)}(τi+1−τi )

K∏
i=1

w−
si

(−1)αsi . (13)

The set of occupation numbers of a determinant between kinks
contributes to the exponential function with its corresponding
diagonal matrix element, cf. Eq. (9), weighted with the length
of the time interval on which the determinant is realized in
the path. On the other hand, each kink enters the product over
all kinks in the path with its corresponding antisymmetrized
two-electron integral and phase factor of the involved orbitals.
Since the two-electron integrals can be both positive and
negative, there are altogether three sources of sign changes
in the weight function.

III. SIGN PROBLEM OF CPIMC

A. Sign problem of the direct CPIMC method

Since the weight function W takes both positive and
negative values, it is not a probability density. Therefore, the
Metropolis algorithm can only be used to generate a Markov
chain of paths distributed according to the modulus of the
weight. This is achieved with an ergodic set of six Monte Carlo
steps in which single or paired kinks are added or changed. A
detailed description of these steps can be found in Ref. [22]. By
generating a Markov chain of paths according to the modulus
of the weight, we actually simulate a system described by

Z′ =
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

× |W (K,{n},s1, . . . ,sK−1,τ1, . . . ,τK )| (14)

rather than the true physical system described by the partition
function Eq. (8). Physical expectation values of observables
are then obtained via

〈O〉 = 〈Os〉′
〈s〉′ , (15)

where O is the Monte Carlo estimator, e.g., for the internal
energy the term in brackets in Eq. (12), 〈·〉′ denotes the
expectation value with respect to the modified partition
function, Eq. (14), and s = sign(W ) measures the sign of each
path. For the expectation value of s, which is called the average
sign, it holds

〈s〉′ = Z

Z′ = e−βN(f −f ′) (16)

with f being the free energy per particle. It is straightforward
to show that the relative statistical error of quantities computed
with Monte Carlo methods via Eq. (15) is inversely propor-
tional to the average sign. Therefore, it grows exponentially
with particle number and inverse temperature, while it can only
be reduced by the square root of the number of Monte Carlo
samples. Depending on the available computational resources
acceptable statistical errors can be obtained for average signs
larger than about 10−4. This is the FSP.

Figure 3(a) shows the dependency of the average sign in
CPIMC simulations of the UEG on the density parameter

(a)

(b)

FIG. 3. Average sign (a) and average number of kinks (b) of direct
CPIMC, plotted versus the density parameter for different particle
numbers in NB = 2109 basis functions at θ = 0.125.

at a fixed degeneracy parameter θ = 0.125 for different
particle numbers. The number of basis functions is fixed to
NB = 2109, which is sufficient to obtain converged results
(within reasonable statistical errors) for all data points. We
generally observe a rather sharp drop of the average sign
from almost 1 to about 10−3. This effect clearly increases and
shifts towards smaller rs with particle number. Consequently,
for N = 33 particles at this temperature we obtain negligible
small statistical errors for rs � 0.4, whereas for slightly larger
values of rs direct simulations are not feasible. To investigate
this behavior in more detail, in Fig. 3(b) we plot the average
number of kinks in the simulations for the same parameters.
This quantity is closely connected to the average sign since
each additional kink in the paths comes with three potential
sources of sign changes, cf. Sec. II C. In CPIMC simulations
with on average more than 30 kinks we find that, depending on
the temperature, the average sign is too small to obtain results
with reasonable statistical errors.

In the high density regime, the average number of kinks
grows linearly with rs , see Fig. 3(b), then at some critical
value of rs it starts growing exponentially. The slope of this
exponential growth increases with particle number so that for
N = 33 it appears to be rather a jump from below 1 to about
200 kinks at rs ∼ 0.4 explaining the sudden drop of the average
sign in Fig. 3(a). Interestingly, for further reduced density,
the average number of kinks grows again linearly with rs . We
have carefully checked that this is not an effect of the finite
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FIG. 4. Average number of kinks of direct CPIMC, plotted versus
the density parameter for N = 4 particles in NB = 5575 basis
functions at different temperatures.

number of basis functions. However, in this regime, even for
N = 4 particles the average number of kinks is larger than
1000 resulting in a practically vanishing average sign. For
N = 4 particles, Fig. 4 shows the average number of kinks
in dependence on rs for different degeneracy parameters. In
the linear regimes (both at very large and small values of
rs), the average number of kinks depends also linearly on
the degeneracy parameter while the onset of the exponential
growth shifts towards smaller rs , for increasing degeneracy,
i.e., for decreasing θ . Further, at lower temperatures, the
transition from the exponential to the linear rs dependency is
smoother, cf. red and brown curve in Fig. 4. Summarizing, the
direct CPIMC method suffers an abrupt drop of the average
sign in particular for larger systems and lower temperature
caused by a strong increase of the average number of kinks in
the simulated paths.

B. Extending CPIMC towards lower density

In this section, the use of the auxiliary kink potentials is
explained, and its influence on the CPIMC method is investi-
gated in detail. These kink potentials have been introduced in
Ref. [21] to obtain the results for rs > 0.4.

The average number of kinks in the simulation is only
connected to the number of kinks K necessary for the partition
function of the primed system to be converged, cf. Eq. (14).
However, to obtain correct physical observables via Eq. (15) it
is sufficient to include only those paths in the simulation that
actually contribute to the physical partition function Eq. (8),
which, due to cancellations of contributions with opposite sign,
may converge for a much smaller value of K than the primed
partition function. In other words, if this cancellation applies,
then we can restrict the simulation paths to a certain number of
kinks and thereby strongly reduce the sign problem while still
obtaining exact results for the observables. In addition, since
both Eqs. (8) and (14) are exact perturbation series in orders
of the number of kinks K , it is reasonable to investigate the
convergence of this series with respect to K . For this purpose,
we have introduced an auxiliary Fermi-like kink potential

Vδ,κ (K) = 1

e−δ(κ−K+0.5) + 1
, (17)

FIG. 5. Convergence of the internal energy with respect to the
kink potential parameter κ , using different parameters δ. The system
consists of N = 4 particles in NB = 19 basis functions at θ = 0.5
and rs = 40 for which the energy can be computed with an exact
configuration interaction (CI) method (dashed black line). Each point
is the result of a whole CPIMC simulation, where integer numbers
from 5 to 28 have been used for κ .

which becomes a step function at K = κ + 0.5 in the limit
δ → ∞. We add this potential as an auxiliary factor in the
primed partition function so that it acts as a penalty, depending
on the values of δ and κ , for paths with a large number of kinks.
Hence, the simulated partition function is now parametrized
by δ and κ reading

Z′(δ,κ) =
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

×Vδ,κ (K)|W (K,{n},s1, . . . ,sK−1,τ1, . . . ,τK )|.
(18)

Obviously, for any non-negative value of δ, we recover the
original primed partition function in the limit κ → ∞

Z′ = lim
κ→∞ Z′(δ,κ), ∀ δ � 0. (19)

Therefore, performing CPIMC simulations for different values
of κ at fixed δ converges to the exact result in the limit
1/κ → 0.

This is demonstrated in Fig. 5, where the convergence of
the internal energy is shown for three different values of δ.
The system size has been chosen to be very small, i.e., N = 4
particles in NB = 19 basis functions at θ = 0.5 and rs = 40, so
that the energy can be computed with an exact diagonalization
method (dashed black line). For the parameter κ integer
values have been used from κ = 5 to 28. At δ = 10 (red
points), the kink potential practically resembles a step function
restricting paths in the simulation to a maximum of Kmax = κ

kinks. Interestingly, in this case the energy converges not
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(a)

(b)

FIG. 6. Convergence of the internal energy with respect to the
kink potential parameter κ and extrapolation to 1/κ → 0, corre-
sponding to K → ∞, at θ = 1.0. (a) N = 4 particles and rs = 10.0 in
NB = 5575 basis functions. (b) N = 33 and rs = 1.0 in NB = 4169
basis functions. The asymptotic values (black points) are enclosed
between the blue and green lines and, within error bars, coincide with
the PB-PIMC result (orange points).

monotonically towards the exact result but oscillates with even
and odd numbers of κ . Strictly speaking, for only odd numbers
of κ the energy does converge monotonically while for even
numbers it first drops below the exact value before eventually
converging. This behavior may be explained by the factor
(−1)K in the weight function, c.f. Eq. (13), dominating the
other two sign changing sources of the phase factor and the
two-electron integrals. Nevertheless, these oscillations render
a reliable extrapolation to the exact limit 1/κ → 0 difficult
and hence, simply restricting the number of kinks is not a
good choice. For smaller values of δ (green points in Fig. 5)
where we, to a larger extent, allow paths with a larger number
of kinks than κ , the oscillations are significantly reduced. At
δ = 1 (blue points), the oscillations finally vanish completely
and the energy converges monotonically towards the exact
result. In fact, we always observe an s-shaped convergence
behavior with 1/κ for Fermi potentials with δ � 1. This allows
for a very robust extrapolation scheme to the exact result in the
limit 1/κ → ∞ after the onset of convergence that is clearly
indicated by the change in curvature (at κ ∼ 17 in Fig. 5).

In Fig. 6(a), we demonstrate this extrapolation scheme for
a more difficult system of N = 4 particles in NB = 5575 basis
functions at θ = 1 and rs = 10, for which the direct CPIMC
method without the kink potential is not applicable due to on
average more than 50 kinks, cf. orange curve in Fig. 4, and a
resulting vanishing sign. To obtain an upper bound of the exact
energy, we perform a horizontal fit (blue line) to those points
after the onset of the convergence, while for the lower bound a
linear fit is performed to those points (green line). The concrete
fitting procedure is explained in Appendix. For comparison the
result for the energy of the likewise exact PB-PIMC method

(cf. Sec. IV) is shown (orange point), which is well enclosed by
the horizontal and linear fit and hence perfectly confirms our
approach. Note that for the N = 4 particles in only NB = 19
basis functions in Fig. 5 the energy is entirely converged for
κ = 20 so that all points for κ > 20 lie on the horizontal line of
the CI energy. This is because here the direct CPIMC algorithm
converges to an average number of 20 kinks. In contrast, in
Fig. 6(a), after the change in curvature at approximately κ = 8,
the energy is not entirely converged and still slowly decreasing.
In this regime a near cancellation of all contributions for
increasing κ occurs. However, in the limit κ → ∞ the energy
does not converge linearly towards the exact value, because
the direct CPIMC algorithm always converges at a finite value
of 〈K〉′, cf. Fig. 3(b) and Fig. 4. Therefore, from some value
of κ onwards, depending on the average number of kinks in
the direct CPIMC algorithm, the points will be on a horizontal
line getting no further contributions for increasing κ . For this
reason, the linear fit (green line) is indeed a true lower bound
of the exact energy for the used number of basis function. Our
extrapolation scheme also works well for larger systems, which
is illustrated in Fig. 6(b) for the example of N = 33 particles
at θ = 1 and rs = 1 in NB = 4169 basis functions. Here, the
extrapolated value (black point) also agrees with the PB-PIMC
result (orange point), which has a larger statistical error than in
Fig. 6(a), due to the larger density. For a convergence plot for
the same system at a lower temperature of θ = 0.0625, where
no other results are available, we refer to Ref. [21].

In general, the use of the kink potential combined with
the extrapolation scheme actually more than doubles the
accessible density parameter within the CPIMC approach at
fixed other system parameters. Nevertheless, our procedure is
still limited by the FSP, which is indicated by the increasing
error bars of the last points in Fig. 6(a). For example, at κ = 10
there are on average 〈K〉′ ∼ 9.4 kinks with a corresponding
average sign 〈s〉′ ∼ 0.05, while at κ = 16 (last point) there
are 〈K〉′ ∼ 15.3 kinks with a corresponding average sign
〈s〉′ ∼ 5×10−3 causing a large statistical error. Of course,
if the sign problem becomes too severe before the onset
of convergence (indicated by the change in curvature), our
procedure is not applicable.

IV. BASIC IDEA OF PB-PIMC

In contrast to CPIMC, our permutation blocking PIMC
approach is essentially standard PIMC in coordinate space
but combines two well-known concepts: (1) antisymmetric
imaginary time propagators, i.e., determinants [31–33], and (2)
a fourth-order factorization of the density matrix [34–36]. In
addition, to sample this more complicated configuration space,
one of us has developed an efficient set of Monte Carlo updates
based on the temporary construction of artificial trajectories.
Since PB-PIMC and its application to the UEG have been
introduced in detail in Refs. [24] and [25], here we shall restrict
ourselves to a brief overview.

We start from the coordinate representation of the canonical
partition function (3) describing a system of N spin-polarized
fermions at inverse temperature β

Z = 1

N !

∑
σ∈SN

sgn(σ )
∫

dR 〈R| e−βĤ |π̂σ R〉, (20)
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with π̂σ being the exchange operator that corresponds to a
particular element σ from the permutation group SN with
associated sign sgn(σ ). However, since the low-temperature
matrix elements of ρ̂ are not known, we use the group
property ρ̂(β) = ∏P−1

α=0 ρ̂(ε), with ε = β/P , and approximate
each of the P factors at a P times higher temperature by the
fourth-order factorization [35,36]

e−εĤ ≈ e−v1εŴa1 e−t1εK̂e−v2εŴ1−2a1

× e−t1εK̂e−v1εŴa1 e−2t0εK̂ , (21)

which allows for sufficient accuracy, for small P . The Ŵ

operators in Eq. (21) denote a modified potential that combines
the usual potential energy V̂ with double commutator terms of
the form

[[V̂ ,K̂],V̂ ] = �2

m

N∑
i=1

|Fi |2, Fi = −∇iV (R), (22)

where K̂ denotes the operator of the kinetic energy. Therefore,
PB-PIMC requires the additional evaluation of all forces, and
the final result for the partition function is given by

Z = 1

(N !)3P

∫
dX

P−1∏
α=0

(
e−εṼα e−ε3u0

�2

m
F̃α (23)

det(ρα)det(ραA)det(ραB)
)
. (24)

Here, Ṽα and F̃α contain all contributions of the potential
energy and the forces, respectively, and the diffusion matrix is
given by

ρα(i,j ) = λ−D
t1ε

exp

(
− π

λ2
t1ε

(rα,j − rαA,i)
2

)
, (25)

with λt1ε =
√

2πεt1�2/m being the thermal wavelength of a
single “time slice.”

Instead of explicitly sampling each permutation cycle, as
in standard PIMC, we combine both positively and negatively
signed configuration weights in the determinants, which leads
to a cancellation of terms and, therefore, a significantly
increased average sign in our simulations. However, this “per-
mutation blocking” is only effective when λt1ε is comparable
to the mean interparticle distance. With increasing P , λt1ε

decreases and the average sign eventually converges towards
that of standard PIMC. Hence, it is crucial to combine the
determinants with the fourth order factorization from Eq. (21),
which allows for sufficient accuracy with as few as two or three
propagators and thereby maximizes the benefit of the blocking
by the determinants.

V. CPIMC AND PB-PIMC BENCHMARK RESULTS
FOR THE POLARIZED UEG

Due to the complementary character of the FSP the CPIMC
and PB-PIMC approaches are well suited to be combined and,
thereby, to circumvent the sign problem. Concerning the N =
33 spin-polarized UEG, CPIMC is applicable practically over
the entire temperature range from θ = 0.01 to 10 and suffers an
increasing sign problem for increasing rs . The critical region
at which the FSP becomes severe is around rs ∼ 1 for θ � 0.5

FIG. 7. Exchange-correlation energy Exc times rs of the N = 33
particle spin-polarized UEG over the density parameter rs for different
degeneracy parameters θ . Results have been obtained by combining
the CPIMC (dots) and PB-PIMC (crosses) approach taking the most
accurate values of each method (connected by the solid line). In
addition, RPIMC results from Ref. [17] are plotted for comparison
(open circles).

and rs ∼ θ for θ � 1. On the other hand, the PB-PIMC method
suffers a weak increase of the FSP for decreasing rs , yet it is in
principle capable of providing results over the entire density
range for degeneracy parameters θ � 0.75. At temperatures
θ < 0.5, PB-PIMC is not feasible at high density.

For the construction of density functionals the exchange-
correlation energy Exc (per particle) of the UEG is of particular
importance, which is obtained by subtracting the ideal energy
U0 from the total internal energy

Exc = E − U0. (26)

In Fig. 7, we show our results for the exchange-correlation
energy. Note that we plot Exc · rs which converges towards the
finite Hartree-Fock energy in the limit rs → 0. We always
took the most accurate value of CPIMC (solid dots) or
PB-PIMC (crosses), in cases where both are available. These
data complement our earlier results that are included here
as well, to have a complete set (for CPIMC, data for four
isotherms θ = 0.5,1,2,4 have been reported in Ref. [21], while
for PB-PIMC, the internal energy for the three isotherms θ =
1,2,4 has been presented in Ref. [25], where the application
of the method to the UEG is explained in detail). At θ = 0.5,
CPIMC can provide data up to rs = 1, while PB-PIMC suffers
a too strong FSP below rs = 2 leaving a gap between both
approaches. We have fitted a spline of order 4 to the available
points and are thereby able to accurately close the gap (dotted
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TABLE I. Energies per particle for N = 33 polarized electrons: ideal energy U0, kinetic energy Ekin, potential energy Epot, and exchange-
correlation energy Exc. An a marks CPIMC results that have been obtained by an extrapolation as explained in Appendix. For these values, the
error given in parenthesis includes systematic effects. All other errors correspond to a 1σ standard deviation. A b marks results from PB-PIMC
calculations. For CPIMC results, the number of basis functions NB is given in the last column. Energies in units of Ryd.

θ rs U0 Ekin Epot Exc NB

0.50 0.05 2380.191(6) 2376.036(25) −20.63427(16) −24.789(26) 2109
0.10 595.0477(16) 593.041(25) −10.40869(32) −12.416(25) 4169
0.20 148.7619(4) 147.818(5) −5.29077(12) −6.234(5) 4169
0.30 66.11641(18) 65.5186(17) −3.57994(9) −4.1777(17) 4169
0.40 37.19048(10) 36.7599(10) −2.72121(13) −3.1518(11) 4169
0.60 16.52910(5) 16.2673(14)a −1.8577(8)a −2.1198(21)a 2109
0.80 9.297620(25) 9.1196(30)a −1.424(4)a −1.6034(26)a 2109
1.00 5.950477(16) 5.823(6)a −1.162(6)a −1.291(4)a 2109
2.00 1.487619(4) 1.426(22)b −0.6202(23)b −0.682(21)b

−0.661c

4.00 0.3719050(10) 0.3618(6)b −0.32970(8)b −0.3398(5)b

6.00 0.1652910(5) 0.16355(30)b −0.22873(6)b −0.23047(29)b

8.00 0.09297600(25) 0.09356(14)b −0.176150(30)b −0.17557(13)b

10.00 0.05950500(16) 0.06130(8)b −0.143718(17)b −0.14192(7)b

0.75 0.05 3147.466(12) 3143.18(4) −18.84333(19) −23.13(5) 4169
0.10 786.8665(31) 784.718(10) −9.51839(8) −11.667(11) 4169
0.20 196.7166(8) 195.6818(24) −4.85031(4) −5.8851(26) 4169
0.30 87.42961(35) 86.7672(12) −3.289850(30) −3.9523(12) 4169
0.40 49.17916(19) 48.7016(4) −2.506603(22) −2.9842(5) 4169
0.50 31.47466(12) 31.10585(31) −2.034685(20) −2.40349(34) 4169
0.60 21.85740(9) 21.5612(7)a −1.71865(16)a −2.0154(11)a 4169
0.80 12.29479(5) 12.0878(5)a −1.32039(10)a −1.5280(8)a 4169
1.00 7.868665(31) 7.7140(5)a −1.0793(6)a −1.2340(5)a 4169
2.00 1.967166(8) 1.9097(6)b −0.58218(7)b −0.6397(6)b

4.00 0.4917920(19) 0.47535(10)b −0.316986(20)b −0.33343(10)b

6.00 0.2185740(9) 0.21257(13)b −0.221880(28)b −0.22788(13)b

8.00 0.1229480(5) 0.120659(29)b −0.171940(11)b −0.174229(29)b

10.00 0.07868700(31) 0.078268(32)b −0.140854(9)b −0.141272(31)b

1.00 0.05 3957.262(19) 3953.20(9) −17.56511(21) −21.63(9) 4169
0.10 989.316(5) 987.269(20) −8.87662(10) −10.923(21) 4169
0.20 247.3289(12) 246.337(5) −4.52798(5) −5.520(5) 4169
0.30 109.9239(5) 109.2790(18) −3.07450(4) −3.7194(19) 4169
0.40 61.83222(30) 61.3643(11) −2.345237(22) −2.8132(11) 4169
0.60 27.48099(13) 27.1891(4) −1.611535(18) −1.9034(4) 4169
0.80 15.45805(8) 15.2540(7) −1.2450(15) −1.4491(8) 4169
1.00 9.89316(5) 9.7381(10)a −1.01625(29)a −1.1717(7)a 4169
1.50 4.396958(21) 4.3066(15)b −0.71068(17)b −0.8010(15)b

2.00 2.473289(12) 2.4136(8)b −0.55337(12)b −0.6131(8)b

3.00 1.099239(5) 1.06770(26)b −0.39052(5)b −0.42206(26)b

4.00 0.6183220(30) 0.59980(14)b −0.305012(33)b −0.32353(15)b

5.00 0.3957260(19) 0.38361(7)b −0.251795(19)b −0.26392(8)b

6.00 0.2748100(13) 0.26690(5)b −0.215138(13)b −0.22305(5)b

8.00 0.1545810(8) 0.150966(20)b −0.167579(7)b −0.171193(22)b

10.00 0.0989320(5) 0.097380(13)b −0.137806(5)b −0.139358(13)b

2.00 0.05 7335.15(4) 7331.95(15) −14.93186(20) −18.13(15) 5575
0.10 1833.788(11) 1832.30(4) −7.54095(11) −9.02(4) 5575
0.20 458.4470(26) 457.718(8) −3.84305(5) −4.572(8) 5575
0.30 203.7542(12) 203.2810(32) −2.60821(4) −3.0815(34) 5575
0.40 114.6118(7) 114.2583(20) −1.989454(30) −2.3429(21) 5575
0.60 50.93856(29) 50.7147(9) −1.368155(19) −1.5920(10) 5575
0.80 28.65294(16) 28.4931(5) −1.055120(15) −1.2149(5) 5575
1.00 18.33788(11) 18.21454(30) −0.865709(17) −0.98905(31) 5575
1.50 8.15017(5) 8.0775(12)b −0.60945(21)b −0.6821(12)b

2.00 4.584470(26) 4.5339(4)a −0.4780(5)a −0.5287(6)a 5575
3.00 2.037542(12) 2.00917(27)b −0.34120(8)b −0.36958(28)b
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TABLE I. (Continued).

θ rs U0 Ekin Epot Exc NB

4.00 1.146118(7) 1.12840(27)b −0.26956(9)b −0.28727(28)b

5.00 0.733515(4) 0.72143(9)b −0.224617(35)b −0.23670(10)b

6.00 0.5093860(29) 0.50075(11)b −0.19347(5)b −0.20210(13)b

8.00 0.2865290(16) 0.28185(4)b −0.152706(18)b −0.15739(4)b

10.00 0.1833790(11) 0.180676(18)b −0.126841(10)b −0.129543(21)b

4.00 0.05 14258.10(14) 14256.29(19) −13.17459(10) −14.99(23) 24405
0.10 3564.525(35) 3563.55(5) −6.63750(5) −7.62(6) 24405
0.20 891.131(9) 890.660(12) −3.367889(23) −3.839(14) 24405
0.30 396.058(4) 395.752(5) −2.277115(17) −2.583(7) 24405
0.40 222.7828(22) 222.5676(30) −1.731134(13) −1.946(4) 24405
0.50 142.5810(14) 142.4029(24) −1.403167(13) −1.5812(27) 24405
0.60 99.0146(10) 98.8721(13) −1.184072(9) −1.3265(16) 24405
0.80 55.6957(5) 55.5925(13) −0.909464(11) −1.0126(14) 24405
1.00 35.64525(35) 35.5622(10) −0.743926(12) −0.8269(10) 24405
1.50 15.84233(15) 15.7935(18)b −0.5208(4)b −0.5696(19)b

2.00 8.91131(9) 8.87718(18) −0.407967(8) −0.44210(20) 24405
3.00 3.96058(4) 3.9409(4)b −0.29176(17)b −0.3115(5)b

4.00 2.227828(22) 2.21563(34)b −0.23140(14)b −0.2436(4)b

5.00 1.425810(14) 1.41669(16)b −0.19370(8)b −0.20282(18)b

6.00 0.990146(10) 0.98344(14)b −0.16772(8)b −0.17442(17)b

8.00 0.556957(5) 0.55306(9)b −0.13378(5)b −0.13767(10)b

10.00 0.3564530(35) 0.35389(4)b −0.112127(25)b −0.11469(4)b

6.00 0.05 21232.56(31) 21231.34(28) −12.50240(7) −13.7(4) 38911
0.10 5308.14(8) 5307.53(7) −6.28885(4) −6.90(11) 38911
0.20 1327.035(19) 1326.709(17) −3.181308(18) −3.507(26) 38911
0.30 589.793(9) 589.566(8) −2.145065(12) −2.372(12) 38911
0.40 331.759(5) 331.602(5) −1.626612(9) −1.783(7) 38911
0.50 212.3256(31) 212.1926(34) −1.315274(9) −1.448(5) 38911
0.60 147.4484(21) 147.3440(24) −1.107473(8) −1.2118(32) 38911
0.80 82.9397(12) 82.864(4) −0.847318(17) −0.923(4) 38911
1.00 53.0814(8) 53.0227(25) −0.690775(17) −0.7494(26) 38911
2.00 13.27035(19) 13.2448(6) −0.374712(10) −0.4003(6) 38911
4.00 3.31759(5) 3.3074(5)a −0.21107(8)a −0.2216(6)a 38911
6.00 1.474484(21) 1.46893(21)b −0.15299(14)b −0.15854(26)b

8.00 0.829397(12) 0.82618(12)b −0.12223(8)b −0.12544(15)b

10.00 0.530814(8) 0.52859(9)b −0.10284(7)b −0.10507(11)b

8.00 0.05 28224.1(5) 28222.5(4) −12.14740(7) −13.8(7) 44473
0.10 7056.03(14) 7055.43(10) −6.103529(32) −6.71(17) 44473
0.20 1764.009(34) 1763.732(25) −3.081446(15) −3.36(4) 44473
0.30 784.004(15) 783.799(12) −2.073757(12) −2.279(19) 44473
0.40 441.002(9) 440.863(7) −1.569731(9) −1.709(11) 44473
0.50 282.241(5) 282.151(5) −1.267116(9) −1.358(8) 44473
0.60 196.001(4) 195.9224(35) −1.065252(7) −1.144(5) 44473
0.80 110.2505(21) 110.191(8) −0.812627(18) −0.872(8) 44473
1.00 70.5603(14) 70.509(9) −0.660769(30) −0.712(10) 44473
2.00 17.64009(34) 17.6191(11) −0.355004(10) −0.3760(12) 44473
3.00 7.84004(15) 7.8274(5) −0.251192(7) −0.2638(5) 44473
4.00 4.41002(9) 4.40107(15) −0.198143(7) −0.20709(17) 44473
6.00 1.96001(4) 1.95532(32)a −0.14327(8)a −0.1482(5)a 44473
8.00 1.102505(21) 1.09990(18)b −0.11447(13)b −0.11708(22)b

10.00 0.705603(14) 0.70369(11)b −0.09639(7)b −0.09830(13)b

line). With this, we are able to present ab initio results for
this system for the entire density range, for all temperatures
� > 0.5.

In Table I, we present all CPIMC and PB-PIMC data points
shown in Fig. 7. In addition to the exchange-correlation energy,
the ideal, kinetic, and potential energy are listed. Note that

even the ideal energy in the canonical ensemble cannot be
calculated analytically. Further, we added the number of basis
functions NB that have been used in the corresponding CPIMC
simulation, where we have carefully checked convergence
of the energy (within statistical errors) with respect to NB .
The origin of the fluctuations at the highest temperature
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FIG. 8. Exchange-correlation energy Exc times rs of the N = 33
particle spin-polarized UEG over the degeneracy parameter θ for
different density parameters rs . Shown are results from CPIMC (dots)
and PB-PIMC (crosses) calculations. In addition, RPIMC results from
Ref. [17] are plotted for comparison (lines with light colors and open
circles, for rs = 1 and rs = 4).

are easily understood: At θ = 8, the relative contribution
of the exchange-correlation energy to the internal energy
becomes very small since the kinetic energy dominates for
increasing temperature. Hence, Exc is obtained by subtracting
two large numbers of similar size which, of course, is ill-
conditioned and, therefore, increases the statistical error of
Exc. The same applies in the limit rs → 0. Nevertheless,
our exchange-correlation energies represent the most accurate
results published to date.

For comparison we also plot the RPIMC data from
Ref. [17]. It is evident that they not only have a significantly
larger statistical error, but they clearly deviate systematically
from our results. Interestingly, the deviations increase from
θ = 1 to θ = 2, and even at θ = 4, there is a significant dis-
crepancy. This observation stands in contrast to the assumption
that the systematic error due to the fixed node approximation
vanishes for increasing temperature.

Finally, Fig. 8 shows the dependence of the exchange-
correlation energy on temperature for four fixed densities.
We again show the most accurate points of either CPIMC
and PB-PIMC. CPIMC allows for calculations practically
down to the ground state, for rs � 1. On the other hand,
PB-PIMC is limited, at larger densities, to temperatures
θ � 0.5. We observe that all isochores are nearly parallel
and do not cross. An interesting feature is the existence of a
minimum around � ∼ 0.25, for all densities (some uncertainty
remains for the lowest density, rs = 4, as our simulations are
confined to � � 0.5). Similar observations have been made
in the fit results of Ref. [2] and in the computation of the
screened potential of an ion in a streaming quantum plasma
[37].

The origin of this nonmonotonic behavior is a competition
of two effects. The governing trend is a decrease of the (mod-
ulus of the) interaction energy with temperature arising from a
thermal broadening of the particle density. At low temperatures
there exists a second trend arising from quantum diffraction

effects: The thermal DeBroglie wavelength is reduced with
temperature increase which increases the Coulomb interaction.
A similar trend of an intermediate increase of correlations with
temperature has been predicted for Wigner crystallization in
2D [38].

In addition to the ab initio data, Fig. 8 also includes the fixed
node RPIMC data of Ref. [17] which are available for the two
lowest densities, rs = 1 and rs = 4. For the case rs = 4 the
RPIMC results are systematically too high by a few percent.
More severe deviations are observed for rs = 1 where the
energies are too low. Particularly strong deviations are seen
for low temperatures, θ � 1 where the error exceeds 10%,
giving even rise to a crossing of two isochores.

VI. SUMMARY AND DISCUSSION

This paper was devoted to a detailed discussion of the
CPIMC simulation results for the uniform electron gas
reported in a recent paper [21]. We presented a systematic
analysis of the fermion sign problem of direct CPIMC for the
polarized UEG. For increasing particle number, a sharp drop
of the average sign, at a certain critical value of rcr

s (�,N ),
has been observed and was shown to be connected to a strong
increase in the average number of kinks in the simulation paths
in Fock space. By introducing an auxiliary Fermi-like kink
potential we introduced a modified CPIMC approach for which
the accessible rs range could be increased by more than a factor
2, for a fixed particle number and temperature [21]. When
restricting the number of kinks to a maximum number Kmax,
it turned out that the energy does not converge monotonically
but rather oscillates towards the exact result with increasing
Kmax, which renders a reliable extrapolation scheme difficult.
However, by choosing the kink potential parameter δ such that
it acts as a smooth penalty for paths with a larger number
of kinks, a monotonic convergence of the energy could be
achieved. We have developed a robust extrapolation scheme
that provides strict upper and lower bounds thereby yielding
an accurate value for the thermodynamic quantities of the
UEG.

An independent confirmation of our extrapolation proce-
dure could be obtained by a comparison to accurate PB-PIMC
results. Interestingly, utilizing the kink potential, the energy
of the simulation typically converges at about 20–30 kinks
(on average in the simulation paths), whereas the direct
CPIMC approach (without the potential) equilibrates at several
thousand kinks. This is explained by an almost complete
cancellation of contributions of paths with a large number
of kinks in the partition function, which sets the limitation of
the auxiliary kink potential method: It works only if we are
able to reach the onset of this near cancellation, before the sign
problem becomes too severe. This is clearly detectable from
the convergence behavior of the energy, cf. Fig. 6: Only when
the energy approaches the horizontal asymptote, as a function
of 1/κ , the method is applicable.

The second goal of this paper was to extend the available
ab initio results for the exchange-correlation energy of the
polarized electron gas to higher temperatures and lower den-
sities. This was achieved by combining two complementary
independent methods—CPIMC and PB-PIMC. With this we
were able to avoid the sign problem for N = 33 electrons over
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the entire density range, for all temperatures θ � 0.5, and we
presented data up to θ = 8, completely avoiding fixed nodes
or similar approximations. In all cases where both methods
overlap we observed perfect agreement (within error bars),
allowing for extremely valuable cross-checks.

Below θ = 0.5, the present combination of two methods
accesses only parts of the density range. Within the current
implementations (and reasonable numerical effort) PB-PIMC
is not applicable, for high densities, whereas CPIMC can only
provide accurate results up to a minimum density around
rs ∼ 1, leaving open a gap in the density which further
increases with the particle number. Work is presently underway
to access larger particle numbers and, eventually, perform an
extrapolation to the thermodynamic limit, as was successfully
demonstrated for very high densities in Ref. [21].

The present results should be useful for the development of
improved quantum Monte Carlo simulations including density
matrix QMC [39,40] and tests of improved fermionic nodes for
RPIMC. The present scheme of combining CPIMC and PB-
PIMC should also be suitable to produce first-principle results
for the paramagnetic electron gas for which an increased sign
problem of CPIMC was observed [21].
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APPENDIX: EXTRAPOLATION WITH RESPECT
TO THE NUMBER OF KINKS

To obtain an upper bound for the energy from CPIMC
calculations utilizing the kink potential (see, e.g., Fig. 6) a
horizontal (constant) fit is performed as follows: First, all
data points with a relative error exceeding 1% are discarded
defining a maximum value of κ , denoted κmax (minimum
of 1/κmax), satisfying this condition. Second, all data points
are upshifted by 1σ standard deviation. Then, horizontal fits
are performed to the next 6,7,8 . . . ,nh points with κ < κmax,
where we add additional points as long as these deviate no more
than 4σ from the constant fit. This procedure ensures that we
only fit to those points belonging to the onset of convergence
(indicated by the change in curvature in Fig. 6).

A lower bound of the energy is obtained by starting with a
linear fit to the last nh points with κ < κmax. But instead of the
prior upshift of the data by 1σ we now perform a downshift of
the data points by 1σ prior to the fit. We proceed with adding
points included in the linear fit as long as there are less than
3 points deviating by 2σ and less than 1 point deviating by
3σ from the fit. The lower bound of the energy is given by
the lowest value of all linear fits at 1/κ = 0. The result for the
energy is then computed as the mean value of the lower and
upper bounds with the error estimated (from above) as their
difference.
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3.7 Extension of CPIMC to the Unpolarized Case

So far, we were solely concerned with the simulation of the spin-polarized (ferromagnetic)
UEG. However, most physical systems are predominantly unpolarized, i.e., they contain an
equal number of spin-up and spin-down electrons. Hence, the next logical step of this work
was the extension of the CPIMC method to the unpolarized UEG.

The generalization of the equations to the unpolarized case is rather trivial since the only
change occurs in the N-particle states (determinants) in Fock states, which now contain the
occupation numbers of plane wave spin-orbitals, instead of plane wave orbitals. Formally, ev-
erything else remains the same. Nevertheless, when it comes to the practical implementation
of the algorithm, this is different as the proper treatment of two different species of particles
requires a substantial amount of additional bookkeeping. Moreover, in all Monte Carlo steps
it must be ensured that none of the electrons undergoes a spin-flip, so that the total spin of
the system is always conserved. As a first check of the correctness of the implementation, I
again compared the results with those from the exact Configuration Interaction method (for a
small system). The agreement was perfect.

As an additional test, I carried out calculations at low temperature10 (θ = 0.01), and
compared the results to the ground state energy from the so-called initiator Full Configuration
Interaction QMC (i-FCIQMC) method [68, 134–137], which revealed a small but statistically
significant deviation. This is shown in Fig. 3.1, where the total energy of N = 14 electrons
at rs = 0.5 is plotted in dependence of 1/NB. For sufficiently large NB, we observe the
expected linear convergence behavior [136] with 1/NB for both methods, which, however,
for NB > 778, clearly deviate.

Since the i−FCIQMC method had been successfully applied to many systems and claimed
to be highly accurate, I again started to intensively test the implementation. In particular, I
wrote an additional program which systematically generates all possible paths and assigns a
unique ID to each of them11. Due to the combinatorial growth of the configuration space
with the number of electrons and basis functions, this is restricted to small systems and paths
containing less than K = 5 kinks. In a subsequent CPIMC simulation for the same system, I
then checked if all previously generated IDs do actually occur in the simulation. This is the
ultimate (brute force) procedure to test if the Monte Carlo steps are truly ergodic12. Still, no
error could be found.

10Using θ = 0.01 is sufficient for convergence to the ground state.
11In practice, assigning a unique ID to each path is not trivial since one easily runs into an over-flow due to

the large number of possible different paths.
12Ergodicity means that all possible configurations can be reached or generated within a finite number of

updates.



3.7 Extension of CPIMC to the Unpolarized Case 203

0 358−1778−11850−1

1/NB

8.285

8.2855

8.286

8.2865

8.287

8.2875

8.288

E
N

B
/
R

y

Fit to Nb ≥ 778
Fit to Nb ≥ 778
CPIMC
i-FCIQMC

Fig. 3.1 Gronud state energy of the unpolarized UEG in dependence of the number of plane
wave spin-orbitals. The simulations were performed for N = 14 electrons at rs = 0.5. Shown
are results from CPIMC (red dots) and i−FCIQMC (blue crosses, Ref. [135]) simulations.
In addition, two linear fits (dashed line) to the data points with NB ≥ 778 are performed.
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Fig. 3.2 Ground state correlation energy of the unpolarized UEG with N = 14 electrons at
rs = 0.5 in NB = 1850 plane wave spin-orbitals. Shown are the i−FCIQMC results (blue, data
courtesy to F. D. Malone) from simulations with a different number of so-called "walkers",
which represent a convergence parameter within the method in the sense that the exact results
is only reached in the limit of an infinite number of walkers. In addition, the CPIMC result
(red solid line) is depicted, where the corresponding statistical error bars are indicated by the
dashed lines.
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Finally, F. D. Malone kindly carried out additional i−FCIQMC calculations to investigate
if the results from Ref. [135] were properly converged with respect to the number of so-called
walkers in the simulation. Within this approach the exact result is attained if this number is
sufficiently large. In Fig. 3.2, this convergence of the i−FCIQMC results (blue) is shown (for
the same system parameters). Clearly, these do eventually coincide with the CPIMC result
(red), but for an unexpectedly large number of walkers (larger than ∼ 104). Since the authors
of Ref. [135] only used 103 walkers, this explains the previously observed discrepancy in
Fig. 3.1.

Recalling the fact that CPIMC is a finite temperature QMC method, for which the
computation of ground state results constitutes the most difficult case13, the above discussed
comparison to a ground state QMC method can be viewed as a further demonstration of its
strength to benchmark other many-body approaches.

In the following paper14, Ref. [108], after the correctness of the implementation was
finally verified, I carried out a similar analysis of the sign problem for the unpolarized UEG
as had been presented in the previous Ref. [55] for the polarized case. Overall, the sign
problem becomes more severe in simulations of the unpolarized UEG, which, as discussed in
detail in Ref. [108], can be traced back to the simple fact that electrons of opposite spin do not
exchange. Regarding the application of the kink potential, it turned out that, at larger values
of rs, using a Fermi-function as a kink potential is not sufficient to prevent the exponential
growth of the number of kinks (which, again, renders simulations unfeasible). To overcome
this obstacle, and thereby restoring the monotonic convergence of the observables, I modified
the kink potential by including an additional cut-off parameter.

3.8 Combination with PB-PIMC: the Unpolarized Case

In addition, in the following Ref. [108], also the PB-PIMC approach was generalized to the
unpolarized case, to which, however, I did not contribute. Likewise to the polarized case, the
free parameters of the PB-PIMC method were optimized with the aid of the CPIMC data.
By combining both methods, we computed a large data set containing various energies over
the entire range of densities (Tab. 1 in Ref. [108]), now for N = 66 unpolarized electrons,
instead of N = 33 polarized electrons in Ref. [108]. Due to the increased sign problem, a
smooth connection of the CPIMC to the PB-PIMC results could only be achieved down to a
temperature of θ = 0.75, compared to θ = 0.5 in the polarized case. Further, we found that

13It can be shown that the fermion sign problem of all finite temperature QMC methods grows exponentially
with decreasing temperature; the pre-factor of this exponential growth depends on the specific method.

14T. Dornheim, S. Groth, T. Schoof, C. Hann, and M. Bonitz, Phys. Rev. B 93, 205134 (2016). Copyright by
the American Physical Society (2016).
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the RPIMC exchange–correlation energies are more accurate compared to the polarized case,
and yet, separately, the kinetic and potential energies exhibit substantial deviations from our
data.

In summary, we successfully extended and optimized both our novel QMC methods such
that efficient simulations of the unpolarized UEG can be performed over broad parameter
ranges (without the necessity of relying on the fixed node approximation). The excellent
agreement of CPIMC and PB-PIMC again confirmed the high quality of the results, and
hence, the included data table of energies for N = 66 electrons will serve as a solid reference
for the future development of other many-body simulation techniques.
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In a recent publication [S. Groth et al., Phys. Rev. B 93, 085102 (2016)], we have shown that the combination
of two complementary quantum Monte Carlo approaches, namely configuration path integral Monte Carlo
[T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)] and permutation blocking path integral Monte Carlo
[T. Dornheim et al., New J. Phys. 17, 073017 (2015)], allows for the accurate computation of thermodynamic
properties of the spin-polarized uniform electron gas over a wide range of temperatures and densities without
the fixed-node approximation. In the present work, we extend this concept to the unpolarized case, which
requires nontrivial enhancements that we describe in detail. We compare our simulation results with recent
restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013)] for different
energy contributions and pair distribution functions and find, for the exchange correlation energy, overall better
agreement than for the spin-polarized case, while the separate kinetic and potential contributions substantially
deviate.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) simulations of fermions
are of paramount importance to describe manifold aspects
of nature. In particular, recent experimental progress with
highly compressed matter [1–3] such as plasmas in laser fusion
experiments [4–9] and solids after laser irradiation [10], but
also the need for an appropriate description of compact stars
and planet cores [11–13], has lead to a high demand for
accurate simulations of electrons in the warm dense matter
(WDM) regime (i.e., density parameter rs = r/aB ∼ 1 and
degeneracy temperature θ = kBT/EF ∼ 1). Unfortunately, the
application of all QMC methods to fermions is severely
hampered by the fermion sign problem (FSP) [14,15]. A
popular approach to circumvent this issue is the restricted path
integral Monte Carlo (RPIMC) [16] method, which, however,
is afflicted with an uncontrollable error due the fixed node
approximation [17–20]. Therefore, until recently, the quality
of the only available QMC results for the uniform electron gas
(UEG) in the WDM regime [21] has remained unclear.

To address this issue, in a recent publication (pa-
per I, Ref. [22]) we have combined two complementary
approaches: our configuration path integral Monte Carlo
(CPIMC) method [23–25] excels at high to medium density
and arbitrary temperature, while our permutation blocking
path integral Monte Carlo (PB-PIMC) approach [26,27] sig-
nificantly extends standard fermionic PIMC [28,29] towards
lower temperature and higher density. Surprisingly, it has been
found that existing RPIMC results are inaccurate even at high
temperatures.

However, although the spin-polarized systems that have
been investigated in our previous works are of relevance for
the description of, e.g., ferromagnetic materials or strongly
magnetized systems, they constitute a rather special case,
since most naturally occurring plasmas are predominantly

*bonitz@physik.uni-kiel.de

unpolarized. Therefore, in the present work we modify both
our implementations of PB-PIMC and CPIMC to simulate the
unpolarized UEG. So far only a single data set for a small
system (N = 14 electrons, one isotherm) could be obtained in
our previous work [25] because the paramagnetic case turns
out to be substantially more difficult than the ferromagnetic
one. Therefore, we have developed nontrivial enhancements
of our CPIMC algorithm that are discussed in detail. With
these improvements, we are able to present accurate results
for different energies for the commonly used case of N = 66
unpolarized electrons over a broad range of parameters.

Since many details of our approach have been presented
in our paper I [22], in the remainder of this paper we restrict
ourselves to a brief, but self-contained introduction to CPIMC
and PB-PIMC. We set the focus on the differences arising
from their application to the unpolarized UEG, compared to
the spin-polarized case and, therefore, the present investigation
complements our previous results [22,27] for the latter.
In Sec. II, we introduce the model Hamiltonian, both in
coordinate space (II A) and second quantization (II B) and,
subsequently, provide a brief introduction to the employed
QMC approaches (Sec. III), namely PB-PIMC (III A) and
CPIMC (III B). Finally, in Sec. IV, we present combined
results from both methods for the exchange correlation,
kinetic, and potential energy (IV A), as well as the pair
distribution function (IV B). Further, we compare our data
to those from RPIMC [21], where available. While we find
better agreement than for the spin-polarized case [22,27],
there nevertheless appear significant deviations towards lower
temperature.

II. HAMILTONIAN OF THE UNIFORM ELECTRON GAS

The uniform electron gas (“Jellium”) is a model system of
Coulomb interacting electrons in a neutralizing homogeneous
background. As such, it explicitly allows one to study effects
due to the correlation and exchange of the electrons, whereas

2469-9950/2016/93(20)/205134(15) 205134-1 ©2016 American Physical Society
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those due to the positive ions are neglected. Furthermore, the
widespread density functional theory (DFT) crucially depends
on ab initio results for the exchange correlation energy of the
uniform electron gas (UEG), hitherto at zero temperature [30].
However, it is widely agreed that the appropriate treatment of
matter under extreme conditions requires one to go beyond
ground state DFT, which, in turn, needs accurate results for
the finite temperature UEG. While the electron gas itself is
defined as an infinite macroscopic system, QMC simulations
are possible only for a finite number of particles N . Hence we
always assume periodic boundary conditions and include the
interaction of the N electrons in the main simulation cell with
all their images via Ewald summation and defer any additional
finite-size corrections [31–33] to a future publication.

A. Coordinate representation of the Hamiltonian

Following Refs. [27,31], we express the Hamiltonian (we
measure energies in Rydberg and distances in units of the
Bohr radius a0) for N = N↑ + N↓ unpolarized electrons in
coordinate space as

Ĥ = −
N∑

i=1

∇2
i +

N∑
i=1

N∑
j �=i

e2�(ri ,rj ) + N e2ξ, (1)

with the well-known Madelung constant ξ and the periodic
Ewald pair interaction

�(r,s) = 1

V

∑
G �=0

e−π2G2/κ2
e2πiG(r−s)

πG2

− π

κ2V
+

∑
R

erfc(κ|r − s + R|)
|r − s + R| . (2)

Here R = n1L and G = n2/L denote the real and reciprocal
space lattice vectors, respectively, with the box length L, vol-
ume V = L3, and the usual Ewald parameter κ . Furthermore,
PB-PIMC simulations require the evaluation of all forces
within the system, where the force between two electrons i

and j is given by

Fij = 2

V

∑
G �=0

(
G
G2

sin[2πG(ri − rj )]e−π2G2/κ2

)

+
∑

R

ri − rj + R
α3

(
erfc(κα) + 2κα√

π
e−κ2α2

)
, (3)

with the definition α = |ri − rj + R|.

B. Hamiltonian in second quantization

In second quantization with respect to spin orbitals of plane
waves, 〈rσ |kiσi〉 = 1

L3/2 e
iki ·rδσ,σi

with ki = 2π
L

mi , mi ∈ Z3,
and σi ∈ {↑,↓}, the model Hamiltonian, Eq. (1), takes the
form

Ĥ =
∑

i

k2
i â

†
i âi + 2

∑
i < j,k < l

i �= k,j �= l

w−
ijkl â

†
i â

†
j âl âk + N e2ξ, (4)

with the antisymmetrized two-electron integrals, w−
ijkl =

wijkl − wijlk , where

wijkl = 4π e2

L3(ki − kk)2
δki+kj ,kk+kl

δσi ,σk
δσj ,σl

, (5)

and the Kronecker δ’s ensuring both momentum and spin
conservation. The first (second) term in the Hamiltonian Eq. (4)
describes the kinetic (interaction) energy. The operator â

†
i (âi)

creates (annihilates) a particle in the spin orbital |kiσi〉.

III. FERMIONIC QUANTUM MONTE CARLO
WITHOUT FIXED NODES

Throughout the entire work, we consider the canonical
ensemble, i.e., the volume V , particle number N , and inverse
temperature β = 1/kBT are fixed. In equilibrium statistical
mechanics, all thermodynamic quantities can be derived from
the partition function

Z = Trρ̂, (6)

which is of central importance for any QMC formulation and
defined as the trace over the canonical density operator

ρ̂ = e−βĤ . (7)

The expectation value of an arbitrary operator Â is given by

〈Â〉 = Tr(Âρ̂)

Trρ̂
= 1

Z
Tr(Âρ̂). (8)

However, for an appropriate description of fermions, Eqs. (6)
and (8) must be extended either by antisymmetrizing ρ̂ → ρ̂−
or the trace itself [23], Tr → Tr−. Therefore, it holds that

Z = Trρ̂− = Tr−ρ̂. (9)

While defining the trace in Eq. (9) as either expression does not
change the well-defined thermodynamic expectation values,
it does lead to rather different formulations of the same
problem. The combination of antisymmetrizing the density
matrix and evaluating the trace in coordinate space is the first
step towards both standard PIMC and PB-PIMC, cf. Sec. III A,
but also RPIMC. All these approaches share the fact that they
are efficient when fermionic quantum exchange does not yet
dominate a system, but they will become increasingly costly
towards low temperature and high density. Switching to second
quantization and carrying out the trace in antisymmetrized
Fock space, on the other hand, is the basic idea behind our
CPIMC method, cf. Sec. III B, and, in a different way, behind
the likewise density matrix QMC method [34]. The latter
approach has recently been applied to the case of N = 4
spin-polarized electrons [35], where complete agreement with
our CPIMC results [24] was reported. These QMC approaches
tend to excel at high density, i.e., weak nonideality, and become
eventually unfeasible towards stronger coupling strength.

Therefore, it is a natural strategy to combine different
representations at complementary parameter ranges as this
does effectively allow one to circumvent the numerical
shortcomings with which every single fermionic QMC method
is necessarily afflicted [22,27].
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A. Permutation blocking PIMC

1. Basic idea

In this section, we will briefly introduce our permutation
blocking PIMC approach. A more detailed description of the
method itself and its application to the spin-polarized UEG
can be found in Refs. [26,27].

The basic idea behind PB-PIMC is essentially equal to
standard PIMC in coordinate space, e.g., Ref. [29], but, in ad-
dition, combines two well-known concepts: (1) antisymmetric
imaginary time propagators, i.e., determinants [36–38], and
(2) a fourth-order factorization of the density matrix [39–
42]. Furthermore, since this leads to a significantly more
complicated configuration space without any fixed paths, one
of us has developed an efficient set of Metropolis Monte
Carlo [43] updates that utilize the temporary construction of
artificial trajectories [26]. As mentioned above, we evaluate the
trace within the canonical partition function for N = N↑ + N↓
unpolarized electrons in coordinate representation

Z = 1

N↑!N↓!

∑
σ↑∈SN↑

∑
σ↓∈SN↓

sgn(σ↑) sgn(σ↓)

×
∫

dR 〈R| e−βĤ |π̂σ↑ π̂σ↓R〉 , (10)

with π̂σ↑,↓ being the exchange operator that corresponds to
a particular element σ↑,↓ from the permutation group SN↑,↓
with associated sign sgn(σ↑,↓) and ↑ (↓) denoting spin-up
(spin-down) electrons. However, since the kinetic and potential
contributions to the Hamiltonian, K̂ and V̂ , do not commute,
the low-temperature matrix elements of ρ̂ are not known.
To overcome this issue, we use the common group property
ρ̂(β) = ∏P−1

α=0 ρ̂(ε) of the density matrix, with ε = β/P , and
approximate each of the P factors at a P times higher
temperature by the fourth-order factorization [40,41]

e−εĤ ≈ e−v1εŴa1 e−t1εK̂e−v2εŴ1−2a1

×e−t1εK̂e−v1εŴa1 e−2t0εK̂ . (11)

The Ŵ operators in Eq. (11) combine the usual potential energy
V̂ with double commutator terms of the form

[[V̂ ,K̂],V̂ ] = �2

m

N∑
i=1

|Fi |2, Fi = −∇iV (R), (12)

and, therefore, require the evaluation of all forces [44] within
the system; cf. Eq. (3). The explicit expressions of these
modified potential terms are given by

Ŵa1 = V̂ + u0

v1
a1ε

2

(
�2

m

N∑
i=1

|Fi |2
)

,

(13)

Ŵ1−2a1 = V̂ + u0

v2
(1 − 2a1)ε2

(
�2

m

N∑
i=1

|Fi |2
)

.

Furthermore, we note that there are two free parameters in
Eq. (11) that can be used for optimization, namely 0 � a1 � 1
and 0 � t0 � (1 − 1/

√
3)/2. All other coefficients (u0, v1, v2,

and t1) are subsequently calculated from these choices; see
Refs. [26,41].

The final result for the PB-PIMC partition function is given
by

Z = 1

(N↑!N↓!)3P

∫
dX

×
P−1∏
α=0

(
e−εṼα e−ε3u0

�2

m
F̃αDα,↑Dα,↓

)
, (14)

with Ṽα and F̃α containing all contributions of the potential
energy and the forces, respectively. For each propagator α,
there are N particle coordinates on the “main time slice,” Rα ,
and, in addition, on two “daughter slices,” RαA and RαB , with
the integration in Eq. (14) being carried out over all of them.
The exchange-diffusion functions are defined as

Dα,↑ = det(ρα,↑)det(ραA,↑)det(ραB,↑),
(15)

Dα,↓ = det(ρα,↓)det(ραA,↓)det(ραB,↓)

and contain the determinants of the diffusion matrices

ρα,↑(i,j ) = λ−3
t1ε

∑
n

e
− π

λ2
t1ε

(rα,↑,j −rαA,↑,i+nL)2

, (16)

with λt1ε =
√

2πεt1�2/m being the thermal wavelength of a
single “time slice.”

In contrast to standard PIMC, where each permutation cycle
has to be explicitly sampled, we combine both positively and
negatively signed configuration weights in the determinants
both for the spin-up and spin-down electrons. This leads to a
cancellation of many terms and, consequently, a significantly
increased average sign in our Monte Carlo simulations. Yet,
this “permutation blocking” is only effective when λt1ε is
comparable to the mean interparticle distance, i.e., when there
are both large diagonal and off-diagonal elements in the diffu-
sion matrices. With an increasing number of high-temperature
factors P , λt1ε decreases and, eventually, when there is only but
a single large element in each row of the ρα,↑, the average sign
converges towards that of standard PIMC. For this reason, it
is crucial to combine the determinants from the antisymmetric
propagators with an appropriate factorization of the density
matrix that allows for sufficient (though finite) accuracy with
as few as two or three propagators, thereby maximizing
the benefit of the blocking within the determinants. This
requirement is met by the factorization scheme Eq. (11) which,
in the limit of large P , leads to a convergence behavior with
1/P 4 as was shown in Ref. [41]. However, even though this
asymptotic limit is not reached (which is the case for all
simulations presented in this work), the empirical choice of the
two free parameters t0 and a1 allows for significantly improved
accuracy with only two or three propagators (compared to the
primitive factorization e−εĤ ≈ e−εK̂e−εV̂ ) [41].

Furthermore, we note that since electrons with different
spin projections do not exchange at all, PB-PIMC simulations
of the unpolarized UEG with N = N↑ + N↓ do suffer from
a significantly less severe sign problem than for N = 2N↑
spin-polarized electrons.

2. Application to the unpolarized UEG

The accuracy of our PB-PIMC simulations crucially de-
pends on the systematic factorization error for small P [26,27].

205134-3



DORNHEIM, GROTH, SCHOOF, HANN, AND BONITZ PHYSICAL REVIEW B 93, 205134 (2016)

-5.172

-5.164

-5.156

-5.148

-5.14

 0  0.05  0.1  0.15  0.2  0.25

V/
Ry

t0

 P=2
P=3
P=4

 CPIMC

FIG. 1. Influence of the relative interslice spacing t0 on the
convergence—the potential energy from PB-PIMC simulations of
N = 4 unpolarized electrons at θ = 0.5 and rs = 1 is plotted versus
t0 for the fixed choice a1 = 0.33.

Thus we begin the investigation of the unpolarized electron
gas with the analysis of the empirical optimization of the
two free parameters from Eq. (11), namely a1 (weighting
the contributions of the forces on different time slices) and
t0 (controlling the relative interslice spacing). In Fig. 1, we
fixed a1 = 0.33 fixed, which corresponds to equally weighted
forces on all slices, and plot the potential energy V for
P = 2,3,4 over the entire t0 range for a benchmark system of
N = 4 unpolarized electrons at rs = 1 and θ = 0.5. Evidently,
for all t0 values V approaches the exact result, which has
been obtained with CPIMC, monotonically from above. The
optimum value for t0 is located around t0 = 0.14, where all
three PB-PIMC values are within single error bars with the
black line. For completeness, we mention that this particular
set of the optimum free parameters for the energy is consistent
with the previous findings for different systems [26,27,41].
A detailed investigation of the convergence properties of the
employed fourth-order factorization including the asymptotic
behavior for large P is beyond the scope of this work and can
be found in Ref. [41].

A natural follow-up question is how the factorization error
for few propagators behaves as a function of the density
parameter rs in the WDM regime, θ = 1. In Fig. 2, we show
results for the relative error of the potential [�V/|V |, panel
(a)] and kinetic energy [�K/K , panel (b)], where the reference
values are again obtained from CPIMC (see Fig. 12 for a
similar plot for N = 66 electrons). The statistical uncertainty
is mainly due to PB-PIMC, except for rs = 4 where the CPIMC
error bar predominates. For the kinetic energy, even for P = 3
there are no clear systematic deviations from the exact result
over the entire rs range. Only with two propagators, our
results for K appear to be slightly too large for rs ∈ (0.5,1,2),
although this trend hardly exceeds �K/K = 5 × 10−4. For
the potential energy, the factorization error behaves quite
differently. For rs � 1, even with two propagators the accuracy
is better than 0.1%, while towards higher density (rs < 1),
the convergence significantly deteriorates. In particular, at
rs = 0.25 even with P = 5 there is a deviation of �V/|V | ≈

-0.001
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 0.002

 0.003

 0.1  1  10

ΔV
/|V

|

rs

(a)  P=2
 P=3
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P=5
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FIG. 2. Density dependence of the relative time step error from
PB-PIMC with a1 = 0.33 and t0 = 0.14—the relative differences
between PB-PIMC results with P = 2,3,4,5 and reference data from
CPIMC are plotted versus rs for the potential energy (a) and the
kinetic energy (b), with θ = 1.

0.1%. This observation is in striking contrast to our previous
investigation of the polarized UEG, where the relative error
in both K and V decreased towards rs → 0. The reason
for this trend lies in the presence of two different particle
species which do not exchange with each other, namely N↑
spin-up and N↓ spin-down electrons. Even at high density,
two electrons from the same species are effectively separated
by their overlapping kinetic density matrices that cancel in the
determinants, which is nothing else than the Pauli blocking.
Yet, a spin-up and a spin-down electron do not experience such
a repulsion and, at weak coupling (small rs), can be separated
by much smaller distances r from each other. With decreasing
r the force terms in Eq. (11) that scale as F (r) ∝ 1/r2 will
eventually exceed the Coulomb potential V (r) ∝ 1/r , i.e.,
the higher order correction predominates. This trend must
be compensated by an increasing number of propagators P .
Hence the fermionic nature of the electrons that manifests as
the Pauli blocking significantly enhances the performance of
our factorization scheme, which means that the simulation of
unpolarized systems is increasingly hampered towards high
density. In addition to the Monte Carlo inherent sign problem,
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this is a further reason to combine PB-PIMC with CPIMC,
since the latter excels just in this regime.

In our recent analysis of PB-PIMC for electrons in a
two-dimensional (2D) harmonic trap [26], it was found that,
while the combination a1 = 0.33 and t0 = 0.14 [parameter set
(a)] is favorable for a fast convergence of the energy, it does
not perform so well for other properties like, in that case,
the density profile. To address this issue, we again simulate
a benchmark system of N = 4 unpolarized electrons and
compute the pair distribution function g(r); see, e.g., Ref. [45]
for a comprehensive discussion. In Fig. 3, we show results for
the above combination of free parameters (a) and P = 2,3,4,5.
Panel (a) displays the data for the interspecies distribution
function g↑↓. We note that, for the infinite UEG, this quantity
approaches unity at large distances, but the small simulation
box for N = 4 restricts us to the depicted r range. All four
curves deviate from each other for r � 0.5, which indicates
that g↑↓ is not yet converged even for P = 5 at small distances,
and are equal otherwise. This is again a clear indication
of the shortcomings of our fourth-order factorization, which
overestimates the Coulomb repulsion at short ranges. The
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FIG. 3. Convergence of the pair distribution function for N = 4
unpolarized electrons at θ = 1 and rs = 4—shown are PB-PIMC
results for the inter- [g↑↓, panel (a)] and intraspecies [g↑↑, panel (b)]
distribution function for different numbers of propagators P and the
fixed free parameters a1 = 0.33 and t0 = 0.14.

intraspecies distribution function g↑↑ = g↓↓, which is shown
in panel (b), does not exhibit such a clear trend since only the
green curve that corresponds to P = 2 can be distinguished
from the rest. This is, of course, expected and a consequence
of the Pauli blocking as explained above.

Evidently, our propagator with the employed choice of free
parameters (a) does not allow for an accurate description of
the Coulomb repulsion at short distances. To understand this
issue, we repeat the simulations with a different combination
a1 = 0 and t0 = 0.04 [parameter set (b)], which has already
proven to be superior to parameter set (a) for the radial density
in the 2D harmonic trap. The results are shown in Fig. 4 for
different numbers of propagators. The data with P = 2 are
nearly equal to the results from parameters (a) and P = 5. The
data for P = 4 and P = 5 almost coincide and are significantly
increased with respect to the other curves. The main reason
for the improved accuracy of parameter set (b) is the choice
a1 = 0, which means that the forces are only taken into account
on intermediate time slices. Due to the diagonality of the
pair distribution function in coordinate space, it is measured
exclusively on the main slices, for whose distribution the force
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FIG. 4. Convergence of the pair distribution function for N = 4
unpolarized electrons at θ = 1 and rs = 4—shown is the same
information as in Fig. 3, but for a different combination of free
parameters, i.e., a1 = 0 and t0 = 0.04.
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terms do not directly enter. For this reason, the interspecies pair
distribution function is not as drastically affected by the diver-
gence of the F (r) ∝ 1/r2 terms at small r and the convergence
of this quantity is significantly improved. For completeness, in
panel (b) we again show results for g↑↑, which, for parameter
set (b), are almost converged even for two propagators. It is
important to note that a relatively large factorization error in the
pair distribution function does not necessarily imply a similar
inaccuracy of the potential energy, since the latter is not directly
computed as the integral of the pair potential �(r,s) over g(r).
Instead, our estimator is derived as the derivative of Z, which
leads to the explicit inclusion of force terms [26,27]. Fur-
thermore, it should be understood that, while the description
of the Coulomb repulsion at very short ranges is particularly
challenging, this does not predominate in larger systems since
the average number of particles within distance r ∈ [r̃ ,r̃ + �r̃)
increases as N (r̃) ∝ r̃2. For N = 66 unpolarized electrons,
which is the standard system size within this work, these effects
are by far not as important and, for the same combination of rs

and θ as in Fig. 4, both the inter- and intraspecies distribution
function are of much higher quality; cf. Fig. 13.

Up to this point, only data for small benchmark systems
with N = 4 electrons have been presented. To obtain mean-
ingful results for the UEG, we simulate N = 66 unpolarized
electrons, which is a commonly used model system since
it corresponds to a closed momentum shell and, therefore,
is well suited as a starting point for an extrapolation to
the thermodynamic limit (finite size corrections). In Fig. 5,
the average sign, cf. Eq. (21), is plotted versus the density
parameter rs for five different temperatures. For θ = 2,4,8,
〈s〉′ is almost equal to unity for rs = 40 and decreases just
a trifle towards higher density, until it saturates at rs ∼ 0.5.
Consequently, simulations are possible over the entire density
range with relatively small computational effort. The slight
increase of 〈s〉′ around rs ∈ [1,10] is a nonideality effect:

 0.001
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 0.1

 1

 0.1  1  10

<
s>

'

rs

PIMC (θ=1)

 θ=0.75
 θ=1.0
 θ=2.0
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FIG. 5. Average sign for PB-PIMC simulations of N = 66
unpolarized electrons at different temperatures—all PB-PIMC data
have been obtained for P = 2 with a1 = 0.33 and t0 = 0.14 and the
standard PIMC data (red curve) have been taken from Ref. [21].

at high density, the system is approximately ideal and the
Fermi temperature θF is an appropriate measure for quantum
degeneracy. With increasing rs , coupling effects become more
important, which leads to a stronger separation of the electrons.
Thus there is less overlap of the kinetic density matrices
and the determinants become exclusively positive. For θ = 1,
the average sign already significantly deviates from unity at
rs = 40 and exhibits a more severe decrease towards smaller
rs . Nevertheless, it attains a finite value 〈s〉′ ≈ 0.01 even
at high density rs = 0.1, which means that simulations are
more involved but still manageable over the entire coupling
range. This is in stark contrast to standard PIMC without
the permutation blocking (red circles), for which the sign
exhibits a sharp drop and simulations become unfeasible below
rs ≈ 5. Finally, the green curve corresponds to θ = 0.75,
where PB-PIMC is capable of providing accurate results for
rs � 3.

B. Configuration PIMC

1. Basic idea

In this section, the main aspects of our CPIMC approach
are explained. A detailed derivation of the CPIMC expansion
of the partition function and the utilized Monte Carlo steps for
the polarized UEG can be found in Refs. [22,24].

For CPIMC, instead of evaluating the trace of the partition
function Eq. (6) in coordinate representation, we switch to sec-
ond quantization and perform the trace with antisymmetrized
N -particle states (Slater determinants)

|{n}〉 = |n1,n2, . . . 〉, (17)

with ni being the fermionic occupation number (ni ∈ {0,1})
of the ith spin orbital |kiσi〉, where we choose the ordering
of orbitals such that even (odd) orbital numbers have spin-
up (spin-down) σ = ↑(↓). In this representation, fermionic
antisymmetry is automatically taken into account via the
anticommutation relations of the creation and annihilation
operators, and thus, an explicit antisymmetrization of the
density operator is not needed. The expansion of the partition
function is based on the concept of continuous time QMC, e.g.,
Refs. [46,47], where the Hamiltonian is split into a diagonal
and off-diagonal part Ĥ = D̂ + Ŷ with respect to the chosen
basis. Summing up the entire perturbation series of the density
operator e−βĤ in terms of Ŷ finally yields

Z =
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

× (−1)Ke− ∑K
i=0 D{n(i)}(τi+1−τi )

K∏
i=1

Y{n(i)},{n(i−1)}(si), (18)

with the Fock space matrix elements of the diagonal and off-
diagonal operator

D{n(i)} =
∑

l

k2
l n

(i)
l +

∑
l<k

w−
lklkn

(i)
l n

(i)
k , (19)

Y{n(i)},{n(i−1)}(si) = w−
si

(−1)αsi . (20)

Here, si = (pqrs) defines the four occupation numbers in
which {n(i)} and {n(i−1)} differ, where it is p < q and r < s.
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FIG. 6. Typical closed path of N = 4 unpolarized particles in
Slater determinant (Fock) space. The state with four occupied orbitals
|k0↑〉,|k1↓〉,|k3↓〉,|k6↑〉 undergoes a two-particle excitation s1 at
time τ1 replacing the occupied orbitals |k0↑〉 ,|k3↓〉 by |k2↑〉,|k5↓〉.
Two further excitations occur at τ2 and τ3. The states at the “imaginary
times” τ = 0 and τ = β coincide. In addition, the total spin projection
is conserved at any time. All possible paths contribute to the partition
function Z, Eq. (18).

In this notation, the exponent of the fermionic phase factor is
given by

αsi
= α(i)

pqrs =
q−1∑
l=p

n
(i−1)
l +

s−1∑
l=r

n
(i)
l .

Due to the trace, each addend in Eq. (18) fulfills {n} = {n(0)} =
{n(K)} and hence can be interpreted as a β-periodic path in Fock
space. An example of such a path for the case of an unpolarized
UEG is depicted in Fig. 6. The starting determinant {n} at
τ = 0 undergoes K excitations of type si at time τi , which
we refer to as “kinks.” The weight of each path is computed
according to the second line of Eq. (18), which can be both
positive and negative. Since the Metropolis algorithm [43] can
only be applied to strictly positive weights, we have to take
the modulus of the weights in our MC procedure and compute
expectation values according to

〈O〉 = 〈Os〉′
〈s〉′ , (21)

where O is the corresponding Monte Carlo estimator of the
observable, 〈·〉′ denotes the expectation value with respect to
the modulus weights, and s measures the sign of each path.
Therefore, 〈s〉′ is the average sign of all sampled paths during
the MC simulation. It is straightforward to show that the
relative statistical error of observables computed according
to Eq. (21) is inversely proportional to the average sign. As
a consequence, in practice, reliable expectation values can be
obtained if the average sign is larger than about 10−4.

2. Application to the unpolarized UEG

The difference between CPIMC simulations of the polar-
ized and unpolarized UEG enters basically in two ways. First,
in addition to the particle number N , the total spin projection in
the summation over the starting determinant {n(0)} in Eq. (18)
has to be fixed, i.e., the number of spin-up N↑ and spin-down
electrons N↓. Thus, if a whole occupied orbital is excited

during the MC procedure (for details, see Ref. [24]), it can
only be excited to an orbital with the same spin projection. For
example, orbital 6 in Fig. 6 could only be excited to orbital 8
or some higher unoccupied orbital with spin up (not pictured).
Moreover, when adding a kink or changing two kinks via
some two-particle excitation, it is most effective to include
spin conservation in the choice of the four involved orbitals,
since all other proposed excitations would be rejected due to
a vanishing weight.

For the second aspect, we have to explicitly consider the
modulus weight of some kink si = (pqrs), which is given by
the modulus of Eq. (20)

|Y{n(i)},{n(i−1)}(si)|

=
∣∣∣∣ 1

(kp − kr )2
δσp,σr

δσq ,σs
− 1

(kp − ks)2
δσp,σs

δσq ,σr

∣∣∣∣
× 4πe2

L3
δkp+kq ,kr+ks

, (22)

where we have used the definition of the antisymmetrized
two-electron integrals from Sec. II B. If all of the involved spin
orbitals have the same spin projection, the Kronecker δ’s due to
the spin obviously equal one, and the two-electron integrals are
efficiently blocked, i.e., in most (momentum conserving) cases
it is |w−

pqrs | < |wpqrs | and |w−
pqrs | < |wpqsr |. However, if the

involved orbitals have different spin projections, one of the
two terms in Eq. (22) is always zero and |w−

pqrs | = |wpqsr | or
|w−

pqrs | = |wpqrs |. Hence, for otherwise fixed system param-
eters, the average weight of kinks in the unpolarized system
is significantly larger. Since the diagonal matrix elements, cf.
Eq. (19), are independent of the spin, there ought to be more
kinks in simulations of the unpolarized system, which in turn
results in a smaller sign, because each kink enters the partition
function with three possible sign changes.

We address this issue in Fig. 7, where we plot the average
sign (a) and the average number of kinks (b) for the polarized
(circles) and unpolarized (dots) UEG of N = 4,14, and 66
electrons at θ = 1. Coming from small values of rs , the average
number of kinks grows linearly with rs . Depending on the
particle number, at some critical value of rs , it starts growing
exponentially, until it eventually turns again into a linear
dependency. The onset of the exponential growth is connected
to a drop of the average sign due to the combinatorial growth
of potential sign changes in the sampled paths with increasing
number of kinks. This behavior becomes more extreme
the larger the particle number, both for the polarized and
unpolarized system, so that for N = 66 electrons (blue lines),
the average number of kinks suddenly increases from less than
about two to a couple of hundred, which corresponds to a drop
of the average sign from almost one to below 10−3. However,
for the unpolarized system, the critical value of rs at which the
average sign starts dropping drastically is approximately half
of that of the polarized system containing the same number
of electrons. In practice, this means that for N = 66 polarized
electrons at θ = 1 direct CPIMC calculations are feasible up
to rs ∼ 0.6, whereas for N = 66 unpolarizd electrons direct
CPIMC is applicable only up to rs ∼ 0.3.
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FIG. 7. Average sign (a) and average number of kinks (b) of
direct CPIMC, plotted versus the density parameter for three different
particle numbers N = 4,14,66 in NB = 2109,4169,5575 plane wave
basis functions, respectively, at θ = 1. Shown are the results from
the simulation of the polarized (circles) and unpolarized (dots) UEG,
where for the unpolarized case 2NB spin orbitals have been used.

3. Auxiliary kink potential

In Ref. [22], it has been shown that the use of an auxiliary
kink potential of the form

Vδ,κ (K) = 1

e−δ(κ−K+0.5) + 1
(23)

significantly extends the applicability range of our CPIMC
method towards larger values of rs . This is achieved by adding
the potential to the second line of the partition function
Eq. (18), i.e., multiplying the weight of each path with the
potential. Obviously, since Vδ,κ (K) → 1 in the limit κ → ∞,
performing CPIMC simulations for increasing values of κ at
fixed δ always converges to the exact result. Yet, to ensure a
monotonic convergence of the energy, it turned out that the
value of δ has to be sufficiently small. Both for the polarized
and unpolarized system, choosing δ = 1 is sufficient. In fact,
the potential is nothing but a smooth penalty for paths with a
larger number of kinks than κ .

In Fig. 8, we show the convergence of (a) the internal
energy (per particle), (b) the average sign, and (c) the average
number of kinks with respect to the kink potential parameter
κ of N = 66 unpolarized electrons at rs = 2 and θ = 4. We
have performed independent CPIMC simulations for different
κ , using integer values from 2 to 17. While the energy
almost remains constant for κ � 10 with a corresponding
average sign larger than 0.1, the average sign and number
of kinks themselves clearly are not converged. Further, the

FIG. 8. Convergence of (a) the internal energy, (b) the average
sign, and (c) the average number of kinks with respect to the kink
potential parameter κ of N = 66 unpolarized electrons at rs = 2 and
θ = 4 in NB = 88 946 spin orbitals. The potential parameter δ has
been fixed to one. The blue (green) line show a horizontal (linear) fit
to the last converged points. The asymptotic value (black point) in
the limit 1/κ → 0 is enclosed between the blue and green lines and,
within error bars, coincides with the PB-PIMC result (orange points).

direct CPIMC algorithm (without the kink potential) would
give a couple of thousand kinks with a practically vanishing
sign. However, for the convergence of observables like the
energy, apparently, a significantly smaller number of kinks is
sufficient. This can be explained by a near cancellation of all
additional contributions of the sampled paths with increasing
number of kinks. For a detailed analysis, see Ref. [22].

We generally observe an s-shaped convergence of observ-
ables with 1/κ , where the onset of the cancellation and near
convergence are clearly indicated by the change in curvature.
This allows for a robust extrapolation scheme to the asymptotic
limit 1/κ → ∞, which is explained in detail in Ref. [22]. An
upper (lower) bound of the asymptotic value is obtained by
a horizontal (linear) fit to the last points after the onset of
convergence. The extrapolated result is then computed as the
mean value of the lower and upper bounds with the uncertainty
estimated as their difference. In Fig. 8, both, the horizontal
(blue line) and linear fit (green line) almost coincide due to
the complete convergence (within statistical errors) of the last
points. The asymptotic CPIMC result (black dot) perfectly
agrees (within error bars) with the PB-PIMC result (orange
dot). This confirms the validity of using the kink potential also
for the unpolarized UEG.

4. Further enhancement of the kink potential

It turns out that, in case of the unpolarized UEG, even with
the use of a kink potential with δ = 1, the simulation may
approach paths with an extremely large number of kinks. This
is demonstrated by the turquoise data points in Fig. 9(c), where
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FIG. 9. Convergence of (a) the internal energy, (b) the average
sign, and (c) the average number of kinks with respect to the kink
potential parameter κ of N = 66 unpolarized electrons at rs = 0.8 and
θ = 1 in NB = 11 150 spin orbitals. The potential parameter δ has
been fixed to one. The three curves correspond to CPIMC calculations
where the kink potential has been cut off at different values Vc, i.e.,
V1,κ (K) [cf. Eq. (23)] is set to zero if it takes values smaller than
Vc. The blue (green) line shows a horizontal (linear) fit to the last
converged red points. The asymptotic value (black point) in the limit
1/κ → 0 is enclosed between the blue and green lines and, within
error bars, coincides with the PB-PIMC result (orange points).

the average number of kinks is shown for N = 66 unpolarized
electrons at θ = 1 and rs = 0.8. For example, at κ = 8, there
are on average about 30 kinks. However, increasing the penalty
for paths with a number of kinks larger than κ , by increasing
δ, is not a solution, since this would cause a nonmonotonic
convergence, oscillating with even and odd numbers of κ , as
has been demonstrated in Ref. [22]. Therefore, we choose a
different strategy which is justified by the fact that paths with
a very large number of kinks do not contribute to physical
observables; cf. Sec. III B 3 and Ref. [22]: we cut off the
potential once it has dropped below some critical value Vc,
thereby completely prohibiting paths where V1,κ (K) < Vc. If
the cutoff value is too large, we again recover an oscillating
convergence behavior of the energy with even and odd numbers
of κ rendering an extrapolation difficult. This is shown by the
purple data points in Fig. 9(a), where the simulations have
been performed with Vc = 0.03 so that paths with a number
of kinks larger than κ + 3 are prohibited. On the other hand,
if we set Vc = 10−9, so that paths with up to κ + 20 kinks are
allowed, the oscillations vanish (within statistical errors) and
we can again apply our extrapolation scheme. Indeed, even
with the additional cutoff the extrapolated value (black dot)
coincides with that of the PB-PIMC simulation (orange dot)
within error bars. In all simulations presented below we have
carefully verified that the cutoff value is sufficiently small to
guarantee converged results.

To summarize, as for the polarized UEG [22], the accessible
range of density parameters rs of our CPIMC method can be
extended by more than a factor two by the use of a suitable
kink potential, in simulations of the unpolarized UEG as well.
For example, at θ = 1 direct CPIMC simulations are feasible
up to rs ∼ 0.3, see Fig. 7, whereas the kink potential allows
us to obtain accurate energies up to rs = 0.8, as demonstrated
in Fig. 9. In addition to the extrapolation scheme that has been
introduced before for the spin-polarized case [22], we have
cut off the potential at a sufficiently small value to prevent the
simulation paths from approaching extremely large numbers
of kinks. We expect this enhancement of CPIMC to be useful
for arbitrary systems. In particular, it will allow us to further
extend our previous results for the polarized UEG to larger rs

values.

IV. COMBINED CPIMC AND PB-PIMC RESULTS

A. Exchange-correlation energy

The exchange-correlation energy per particle, Exc, of the
uniform electrons gas is of central importance for the construc-
tion of density functionals and, therefore, has been the subject
of numerous previous studies, e.g., Refs. [21,22,25,48–50]. It
is defined as the difference between the total energy of the
correlated system and the ideal energy U0,

Exc = E − U0 . (24)

In Fig. 10(a), we show results for this quantity for six different
temperatures in dependence on the density parameter rs .
All data are also available in Table I in the Appendix. In
order to fully exploit the complementary nature of our two
approaches, we always present the most accurate data from
either CPIMC (dots) or PB-PIMC (crosses). This allows us
to cover the entire density range for θ � 1, since here, the
two methods allow for an overlap with respect to rs . For
completeness, we mention that the apparently larger statistical
uncertainty for θ = 8 in comparison to lower temperature is
not a peculiar manifestation of the FSP, but, instead, an artifact
due to the definition (24). At high temperature, the system
becomes increasingly ideal and, therefore, the total energy E

approaches U0. To obtain Exc at θ = 8, a large part of E is
subtracted, which, obviously, means that the comparatively
small remainder is afflicted with a larger relative statistical
uncertainty.

To illustrate the overlap between PB-PIMC and CPIMC,
we show all available data points for θ = 1 for both methods
in panel (b). This is the lowest temperature for which this is
possible and, therefore, the most difficult example, because
the systematic propagator error from PB-PIMC at small rs is
most significant here. Evidently, both data sets are in excellent
agreement with each other and the deviations are well within
the error bars. Although we do expect that the increase of the
PB-PIMC factorization error for small rs , cf. Fig. 2, should
become less severe for larger systems, any systematic trend
is masked by the sign problem anyway and cannot clearly be
resolved for the given statistical uncertainty.

Let us now consider temperatures below θ = 1. For θ =
0.75, CPIMC is applicable only for rs � 0.7, while PB-PIMC
delivers accurate results for rs � 3. Thus the intermediate
regime remains, without further improvements, out of reach
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FIG. 10. Exchange-correlation energy Exc times rs of the unpolar-
ized N = 66 particle UEG over the density parameter rs for different
temperatures. In graphic (a), only the best results from CPIMC (dots)
or PB-PIMC (crosses) calculations are shown; cf. Table I in the
Appendix. In addition, RPIMC results by Brown et al. [21,51] are
plotted for comparison (lines with light colors and open circles).
Graphic (b) also shows PB-PIMC data for rs < 1 at θ = 1.

and, for θ = 0.5, PB-PIMC is not applicable for N = 66
unpolarized electrons in this density regime at all.

The comparison of our combined results to the RPIMC
data by Brown et al. [21], which are available for rs � 1,
reveals excellent agreement for the three highest temperatures,
θ = 2,4,8. For θ = 1, all results are still within single error
bars, but the RPIMC data appear to be systematically too low.
This observation is confirmed for θ = 0.5, where the fixed
node approximation seems to induce an even more significant
drop of Exc. For completeness, we mention that although a
similar trend has been found for the spin-polarized UEG as
well [22,25,27], the overall agreement between RPIMC and
our independent results is a little better for the unpolarized
case.

Finally, we consider the kinetic and potential contribution,
K and V , to the total energy separately. In Fig. 11(a), the kinetic
energy in units of the ideal energy U0 is plotted versus rs and we
again observe a smooth connection of the PB-PIMC (crosses)
and CPIMC (dots) data for all four shown temperatures.
The RPIMC data (circles), on the other hand, exhibit clear
deviations and are systematically too low even for rs = 10. In
panel (b), we show the same information for the potential
energy, but the large V range prevents us from resolving
any differences between the different data sets. For this
reason, in panel (c), we explicitly show the relative differences

FIG. 11. Kinetic (a) and potential (b) energy of the unpolarized
N = 66 particle UEG over the density parameter rs for different
temperatures. Panel (c) shows the relative difference between our
results and RPIMC data by Brown et al. [21,51].

between our results and those from RPIMC. Evidently, the
latter are systematically too high and the relative deviations
increase with density exceeding �V/V = 1%. Curiously,
�V/V attains its largest value for the highest temperature,
θ = 8, which contradicts the usual assumption that the nodal
error decreases with increasing θ . Yet, in case of the exchange
correlation energy, cf. Fig. 10, this trend seems to hold.

To explicitly demonstrate that the observed discrepancy
between our results and the RPIMC data is not due to the
systematic propagator error of PB-PIMC, in Fig. 12 we show
all available data from CPIMC and PB-PIMC over the entire
rs range for two representative temperatures, θ = 1 and θ = 4.
Evidently, the kinetic energy of our two methods is in excellent
agreement (i.e., within the statistical uncertainty) even at small
rs , where the propagator error is expected to be most pro-
nounced (cf. Fig. 2), whereas the RPIMC data clearly deviates.
In panel (c), we show the relative differences in the potential
energy between the PB-PIMC and CPIMC (dots) as well as
between the PB-PIMC and RPIMC results (circles). Again,
it can be seen that the PB-PIMC results agree with the exact
CPIMC results, where they are available, while the RPIMC
data are significantly too large for both θ = 1 and θ = 4.

We summarize that, while RPIMC exhibits significant
deviations for both K and V separately, these almost exactly
cancel and, therefore, the total energy (and Exc) is in rather
good agreement with our results. This trend is in agreement
with previous observations for the spin-polarized case [27].
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FIG. 12. Kinetic (a) and potential (b) energy of the unpolarized
N = 66 particle UEG over the density parameter rs for two different
temperatures. As a supplement to Fig. 11, we show all available data
points from CPIMC and PB-PIMC to illustrate their agreement where
both approaches are available. Panel (c) shows the relative difference
between the potential energy from PB-PIMC and CPIMC (filled dots)
as well as between PB-PIMC and RPIMC (empty dots).

B. Pair distribution function

Up to this point, we have compared RPIMC data for
various energies (Exc, V , K) to our independent results.
However, since only the total energy was in agreement while
V and K both deviated, it remains an open question how
other thermodynamic quantities are affected by the fixed node
approximation. To address this issue, in Fig. 13 we show
results for the pair distribution function (PDF) of the N = 66
unpolarized electrons at rs = 4 and θ = 1. This appears to be
the most convenient parameter combination for a comparison
since, on the one hand, there are significant differences for both
K and V while, on the other hand, simulations with PB-PIMC
are possible up to P = 4, which should allow for accurate
results of both g↑↑ and g↑↓. In panel (a), the interspecies PDF
g↑↓ is plotted versus r and shown are PB-PIMC results for
P = 3 (green crosses) and P = 4 (red squares) as well as
RPIMC data (blue circles) from Ref. [21]. All three curves
agree rather well and exhibit a distinct exchange correlation
hole for r � 1.5rs and a featureless approach to unity at larger
distances. The inset shows the short range part of the PDF,
which is the only segment where deviations are visible. The
PB-PIMC results for P = 3 and P = 4 are within each others’
error bars and, for the smallest resolved r , slightly below the
RPIMC data, although this trend hardly exceeds twice the error
bars as well. The results for the intraspecies PDF g↑↑ show
a similar picture, although short range configurations of two
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FIG. 13. Pair distribution function of N = 66 unpolarized elec-
trons at rs = 4 and θ = 1—the PB-PIMC results have been obtained
for t0 = 0.04 and a1 = 0, and the RPIMC data are taken from
Ref. [21].

particles are even more suppressed due to the Pauli blocking.
Again, there appears a slight difference between PB-PIMC and
RPIMC, which, however, cannot clearly be resolved within the
given statistical uncertainty. Therefore, we conclude that our
independent simulation data are in good agreement with the
fixed node approximation for both pair distribution functions
despite the observed deviations in K and V for these particular
system parameters.

V. DISCUSSION

In summary, we have successfully extended the com-
bination of PB-PIMC and CPIMC, presented in paper I,
to the unpolarized UEG and, thereby, presented different
independent ab initio results at finite temperature.

For the unpolarized UEG, CPIMC suffers from a signif-
icantly more severe FSP due to the increased configuration
weight of interspecies kinks. To overcome this problem, we
have developed an additional enhancement of our extrap-
olation scheme. The introduction of a (very small) cutoff
parameter Vc in the auxiliary kink potential prevents the
number of kinks from diverging and, thereby, significantly
extends the parameter range where simulations are feasible.
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Furthermore, we note that in the warm dense matter regime
with N = 66 the PB-PIMC approach, due to the FSP, is re-
stricted to only two or three propagators. Hence, the asymptotic
P −4-convergence behavior of the utilized factorization scheme
is not yet reached. Therefore, the presented PB-PIMC data are
afflicted with an in principle uncontrolled systematic factor-
ization error, which is particularly increased at high density
(rs < 1) compared to the spin-polarized case. However, the
empirical optimization of the two free parameters (t0 and a1)
still allows for accurate results, as we have demonstrated in
detail in Figs. 1 and 2 for N = 4, where a maximum systematic
factorization error (for P = 2) of �V/V � 3 × 10−3 was
observed. For larger systems, N = 66, CPIMC and PB-PIMC
are in good agreement, where both are available (see Fig. 12).
In particular, even at high density, where the factorization error
of PB-PIMC with P = 2 is expected to be most pronounced,
both agree within statistical uncertainty. This is a strong
indication that the combination of both methods allows for
accurate results over the entire density range, for θ � 1 and
N = 66 electrons.

Overall, the existing RPIMC data for the exchange cor-
relation energy are in better agreement with our results than
for the spin-polarized UEG, but there seems to be a similar
unphysical systematic drop around rs = 1 at low temperatures.
Interestingly, the separate kinetic and potential contributions
to the energy substantially deviate from our results by more
than one percent. This is illustrated in Fig. 12, where, at
θ = 4 and intermediate rs , CPIMC and PB-PIMC are within

error bars, whereas RPIMC significantly deviates from both.
Furthermore, we have presented a comparison of the pair
distribution functions g↑↑(r) and g↑↓(r), which are in good
agreement with RPIMC.

It remains an important issue of future work to perform an
extrapolation to the macroscopic limit, i.e., the development
of finite-size corrections, e.g., [31–33]. To this end simula-
tions with substantially larger particle numbers are required
which should be possible with the presented enhancements.
Furthermore, we expect that the presented combination of
the complementary CPIMC and PB-PIMC approaches can be
successfully applied to numerous other Fermi systems, such
as two-component plasmas [52–54] and atoms embedded in
jellium [55–57].
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APPENDIX

As a supplement to Figs. 10 and 11, we have listed all
combined simulation data from PB-PIMC and CPIMC in
Table I.

TABLE I. Energies per particle for N = 66 unpolarized electrons: ideal energy, U0, kinetic energy, T , potential energy, V , and exchange-
correlation energy Exc. While the unmarked results correspond to standard CPIMC simulations (without the auxiliary kink potential), the “a”
marks CPIMC results that have been obtained by the extrapolation as explained in Sec. III B 3 and Ref. [22]. For the latter values, the error
includes systematic effects. All other errors correspond to a 1σ standard deviation. A “b” marks results from PB-PIMC calculations. For
CPIMC results, the utilized number of basis functions NB is given in the last column and has been fixed for the same temperature. The ideal
energies have been computed using the same number of basis functions as for the interacting system. Energies in units of Ryd.

θ rs U0 T V Exc NB

0.50 0.1 374.8592(12) 373.463(6) −8.60129(19) −9.997(6) 11150
0.50 0.2 93.71481(30) 93.1294(25) −4.506(4) −5.0911(25) 11150
0.50 0.3 41.65102(13) 41.3226(28)a −3.1130(10)a −3.4421(9)a 11150
0.50 0.4 23.42870(8) 23.2220(29)a −2.409(4)a −2.618(6)a 11150
0.50 0.5 14.99437(5) 14.871(18)a −1.992(20)a −2.126(16)a 11150
0.50 0.6 10.412756(34) 10.327(15)a −1.702(33)a −1.791(19)a 11150
0.75 0.1 495.690(4) 494.119(16) −7.90080(19) −9.472(17) 11150
0.75 0.2 123.9225(10) 123.2322(29) −4.16057(12) −4.8508(31) 11150
0.75 0.3 55.0767(5) 54.672(4)a −2.89413(31)a −3.2999(14)a 11150
0.75 0.4 30.98062(26) 30.712(4)a −2.2506(18)a −2.5215(30)a 11150
0.75 0.5 19.82760(17) 19.637(4)a −1.858(5)a −2.054(8)a 11150
0.75 0.6 13.76916(12) 13.632(10)a −1.601(17)a −1.741(14)a 11150
0.75 0.7 10.11612(9) 10.018(18)a −1.400(23)a −1.511(18)a 11150
0.75 3.0 0.550767(5) 0.556(5)b −0.4098(8)b −0.405(5)b

0.75 4.0 0.3098060(26) 0.3173(18)b −0.3201(4)b −0.3127(18)b

0.75 6.0 0.1376920(12) 0.1469(6)b −0.22488(13)b −0.2157(5)b

0.75 8.0 0.0774520(7) 0.08610(19)b −0.17428(6)b −0.16563(19)b

0.75 10.0 0.0495690(4) 0.05687(9)b −0.142666(28)b −0.13536(9)b

1.00 0.1 623.230(6) 621.686(15) −7.37511(9) −8.918(17) 11150
1.00 0.2 155.8074(15) 155.1203(34) −3.89359(12) −4.581(4) 11150
1.00 0.3 69.2477(7) 68.8312(18) −2.71561(11) −3.1322(19) 11150
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TABLE I. (Continued.)

θ rs U0 T V Exc NB

1.00 0.4 38.9518(4) 38.6661(33)a −2.1165(8)a −2.4025(25)a 11150
1.00 0.5 24.92918(24) 24.7222(32)a −1.7508(17)a −1.961(4)a 11150
1.00 0.6 17.31193(17) 17.1543(34)a −1.503(4)a −1.663(4)a 11150
1.00 0.7 12.71897(12) 12.597(5)a −1.327(10)a −1.450(7)a 11150
1.00 0.8 9.73796(9) 9.644(8)a −1.192(16)a −1.290(13)a 11150
1.00 1.0 6.23230(6) 6.170(10)b −0.9844(10)b −1.046(10)b

1.00 2.0 1.558074(15) 1.5491(21)b −0.55777(28)b −0.5667(21)b

1.00 4.0 0.389518(4) 0.39370(21)b −0.31304(5)b −0.30886(21)b

1.00 6.0 0.1731190(17) 0.17863(15)b −0.22107(4)b −0.21556(15)b

1.00 8.0 0.0973800(9) 0.10313(6)b −0.171900(18)b −0.16615(6)b

1.00 10.0 0.0623230(6) 0.067639(31)b −0.141041(11)b −0.135725(31)b

2.00 0.1 1155.227(11) 1154.031(32) −6.22959(19) −7.425(33) 18342
2.00 0.2 288.8066(28) 288.258(7) −3.27971(9) −3.828(7) 18342
2.00 0.3 128.3585(12) 128.0151(35) −2.28648(6) −2.630(4) 18342
2.00 0.4 72.2017(7) 71.9583(17) −1.78368(6) −2.0270(18) 18342
2.00 0.5 46.2091(4) 46.0256(11) −1.47771(6) −1.6612(11) 18342
2.00 0.6 32.08963(31) 31.9444(29)a −1.27090(35)a −1.419(4)a 18342
2.00 0.8 18.05042(17) 17.9532(27)a −1.0069(11)a −1.108(4)a 18342
2.00 1.0 11.55227(11) 11.483(4)a −0.8440(32)a −0.916(5)a 18342
2.00 2.0 2.888066(28) 2.8661(11)b −0.48960(21)b −0.5115(11)b

2.00 4.0 0.722017(7) 0.71815(19)b −0.28421(6)b −0.28807(20)b

2.00 6.0 0.3208960(31) 0.32120(7)b −0.204649(24)b −0.20434(8)b

2.00 8.0 0.1805040(17) 0.18183(4)b −0.161212(15)b −0.15989(4)b

2.00 10.0 0.1155230(11) 0.117282(28)b −0.133507(13)b −0.131748(32)b

4.00 0.1 2245.508(30) 2244.80(9) −5.42045(19) −6.13(10) 88946
4.00 0.2 561.377(8) 561.050(26) −2.81969(9) −3.147(27) 88946
4.00 0.3 249.5008(34) 249.272(14) −1.94887(8) −2.177(15) 88946
4.00 0.4 140.3442(19) 140.173(8) −1.51066(7) −1.682(8) 88946
4.00 0.5 89.8203(12) 89.699(6) −1.24591(7) −1.367(6) 88946
4.00 0.6 62.3752(8) 62.275(4) −1.06761(6) −1.168(4) 88946
4.00 0.8 35.0861(5) 35.0182(19) −0.84205(6) −0.9099(19) 88946
4.00 1.0 22.45508(30) 22.4019(15) −0.70405(7) −0.7572(16) 88946
4.00 2.0 5.61377(8) 5.5953(15)a −0.41230(33)a −0.4317(4)a 88946
4.00 4.0 1.403442(19) 1.3981(4)b −0.24535(17)b −0.2507(4)b

4.00 6.0 0.623752(8) 0.62192(14)b −0.18022(7)b −0.18205(16)b

4.00 8.0 0.350861(5) 0.35047(9)b −0.14402(4)b −0.14441(11)b

4.00 10.0 0.2245510(30) 0.22466(5)b −0.120675(31)b −0.12056(7)b

8.00 0.1 4445.13(11) 4444.88(27) −4.93048(19) −5.18(29) 147050
8.00 0.2 1111.281(27) 1111.12(9) −2.52994(12) −2.69(10) 147050
8.00 0.3 493.903(12) 493.75(5) −1.72864(9) −1.88(5) 147050
8.00 0.4 277.820(7) 277.730(30) −1.32690(8) −1.417(31) 147050
8.00 0.5 177.805(4) 177.724(22) −1.08505(7) −1.166(22) 147050
8.00 0.6 123.4757(30) 123.431(15) −0.92338(6) −0.968(15) 147050
8.00 0.8 69.4551(17) 69.404(7) −0.71997(5) −0.771(8) 147050
8.00 1.0 44.4513(11) 44.415(6) −0.59679(5) −0.633(6) 147050
8.00 2.0 11.11281(27) 11.0997(16) −0.34329(5) −0.3564(16) 147050
8.00 3.0 4.93903(12) 4.9312(9)a −0.2532(5)a −0.2626(33)a 147050
8.00 4.0 2.77820(7) 2.7746(6)b −0.20502(29)b −0.2086(6)b

8.00 6.0 1.234757(30) 1.23274(28)b −0.15214(15)b −0.1542(4)b

8.00 8.0 0.694551(17) 0.69379(18)b −0.12321(10)b −0.12396(23)b

8.00 10.0 0.444513(11) 0.44399(11)b −0.10430(7)b −0.10482(13)b
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Chapter 4

The Warm Dense UEG in the
Thermodynamic Limit

4.1 Devising an Improved Finite-Size Correction

For practical applications, such as the construction of an exchange–correlation functional
for DFT calculations, we are interested in the properties of the UEG or jellium in the
thermodynamic limit, which refers to an infinitely extended system of electrons at density n,
corresponding to the density parameter rs = (3/(4πn))1/3. However, most QMC methods are
by construction restricted to the simulation of finite systems, i.e., a finite number of electrons
N in a finite simulation box of volume V . To emulate the infinite system, one usually exploits
periodic boundary conditions in combination with the Ewald summation [138–141], which
properly incorporates the Coulomb interaction of electrons in the main cell with the infinite
periodic images of the simulation box (and the background). Still, the thermodynamic
properties of this finite-N UEG do not exactly coincide with those of the UEG in the
thermodynamic limit, the difference between the two being the so-called finite-size error.
In fact, for the densities and temperatures relevant for warm dense matter research, these
finite-size errors can be of the order of 100% [30, 109].

Thus, after we successfully applied our two novel QMC methods to the simulation of
the finite-N system, the naturally arising question was how the obtained results could be
extended to the thermodynamic limit—preferably without significant loss of accuracy.

Obviously, the straightforward strategy is to perform a direct extrapolation of the finite-
N QMC results to N → ∞ at constant density (constant value of rs). However, as we
demonstrated in Fig. 1 of the following Ref. [109], this attempt is doomed to failure for two
reasons: i) the fermion sign problem grows exponentially with N so that the simulations
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are always limited to relatively small electron numbers, and ii) the exact functional form of
the convergence behavior is unknown, which renders a reliable extrapolation impossible. In
addition, we found that the finite temperature extension of the ground state strategy proposed
by Chiesa et al.[142], which had been employed by Brown et al. [107] to alleviate the
finite-size errors of their RPIMC data, fails over substantial parts of the warm dense regime.

However, all is not lost, since a more sophisticated strategy becomes obvious when the
interaction energy is expressed as an integral over the static structure factor (SSF), S(k). Due
to the momentum discretization in a finite simulation box (k = 2π/L ·n, with n ∈ Z), within
QMC simulations the finite-N SSF, SN(k), can only be computed at these discrete k−vectors.
Consequently, depending on the size of the simulation box, there is a minimum k−vector
(with |k| = 2π/L) accessible to our simulations. Further, as is shown in the following
Ref. [109], the actual functional form of the SSF converges extremely fast with N, so that
SN(k)≈ S(k) holds already for relatively small systems. Therefore, the main source of the
finite-size errors in QMC simulations must be caused by the momentum discretization itself,
and, in particular, by the small-k behavior of the SSF (at |k|< 2π/L) (that is missing in the
QMC simulation).

Within the finite temperature extension of the STLS (Singwi–Tosi–Land–Sjölander)
approach [96, 103, 143, 144, 97], it is precisely this small-k behavior of the SSF that
is described surprisingly well, and it even becomes exact in the limit k → 0. Thus, the
combination of the QMC data (for large k-values) with the STLS data1 (for small k-values)
provides a highly accurate SSF over the entire k-range in the thermodynamic limit. This
discovery constitutes the basis of our new finite-size correction, which, when added onto our
finite-N QMC data, at once reduces the finite-size error by up to two orders of magnitude.

In simple terms, our improved finite-size correction exploits the fact that the QMC simu-
lations correctly capture the short-range correlations in the finite simulation box, whereas the
STLS approach becomes exact with respect to the long-range correlations. Thus, combining
the two yields the total information of the thermodynamic limit.

With the aid of this correction scheme, which is discussed in detail in the following
paper2, Ref. [109], we were able to extend our finite-N QMC data for the unpolarized UEG
to the thermodynamic limit with an unprecedented accuracy of ∼ 0.3%. For the data table
that is included in the supplemental material of Ref. [109], we performed exhaustive CPIMC
and PB-PIMC simulations for different electron numbers covering the whole warm dense

1The STLS data that was used in the following Ref. [109] had been computed by T. Sjostrom. However,
later, in order to obtain the results presented in Ref. [47] (Sec. 5.2), we had to write our own implementation of
the STLS algorithm extended to arbitrary spin-polarizations of the UEG.

2T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, Phys. Rev. Lett. 117,
156403 (2016). Copyright by the American Physical Society (2016).
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regime, i.e., 0.1 ≥ rs ≥ 10 and 0.5 ≥ θ ≥ 8. Furthermore, from a fit to these data, we obtained
parametrizations of the exchange–correlation free energy fxc(rs) at constant values of θ

(isotherm fits). The comparison to the parametrization by Karasiev et al. [99], which is based
on the RPIMC data by Brown et al. [107], revealed deviations of up to 9% towards high
density. This clearly stressed the need for an improved complete parametrization of fxc at
warm dense matter conditions—a task that will be accomplished in Sec. 5.2.

For completeness, I mention that the idea for the presented finite-size correction has been
worked out together with T. Dornheim in equal parts.



Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas
in the Thermodynamic Limit

Tobias Dornheim,1,* Simon Groth,1 Travis Sjostrom,2 Fionn D. Malone,3 W.M. C. Foulkes,3 and Michael Bonitz1
1Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
(Received 28 July 2016; revised manuscript received 13 September 2016; published 7 October 2016)

We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas
in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to
remove finite-size errors from the potential energy over the substantial parts of the warm dense regime,
overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110,
146405 (2013)]. Extensive new QMC results for up to N ¼ 1000 electrons enable us to compute the
potential energy V and the exchange-correlation free energy Fxc of the macroscopic electron gas with an
unprecedented accuracy of jΔVj=jVj; jΔFxcj=jFjxc ∼ 10−3. A comparison of our new data to the recent
parametrization of Fxc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant
deviations to the latter.
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The uniform electron gas (UEG), consisting of electrons
on a uniform neutralizing background, is one of the most
important model systems in physics [1]. Besides being a
simple model for metals, the UEG has been central to the
development of the linear response theory and more
sophisticated perturbative treatments of solids, the formu-
lation of the concepts of quasiparticles and elementary
excitations, and the remarkable successes of density func-
tional theory (DFT)
The practical application of ground-state density func-

tional theory in condensed matter physics, chemistry, and
materials science rests on a reliable parametrization of the
exchange-correlation energy of the UEG [2], which in turn
is based on accurate quantum Monte Carlo (QMC) sim-
ulation data [3]. However, the charged quantum matter in
astrophysical systems such as planet cores and white dwarf
atmospheres [4,5] is at temperatures way above the ground
state, as are inertial confinement fusion targets [6–8], laser-
excited solids [9], and pressure-induced modifications of
solids, such as insulator-metal transitions [10,11]. This
unusual regime, in which strong ionic correlations coexist
with electronic quantum effects and partial ionization, has
been termed “warm dense matter” and is one of the most
active frontiers in plasma physics and materials science.
The warm dense regime is characterized by the existence

of two comparable length and energy scales: the mean
interparticle distance r̄ and the Bohr radius a0; and the
thermal energy kBT and the electronic Fermi energy EF,
respectively. The dimensionless parameters rs ¼ r̄=a0 and
Θ ¼ kBT=EF are of the order of unity. Because Θ ∼ 1, the
use of the ground-state density functional theory is inap-
propriate and extensions to finite T are indispensable; these
require accurate exchange-correlation functionals for finite

temperatures [12–16]. Because neither rs nor Θ is small,
there are no small parameters, and weak-coupling expan-
sions beyond Hartree-Fock such as the Montroll-Ward
(MW) and e4 (e4) approximations [17,18] as well as the
linear response theory within the random-phase approxi-
mation (RPA) break down [19,20], see Fig. 1. Finite-T
Singwi-Tosi-Land-Sjölander (STLS) [21,22] local-field
corrections allow for an extension to moderate coupling
[22] but exhibit nonphysical behavior at short distances for
moderate to low densities, so improved expressions are
highly needed. Further, quantum-classical mapping [23,24]
allows for semiquantitative descriptions of warm dense
matter in limiting cases.
Therefore, an accurate description of warm dense matter,

in general, and of the warm dense UEG, in particular, can be

FIG. 1. Potential energy per particle of the unpolarized UEG at
θ ¼ 2 and rs ¼ 0.5. The exact CPIMC results for different system
sizes are indicated by green crosses; the yellow asterisks show
these results after the ΔVBCDC finite-size correction from Eq. (4)
has been applied. The horizontal arrows refer to many-body
theories (RPA, STLS [21], MW, and e4 [45]; see the text). The
black lines are two different, equally plausible, extrapolations of
the QMC data to infinite system size [44].
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achieved only using computational approaches, primarily
QMC methods which, however, are hampered
by the fermion sign problem [25,26]. The pioneering
QMC simulations of the warm dense UEG by Brown
et al. [27] eliminated the sign problem by invoking the
(uncontrolled) fixed-node approximation [28] but were
nevertheless restricted to small systems of N ¼ 33
(spin-polarized) and N ¼ 66 (unpolarized) electrons and
tomoderate densities rs ≥ 1. Recently, wewere able to show
[29–31] that accurate simulations of these systems are
possible over a broad parameter range without any nodal
restriction. Our approach combines two independent meth-
ods, configuration path-integral Monte Carlo (CPIMC)
calculations [32–34] and permutation blocking PIMC
(PB-PIMC) calculations [35,36], which allow for accurate
simulations at high (rs ≲ 1) and moderate densities (rs ≳ 1
and θ ≳ 0.5), respectively.An independently developed third
approach, density matrix QMC [31,37,38], confirmed the
excellent quality of these results. The only significant errors
remaining are finite-size effects [34,39–43],which arise from
the difference between the small systems simulated and the
infinite [thermodynamic limit (TDL)] system of interest.
Direct extrapolation to the TDL [3,40,42] is extremely

costly and also unreliable unless the form of the function to
be extrapolated is known; the two black lines in Fig. 1 show
two equally reasonable extrapolations [44] that reach
different limits. Furthermore, the parameter-free finite-size
correction (FSC) proposed in Ref. [27] [see Eq. (4) below]
turns out to be inappropriate in parts of the warm dense
regime. The problem is clear from inspection of the yellow
asterisks in Fig. 1, which include this FSC but remain
system-size dependent.
In this Letter, we close the gap between the finite-N

QMC data and the TDL by deriving a highly accurate FSC
for the interaction energy. This allows us to obtain precise
(on the level of 0.1%) results for the exchange-correlation
free energy, making possible the ab initio computation of
arbitrary thermodynamic quantities for warm dense matter.
Theory.—Consider a finite unpolarized UEG of N

electrons subject to periodic boundary conditions. The
Hamiltonian is Ĥ ¼ K̂ þ V̂E, where K̂ is the kinetic energy
of the N electrons in the cell and

V̂E ¼ 1

2

XN

i≠k
ϕEðri; rkÞ þ

1

2
NξM ð1Þ

is the Coulomb interaction energy per unit cell of an infinite
periodic array of images of that cell. The Ewald pair
potential ϕEðx; yÞ and Madelung constant ξM are defined in
Refs. [39,40]. We use Hartree atomic units throughout this
work. The expected value of V̂E=N carries a finite-size
error [46] that is the difference between the potential energy
v per electron in the infinite system and its value VN=N in
the finite system. This difference may be expressed in terms
of the static structure factor (SF) as follows:

ΔVN ½SðkÞ; SNðGÞ�
N

¼ 1

2

Z

k<∞

dk
ð2πÞ3 ½SðkÞ − 1� 4π

k2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
v

−
�

1

2L3

X

G≠0
½SNðGÞ − 1� 4π

G2
þ ξM

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VN=N

; ð2Þ

where L and G are, respectively, the length and reciprocal
lattice vector of the simulation cell and SðkÞ [SNðGÞ] is the
SF of the infinite [finite] system. A first source of FS error
in Eq. (2) is the replacement of SðkÞ in the first term by its
finite-size analogue SNðGÞ in the second term. However,
this effect is negligible, as we will demonstrate in Fig. 2.
Thus, the main source of error is the discretization of the

integral in the first term to obtain the sum in the second.
Chiesa et al. [41] suggested that the main contribution to
Eq. (2) comes from the omission of the G ¼ 0 term from
the summation [47]. As is well known, the RPA becomes
exact in the limit of small k, and the expansion of SðkÞ
around k ¼ 0 at finite T is given by [23]

SRPA0 ðkÞ ¼ k2

2ωp
coth

�
βωp

2

�
; ð3Þ

where β ¼ 1=kBT and ωp ¼
ffiffiffiffiffiffiffiffiffi
3=r3s

p
is the plasma fre-

quency. The finite-T version [48] of the Chiesa FSC [27],

FIG. 2. Static structure factors for θ ¼ 2, rs ¼ 0.5, and three
values of N. In (a), the discrete QMC k points are plotted as
vertical lines for N ¼ 100; the minimum k values for N ¼ 66 and
N ¼ 38 are indicated by the green and yellow line, respectively.
The colored horizontal bars indicate the k ranges where SSTLS

(red), SRPA RPA (gray), and SRPA0 (light blue) are accurate.
(b) shows that the QMC results for SðkÞ converge rapidly with N
(see the colored symbols in the inset). The black curve shows
Scomb connecting SSTLSðkÞ at small k with the QMC data for
N ¼ 100 which yields accurate results for all k.
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ΔVBCDCðNÞ ¼ lim
k→0

SRPA0 ðkÞ4π
2L3k2

¼ ωp

4N
coth

�
βωp

2

�
; ð4Þ

would be sufficient if (i) SRPA0 ðkÞ were accurate for the
smallest nonzero k in the QMC simulation, kmin ¼ 2π=L,
and (ii) all contributions to Eq. (2) not accounted for by the
inclusion of the G ¼ 0 term were negligible. As we
demonstrate below, for high temperatures and intermediate
to high densities, both conditions are strongly violated.
Thus, we require an improved model SF, SmodelðkÞ, to
compute the discretization error,

ΔN ½SmodelðkÞ� ¼
ΔVN ½SmodelðkÞ; SmodelðkÞ�

N
; ð5Þ

in Eq. (2). A natural strategy is to combine the QMC data
for k ≥ kmin with an approximation that is accurate for all k
up to (at least) kmin.
Results.—In Fig. 2, we analyze the static SF for θ ¼ 2

and a comparatively high-density case, rs ¼ 0.5, for three
different particle numbers. The use of a finite simulation
cell subject to periodic boundary conditions discretizes the
momentum, so QMC data are available only at the discrete
k points indicated by the vertical lines in the top panel. As
shown in the inset, the QMC SðkÞ is well converged with
respect to the system size for surprisingly small N,
providing justification to set SNðGÞ ≈ SðGÞ. Therefore,
the FS error of VN=N reduces as N increases, primarily
because the k grid becomes finer and kmin decreases. The
figure also allows us to study the performance of the three
analytical structure factors SRPA, SSTLS [21,22], and SRPA0 .
We clearly observe that SRPA0 ðkÞ is accurate only for
ka0 ≲ 0.3, explaining why the BCDC FSC, Eq. (4), fails.
In contrast, SRPAðkÞ and SSTLSðkÞ match the QMC data
much better. On the left-hand side of Fig. 2(a), we indicate
the k ranges over which the three models are accurate,
showing that only SSTLSðkÞ connects smoothly to the QMC
data. At larger k, SRPA and SSTLS exhibit significant
deviations from the QMC data, although STLS is more
accurate. For completeness, we mention that, when the
density is lowered, the k ranges of accurate behavior of
SRPA, SSTLS, and SRPA0 continuously increase [49]. For
example, at rs ¼ 1, both SRPA and SSTLS smoothly connect
to the QMC data, whereas for rs ¼ 10 this is observed even
for SRPA0 ðkÞ, revealing that there the BCDC FSC is accurate.
Based on this behavior, an obvious way to construct a

model SF that is accurate over the entire k range for all
warm dense matter parameters is to combine the QMC data
with the STLS data at small k. The result is denoted Scomb
and computed via a spline function. The excellent behavior
is illustrated by the black line in Fig. 2(b) and in the inset.
This quasiexact SF is the proper input to compute the
discretization error from Eq. (5).
The results of this procedure are shown in Fig. 3 for the

most challenging high-density case, rs ¼ 0.5 and θ ¼ 2.

Clearly, the raw QMC data (green crosses) suffer from
severe finite-size errors of the order of 10% for system sizes
from N ¼ 38 to N ¼ 200. These errors do not exhibit the
ΔV ∝ 1=N behavior predicted by Eq. (4), and the BCDC-
corrected QMC data (yellow asterisks) do not fall on a
horizontal line. In contrast, using ΔN ½Scomb� produces
results that are very well converged for all system sizes
considered, including even N ¼ 38 (red diamonds).
Figure 3(b) shows that the removal of the discretization
error has reduced the FS bias by 2 orders of magnitude. The
residual error jΔVj=jVj ∼ 10−3 is due to the small finite-
size effects in the QMC data for SNðkÞ itself and exhibits a
linear behavior in 1=N. Thus, it is possible to determine the
potential energy in the TDL (the red cross in the bottom
panel) with a reliable error bar [50].
To further explore the properties of our discretization

formula for the FS error, we recomputeΔN using the purely
theoretical STLS and RPA SFs as Smodel in Eq. (5). The FS-
corrected data are depicted by the black squares and blue
circles, respectively, in Fig. 3(b). Surprisingly, we find very
good agreement with the FSCs derived from the substan-
tially more accurate Scomb. Hence, despite their significant
deviations from the QMC data at intermediate k [cf. inset in
Fig. 2(b)], SSTLSðkÞ and SRPAðkÞ are sufficiently accurate to
account for the discretization error of the potential energy
[51]. Since Scomb is sensitive to statistical noise, computing
the FSC solely from SSTLSðkÞ or SRPAðkÞ is in fact the
preferred approach. Of course, this does not eliminate the
need for accurate finite-N QMC data, the quality of which
sets the baseline for our thermodynamic result,
v ¼ VQMC;N=N þ ΔN ½Smodel�. Using instead the STLS or
RPA SF to estimate VQMC;N as well as ΔN poorly accounts
for the short-range correlations and, even for θ ¼ 2 and

FIG. 3. (a) Finite-size corrected QMC data for the potential
energy for θ ¼ 2 and rs ¼ 0.5. The yellow asterisks are obtained
using Eq. (4); the red diamonds use the combined SF Scomb
(cf. Fig. 2) to evaluate the discretization error, Eq. (5). (b) Mag-
nified part of (a) including an extrapolation of the residual finite-
size error to the TDL (the red cross). Results obtained using only
the full RPA (blue) and STLS structure factors (black) in Eq. (5)
are also shown.
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rs ¼ 0.5, leads to ∼10% errors (cf. Fig. 1), which further
increase with rs.
By performing extensive QMC simulations and applying

our FSC to results for various system sizes N to allow
extrapolation of the residual FS error, we obtain the
potential energy of the UEG in the TDL over a very broad
density range, 0.1 ≤ rs ≤ 10. The results are displayed in
Fig. 4 for five different temperatures and listed in a table in
the Supplemental Material [49]. We also compare our
results to the most accurate data previously available—
the RPIMC results of Brown et al. (BCDC, circles), which
were corrected using the BCDC FSC, Eq. (4) [27,49]. We
underline that these results were limited to moderate
densities rs ≥ 1 but even there substantially deviate from
our data. The error increases rapidly with the density and
temperature reaching 20% for rs ¼ 1 and θ ¼ 8 [49].
Finally, we obtain the exchange-correlation free energy

from a fit to the potential energy, regarded as a function of
rs for fixed θ. Figure 4(b) shows that the functional form
assumed [Eq. (S.2) in Ref. [49]] is indeed appropriate, as no
systematic deviations between the QMC data and the fit
(red crosses, θ ¼ 8) are observed. In Fig. 4(c), we compare
our new data for Fxc to the recent parametrization by
Karasiev et al. [52]. By design, both curves coincide in the
limit rs → 0, approaching the exact asymptotic value
known from the Hartree-Fock theory (for rs ≪ 0.1).
While both results are in very good agreement for
θ ¼ 0.5, we observe severe deviations of up to 9% at

θ ¼ 8 [5% at θ ¼ 2]. Despite the systematic RPIMC bias
and the lack of data for rs < 1 prior to our work, the major
cause of the disagreement is the inadequacy of the BCDC
FSCs for a high temperature and small rs. The absolute data
for Fxc and the corresponding fit parameters are provided
in Ref. [49].
Summary and discussion.—We have presented a simple

but highly accurate procedure for removing finite-size
errors from ab initio finite-N QMC data for the potential
energy V of the UEG at a finite temperature. This is
achieved by adding to the QMC results the discretization
error ΔN ½SmodelðkÞ�, Eq. (5), computed using simple
approximate structure factors based on the RPA or STLS
approximations. Our finite-size-corrected results include
excellent descriptions of both the exchange and short-range
correlation effects (from the QMC data) and the long-range
correlations (via the RPA or STLS corrections). These
results constitute the first unbiased ab initio thermody-
namic data for the warm dense electron gas. For temper-
atures above half the Fermi temperature and a density range
covering 6 orders of magnitude (0.1 ≤ rs ≤ 10), we achieve
an unprecedented accuracy not exceeding 0.3%; our results
will therefore serve as valuable benchmarks for the devel-
opment of accurate new theories and simulation schemes,
including improved static local field corrections. The recent
results of Brown et al. [27,49], which were obtained by
applying the BCDC FSC from Eq. (4) to RPIMC data,
exhibit deviations of up to 20%. The recent parametrization
of Fxc by Karasiev et al. [52], which was mainly based on
the data by Brown et al., uses a good functional form but
exhibits errors of up to 9% at high temperatures. Even
though these inaccuracies constitute only a small fraction of
the total free energy, which might not drastically influence
subsequent density functional theory calculations of real-
istic multicomponent systems, it is indispensable to have a
reliable and consistent fit of Fxc for all warm dense matter
parameters to achieve predictive power and agreement with
experiments. The construction of an improved complete
parametrization of Fxc with respect to density, temperature,
and spin polarization remains a challenging task for future
work. In particular, the fermion sign problem presently
limits our QMC simulations to θ ≥ 0.5 for rs ∼ 1 (although
lower temperatures are feasible for both larger and smaller
rs with PB-PIMC and CPIMC, respectively). To overcome
this bottleneck, it will be advantageous to incorporate the
T ¼ 0 limit of Exc and, thus, to perform an interpolation
across the remaining gap where no ab initio data are
available [52]. In addition, our data will be an important
input for time-dependent DFT and quantum hydrodynam-
ics [53,54]. Finally, our FSC procedure is expected to be of
value for other simulations of warm dense plasmas
[55–57], as well as 2D systems, e.g., Refs. [58,59].

We acknowledge stimulating discussions with Tim Schoof
and JimDufty and are grateful to Jan Vorberger for providing
theMontroll-Ward and e4 data shown inFig. 1. Thisworkwas

FIG. 4. Potential energy of the UEG in the TDL. (a) Our new
FS-corrected QMC data, the fits to our data [see Eq. (S.2) of
Ref. [49]], and the RPIMC results of Brown et al. [27], which
include BCDC FSCs. (b) Relative deviations of our data (for
Θ ¼ 8) and Brown’s BCDC-corrected data from the correspond-
ing fit. (c) Relative deviation of our exchange-correlation free
energies from the fit of Ref. [52] for five temperatures. For
details, see Ref. [49].
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A. Static structure factors

In Fig. S1, as a supplement to Fig. 2 of the main
manuscript, we show the structure factors (SF) at θ = 2
for intermediate (rs = 1) and lower (rs = 10) density. At
both densities the STLS structure factor smoothly con-
nects to the QMC data but exhibits significant deviations
at larger k. The low k expansion of the RPA SF fails to
connect to the QMC data at rs = 1, indicating that the
FSC by Brown et al. is inappropriate, while at rs = 10
the RPA expansion smoothly connects to the QMC data
so that the FSC by Brown et al. is applicable.

B. Practical details

For the evaluation of the discretization error (DE) ac-
cording to Eq. (5) in the main manuscript,

∆VN
N

(Gmax) = 2π

(∫

k<Gmax

dk
Smodel(k)− 1

k2(2π)3
(S.1)

−
Gmax∑

G6=0

Smodel(G)− 1

G2V
− ξM

)
,

the maximum modulus of the discrete lattice vectors Gmax

has to be chosen large enough to ensure the convergence
of the FSC, which is demonstrated in Fig. S2 for three
different particle numbers at θ = 2 and rs = 0.5. Clearly,
taking into account only the first k-vector is not sufficient.
In fact, the convergence of the DE with respect to Gmax
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Figure S2: Convergence of the FSC with the maximum k-
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cf. Fig. 3 in the main manuscript.

is rather slow, and the number of k-vectors needed for
convergence of the DE only weakly depends on N . The
difference between the converged values is due to the
different k-mesh for different N .

C. Finite-size corrections for selected parameters

To demonstrate the broad range of applicability of
our finite size correction (FSC) procedure, we present
some more examples for different parameter combinations.
Figure S3 shows the convergence of the potential energy
with system size for the most challenging (with respect to
finite-size errors) case at θ = 8 and rs = 0.1. Evidently,
the uncorrected QMC (CPIMC) data exhibit severe finite-
size errors of ∆V/V ≈ 200% for N = 34. This is a direct
consequence of the steep drop of the static structure
factor S(k) at small k, that is not properly accessed
by the available k-values even in a QMC simulation of
N = 1000 electrons. Further, the potential energy that
is obtained by invoking the BCDC-FSCs even worsens
the convergence, as SRPA

0 (k) does not come anywhere
near the QMC-data, even for N = 1000. In striking
contrast, our FSCs (using either SSTLS, or a combination
of STLS with the QMC data, Scomb) are converged to a
remarkably high degree, even for relatively small systems
(with |∆V |/|V | ∼ 10−3, for N = 66) and the additional
extrapolation of the residual finite-size errors allows for
an accurate result for V in the TDL even for such extreme
parameters.

Figure S4 shows the convergence for θ = 2 and rs = 1.
In this case, the uncorrected QMC (permutation blocking
PIMC) data exhibit finite-size errors of |∆V |/|V | ≈ 10%
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(for N = 34) and the convergence seems to follow
|∆V |/N ∼ 1/N , cf. the linear fit (the green line). Al-
though, in principle, the 1/N -behavior is predicted by
the BCDC-FSCs, the slope is different and the corrected
V/N -data do not agree with the linear extrapolation and
are not converged. The data that have been obtained
after adding our new FSCs are converged to a high degree,
but do not agree with the linearly extrapolated value as
well. This, again, clearly demonstrates the danger of
a direct extrapolation of the QMC data without being
certain about the exact functional form of the finite-size
error.

D. Fit of the potential energy

Following Karasiev et al. [1], we use the following
parametrization of the exchange-correlation free energy
for fixed θ:

Fxc
N

(rs, θ) = − 1

rs

(
a+ b

√
rs + crs

1 + d
√
rs + ers

)
, (S.2)

which yields the potential energy via

V (rs, θ)rs = 2rsFxc(rs, θ) + r2s
∂Fxc(rs, θ)

∂rs

∣∣∣∣
θ

, (S.3)

which allows us to fit the rhs. of Eq. (S.3) to our new
corrected QMC data. The parameter a follows from the
Hartree-Fock limit and the results of the fit procedure for
the five isotherms shown in Fig. 4 in the main article are
listed in table I.

E. STLS and RPA

The static structure factor (SF) is found by the
fluctuation-dissipation theorem as a sum over the Matsub-
ara frequencies for the polarizabilities of the interacting
system as

S(k) =
−1

βn

∞∑

l=−∞

1

vk

(
1

ε(k, zl)
− 1

)
, (S.4)

with the particle density n, the Matsubara frequencies
zl = 2πil/βh̄, and the Fourier transform of the Coulomb
potential vk = 4π/k2. Following [2], the Singwi-Tosi-
Land-Sjölander (STLS) SF is computed from the dielectric
function

ε(k, ω) = 1− vkχ0(k, ω)

1 +G(k)vkχ0(k, ω)
, (S.5)

with χ0(q, ω) being the finite-temperature polarizability
of the non-interacting UEG, G is the static local field
correction

G(k) =
−1

n

∫
dk′

(2π)3
k · k′
k′2

[S(k− k′)− 1], (S.6)

and Eq. (S.4), (S.5), and (S.6) are solved self-consistently.
In the random phase approximation (RPA), G(k)→ 0.

F. Finite-size corrections by Brown et al.

In Fig. 4 from the main manuscript, we have compared
our new corrected data for the potential energy to RPIMC
data (for N = 66) by Brown et al. that were corrected
with the BCDC-FSC [Eq. (4) of the main article]. How-
ever, it should be noted that this corrected data differs
from the data tabulated in the supplement of Ref. [3].
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Panel b) shows the corresponding relative deviations to the
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For the latter, apparently, there was a problem caused
by a mix of Hartree and Rydberg atomic units within
their FSC. In Fig. S5, we compare our data to the BCDC
results as they are given in their supplement. While
the magnitude of the deviation is similar as in Fig. 4
from the main article, the sign changes with temperature.
In particular, for θ = 8 the BCDC values are lower by
∆V/V ≈ 8% than ours instead of being too high, and the
two data sets significantly disagree even for rs = 10.

G. Data

As a supplement to Fig. 4 from the main article, we have
listed all data for the potential and exchange correlation
free energy of the macroscopic UEG in Table II.

[1] V.V. Karasiev, T. Sjostrom, J. Dufty and S.B. Trickey,
Accurate Homogeneous Electron Gas Exchange-Correlation
Free Energy for Local Spin-Density Calculations, Phys. Rev.
Lett. 112, 076403 (2014)

[2] S. Tanaka and S. Ichimaru, Thermodynamics and Cor-
relational Properties of Finite-Temperature Electron Liq-
uids in the Singwi-Tosi-Land-Sjölander Approximation,

J. Phys. Soc. Jpn. 55, 2278-2289 (1986)
[3] E.W. Brown, B.K. Clark, J.L. DuBois and D.M. Ceperley,

Path-Integral Monte Carlo Simulation of the Warm Dense
Homogeneous Electron Gas, Phys. Rev. Lett. 110, 146405
(2013)

Table I: Fit parameters from Eq. (S.3), see Fig. 4 in the main article.

θ a b c d e

8.0 0.025 26 0.151 46 0.015 624 0.158 37 0.021 73
4.0 0.049 81 0.216 40 0.046 744 0.315 83 0.054 29
2.0 0.095 88 0.302 37 0.081 005 0.454 80 0.093 17
1.0 0.173 85 0.389 00 0.097 468 0.554 82 0.113 88
0.5 0.278 86 0.404 12 0.054 329 0.519 84 0.063 44

Table II: Energies per particle of the warm dense electron gas in the
thermodynamic limit: Listed are the potential energy V/N (finite-size
corrected QMC data where the residual error has been removed by an
additional extrapolation, cf. Fig. 3 in the main article), the corresponding
uncertainty δV/N and the exchange correlation free energy Fxc/N that
has been obtained by the fit, see Sec. D.

θ rs V/N δV/N Fxc/N

8.0 10.0 −0.051 01 0.000 02 −0.038 442
8.0 8.0 −0.059 84 0.000 04 −0.044 601
8.0 6.0 −0.072 91 0.000 05 −0.053 789
8.0 4.0 −0.0956 0.0001 −0.069 583
8.0 2.0 −0.1483 0.0002 −0.106 794
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Table II: (continued).

θ rs V/N δV/N Fxc/N

8.0 1.0 −0.2259 0.0004 −0.162 990
8.0 0.5 −0.3442 0.000 19 −0.249 668
8.0 0.3 −0.4692 0.0003 −0.344 241
8.0 0.1 −0.9341 0.0003 −0.710 052

4.0 10.0 −0.059 74 0.000 01 −0.047 280
4.0 6.0 −0.088 43 0.000 02 −0.068 305
4.0 4.0 −0.119 06 0.000 04 −0.090 529
4.0 2.0 −0.1929 0.0004 −0.144 405
4.0 1.0 −0.3060 0.0003 −0.228 337
4.0 0.5 −0.4811 0.0003 −0.361 760
4.0 0.3 −0.6722 0.0003 −0.511 220
4.0 0.1 −1.4091 0.0007 −1.112 758

2.0 10.0 −0.066 409 0.000 003 −0.055 243
2.0 8.0 −0.080 093 0.000 009 −0.065 910
2.0 6.0 −0.101 461 0.000 014 −0.082 412
2.0 4.0 −0.140 11 0.000 03 −0.112 123
2.0 2.0 −0.2380 0.0004 −0.187 073
2.0 1.0 −0.3950 0.0011 −0.309 220
2.0 0.5 −0.6484 0.0007 −0.511 632
2.0 0.3 −0.9350 0.0010 −0.746 033
2.0 0.1 −2.0956 0.0013 −1.732 828

1.0 10.0 −0.070 264 0.000 014 −0.061 098
1.0 8.0 −0.085 593 0.000 009 −0.073 774
1.0 6.0 −0.109 94 0.000 04 −0.093 763
1.0 4.0 −0.155 37 0.000 10 −0.130 733
1.0 2.0 −0.2749 0.0003 −0.228 179
1.0 1.0 −0.4769 0.0005 −0.395 507
1.0 0.5 −0.8225 0.0011 −0.686 721
1.0 0.3 −1.2301 0.0010 −1.037 072
1.0 0.1 −2.972 0.003 −2.585 960

0.5 10.0 −0.071 47 0.000 10 −0.064 069
0.5 8.0 −0.087 60 0.000 04 −0.077 981
0.5 6.0 −0.113 52 0.000 08 −0.100 212
0.5 4.0 −0.1631 0.0006 −0.142 231
0.5 2.0 −0.2938 0.0008 −0.257 459
0.5 1.0 −0.531 0.003 −0.465 543
0.5 0.5 −0.959 0.003 −0.845 752
0.5 0.4 −1.158 0.002 −1.026 811
0.5 0.3 −1.4808 0.0011 −1.320 709
0.5 0.1 −3.851 0.004 −3.521 367
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4.2 QMC Results for Static Structure Factors

Within the context of the Strongly Coupled Coulomb Systems (SCCS) conference in Kiel
2017, we provided a conference proceedings [110], in which we presented a detailed analysis
of the static structure factors (SSF) from our QMC simulations (PB-PIMC and CPIMC) over
a broad range of parameters of the warm dense UEG. I carried out the CPIMC calculations.

To obtain continuous (with respect to k-vectors) SSFs in the thermodynamic limit, we
exploited the same strategy as we already utilized for the derivation of our improved finite-
size correction in Ref. [109]: we combined the QMC results for the SSF, which are restricted
to large k-values, with those from STLS calculations (for small k-values) and subsequently
performed a spline fit to the combined data. In the following Ref. [110], these SSFs are
compared to those from the RPA and STLS. As expected, towards strong coupling, i.e.,
increasing values of rs, both become less accurate, although the STLS scheme always
outperforms the RPA.

The presented ab initio data for the SSFs are of high utility for other applications, both as
benchmark or as input. For example, the dynamic structure factor can be approximated from
the SSF within the method of frequency moments, see e.g. Ref. [145].

For completeness, it shall be mentioned that the following article3, Ref. [110], does not
fit into the chronological order, yet, regarding its content it is best suited to be presented here.

3T. Dornheim, S. Groth, and M. Bonitz, Contrib. Plasma Phys. (2017), 57, p. 468-478. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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The uniform electron gas at finite temperature is of high current interest for

warm dense matter research. The complicated interplay of quantum degeneracy

and Coulomb coupling effects is fully contained in the pair distribution func-

tion or, equivalently, the static structure factor. By combining exact quantum

Monte Carlo results for large wave vectors with the long-range behaviour from the

Singwi-Tosi-Land-Sjölander approximation, we are able to obtain highly accurate

data for the static structure factor over the entire k-range. This allows us to gauge

the accuracy of previous approximations and discuss their respective shortcomings.

Further, our new data will serve as valuable input for the computation of other

quantities.

KEYWORDS

electron gas, linear response theory, quantum Monte Carlo, static structure factor

1 INTRODUCTION

Over recent years, there has emerged a growing interest in warm dense matter (WDM)—an exotic state where strong electronic

excitations are realized at solid state densities.[1] In addition to astrophysical applications such as planet interiors[2,3] and white

dwarf atmospheres, such extreme conditions are now routinely created in the lab, for example, in experiments with laser excited

solids[4] or inertial confinement fusion.[5–7] Despite this remarkable experimental progress, a rigorous theoretical description

remains notoriously difficult due to the simultaneous presence of three physical effects: (a) strong electronic excitations, (b)

Coulomb coupling effects, and (c) fermionic exchange. This is typically expressed by two parameters being of the order of

unity: the degeneracy temperature 𝜃 = kBT/EF (with EF = kF
2/2 and kF = (9𝜋/4)1/3/rs being the Fermi energy and wave vector,

respectively) and the Brueckner (coupling) parameter rs = r∕aB with r and aB being the mean interparticle distance and Bohr

radius, respectively.

Of particular importance is the calculation of the thermodynamic properties of the uniform electron gas (UEG), which is

comprised of Coulomb interacting electrons in a homogeneous neutralizing background. However, this has turned out to be

surprisingly difficult. The extension of Quantum Monte Carlo (QMC) methods, which have been employed to obtain very

accurate data in the ground state already three decades ago,[8,9] to finite temperature is severely limited by the fermion sign

problem (FSP).[10,11] It was only recently that the combination of two novel methods (configuration path integral Monte Carlo

[CPIMC][12,13]) and permutation blocking path integral Monte Carlo [PB-PIMC][14,15]) that are available at complementary

parameter ranges allowed to conduct the first unbiased simulation of the UEG. At first, these efforts were limited to a finite

number of electrons N in a finite simulation cell of volume V .[16,17] In practice, however, one is interested in the thermodynamic

limit, which is given by the limit of an infinite number of particles at fixed density (or, equivalently, fixed rs). This was real-

ized by combining QMC data, which exactly incorporates all short-range exchange-correlation effects, but cannot capture the

long-range effects due to the finite simulation cell, with the linear response theory, which is exact precisely in this limit.[18–21]

The resulting accurate data for the UEG in the thermodynamic limit have subsequently been used to construct a complete param-

eterization of the exchange-correlation free energy with respect to temperature, density, and spin-polarization over the entire

WDM regime.[22,23]
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In this work, we further explore this strategy to investigate the static structure factor (SSF), S(k), of the UEG at WDM

conditions. In particular, we construct cubic basis splines to combine the SSF from the Singwi-Tosi-Land-Sjölander theory

(STLS),[24–26] which is exact in the limit of small-wave vectors (k→ 0),[27] with the exact QMC data elsewhere. These new

extensive data for S(k) are subsequently compared both to the random phase approximation (RPA)[28] and the full STLS results

themselves over two orders of magnitude of the coupling parameter rs and for three different temperatures. This allows us to

gauge the performance of the dielectric approximations and to show when they break down.

2 THEORY

2.1 The uniform electron gas

The UEG is defined as an infinite system of Coulomb interacting electrons in a uniform positive background ensuring charge

neutrality. Since QMC simulations are only possible in a finite simulation cell with box length L and volume V =L3, we employ

periodic boundary conditions and the standard Ewald summation to take into account the interactions of the electrons with

the infinite array of periodic images. Since PB-PIMC and CPIMC are formulated in coordinate space and momentum space,

respectively, both representations of the UEG Hamiltionian are given. We assume Hartree atomic units throughout this work.

2.2. Coordinate representation of the Hamiltonian

Following Dornheim et al.[15] and Fraser et al.,[29] we express the Hamiltonian for N =N↑ +N↓ unpolarized (N↑ =N↓) electrons

in coordinate space as

Ĥ = −1

2

N∑
i=1

𝛻2
i +

1

2

N∑
i=1

N∑
j≠i

Ψ(ri, rj) +
N
2
𝜉M , (1)

with the Madelung constant 𝜉M and the periodic Ewald pair interaction

Ψ(r, s) = 1

V
∑
G≠0

e−𝜋2G2∕𝜅2 e2𝜋iG(r−s)

𝜋G2
− 𝜋

𝜅2V
+
∑

R

erfc(𝜅|r − s + R|)
|r − s + R| . (2)

Here R=n1L and G=n2/L denote the real and reciprocal space lattice vectors, respectively, with n1 and n2 three-component

vectors of integers, and 𝜅 denotes the (freely adjustable) Ewald parameter.

2.3 Hamiltonian in second quantization

In second quantization with respect to spin-orbitals of plane waves,

⟨r𝜎 |ki𝜎i⟩ = 1

L3∕2
eiki⋅r𝛿𝜎,𝜎i , (3)

with ki = 2𝜋
L

mi, mi ∈Z3 and 𝜎i ∈{↑, ↓}, the Hamiltonian, Equation (1), is expressed as

Ĥ = 1

2

∑
i

k2
i â†

i âi +
∑

i < j, k < l
i ≠ k, j ≠ l

w−
ijklâ

†
i â†

j âlâk +
N
2
𝜉M.

(4)

Here, the antisymmetrized two-electron integrals are defined as w−
ijkl = wijkl − wijlk, with

wijkl =
4𝜋e2

L3(ki − kk)2
𝛿ki+kj,kk+kl𝛿𝜎i,𝜎k𝛿𝜎j,𝜎l , (5)

and the Kronecker deltas ensure both momentum and spin conservation. The first (second) term in the Hamiltonian, Equation

(4), describes the kinetic (interaction) energy. As usual, the operator â†
i (âi) creates (annihilates) a particle in the (spin-) orbital

|ki𝜎i⟩.

2.4 QMC simulations

The task at hand to be solved using QMC methods is the calculation of canonic expectation values (temperature T , volume V ,

and particle number N are fixed), that follow from the canonic partition function

Z = Tr𝜌, (6)
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with 𝜌 = e−𝛽Ĥ being the canonic density operator and the inverse temperature 𝛽 = 1/kBT . In particular, the thermodynamic

expectation value of an arbitrary observable Â can be written as

⟨Â⟩ = 1

Z
Tr𝜌Â . (7)

The underlying idea of both the CPIMC and the PB-PIMC method is to find a representation of the partition function Equation

(6) of the form

Z =
∑

∫C
W(C) , (8)

That is, as a sum or integral over some, in general, high-dimensional variable C, which is denoted as a configuration. The

function W(C) is the corresponding “configuration weight”, which must be of a form that can be readily evaluated. The latter

specification is not trivial as, for interacting electrons, the matrix elements of the density operator are not known when quantum

effects are not negligible. Once a representation of the form of Equation (8) is found, the thermodynamic expectation value,

Equation (7), becomes

⟨Â⟩ = 1

Z
∑

∫C
W(C)A(C) , (9)

with A(C) being the so-called Monte Carlo estimator. In practice, we use the Metropolis algorithm[30] to generate a set of

NMC random configurations {C1,… ,CNMC
} that are distributed according to the probability P(C)=W(C)/Z, which is possible

without explicit knowledge of the normalization Z. The Monte Carlo estimate for the thermodynamic expectation value from

Equation (9) is then given by

⟨Â⟩ ≈ ⟨Â⟩MC = 1

NMC

NMC∑
i=1

A(Ci) , (10)

which in the limit of infinitely many random samples, NMC →∞, becomes exact

⟨Â⟩ = lim
NMC→∞

⟨Â⟩MC , (11)

where the Monte Carlo error for any finite number of samples is given by

ΔA =
(⟨A2⟩ − ⟨A⟩2

NMC

)1∕2

. (12)

Since the Monte Carlo estimates are exact within this statistical uncertainty, which is known accurately as well and can be

made arbitrarily small by generating more random configurations, QMC simulations are often denoted as “quasi-exact”.

Unfortunately, QMC simulations of electrons are not so straightforward as we shall briefly illustrate in the following. Due

to the antisymmetry of the many-fermion wave function under exchange, the weight function W in Equation (8) can be both

positive or negative. This, in turn, means that P(C)=W(C)/Z cannot be interpreted as a probability, which must be strictly

positive. In order to still be able to use the Metropolis algorithm, we switch to a modified configuration space (indicated by the

“prime” symbols) where the configurations are sampled according to the modulus weights.

Z′ =
∑

∫C
|W(C)| , (13)

and the definition of the modified expectation value

⟨Â⟩ = 1

Z′

∑
∫C

A(C)|W(C)| . (14)

The unbiased fermionic expectation value Equation (9) is then given by

⟨Â⟩ = ⟨ÂŜ⟩′
⟨Ŝ⟩′

, (15)

where S(C)=W(C)/|W(C)| is the so-called sign and, thus, S= ⟨Ŝ⟩ the “average sign” of the corresponding Monte Carlo sim-

ulation. It is important to note that the statistical uncertainty of the Monte Carlo estimation according to Equation (15) is (in

leading order) inversely proportional to S,
ΔA
A

∼ 1

⟨Ŝ⟩′√NMC

, (16)

while the average sign itself exponentially decreases both with inverse temperature and system size,

⟨Ŝ⟩′ = e−𝛽N(f−f ′) , (17)



DORNHEIM ET AL. 471

where f denotes the free energy per particle. Inserting Equation (17) into Equation (16) leads to

ΔA
A

∼ e𝛽N(f−f ′)
√

NMC

. (18)

Evidently, the statistical uncertainty exponentially increases both with system size and inverse temperature, which can only

be compensated by increasing the number of Monte Carlo samples, thereby decreasing ΔA with the inverse square root of NMC.

This is the notorious fermion sign problem,[10,11,21] which has, for a long time, prevented ab initio PIMC (see Ceperley[31] for a

review) simulations of electrons in the WDM regime.

The FSP has been shown to be NP-hard,[11] and a complete solution is not in sight. However, to nevertheless obtain

accurate QMC results at WDM conditions, we have introduced two novel QMC methods that are efficient at complemen-

tary parameter regimes. The CPIMC method[12,13] is formulated in anti-symmetric Fock-space and can be interpreted as

a Monte Carlo simulation of the exact, infinite perturbation expansion around the ideal (non-interacting) system. There-

fore, it excels at strong degeneracy and high density, but becomes inefficient towards strong coupling. In contrast, the

PB-PIMC approach[14,15] significantly extends standard PIMC towards lower temperature and higher density, while strong cou-

pling does not pose an obstacle. Thus, the combination of both methods allows for accurate results over a broad parameter

range.

A detailed comparison of the different ranges of applicability of fermionic QMC methods at WDM conditions can be found

in Dornheim et al.[21]

2.5 Dielectric approximations

The main advantage of QMC methods is the exact treatment of the short-range exchange-correlation effects, which are not

described accurately by any approximation. On the other hand, the main disadvantage (despite the relatively large computa-

tional effort and non-universal range of applicability due to the sign problem) is that QMC simulations are limited to the finite

simulation box. For this reason, QMC methods cannot be used to describe long-range correlations (corresponding to the limit

of small wave vectors, k→ 0). On the other hand, it has long been known that the RPA becomes exact in the limit of small k for

arbitrary coupling strength or temperature.[27]

Furthermore, the accuracy of RPA can be significantly increased by including a so-called (static) local field correction G(q),

which is defined by the equation[32]

𝜒(q, 𝜔) = 𝜒0(q, 𝜔)
1 − 4𝜋

q2
[1 − G(q)]𝜒0(q, 𝜔)

, (19)

with 𝜒(q, 𝜔) and 𝜒0(q, 𝜔) denoting the density response function of the interacting and ideal system,[33] respectively.

Furthermore, it is often convenient to compute the dielectric function

𝜀(k, 𝜔) = 1 −
𝜒0(k, 𝜔)

k2∕(4𝜋) + G(k)𝜒0(k, 𝜔)
, (20)

where the RPA limit is recovered by setting G(q)= 0 in Equations (19) and (20). Unfortunately, the local field correction is not

known in practice and one has to introduce an approximation. For the UEG, the most successful approach was introduced by

Singwi et al.[24] and extended to finite temperature by Tanaka and Ichimaru.[25] The idea is to express G(q) as a functional of

the SSF.

GSTLS(k) = −1

n∫ dk′

(2𝜋)3
k ⋅ k′

k′2
[S(k − k′) − 1] , (21)

which, in turn, is used again to compute the SSF via the fluctuation dissipation theorem

S(k) = − 1

𝛽n

∞∑
l=−∞

q2

4𝜋

(
1

𝜀(k, zl)
− 1

)
, (22)

where the Matsubara frequencies are given by zl = 2𝜋il/𝛽ℏ. In practice, to obtain the SSF in STLS approximation we start

with (1) computing S(k) in RPA, (2) use it to compute GSTLS(q) according to Equation (21), and (3) subsequently obtain

a new SSF from Equation (22). Steps (2) and (3) are then repeated until the structure factor and local field correction

are consistent, which is the case when convergence is achieved. For completeness, we mention that first QMC results for

the (static) density response function 𝜒(k) of the warm dense electron gas have been presented in Dornheim et al.[34] and

Groth et al.[35]
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FIGURE 1 Schematic illustration of static structure factors for the unpolarized

electron gas at 𝜃 = 2 and rs = 0.5. In panel (a), the different ranges of validity are

illustrated by the light blue (RPA expansion around k= 0, Equation (23)), grey (full

RPA) and red (full STLS) results. The dark blue vertical lines depict the discrete

k-grid for N = 100 electrons. In addition, the vertical green and yellow lines show

the minimum k-values for N = 66 and N = 38, respectively. Panel (b) shows results

for the static structure factor from Equation (23), full RPA, full STLS, and quantum

Monte Carlo (crosses) with the same three particle numbers as above. The solid

black line corresponds to a spline combining STLS for small k with QMC

elsewhere. Reproduced from Dornheim et al.[20] with the permission of the authors

2.6 Construction of SSFs

The construction of our new results for the SSF over the entire k-range is illustrated in Fig. 1 for the unpolarized UEG at 𝜃 = 2

and rs = 0.5. The blue vertical bars in panel (a) correspond to the discrete k-values (due to momentum quantization in a finite

simulation cell) of a QMC simulation with N = 100 electrons. Evidently, QMC results are not available below kmin = 2𝜋/L and

the k-grid becomes denser for increasing k. The vertical green and yellow line corresponds to the minimum k-value for N = 66

and N = 38, respectively. Furthermore, the horizontal bars illustrate the ranges of validity of an RPA expansion around k= 0

(light blue) given by Kugler[27]

SRPA
0

(k) = k2

2𝜔p
coth

(𝛽𝜔p

2

)
, (23)

the full RPA results (grey) and the full STLS data (red). For the present example, only the STLS data exhibits an overlap with

the QMC results.

In panel (b), we show results for S(k) itself. The crosses correspond to the QMC results for the three different particle numbers

shown in panel (a). The main difference between these data sets is the different k-grid, while the functional form of the SSF

is remarkably well converged with system size, see the inset. The light blue curve depicts the parabolic RPA expansion from

Equation (23), which is of interest for finite-size corrections of the interaction energy,[20,21,36] but does not provide a sufficient

description of the long-range correlations beyond the QMC data. The grey and red curves correspond to the full RPA and STLS

results (see Section 2.5), respectively, and are in perfect agreement with each other and Equation (23) for small k, as expected.[27]

Further, the STLS curve exhibits an overlap with the QMC point at kmin, whereas the RPA data already exhibit a minor deviation.

However, for larger k, both STLS and RPA exhibit systematic errors, although the inclusion of the local field correction leads to

a significant increase in the accuracy, see the inset. Finally, the black line depicts a cubic basis spline (obtained using the GNU

scientific library [GSL][37]) combining the red curve (for k< kmin/2) with the blue crosses (elsewhere). In this way, we have

obtained an accurate, smooth description of the SSF (in the thermodynamic limit) over the entire k-range. All the new results

presented in Section 3 are obtained analogously.

3 RESULTS FOR THE SSF

Let us start our investigation with a discussion of the rs-dependence of the SSF at 𝜃 = 1, which is depicted in Fig. 2 (see also

Table 1 in the appendix). Shown are results for the SSF from full RPA (dashed green) and STLS (solid red) calculations,

QMC simulations (blue crosses) and the splines connecting STLS with QMC (dash-dotted blue). For high density (rs = 0.1

and rs = 0.3), the system is only weakly non-ideal and both RPA and STLS provide an accurate description over the entire

k-range, as it is expected. With increasing rs, coupling effects become more important and especially the RPA results become

substantially less accurate. In particular, the green curves are always systematically too low at intermediate k, which is most

pronounced at rs = 10 and rs = 20, where the bias is of the order of ΔS/S∼ 20%. This is due to a significant overestimation of

short-range correlations, resulting in a (substantially) negative pair correlation function[38] at short distances. In stark contrast,

the static local field correction due to Singwi et al.[24] significantly improves the accuracy even for large rs. Still, with increasing

coupling strength there occur systematic deviations to the ab initio QMC data. In particular, the STLS results for smaller k (but

not for k→ 0, where it becomes exact) are too large, whereas they are too low in the region where S(k) approaches unity. This is

most evident at rs = 20, where the STLS approximation does not capture the maximum around k= 0.2. Here, too, the PCF from

STLS becomes negative for small r.[24] Another fortunate feature of the STLS scheme is an error cancellation in the interaction
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FIGURE 2 Density dependence of the static structure factor at 𝜃 = 1—Shown are results for the SSF from RPA (dashed green), STLS (solid red), a cublic

basis spline connecting STLS and QMC (dashed-dotted blue), and the raw QMC data (blue crosses). The depicted density parameters are rs = 0.1, 0.5, 1, 2, 6,

10, and 20. All combined results for S(k) are available in website[39], and selected data are given in Table 1
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TABLE 1 Static structure factor S(k) for the unpolarized electron gas at 𝜃 = 1 (see Fig. 2)—all data have been obtained by combining STLS
data for small k with QMC data elsewhere. Extensive data for 𝜃 = 1, 2, 4, 8 and multiple rs values are available in website[39]

rs = 20 rs = 1 rs = 0.1

k S(k) k S(k) k S(k)

0.00837561 0.00186964 0.147084 0.014099 1.46222 0.11347

0.0168193 0.00755307 0.29553 0.0539904 2.94033 0.322402

0.025263 0.0170533 0.443975 0.113561 4.41844 0.484183

0.0337067 0.0303731 0.592421 0.18666 5.89656 0.593229

0.0421504 0.0475827 0.740867 0.267137 7.37467 0.662812

0.0505941 0.0689052 0.889313 0.348842 8.85278 0.70891

0.0590378 0.0945839 1.03776 0.425663 10.3309 0.741495

0.0674815 0.124863 1.1862 0.494009 11.809 0.766743

0.0759252 0.159989 1.33465 0.554356 13.2871 0.787148

0.0843689 0.200215 1.4831 0.60755 14.7652 0.804333

0.0928126 0.245794 1.63154 0.654436 16.2433 0.819583

0.101256 0.296967 1.77999 0.695858 17.7215 0.833513

0.1097 0.353825 1.92843 0.732662 19.1996 0.846342

0.118144 0.41634 2.07688 0.765664 20.6777 0.858384

0.126587 0.484484 2.22532 0.795312 22.1558 0.869857

0.135031 0.557997 2.37377 0.821801 23.6339 0.880723

0.143475 0.634963 2.52222 0.845323 25.112 0.891012

0.151919 0.712752 2.67066 0.86607 26.5901 0.900838

0.160362 0.78873 2.81911 0.884233 28.0682 0.910186

0.168806 0.860214 2.96755 0.900005 29.5464 0.918993

0.17725 0.924327 3.116 0.913588 31.0245 0.927267

0.185693 0.978152 3.26444 0.925229 32.5026 0.935014

0.194137 1.01878 3.41289 0.935189 33.9807 0.94223

0.202581 1.04501 3.56134 0.943728 35.4588 0.94892

0.211024 1.05927 3.70978 0.951108 36.9369 0.955095

0.219468 1.06441 3.85823 0.957587 38.415 0.960744

0.227912 1.0633 4.00667 0.963426 39.8931 0.965865

0.236356 1.05815 4.15512 0.968789 41.3713 0.970485

0.244799 1.05047 4.30356 0.973683 42.8494 0.974635

0.253243 1.04169 4.45201 0.978098 44.3275 0.978345

0.261687 1.03321 4.60046 0.982026 45.8056 0.981625

0.27013 1.02564 4.7489 0.985456 47.2837 0.984483

0.278574 1.01905 4.89735 0.98838 48.7618 0.986971

0.287018 1.01352 5.04579 0.990793 50.2399 0.989136

0.295461 1.00907 5.19424 0.99273 51.718 0.991

0.303905 1.00562 5.34268 0.994262 53.1962 0.992587

0.312349 1.00302 5.49113 0.995456 54.6743 0.993928

0.320793 1.00115 5.63958 0.996383 56.1524 0.995055

0.329236 0.999848 5.78802 0.99711 57.6305 0.995999

0.33768 0.999023 5.93647 0.997708 59.1086 0.99678

energy per particle v, which can be obtained from the SSF by the relation

v = 1

2∫k<∞

dk
(2𝜋)3

[S(k) − 1]4𝜋
k2

= 1

𝜋∫
∞

0

dk [S(k) − 1] , (24)

where for the second equality, we made use of the fact that the SSF only depends on the modulus of the wave vector k for

homogeneous systems. Therefore, the too large and too small STLS results for S(k) for small and large k cancel to some degree

under the integral in Equation (24), leading to STLS interaction energies that are more accurate than the SSF, see for example,

Dornheim et al.[21]

In Figs. 3 and 4, we show the same information as in Fig. 2, but for higher temperatures, 𝜃 = 2 and 𝜃 = 8. For 𝜃 = 2, the

behaviour of the SSF is quite similar to 𝜃 = 1, although the maxima at rs = 20 and even more so at rs = 10 are substantially less
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FIGURE 3 Density dependence of the static structure factor at 𝜃 = 2—Shown are results for the SSF from RPA (dashed green), STLS (solid red), a cublic

basis spline connecting STLS and QMC (dashed-dotted blue), and the raw QMC data (blue crosses). The depicted density parameters are rs = 0.1, 0.5, 1, 2, 6,

10, and 20. All combined results for S(k) are available in website[39]
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FIGURE 4 Density dependence of the static structure factor at 𝜃 = 8 – Shown are results for the SSF from RPA (dashed green), STLS (solid red), a cublic

basis spline connecting STLS and QMC (dashed-dotted blue), and the raw QMC data (blue crosses). The depicted density parameters are rs = 0.1, 0.5, 1, 2, 6,

10, and 20. All combined results for S(k) are available in website[39]
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pronounced. At 𝜃 = 8, which corresponds to a relatively high temperature where both quantum effects and Coulomb coupling are

significantly less important, the situation is quite different. In particular, the correlation-induced maximum in S(k) has vanished

and the STLS approximation provides an accurate description over the entire k-range, even for large rs. The largest deviations

occur at rs = 20, but even here ΔS/S does not exceed 1%. While the RPA, too, becomes more accurate, there remain significant

systematic errors from intermediate to large rs. Therefore, we conclude that, despite the high temperature, a mean field ansatz

(RPA) for the density response function, Equation (19), is still not sufficient at the present parameters.

4 SUMMARY AND CONCLUSION
In summary, we have combined the exact description of the short-range exchange-correlation effects from ab initio QMC sim-

ulations with results from the STLS approximation, which becomes exact in the long-range limit, k→ 0. In this way, we have

been able to obtain accurate data for the SSF (in the thermodynamic limit) over the entire relevant k-range. This has allowed

us to compare our new results both to the RPA and STLS over two orders of magnitude in the coupling parameter rs and for

three relevant temperatures 𝜃. In agreement with findings in the ground state, we confirm that the RPA, due to the mean field

ansatz for the density response function 𝜒(q, 𝜔), is only accurate for weak non-ideality, but rapidly breaks down with increas-

ing rs. Even at the largest investigated temperature 𝜃 = 8, RPA exhibits substantial errors at intermediate rs. In stark contrast,

the inclusion of the static local field correction proposed by Singwi et al.[24] significantly increases the accuracy everywhere.

Only at strong coupling, rs = 20 and 10, the STLS fails to accurately describe the maxima around k= 0.2 and 0.5, respectively.

Furthermore, we note that due to the too large SSF for small k and too small SSF for larger k, there occurs an error cancellation

in the calculation of the interaction energy v, which means that STLS results for this quantity are more accurate than for S(k).

We expect our new accurate SSFs (available at website[39]) of the warm dense electron gas to be of broad interest for various

applications related to modern WDM research. In particular, they can be used to benchmark other dielectric approximations

such as quantum STLS[40,41] or the recent local field correction based on the hypernetted-chain approximation by Tanaka.[42]

Furthermore, accurate data for S(k) can be used to approximate the local field correction itself[43] or as input for the calculation

of dynamic quantities using the method of frequency moments.[44]
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4.3 Update on Recent Developments in QMC Simulations
of the Warm Dense UEG

On November 3rd, 2016, on occasion of the annual APS meeting of the division of plasma
physics in San Jose, California, my supervisor Prof. M. Bonitz was invited to give a talk
on the current status of QMC simulations of the warm dense UEG. In this context, we
provided an accompanying article [111], in which we gave a concise overview on the recent
developments of novel QMC techniques including a discussion of their individual strengths
and weaknesses.

In the following Ref. [111], in addition to standard PIMC and our two novel approaches,
CPIMC and PB-PIMC, a brief introduction of the density matrix QMC (DMQMC) method
by Malone et al. [132, 133, 146] is given. This method represents the finite temperature
extension of the ground state FCIQMC method [68, 134–136], and, as such, it is based on
the diffusion Monte Carlo concept, as opposed to the path integral concept of our methods.

By comparing the results of all these different methods, we come to the conclusion
that there has indeed emerged a consensus regarding the description of the finite-N UEG.
Furthermore, we in detail discuss the extension of these results to the thermodynamic limit
by applying our improved finite-size correction [109]. Finally, we outline the open issues
and challenges on the path to the final goal: an ab initio parametrization of the exchange–
correlation free energy.
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Warm dense matter is one of the most active frontiers in plasma physics due to its relevance for

dense astrophysical objects and for novel laboratory experiments in which matter is being strongly

compressed, e.g., by high-power lasers. Its description is theoretically very challenging as it con-

tains correlated quantum electrons at finite temperature—a system that cannot be accurately mod-

eled by standard analytical or ground state approaches. Recently, several breakthroughs have been

achieved in the field of fermionic quantum Monte Carlo simulations. First, it was shown that exact

simulations of a finite model system (30…100 electrons) are possible, which avoid any simplifying

approximations such as fixed nodes [Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)]. Second, a

novel way to accurately extrapolate these results to the thermodynamic limit was reported by

Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. As a result, now thermodynamic results for

the warm dense electron gas are available, which have an unprecedented accuracy on the order of

0.1%. Here, we present an overview on these results and discuss limitations and future directions.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977920]

I. INTRODUCTION

The uniform electron gas (UEG) (i.e., electrons in a uni-

form positive background) is inarguably one of the most fun-

damental systems in condensed matter physics and quantum

chemistry.1 Most notably, the availability of accurate quan-

tum Monte Carlo (QMC) data for its ground state proper-

ties2,3 has been pivotal for the success of the Kohn-Sham

density functional theory (DFT).4,5

Over the past few years, interest in the study of matter

under extreme conditions has grown rapidly. Experiments

with not only inertial confinement fusion targets6–8 and

laser-excited solids9 but also astrophysical applications such

as planet cores and white dwarf atmospheres10,11 require a

fundamental understanding of the warm dense matter

(WDM) regime, a problem now at the forefront of plasma

physics and materials science. In this peculiar state of matter,

both the dimensionless Wigner-Seitz radius rs ¼ �r=a0 (with

the mean interparticle distance �r and Bohr radius a0) and the

reduced temperature h ¼ kBT=EF (EF being the Fermi

energy) are of order unity, implying a complicated interplay

of quantum degeneracy, coupling effects, and thermal excita-

tions. Because of the importance of thermal excitation, the

usual ground-state version of DFT does not provide an

appropriate description of WDM. An explicitly thermody-

namic generalization of DFT12 has long been known in prin-

ciple but requires an accurate parametrization of the

exchange-correlation free energy (fxc) of the UEG over the

entire warm dense regime as an input.13–17

This seemingly manageable task turns out to be a major

obstacle. The absence of a small parameter prevents a low-

temperature or perturbation expansion, and consequently,

Green function techniques in the Montroll-Ward and e4

approximations18,19 break down. Further, the linear response

theory within the random phase approximation20,21 (RPA)

and also with the additional inclusion of static local field cor-

rections as suggested by, e.g., Singwi, Tosi, Land, and

Sj€olander22–24 (STLS) and Vashista and Singwi24,25 (VS), is

not reliable. Quantum classical mappings26,27 are exact in

some known limiting cases but constitute an uncontrolled

approximation in the WDM regime.

The difficulty of constructing a quantitatively accurate

theory of WDM leaves thermodynamic QMC simulations as

the only available tool to accomplish the task at hand.

However, the widely used path integral Monte Carlo28

(PIMC) approach is severely hampered by the notorious fer-

mion sign problem29,30 (FSP), which limits simulations to

high temperatures and low densities and precludes applica-

tions to the warm dense regime. In their pioneering work,

Brown et al.31 circumvented the FSP by using the fixed-node

approximation32 (an approach hereafter referred to as

restricted PIMC, RPIMC), which allowed them to present

the first comprehensive results for the UEG over a wide tem-

perature range for rs � 1.

Although these data have subsequently been used to con-

struct the parametrization of fxc required for thermodynamic

DFT (see Refs. 24, 33, and 34), their quality has been called

into question. First, RPIMC constitutes an uncontrolled

approximation,35–38 which means that the accuracy of the

results for the finite model system studied by Brown et al.31

was unclear. This unsatisfactory situation has sparked remark-

able recent progress in the field of fermionic QMC.39–50 In
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particular, a combination of two complementary QMC

approaches51,52 has recently been used to simulate the warm

dense UEG without nodal restrictions,42 revealing that the

nodal constraints in RPIMC cause errors exceeding 10%.

Second, Brown et al.31 extrapolated their QMC results for

N¼ 33 spin-polarized (N¼ 66 unpolarized) electrons to the

macroscopic limit by applying a finite-T generalization of the

simple first-order finite-size correction (FSC) introduced by

Chiesa et al.53 for the ground state. As we have recently

shown,47 this is only appropriate for low temperature and

strong coupling and, thus, introduces a second source of the

systematic error.

In this paper, we give a concise overview of the current

state of the art of quantum Monte Carlo simulations of the

warm dense electron gas and present new results regarding

the extrapolation to the thermodynamic limit (TDL). Further,

we discuss the remaining open questions and challenges in

the field.

After a brief introduction to the UEG model (II), we

introduce various QMC techniques, starting with the stan-

dard path integral Monte Carlo approach (A) and a discus-

sion of the origin of the FSP (B). The sign problem can be

alleviated using the permutation blocking PIMC (PB-PIMC,

C) method, the configuration PIMC algorithm (CPIMC, D),

or the density matrix QMC (DMQMC, E) approach. In com-

bination, these tools make it possible to obtain accurate

results for a finite model system over almost the entire warm

dense regime (IV). The second key issue is the extrapolation

from the finite to the infinite system, i.e., the development of

an appropriate finite-size correction,47,53–57 which is dis-

cussed in detail in Sec. V. Finally, we compare our QMC

results for the infinite UEG to other data (2) and finish with

some concluding remarks and a summary of open questions.

II. THE UNIFORM ELECTRON GAS

A. Coordinate representation of the Hamiltonian

Following Refs. 44 and 54, we express the Hamiltonian

(using Hartree atomic units) for N ¼ N" þ N# unpolarized

electrons in coordinate space as

Ĥ ¼ � 1

2

XN

i¼1

r2
i þ

1

2

XN

i¼1

XN

j 6¼i

W ri; rjð Þ þ
N

2
nM ; (1)

with the well-known Madelung constant nM and the periodic

Ewald pair interaction

W r; sð Þ ¼
1

X

X

G 6¼0

e�p2G2=j2e2piG r�sð Þ

pG2

� p

j2X
þ
X

R

erfc jjr� sþ Rjð Þ
jr� sþ Rj : (2)

Here, R ¼ n1L and G ¼ n2=L denote the real and reciprocal

space lattice vectors, respectively, with n1 and n2 three-

component vectors of integers, L the box length, X ¼ L3 the

box volume, and j the usual Ewald parameter.

B. Hamiltonian in second quantization

In second quantized notation using a basis of spin-

orbitals of plane waves, hrr jkirii ¼ 1
L3=2

eiki�rdr;ri , with ki

¼ 2p
L
mi; mi 2 Z

3 and ri 2 f"; #g, the Hamiltonian, Eq. (1),

becomes

Ĥ ¼ 1

2

X

i

k
2
i â

†
i âi þ

X

i < j; k < l

i 6¼ k; j 6¼ l

w�
ijklâ

†
i â

†
j âlâk þ

N

2
nM: (3)

The antisymmetrized two-electron integrals take the form

w�
ijkl ¼ wijkl � wijlk, where

wijkl ¼
4pe2

L3 ki � kkð Þ2
dkiþkj;kkþkldri;rkdrj;rl ; (4)

and the Kronecker deltas ensure both momentum and spin

conservation. The first (second) term in the Hamiltonian, Eq.

(3), describes the kinetic (interaction) energy. The operator

â†i (âi) creates (annihilates) a particle in the spin-orbital

jkirii.

III. QUANTUM MONTE CARLO

A. Path integral Monte Carlo

Let us consider N spinless distinguishable particles in

the canonical ensemble, with the volume X, the inverse tem-

perature b ¼ 1=kBT, and the density N=X being fixed. The

partition function in coordinate representation is given by

Z ¼
ð

dR hRje�bĤ jRi; (5)

where R ¼ fr1;…; rNg contains all 3N particle coordinates,

and the Hamiltonian Ĥ ¼ K̂ þ V̂ is given by the sum of a

kinetic and a potential part, respectively. Since the low-

temperature matrix elements of the density operator,

q̂ ¼ e�bĤ , are not readily known, we exploit the group prop-

erty e�bĤ ¼ e��Ĥ
� �P

, with � ¼ b=P and positive integers P.

Inserting P – 1 unities of the form 1̂ ¼
Ð
dRa jRiahRja into

Eq. (5) leads to

Z ¼
ð

dX hR0je��Ĥ jR1ihR1j…jRP�1ihRP�1je��Ĥ jR0i
� �

¼
ð

dXW Xð Þ: (6)

We stress that Eq. (6) is still exact and constitutes an integral

over P sets of particle coordinates (dX ¼ dR0…dRP�1), the

integrand being a product of P density matrices, each at P

times the original temperature T. Despite the significantly

increased dimensionality of the integral, this recasting is

advantageous as the high temperature matrix elements can

easily be approximated, most simply with the primitive

approximation, e��Ĥ � e��K̂e��V̂ , which becomes exact for

P ! 1. In a nutshell, the basic idea of the path integral

Monte Carlo method28 is to map the quantum system onto a

classical ensemble of ring polymers.58 The resulting high

056303-2 Dornheim et al. Phys. Plasmas 24, 056303 (2017)



dimensional integral is evaluated using the Metropolis algo-

rithm,59 which allows one to sample the 3PN-dimensional

configurations X of the ring polymer according to the corre-

sponding configuration weight W Xð Þ.

B. The fermion sign problem

To simulate N spin-polarized fermions, the partition

function from the previous Section III A has to be extended

to include a sum over all N! permutations of particles:

Z ¼ 1

N!

X

s2SN
sgn sð Þ

ð

dR hRje�bĤ jp̂sRi; (7)

where p̂s denotes the exchange operator corresponding to the

element s from the permutation group SN. Evidently, Eq. (7)

constitutes a sum over both positive and negative terms, so

that the configuration weight function W Xð Þ can no longer

be interpreted as a probability distribution. To allow fermi-

onic expectation values to be computed using the Metropolis

Monte Carlo method, we introduce the modified partition

function

Z0 ¼
ð

dX jW Xð Þj; (8)

and compute fermionic observables as

hOi ¼ hOSi0

hSi0
; (9)

with averages taken over the modified probability distribu-

tion W0 Xð Þ ¼ jW Xð Þj and S ¼ W Xð Þ=jW Xð Þj denoting the

sign. The average sign, i.e., the denominator in Eq. (9), is a

measure for the cancellation of positive and negative contri-

butions and exponentially decreases with inverse tempera-

ture and system size, hSi0 / e�bN f�f 0ð Þ, with f and f 0 being
the free energy per particle of the original and the modified

system, respectively. The statistical error of the Monte Carlo

average value DO is inversely proportional to hSi0

DO

O
/ 1

hSi0
ffiffiffiffiffiffiffiffiffi
NMC

p / ebN f�f 0ð Þ
ffiffiffiffiffiffiffiffiffi
NMC

p : (10)

The exponential increase in the statistical error with b and N

evident in Eq. (10) can only be compensated by increasing

the number of Monte Carlo samples, but the slow 1=
ffiffiffiffiffiffiffiffiffi
NMC

p

convergence soon makes this approach unfeasible. This is

the notorious fermion sign problem,29,30 which renders stan-

dard PIMC unfeasible even for the simulation of small sys-

tems at moderate temperature.

C. Permutation blocking path integral Monte Carlo

To alleviate the difficulties associated with the FSP,

Dornheim et al.43,44,48 recently introduced a novel simulation

scheme that significantly extends fermionic PIMC simulations

towards lower temperature and higher density. This so-called

permutation blocking PIMC (PB-PIMC) approach combines

(i) the use of antisymmetrized density matrix elements, i.e.,

determinants;60–62 (ii) a fourth-order factorization scheme to

obtain accurate approximate density matrices for relatively

low temperatures (large imaginary-time steps);63–66 and (iii)

an efficient Metropolis Monte Carlo sampling scheme based

on the temporary construction of artificial trajectories.43

In particular, we use the factorization introduced in

Refs. 64 and 65

e��Ĥ � e�v1�Ŵ a1 e�t1�K̂e�v2�Ŵ 1�2a1

� e�t1�K̂e�v1�Ŵ a1 e�2t0�K̂ ; (11)

where the Ŵ operators denote a modified potential term,

which combines the usual potential energy V̂ with double

commutator terms of the form

V̂ ; K̂
� �

; V̂
� �

¼ �h2

m

XN

i¼1

jFij2; (12)

and, thus, requires the evaluation of all forces in the system.

Furthermore, for each high-temperature factor, there appear

three imaginary time steps. The final result for the partition

function is given by

Z ¼ 1

N!ð Þ3P
ð

dX
YP�1

a¼0

e�� ~V ae��3u0
�h2

m
~Fa

�

� det qað Þdet qaAð Þdet qaBð Þ
�

; (13)

where the determinants incorporate the three diffusion matri-

ces for each of the P factors44

qa i; jð Þ ¼ k�D
t1�

X

n

exp �p ra;j � raA;i þ nLð Þ2

k2t1�

 !

: (14)

The key problem of fermionic PIMC simulations is the

sum over permutations, where each configuration can have a

positive or a negative sign. By introducing determinants, we

analytically combine both positive and negative contribu-

tions into a single configuration weight (hence the label

“permutation blocking”). Therefore, parts of the cancellation

are carried out beforehand, and the average sign of our simu-

lations [Eq. (9)] is significantly increased. Since this effect

diminishes with increasing P, we employ the fourth-order

factorization, Eq. (11), to obtain sufficient (although lim-

ited,44 jDVj=V� 0:1%) accuracy with only a small number

of high-temperature factors. PB-PIMC is a substantial

improvement over regular PIMC, but the determinants can

still be negative, which means that the FSP is not removed

by the PB-PIMC approach. To illustrate this point, in Fig. 1,

we show simulation results for the average sign (here

denoted as S) as a function of the density parameter rs for a

UEG simulation cell containing N¼ 33 spin-polarized elec-

trons subject to periodic boundary conditions. The red, blue,

and black curves correspond to PB-PIMC results for three

isotherms and exhibit a qualitatively similar behavior. At

high rs, fermionic exchange is suppressed by the strong

Coulomb repulsion, which means that almost all configura-

tion weights are positive and S is large. With increasing den-

sity, the system becomes more ideal and the electron wave
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functions overlap, an effect that manifests itself in an

increased number of negative determinants. Nevertheless,

the value of S remains significantly larger than zero, which

means that, for the three depicted temperatures, PB-PIMC

simulations are possible over the entire density range. In con-

trast, the green curve shows the density-dependent average

sign for standard PIMC simulations31 at h¼ 1 and exhibits a

significantly steeper decrease with density, limiting simula-

tions to rs � 4.

D. Configuration path integral Monte Carlo

For CPIMC,40,41 instead of performing the trace over

the density operator in the coordinate representation [see Eq.

(5)], we trace over Slater determinants of the form

jfngi ¼ jn1; n2;…i ; (15)

where, in the case of the uniform electron gas, ni denotes the

fermionic occupation number (ni 2 f0; 1g) of the i-th plane

wave spin-orbital jkirii. To obtain an expression for the par-

tition function suitable for Metropolis Monte Carlo, we split

the Hamiltonian into diagonal and off-diagonal parts, Ĥ ¼
D̂ þ Ŷ (with respect to the chosen plane wave basis, see Sec.

II), and explore a perturbation expansion of the density oper-

ator with respect to Ŷ

e�bĤ ¼ e�bD̂
X1

K¼0

ðb

0

ds1

ðb

s1

ds2…

ðb

sK�1

dsK

� �1ð ÞKŶ sKð ÞŶ sK�1ð Þ �… � Ŷ s1ð Þ ; (16)

with Ŷ sð Þ ¼ esD̂ Ŷe�sD̂ . In this representation, the partition

function becomes

Z ¼
X1

K ¼ 0

K 6¼ 1ð Þ

X

fng

X

s1…sK�1

ðb

0

ds1

ðb

s1

ds2…

ðb

sK�1

dsK

� �1ð ÞKe
�
PK

i¼0

Dfn ið Þg siþ1�sið ÞYK

i¼1

Yfn ið Þg;fn i�1ð Þg sið Þ : (17)

The matrix elements of the diagonal and off-diagonal opera-

tors are given by the Slater-Condon rules

Dfn ið Þg ¼
X

l

k
2
l n

ið Þ
l þ

X

l<k

w�
lklkn

ið Þ
l n

ið Þ
k ; (18)

Yfn ið Þg;fn i�1ð Þg sið Þ ¼ w�
si
�1ð Þasi ; (19)

asi ¼ a ið Þ
pqrs ¼

Xq�1

l¼p

n i�1ð Þ
l þ

Xs�1

l¼r

n ið Þ
l ; (20)

where the multi-index si ¼ pqrsð Þ defines the four orbitals in
which fn ið Þg and fn i�1ð Þg differ, and we note that p< q and

r< s. As in standard PIMC, each contribution to the partition

function (17) can be interpreted as a b�periodic path in

imaginary time, but the path is now in Fock space instead of

coordinate space. Evidently, the weight corresponding to any

given path (second line of Eq. (17)) can be positive or nega-

tive. Therefore, to apply the Metropolis algorithm, we have

to proceed as explained in Sec. III B and use the modulus of

the weight function as our probability density. In conse-

quence, the CPIMC method is also afflicted with the FSP.

However, as it turns out, the severity of the FSP as a function

of the density parameter is complementary to that of standard

PIMC, so that weakly interacting systems, which are the

most challenging for PIMC, are easily tackled using CPIMC.

For a detailed derivation of the CPIMC partition function

and the Monte Carlo steps are required to sample it see, e.g.,

Refs. 40–42, and 51.

E. Density matrix quantum Monte Carlo

Instead of sampling contributions to the partition func-

tion, as in path integral methods, DMQMC samples the

(unnormalized) thermal density matrix directly by expanding

it in a discrete basis of outer products of Slater determinants

q̂ ¼
X

fng;fn0g
qfng;fn0gjfngihfn0gj; (21)

where qfng;fn0g ¼ hfngje�bĤ jfn0gi. The density-matrix coef-

ficients qfng;fn0g appearing in Eq. (21) are found by simulat-

ing the evolution of the Bloch equation

dq̂

db
¼ � 1

2
q̂Ĥ þ Ĥq̂
� �

; (22)

which may be finite-differenced as

qfng;fn0g bþDbð Þ¼qfng;fn0g bð Þ�Db
X

fn00g
qfng;fn00g bð ÞHfn00g;fn0g
�

þHfng;fn00gqfn00g;fn0g bð Þ�: (23)

The matrix elements of the Hamiltonian are as given as in

Eqs. (18) and (19).

Following Booth and coworkers,67 we note that Eq. (23)

can be interpreted as a rate equation and can be solved by

evolving a set of positive and negative walkers, which sto-

chastically undergo birth and death processes that, on aver-

age, reproduce the full solution. The rules governing the

FIG. 1. Density dependence of the average sign of a PB-PIMC simulation of

the uniform electron gas. Also shown are standard PIMC data taken from

Ref. 31. Reproduced with permission from J. Chem. Phys. 143, 204101

(2015). Copyright 2014 AIP Publishing LLC.44
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evolution of the walkers, as derived from Eq. (23), can be

found elsewhere.45,67 The form of q̂ is known exactly at infi-

nite temperature (b¼ 0, q̂ ¼ 1̂), providing an initial condi-

tion for Eq. (22). For the electron gas, however, it turns out

that simulating a differential equation that evolves a mean-

field density matrix at inverse temperature b to the exact

density matrix at inverse temperature b is much more effi-

cient than solving Eq. (22), an insight that leads to the

“interaction picture” version of DMQMC39,46 used through-

out this work.

The sign problem manifests itself in DMQMC as an

exponential growth in the number of walkers required for the

sampled density matrix to emerge from the statistical

noise.67–70 Working in a discrete Hilbert space helps to reduce

the noise by ensuring a more efficient cancellation of positive

and negative contributions, enabling larger systems and lower

temperatures to be treated than would otherwise be possible.

Nevertheless, at some point, the walker numbers required

become overwhelming and approximations are needed.

Recently, we have applied the initiator approximation71–73 to

DMQMC (i�DMQMC). In principle, at least, this allows a

systematic approach to the exact result with an increasing

walker number. More details on the use of the initiator

approximation in DMQMC and its limitations can be found in

Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in

Fig. 2, we give a schematic overview of the parameter com-

binations where the different methods can be used to obtain

results in the thermodynamic limit (for a discussion of finite-

size corrections, see Sec. V) with a relative accuracy of

DV=V � 0:003. Standard PIMC (black) is only useful for

high temperatures and low densities where fermionic

exchange does not play an important role and, therefore,

does not give access to the WDM regime. PB-PIMC (green)

significantly extends the possible parameter combinations to

lower temperature (down to h ¼ 0:5 for rs � 1) and is avail-

able over the entire density range for h� 2. In contrast, both

CPIMC (red) and DMQMC (blue) are feasible for all h at

small rs and eventually break down with increasing rs due to

coupling effects. Despite their apparent similar range of

applicability, it turns out that CPIMC is significantly more

efficient at higher temperature, while DMQMC is superior at

low h.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the

warm dense electron gas in the thermodynamic limit is to

carry out accurate simulations of a finite model system. In

Fig. 3, we compare results for the density dependence of the

exchange correlation energy Exc of the UEG for N¼ 33 spin-

polarized electrons and two different temperatures. The first

results, shown as blue squares, were obtained with RPIMC31

for rs � 1. Subsequently, Groth, Dornheim, and co-work-

ers44,51 showed that the combination of PB-PIMC (red

crosses) and CPIMC (red circles) allows for an accurate

description of this system for h � 0:5. In addition, it was

revealed that RPIMC is afflicted with a systematic nodal error

for densities greater than the relatively low value at which

rs¼ 6. Nevertheless, the FSP precludes the use of PB-PIMC

at lower temperatures and, even at h ¼ 0:5 and rs¼ 2, the sta-

tistical uncertainty becomes large. The range of applicability

of DMQMC is similar to that of CPIMC, and the DMQMC

results (green diamonds) fully confirm the CPIMC results.39,46

Further, the introduction of the initiator approximation (i-

DMQMC) has made it possible to obtain results up to rs¼ 2

for h ¼ 0:5. Although i-DMQMC is, in principle, systemati-

cally improvable and controlled, the results suggest that the

initiator approximation may introduce a small systematic shift

at lower densities.

In summary, the recent progress in fermionic QMC

methods has resulted in a consensus regarding the finite-N

UEG for temperatures h � 0:5. However, there remains a

gap at rs � 2� 6 and h < 0:5 where, at the moment, no reli-

able data are available.

FIG. 2. Density-temperature-plane around the WDM regime. Shown are the

parameter combinations where standard PIMC (black), PB-PIMC (green),

CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-

dynamic limit with an accuracy of DV=V � 0:003.

FIG. 3. Exchange-correlation energy of N¼ 33 spin-polarized electrons as a

function of the density parameter rs for two isotherms. Shown are results

from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.

31, and DMQMC from Ref. 39. For h ¼ 0:5, all data have been shifted by

0.05 Hartree. In the case of DMQMC, the initiator approximation is used.

056303-5 Dornheim et al. Phys. Plasmas 24, 056303 (2017)



V. FINITE SIZE CORRECTIONS

In this section, we describe in detail the finite-size cor-

rection scheme introduced in Ref. 47 and subsequently pre-

sent detailed results for two elucidating examples.

A. Theory

As introduced above (see Eq. (1) in Sec. II A), the poten-

tial energy of the finite simulation cell is defined as the inter-

action energy of the N electrons with each other, the infinite

periodic array of images, and the uniform positive back-

ground. To estimate the finite-size effects, it is more conve-

nient to express the potential energy in k-space. For the finite

simulation cell of N electrons, the expression obtained is a

sum over the discrete reciprocal lattice vectors G

VN

N
¼ 1

2X

X

G6¼0

SN Gð Þ � 1½ � 4p
G2

þ nM

2
; (24)

where S kð Þ is the static structure factor. In the limit as the

system size tends to infinity and nM ! 0, this yields the

integral

v ¼ 1

2

ð

k<1

dk

2pð Þ3
S kð Þ � 1½ � 4p

k2
: (25)

Combining Eqs. (24) and (25) yields the finite-size error for

a given QMC simulation

DVN

N
S kð Þ; SN kð Þ
� �

¼ v� VN

N

¼ 1

2

ð

k<1

dk

2pð Þ3
S kð Þ � 1ð Þ 4p

k2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

v

(26)

� 1

2L3

X

G6¼0

SN Gð Þ � 1ð Þ 4p
G2

þ nM

2

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VN=N

:

(27)

The task at hand is to find an accurate estimate of the

finite-size error from Eq. (26), which, when added to the

QMC result for VN=N, gives the potential energy in the ther-

modynamic limit. As a first step, we note that the Madelung

constant may be approximated by55

nM � 1

L3

X

G 6¼0

4p

G2
e��G2 � 1

2pð Þ3
ð

k<1
dk

4p

k2
e��k2 ; (28)

an expression that becomes exact in the limit as � ! 0. The

Madelung term thus cancels the minus unity contributions to

both the sum and the integral in Eq. (27).

The remaining two possible sources of the finite-size

error in Eq. (26) are (i) the substitution of the static structure

factor of the infinite system S(k) by its finite-size equivalent

SN kð Þ and (ii) the approximation of the continuous integral

by a discrete sum, resulting in a discretization error. As we

will show in Sec. VB, SN kð Þ exhibits a remarkably fast con-

vergence with system size, which leaves explanation (ii). In

particular, about a decade ago, Chiesa et al.53 suggested that

the main contribution to Eq. (26) stems from the G ¼ 0 term

that is completely missing from the discrete sum. To remedy

this shortcoming, they made use of the random phase

approximation (RPA) for the structure factor, which

becomes exact in the limit k ! 0. The leading term in the

expansion of SRPA kð Þ around k¼ 0 is26

SRPA0 kð Þ ¼ k2

2xp

coth
bxp

2


 �

; (29)

with xp ¼
ffiffiffiffiffiffiffiffiffi
3=r3s

p
being the plasma frequency. The finite-T

generalization of the FSC introduced by Chiesa et al., hereaf-

ter called the BCDC-FSC, is31,47

DVBCDC Nð Þ ¼ lim
k!0

SRPA0 kð Þ4p
2L3k2

¼ xp

4N
coth

bxp

2


 �

: (30)

Eq. (30) would be sufficient if (i) SRPA0 kð Þ were accurate for

k� 2p=L and (ii) all contributions to Eq. (26) beyond the

G ¼ 0 term were negligible. As is shown in Sec. VB, both

conditions are strongly violated in parts of the warm dense

regime.

To overcome the deficiencies of Eq. (30), we need a

continuous model function Smodel kð Þ to accurately estimate

the discretization error from Eq. (27)

DVN Smodel kð Þ½ � ¼ DVN

N
Smodel kð Þ; Smodel kð Þ
� �

: (31)

A natural choice would be to combine the QMC results for

k � kmin, which include all short-ranged correlations and

exchange effects, with the STLS structure factor for smaller

k, which is exact as k ! 0 and incorporates the long-ranged

behavior that cannot be reproduced using QMC due to the

limited size of the simulation cell. However, as we showed

in Ref. 47, a simpler approach using SSTLS kð Þ [or the full

RPA structure factor SRPA kð Þ] for all k is sufficient to accu-

rately estimate the discretization error.

B. Results

1. Particle number dependence

To illustrate the application of the different FSCs, Fig. 4

shows results for the unpolarized UEG at h¼ 2 and rs¼ 1.

The green crosses in panel (b) correspond to the raw, uncor-

rected QMC results that, clearly, are not converged with sys-

tem size N. The raw data points appear to fall onto a straight

line when plotted as a function of 1=N. This agrees with the

BCDC-FSC formula, Eq. (30), which also predicts a 1=N
behavior, and suggests the use of a linear extrapolation (the

green line). However, while the linear fit does indeed exhibit

good agreement with the QMC results, the computed slope

does not match Eq. (30). Further, the points that have been

obtained by adding DVBCDC to the QMC results, i.e., the yel-

low asterisks, do not fall onto a horizontal line and do not

agree with the prediction of the linear extrapolation (see the

horizontal green line). To resolve this peculiar situation, we
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compute the improved finite-size correction [Eq. (31)] using

both the static structure factor from STLS (SSTLS) and the

combination of STLS with the QMC data (Scomb) as input.

The resulting corrected potential energies are shown as black

squares and red diamonds, respectively, and appear to

exhibit almost no remaining dependence on system size. In

panel (c), we show a segment of the corrected data, magni-

fied in the vertical direction. Any residual finite-size errors

[due to the QMC data for S(k) not being converged with

respect to N, see panel (d)] can hardly be resolved within the

statistical uncertainty and are removed by an additional

extrapolation. In particular, to compute the final result for V/

N in the thermodynamic limit, we obtain a lower bound via a

linear extrapolation of the corrected data (using SSTLS) and

an upper bound by performing a horizontal fit to the last few

points, all of which are converged to within the error bars.

The dotted grey line in panel (b), which connects to the

extrapolated result, shows clearly that the results of this

procedure deviate from the results of a naive linear

extrapolation.

Finally, in panel (d) of Fig. 4, we show results for the

static structure factor S(k) for the same system. As explained

in Sec. VA, momentum quantization limits the QMC results

to discrete k values above a minimum value kmin ¼ 2p=L.

Nevertheless, the N dependence of the k grid is the only

apparent change of the QMC results for S(k) with system size,

and no difference between the results for the three particle

numbers studied can be resolved within the statistical uncer-

tainty (see also the magnified segment in the inset). The STLS

curve (red) is known to be exact in the limit k ! 0 and

smoothly connects to the QMC data, although for larger k

there appears an almost constant shift. The full RPA curve

(grey) exhibits a similar behavior, albeit deviating more sig-

nificantly at intermediate k. Finally, the RPA expansion

around k¼ 0 [Eq. (29), light blue] only agrees with the STLS

and full RPA curves at very small k and does not connect to

the QMC data even for the largest system size simulated.

To further stress the importance of our improved finite-

size correction scheme, Fig. 5 shows results again for h¼ 2

but at higher density, rs ¼ 0:1. In this regime, the CPIMC

approach (and also DMQMC) is clearly superior to PB-

PIMC and simulations of N¼ 700 unpolarized electrons in

Nb¼ 189 234 basis functions are feasible. Due to the high

density, the finite-size errors are drastically increased com-

pared to the previous case and exceed 50% for N¼ 38 par-

ticles [see panels (a) and (b)]. Further, we note that the

BCDC-FSC is completely inappropriate for the N values

considered, as the yellow asterisks are clearly not converged

FIG. 4. Finite-size correction for the

UEG at h¼ 2 and rs¼ 1: (a) N depen-

dence of the FSCs; (b) potential energy

per particle, V/N; the dotted grey line

corresponds to the TDL value where

DN SSTLS½ � had been subtracted; (c)

extrapolation of the residual finite-size

error; and (d) corresponding static

structure factors S(k) from QMC (for

N¼ 34, 40, and 66), STLS, RPA, and

the RPA expansion around k¼ 0, Eq.

(29). (b) and (c) Adapted with permis-

sion from Dornheim et al., Phys. Rev.

Lett. 117, 156403 (2016). Copyright

2016 American Physical Society.

FIG. 5. Finite-size correction for the

UEG at h¼ 2 and rs ¼ 0:1: (a) N

dependence of the FSCs; (b) potential

energy per particle, V/N; (c) extrapola-

tion of the residual finite-size error;

and (d) corresponding static structure

factors S(k) from QMC (for N¼ 66,

300, and 700), STLS, RPA, and the

RPA expansion around k¼ 0, Eq. (29).
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and differ even more strongly from the correct TDL than the

raw uncorrected QMC data.

Our improved FSC, on the other hand, reduces the

finite-size errors by two orders of magnitude (both with

SSTLS and Scomb) and approaches Eq. (30) only in the limit of

very large systems [N� 104; see panel (a)]. The small resid-

ual error is again extrapolated, as shown in panel (c).

Finally, we show the corresponding static structure fac-

tors in panel (d). The RPA expansion is again insufficient to

model the QMC data, while the full RPA and STLS curves

smoothly connect to the latter.

2. Comparison to other methods

To conclude this section, we use our finite-size corrected

QMC data for the unpolarized UEG to analyze the accuracy

of various other methods that are commonly used. In Fig.

6(a), the potential energy per particle, V/N, is shown as a

function of rs for the isotherm with h¼ 2. Although all four

depicted curves exhibit qualitatively similar behavior, there

are significant deviations between them [see panel (b), where

we show the relative deviations from a fit to the QMC data

in the TDL]. Let us start with the QMC results: the black

squares correspond to the uncorrected raw QMC data for

N¼ 66 particles (see Ref. 52) and the red diamonds to the

finite-size corrected data from Ref. 47. As expected, the

finite-size effects drastically increase with density from

jDVj=V � 1%, at rs¼ 10, to jDVj=V � 50%, at rs ¼ 0:1.
This again illustrates the paramount importance of accurate

finite-size corrections for QMC simulations in the warm

dense matter regime. The RPA calculation (green curve) is

accurate at high density and weak coupling. However, with

increasing rs, the accuracy quickly deteriorates and, already

at moderate coupling, rs¼ 1, the systematic error is of the

order of 10%. The yellow asterisks show the SLTS result,

which agrees well with the simulations (the systematic error

does not exceed 3%) over the entire rs-range considered, i.e.,

up to rs¼ 10. Finally, the blue curve has been obtained from

the recent parametrization of fxc by Karasiev et al.34

(KSDT), for which RPIMC data have been used as an input.

While there is a reasonable agreement with our new data for

rs� 1 (with jDVj=V � 2%), there are significant deviations

at smaller rs, which only vanish for rs < 10�4.

VI. SUMMARYAND OPEN QUESTIONS

Let us summarize the status of ab initio thermodynamic

data for the uniform electron gas at finite temperature. The

present paper has given an overview of recent progress in ab

initio finite temperature QMC simulations that avoid any addi-

tional simplifications such as fixed nodes. While these simula-

tions do not “solve” the fermion sign problem, they provide a

reasonable and efficient way on how to avoid it, in many prac-

tically relevant situations, by combining simulations that use

different representations of the quantum many-body state: the

coordinate representation (direct PIMC and PB-PIMC) and

Fock states (CPIMC and DMQMC). With this, it is now pos-

sible to obtain highly accurate results for up to N � 100 par-

ticles in the entire density range and for temperatures h� 0:5.
As a second step, we demonstrated that these comparatively

small simulation sizes are sufficient to predict results for the

macroscopic uniform electron gas not significantly losing

accuracy.47 This unexpected result is a consequence of a new

highly accurate finite-size correction that was derived by

invoking STLS results for the static structure factor.

With this procedure, it is now possible to obtain thermo-

dynamic data for the uniform electron gas with an accuracy

on the order of 0.1%. Even though pure electron gas results

cannot be directly compared to warm dense matter experi-

ments, they are of high value to benchmark and improve addi-

tional theoretical approaches. Most importantly, this concerns

finite-temperature versions of the density functional theory

(such as orbital-free DFT), which is the standard tool to model

realistic materials and which will benefit from our results for

the exchange-correlation free energy. Furthermore, we have

also presented a few comparisons with earlier models such as

RPA, STLS, or the recent fit of Karasiev et al. (KSDT),

the accuracy and errors of which can now be

unambiguously quantified. We found that among the tested

models, the STLS is the most accurate one. We wish to under-

line that even though exchange-correlation effects are often

small compared to the kinetic energy, their accurate treatment

is important to capture the properties of real materials, see

e.g., Ref. 74.

In the following, we summarize the open questions and

outline future research directions.

(1) Construction of an improved fit for the exchange-

correlation free energy due to their key relevance as

input for finite-temperature DFT. Such fits are straight-

forwardly generated from the current results but require

a substantial extension of the simulations to arbitrary

spin polarization. This work is currently in progress.

(2) The presently available accurate data are limited to tem-

peratures above half the Fermi energy, as a consequence

FIG. 6. Potential energy per particle of the uniform electron gas at

h¼ 2–simulations versus analytical models. Squares: QMC results for

N¼ 66 particles,52 (red) rhombs: finite-size corrected QMC data (TDL),47

green (yellow) curves: RPA (STLS) data,24 and blue: results of the parame-

trization of Ref. 34 (KSDT). Bottom: relative deviations of all curves from

the fit to the thermodynamic QMC results.
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of the fermion sign problem. A major challenge will be

to advance to lower temperatures, H < 0:5, and to reli-

ably connect the results to the known ground state data.

This requires substantial new developments in the area

of the three quantum Monte Carlo methods presented in

this paper (CPIMC, PB-PIMC and DMQMC) and new

ideas on how to combine them. Another idea could be to

derive simplified versions of these methods that treat the

FSP more efficiently but still have acceptable accuracy.

(3) The present ab initio results allow for an entirely new

view on previous theoretical models. For the first time, a

clear judgment about the accuracy becomes possible,

which more clearly maps out the sphere of applicability

of the various approaches, e.g., Ref. 75. Moreover, the

availability of our data will allow for improvements of

many of these approaches via adjustment of the relevant

parameters to the QMC data. This could yield, e.g.,

improved static structure factors, dielectric functions or

local field correlations.

(4) Similarly, our data may also help to improve alternative

quantum Monte Carlo concepts. In particular, this con-

cerns the nodes for Restricted PIMC simulations, which

can be tested against our data. This might help to extend

the range of validity of those simulations to higher den-

sity and lower temperature. Since this latter method does

not have a sign problem, it may allow to reach parame-

ters that are not accessible otherwise.

(5) A major challenge of Metropolis-based QMC simula-

tions that are highly efficient for thermodynamic and

static properties is to extend them to dynamic quantities.

This can, in principle, be done via analytical continua-

tion from imaginary to real times (or frequencies).

However, this is known to be an ill-posed problem.

Recently, there has been significant progress by invoking

stochastic reconstruction methods or genetic algorithms.

For example, for Bose systems, accurate results for the

spectral function and the dynamics structure factor could

be obtained, e.g., Ref. 76 and references therein, which

encourage also for applications to the uniform electron

gas, in the near future.

(6) Finally, there are a large number of additional applica-

tions of the presented ab initio simulations. This includes

the 2D warm dense UEG where thermodynamic results

of similar accuracy should be straightforwardly accessi-

ble. Moreover, for the electron gas, at high density,

rs�0:1, relativistic corrections should be taken into

account. Among the presented simulations, CPIMC is

perfectly suited to tackle this task and to provide ab ini-

tio data also for correlated matter at extreme densities.
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Chapter 5

Parametrization of the
Exchange–Correlation Free Energy

5.1 First Benchmarks of Previous Parametrizations

Over the last 30 years, due to its high relevance for many other applications, there have been
countless attempts to construct a parametrization of the exchange–correlation free energy,
fxc(rs,θ), of the warm dense UEG. However, in lieu of ab initio data, all of these former
parametrizations were based on uncontrolled approximations.

After we had computed first results for fxc from our novel QMC data [109] (although, up
to this point restricted to the unpolarized UEG above half the Fermi temperature [θ = 0.5]),
we were now in the position test the quality of the previous most prominent functionals. This
is the main purpose of the following Ref. [112].

In addition, we reviewed the concrete functional forms of all investigated parametrizations
and discussed the specifics of their construction, including, in particular, on which data they
are based. Further, we clearly pointed out which of the three known limits are actually fulfilled
by which parametrization. These three limits are the classical Debye–Hückel limit [147]
(θ → ∞), the Hartree–Fock limit (rs → 0) [120], and the ground state limit (θ → 0), which
had been parametrized [70, 71] from the ground state QMC data by Ceperley and Alder [72].

Specifically, the investigations were carried out for the parametrizations by

1. Ebeling et al. [148–152] (which constitute semi-analytical approaches based on the
interpolation between the classical and ground state limit)

2. Ichimaru and co-workers [97, 153] (wich is based on the data from the finite tempera-
ture STLS formalism [96, 103])
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3. Sjostrom and Dufty [100] (which is based on the data from the finite-temperature
Vashista–Singwi scheme [67, 154])

4. Perrot and Dharma-wardana [98] (which is based on the data of their classical mapping
approach [155])

5. Karasiev et al. [99] (which is based on the RPIMC data by Brown et al. [107]).

In summary, we found that all tested parametrizations exhibit systematic deviations in
the order of several percent, and hence, none of them is capable of sufficiently describing
the warm dense UEG. Moreover, some of the functionals lack the inclusion of one of the
three known limits, which leads to an utter failure in the corresponding regime. Overall, the
following article1, Ref. [112], clearly demonstrated that an ab initio functional was highly
desirable.

1 S. Groth, T. Dornheim, and M. Bonitz, Contrib. Plasma Phys. (2017), 57, p. 137-146. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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The uniform electron gas is a key model system in the description of matter, includ-

ing dense plasmas and solid-state systems. However, the simultaneous occurrence

of quantum, correlation, and thermal effects makes the theoretical description chal-

lenging. For these reasons, over the last half century, many analytical approaches

have been developed, the accuracy of which has remained unclear. We have recently

obtained the first ab initio data for the exchange correlation free energy of the uni-

form electron gas, which now provides the opportunity to assess the quality of

the mentioned approaches and parameterizations. Particular emphasis is placed on

the warm, dense matter regime, where we find significant discrepancies between the

different approaches.

KEYWORDS

free energy, quantum Monte Carlo, uniform electron gas, warm dense matter

1 INTRODUCTION

Over the last decade, there has emerged growing interest in the so-called warm dense matter (WDM), which is of key importance

for the description of, for example, astrophysical systems,[1,2] laser-excited solids,[3] and inertial confinement fusion targets.[4–6]

The WDM regime is characterized by the simultaneous occurrence of strong (moderate) correlations of ions (electrons), thermal

effects, as well as quantum effects of the electrons. In dimensionless units, typical parameters are the Brueckner parameter

rs = r∕aB and the reduced temperature 𝜃 = kBT∕EF, both being of the order of unity (more generally in the range 0.1–10). Here,

r and aB denote the mean interparticle distance and the Bohr radius, respectively. A third relevant parameter is the classical

coupling parameter of the ionic component, Γi = Z2
i e2∕rkBT , which is often larger than unity indicating that the ionic component

is far from an ideal gas. This makes the theoretical description of this peculiar state of matter particularly challenging, as there

is no small parameter to perform an expansion around.

In the ground state, there exists a large toolkit of approaches that allow the accurate description of manifold physical systems,

the most successful of which arguably being Kohn–Sham density functional theory (DFT) (e.g., [7,8]). The basic idea of DFT is

to map the complicated and computationally demanding quantum many-body problem onto an effective single-particle problem.

This would be exact if the correct exchange-correlation functional of the system of interest was available, which is, of course,

not the case. In practice, therefore, one has to use an approximation. The foundation of the great success of DFT has been

the local density approximation (LDA), that is, the use of the exchange-correlation energy Exc of the uniform electron gas

(UEG) with the same density as the more complicated system of interest. Accurate data for Exc of the UEG was obtained by

Ceperley and Alder[9] using a quantum Monte Carlo (QMC) method, from which Perdew and Zunger[10] constructed a simple

parameterization with respect to density, Exc(rs), which is still used to this day.

However, the accurate description of WDM requires the extension of DFT to finite temperature. This has been realized

long ago by Mermin[11], who used a superposition of excited states weighted with their thermal occupation probability. A

†Dedicated to Werner Ebeling on the occasion of his 80th birthday.
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strict approach to the thermodynamic properties of this system also requires an appropriate finite-temperature extension of

the LDA, in particular, replacement of the ground-state energy functionals by free energies, that is E → f = E − TS. This

means, a finite-temperature version of the LDA requires accurate parameterizations of the exchange correlation free energy
with respect to temperature and density,[12–17] that is, fxc(rs, 𝜃), even though in some cases the entropic correction may be small.

This seemingly benign task, however, turns out to be far from trivial because accurate data for the free energy are much more

involved than the ground-state results. While for the ground state reliable QMC data have been known for a long time, until

recently,[18–28] the notorious fermion sign problem[29,30] has prevented reliable QMC simulations in the warm, dense regime.

Therefore, during the recent four decades, many theoretical approaches to fxc(rs, 𝜃) have been developed that have lead to a

variety of parameterizations (for an overview on early works, see e.g., Refs. [31,32]). Some of them have gained high popularity

and been successfully applied in many fields, even though their accuracy has not been thoroughly tested. It is the purpose of

this paper to present such a quantitative comparison of earlier models with new simulation results.

In Section 2, we introduce a selection of such functions. First, we analyze the purely analytical expression presented by

Ebeling et al. (e.g., Ref. [33]). Next, we study functional fits to linear response data based on static local field correction

schemes that were suggested by Singwi, Tosi, Land, and Sjölander (STLS)[34] (Section 2.2) and Vashishta and Singwi (VS)[35]

(Section 2.3). As a fourth example, we consider the quantum-classical mapping developed by Dharma-wardana and Perrot

(PDW)[36,37] (Section 2.4). Finally, we consider the recent parameterization by Karasiev, Sjostrom, Dufty, Trickey (KSDT)[38]

(Section 2.5), which is based on the restricted path integral Monte Carlo (RPIMC) data by Brown et al. that became available

recently.[39] However, those data have a limited accuracy because of (a) the use of the fixed-node approximation[40] and (b) an

inappropriate finite-size correction (see Dornheim et al.[27]), giving rise to systematic errors in the free energy results, as we will

show below. In Section 3, we compare all aforementioned parameterizations of fxc to the new, accurate QMC data by Dornheim

et al.[27], which are free from any systematic bias and, hence, allow us to gauge the accuracy of models. Particular emphasis is

laid on the WDM regime.

2 FREE-ENERGY PARAMETERIZATIONS

2.1 Ebeling’s Padé formulae

The idea to produce an analytical formula for the thermodynamic quantities that connects known analytical limits via a smooth

Padé approximant is due to Ebeling, Kraeft, and Richert et al.[41–44] These approximations have been quite influential in the

description of nonideal plasmas and electron–hole plasmas in the 1980s and 1990s, receiving, in part, a substantial number of

citations. As they have been improved continuously in the following years, we, therefore, discuss only the more recent versions,

compare [33,45] and references therein.

Ebeling et al. used Rydberg atomic units and introduced a reduced thermal density

n = nΛ3 = 6
√
𝜋r−3

s 𝜏−3∕2 (1)

with the usual thermal wavelength Λ, and 𝜏 = kBT∕Ry being the temperature in energy units. The Padé approximation for fxc
then reads[33]

f Ebeling,Ry
xc (rs, 𝜏) = −

f0(𝜏)n1∕2 + f3(𝜏)n + f2n2𝜖Ry(rs)
1 + f1(𝜏)n1∕2 + f2n2

(2)

with the coefficients

f0(𝜏) =
2

3

( 𝜏
𝜋

)1∕4

, f1(𝜏) =
1

8f0(𝜏)

√
2(1 + log(2)) , f2 = 3, f3(𝜏) =

1

4

( 𝜏
𝜋

)1∕2

(3)

and the ground-state parameterization for the exchange correlation energy

𝜖Ry(rs) =
0.9163

rs
+ 0.1244 log

(
1 +

2.117r−1∕2
s

1 + 0.3008
√

rs

)
. (4)

To achieve better comparability with the other formulas discussed below, we re-express Equation 2 in Hartree atomic units

as a function of rs and the reduced temperature 𝜃 = kBT∕EF:

f Ebeling,Ha
xc (rs, 𝜃) = −1

2

Ar−1∕2
s 𝜃−1∕2 + Br−1

s 𝜃−1 + C𝜃−3𝜖Ry(rs)
1 + D𝜃−1r1∕2

s + C𝜃−3
, with (5)
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A = 2

3
√
𝜋

(
8

3

)1∕2 ( 4

9𝜋

)−1∕6

, B = 2

3𝜋

(
4

9𝜋

)−1∕3

, C = 64

3𝜋
, (6)

D =
(1 + log(2))

√
3

4

(
4

9𝜋

)1∕6

.

Evidently, Equation 5 incorporates the correct ground-state limit

lim
𝜃→0

f Ebeling,Ha
xc (rs, 𝜃) = −1

2
𝜖Ry(rs) , (7)

where the pre-factor 1∕2 is due to the conversion between Rydberg and Hartree units. Similarly, in the high-temperature limit,

the well-known Debye–Hückel result is recovered, for example Ref. [46]

lim
𝜃→∞

f Ebeling,Ha
xc (rs, 𝜃) = −1

2
A r−1∕2

s 𝜃−1∕2 = − 1√
3

r−3∕2
s T−1∕2. (8)

Results for the warm, dense UEG computed from these formulas are included in the following figures. For the Padé

approximations to the UEG at strong coupling in the quasi-classical regime, see, for example, Ref. [47].

2.2 Parameterization by Ichimaru et al.

In the mid-1980s, Tanaka, Ichimaru, and coworkers[48,49] extended the original STLS scheme[34] for the static local field cor-

rections to finite temperature and numerically obtained the interaction energy V (per particle) of the UEG via integration of the

static structure factor S(k):

V = 1

2 ∫k<∞

dk
(2𝜋)3

[S(k) − 1]4𝜋
k2

(9)

for 70 parameter combinations with 𝜃 = 0.1, 1, 5 and rs ∼ 10−3,… , 74. Subsequently, a parameterization for V was introduced

as a function of rs and 𝜃[50,51]

V(rs, 𝜃) = − 1

rs

aHF(𝜃) +
√

2𝜆r1∕2
s tanh(𝜃−1∕2)B(𝜃) + 2𝜆2rsC(𝜃)E(𝜃)tanh(𝜃−1)

1 +
√

2𝜆r1∕2
s D(𝜃)tanh(𝜃−1∕2) + 2𝜆2rsE(𝜃)

(10)

with the definitions

aHF(𝜃) = 0.610887 tanh
(
𝜃−1

) 0.75 + 3.4363𝜃2 − 0.09227𝜃3 + 1.7035𝜃4

1 + 8.31051𝜃2 + 5.1105𝜃4
, (11)

B(𝜃) = x1 + x2𝜃2 + x3𝜃4

1 + x4𝜃2 + x5𝜃4
, C(𝜃) = x6 + x7exp

(
−𝜃−1

)
, (12)

D(𝜃) = x8 + x9𝜃2 + x10𝜃4

1 + x11𝜃2 + x12𝜃4
, E(𝜃) = x13 + x14𝜃2 + x15𝜃4

1 + x16𝜃2 + x17𝜃4
. (13)

In addition to the exact limits for 𝜃 → 0 and 𝜃 → ∞, the parameterization from Equation 10 also approaches the well-known

Hartree–Fock limit for high density:

lim
rs→0

V(rs, 𝜃) = −aHF(𝜃)
rs

, (14)

which has been parameterized by Perrot and Dharma-wardana,[52] see Equation 11. Naturally, the free parameters xi, i =
1,… , 17 have been determined by fitting Equation 10 to the STLS data for V , and the resulting values are listed in Table 1.

From the interaction energy V(rs, 𝜃), the free exchange-correlation energy is obtained by integration:

fxc(rs, 𝜃) =
1

r2
s ∫

rs

0

drs rsV(rs, 𝜃). (15)
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TABLE 1 Fit parameters by Ichimaru[51] for the fxc(rs, 𝜃) parameterization from Equation 16, fitted to STLS data[49]

x1 x2 x3 x4 x5

3.4130800 × 10−1 1.2070873 × 10 1.148889 × 100 1.0495346 × 10 1.326623 × 100

x6 x7 x8 x9 x10

8.72496 × 10−1 2.5248 × 10−2 6.14925 × 10−1 1.6996055 × 10 1.489056 × 100

x11 x12 x13 x14 x15

1.010935 × 10 1.22184 × 100 5.39409 × 10−1 2.522206 × 100 1.78484 × 10−1

x16 x17

2.555501 × 100 1.46319 × 10−1

Plugging in the expression for V(rs, 𝜃) from Equation 10 into 15 gives the final parameterization for fxc(rs, 𝜃):

fxc(rs, 𝜃) = − 1

rs

c(𝜃)
e(𝜃)

(16)

− 𝜃
2e(𝜃)r2

s𝜆2

[(
aHF(𝜃) −

c(𝜃)
e(𝜃)

)
− d(𝜃)

e(𝜃)

(
b(𝜃) − c(𝜃)d(𝜃)

e(𝜃)

)]

× log
|||||
2e(𝜃)𝜆2rs

𝜃
+
√

2d(𝜃)𝜆r1∕2
s 𝜃−1∕2 + 1

|||||
−

√
2

e(𝜃)

(
b(𝜃) − c(𝜃)d(𝜃)

e(𝜃)

)
𝜃1∕2

r1∕2
s 𝜆

+ 𝜃
r2

s𝜆2e(𝜃)
√

4e(𝜃) − d2(𝜃)

[
d(𝜃)

(
aHF(𝜃) −

c(𝜃)
e(𝜃)

)

+
(

2 − d2(𝜃)
e(𝜃)

)(
b(𝜃) − c(𝜃)d(𝜃)

e(𝜃)

)]

×

[
atan

(
23∕2e(𝜃)𝜆r1∕2

s 𝜃−1∕2 + d(𝜃)√
4e(𝜃) − d2(𝜃)

)
− atan

(
d(𝜃)√

4e(𝜃) − d2(𝜃)

)]

with the abbreviations

b(𝜃) = 𝜃1∕2 tanh
(
𝜃−1∕2

)
B(𝜃), c(𝜃) = C(𝜃)e(𝜃), (17)

d(𝜃) = 𝜃1∕2 tanh
(
𝜃−1∕2

)
D(𝜃), e(𝜃) = 𝜃 tanh

(
𝜃−1

)
E(𝜃).

2.3 VS parameterization

Despite the overall good performance of STLS in the ground state,[53] it has long been known that this scheme does not fulfill the

compressibility sum rule (CSR, see e.g., Ref. [54] for a detailed discussion). To overcome this obstacle, Vashishta and Singwi[35]

introduced modified local field corrections (VS), where the CSR is automatically fulfilled. This idea had been extended in

an approximate way to finite temperature by Stolzmann and Rösler,[55] and more recently Sjostrom and Dufty[54] obtained an

exhaustive dataset of results that are exact within the VS framework.

As already explained in the previous section for the STLS data, they first calculated the static structure factor S(k), computed

the interaction energy V by integration (Equation 9), fitted the parameterization from Equation 10 to this data, and thereby

obtained the desired parameterization of fxc(rs, 𝜃) as given in Equation 16 (albeit with the new fit parameters listed in Table 2).

2.4 PDW parameterization

Dharma-wardana and Perrot[36,37] introduced an independent, completely different idea. In particular, they employed a classical
mapping such that the correlation energy of the electron gas at T = 0 (that has long been known from QMC calculations [9,10])

is exactly recovered by the simulation of a classical system at an effective “quantum temperature” Tq. However, due to the lack

of accurate data at finite T , an exact mapping had not been possible, and the authors introduced a modified temperature Tc,

where they assumed an interpolation between the exactly known ground state and classical (high T) regimes, Tc =
√

T2 + T2
q .

Naturally, at WDM conditions this constitutes a largely uncontrolled approximation.
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TABLE 2 Fit parameters by Sjostrom and Dufty[54] for the fxc(rs, 𝜃) parameterization from Equation 16, fitted to VS data

x1 x2 x3 x4 x5

1.8871493 × 10−1 1.0684788 × 10 1.1088191 × 102 1.8015380 × 10 1.2803540 × 102

x6 x7 x8 x9 x10

8.3331352 × 10−1 −1.1179213 × 10−1 6.1492503 × 10−1 1.6428929 × 10 2.5963096 × 10

x11 x12 x13 x14 x15

1.0905162 × 10 2.9942171 × 10 5.3940898 × 10−1 5.8869626 × 104 3.1165052 × 103

x16 x17

3.8887108 × 104 2.1774472 × 103

TABLE 3 Fit parameters by Perrot and Dharma-wardana[37] for the fxc(rs, 𝜃) parameterization from Equation 18

k a1,k b1,k c1,k a2,k b2,k c2,k 𝜈k rk

1 5.6304 −2.2308 1.7624 2.6083 1.2782 0.16625 1.5 4.4467

2 5.2901 −2.0512 1.6185 −15.076 24.929 2.0261 3 4.5581

3 3.6854 −1.5385 1.2629 2.4071 0.78293 0.095869 3 4.3909

To obtain the desired parameterization for fxc, extensive simulations of the UEG in the range rs = 1–10 and 𝜃 = 0–10 were

performed. These were used as input for a fit (see Table 3 for the corresponding fit parameters) with the functional form

fxc(rs, 𝜃) =
𝜖(rs) − P1(rs, 𝜃)

P2(rs, 𝜃)
, (18)

P1(rs, 𝜃) = (A2(rs)u1(rs) + A3(rs)u2(rs)) 𝜃2Q2(rs) + A2(rs)u2(rs)𝜃5∕2Q5∕2(rs),
P2(rs, 𝜃) = 1 + A1(rs)𝜃2Q2(rs) + A3(rs)𝜃5∕2Q5∕2(rs) + A2(rs)𝜃3Q3(rs),

Q(rs) =
(
2r2

s𝜆2
)−1 , n(rs) =

3

4𝜋r3
s
, u1(rs) =

𝜋n(rs)
2

, u2(rs) =
2
√
𝜋n(rs)
3

,

Ak(rs) = exp

(
yk(rs) + 𝛽k(rs)zk(rs)

1 + 𝛽k(rs)

)
, 𝛽k(rs) = exp (5(rs − rk)) ,

yk(rs) = 𝜈k log(rs) +
a1,k + b1,krs + c1,kr2

s

1 + r2
s∕5

, zk(rs) = rs
a2,k + b2,krs

1 + c2,kr2
s
,

which becomes exact for 𝜃 → 0 and 𝜃 → ∞, but is limited to the accuracy of the classical mapping data in between. Further, it

does not include the exact Hartree–Fock limit for rs → 0, so that it cannot reasonably be used for rs < 1. For completeness, we

mention that a functional form similar to Equation 18 was recently used by Brown et al. [56] for a fit to their RPIMC data[39].

Similar ideas of quantum-classical mappings were recently investigated by Dufty and Dutta (see e.g., Ref. [57,58]).

2.5 Parameterization by Karasiev et al.

Karasiev et al.[38] (KSDT) utilized as the functional form for fxc an expression similar to Equation 10, which Ichimaru and

coworkers[50,51] suggested for the interaction energy:

fxc(rs, 𝜃) = − 1

rs

aHF(𝜃) + b(𝜃)r1∕2
s + c(𝜃)rs

1 + d(𝜃)r1∕2
s + e(𝜃)rs

, (19)

b(𝜃) = tanh
(
𝜃−1∕2

) b1 + b2𝜃2 + b3𝜃4

1 + b4𝜃2 +
√

1.5𝜆−1b3𝜃4

, c(𝜃) =
[
c1 + c2 exp

(
−c3

𝜃

)]
e(𝜃),

d(𝜃) = tanh
(
𝜃−1∕2

) d1 + d2𝜃2 + d3𝜃4

1 + d4𝜃2 + d5𝜃4
, e(𝜃) = tanh

(
𝜃−1

) e1 + e2𝜃2 + e3𝜃4

1 + e4𝜃2 + e5𝜃4
.

Further, instead of fitting to the interaction energy V , they used the relation

Exc(rs, 𝜃) = fxc(rs, 𝜃) − 𝜃
𝜕fxc(rs, 𝜃)

𝜕𝜃
||||rs

(20)
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TABLE 4 Fit parameters by Karasiev et al. [38] for the fxc(rs, 𝜃) parameterization from Equation 19

b1 b2 b3 b4 c1 c2 c3

0.283997 48.932154 0.370919 61.095357 0.870089 0.193077 2.414644

d1 d2 d3 d4 d5 e1 e2

0.579824 94.537454 97.839603 59.939999 24.388037 0.212036 16.731249

e3 e4 e5

28.485792 34.028876 17.235515

and fitted the rhs of Equation 20 to the recently published RPIMC data for the exchange correlation energy Exc by Brown

et al. [39] that are available for the parameters rs = 1–40 and 𝜃 = 0.0625–8 (see Table 4 for the corresponding fit parameters).

3 RESULTS

In this section we analyze the behavior of the analytical approximations for the exchange-correlation free energies that were

summarized above by comparison with our recent simulation results that cover the entire relevant density range for temperatures

𝜃 ≥ 0.5. These data have an unprecedented accuracy on the order of 0.1% (for details, see Refs. [27,28]).

3.1 Temperature dependence

In Figure 1, we show the temperature dependence of the exchange-correlation free energy as a function of the reduced temper-

ature 𝜃 for two densities that are relevant for contemporary WDM research, namely rs = 1 (left) and rs = 6 (right). For both

cases, all depicted parameterizations reproduce the correct classical limit for large 𝜃 [cf. Equation 8] and four of them (Ebel-

ing, KSDT, STLS, and PDW) are in excellent agreement for the ground state as well. For completeness, we note that the small

differences between KSDT and Ebeling and PDW are due to different ground-state QMC input data. In particular, Karasiev

et al. used more recent QMC results by Spink et al.,[59] although in the context of WDM research the deviations to older

parameterizations are negligible. The VS parameterization, on the other hand, does not incorporate any ground-state limit and,

consequently, the behavior of f VS
xc (rs, 𝜃) becomes unreasonable below 𝜃 = 0.0625. Similarly, the lowest temperature (despite

the ground-state limit) included in the fit for f PDW
xc (rs, 𝜃) is 𝜃 = 0.25 and the rather unsmooth connection between this point and

𝜃 = 0 does not appear to be trustworthy as well.

Let us now check the accuracy of the different models at intermediate WDM temperatures. As a reference, we use the recent

accurate QMC results for the macroscopic UEG by Dornheim et al.,[27] that is, the red squares. For rs = 1, the semi-analytic

expression by Ebeling (blue) exhibits the largest deviations exceeding Δfxc∕fxc = 25% for 𝜃 ∼ 1. For lower density, rs = 6, the

Ebeling parameterization is significantly more accurate, although here, too, appear deviations of Δfxc∕fxc ∼ 10% to the exact

data at intermediate temperature. Therefore, this parameterization produces reliable data in the two limiting cases of zero and

high temperature, but is less accurate in between.

Next we consider the STLS curve (black). It is in very good agreement with the QMC data, and the error does not exceed

Δfxc∕fxc = 4% over the entire 𝜃 range for both depicted rs values. The largest deviations appear for intermediate temperatures

as well.

Third, we consider the VS model (yellow line). For rs = 1, the VS parameterization by Sjostrom and Dufty[54] exhibits the

same trends as the STLS curve, albeit with larger deviations, Δfxc∕fxc > 5%. Further, for rs = 6, f VS
xc exhibits much larger

deviations to the exact result and the error reaches Δfxc∕fxc ≈ 8%. Evidently, the constraint to automatically fulfill the CSR

does not improve the accuracy of other quantities, in particular the interaction energy V (which was used as an input for the

parameterization (see Section 2.3) or the static structure factor S(k) itself).

Fourth, the parameterization based on the classical mapping (PDW, light blue) exhibits somewhat opposite trends as compared

to Ebeling, STLS, and VS and predicts too large an exchange-correlation free energy for all 𝜃. The magnitude of the deviations

is comparable to VS and does not exceed Δfxc∕fxc = 5%.

Finally, we consider the recent parameterization by Karasiev et al. (KSDT, green),[38] which is based on RPIMC results[39].

For rs = 6, there is excellent agreement with the new reference QMC data with a maximum deviation ofΔfxc∕fxc ∼ 1% for 𝜃 = 4.

This is, in principle, expected since the main sources of error for their input data, that is, the nodal error and the insufficient

finite-size correction, are less important for larger rs. However, for rs = 1 there appear significantly larger deviations exceeding

Δfxc∕fxc = 5% at high temperature. In fact, for rs = 1 and the largest considered temperature, 𝜃 = 8, the KSDT parameterization

exhibits the largest deviations of all depicted parameterizations.
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FIGURE 1 Temperature dependence of fxc at fixed density rs = 1 (left) and rs = 6 (right). Top: Quantum Monte Carlo (QMC) data (symbols) taken from

Dornheim et al.,[27] a parameterization of RPIMC data by Karasiev, Sjostrom, Dufty, Trickey (KSDT),[38] a semi-analytic Padé approximation by Ebeling,[33]

a parameterization fitted to Singwi, Tosi, Land, and Sjölander (STLS) and Vashishta and Singwi (VS) data by Ichimaru[51] and Sjostrom and Dufty,[54]

respectively, and a fit to classical mapping data by Perrot and Dharma-wardana (PDW).[37] Bottom: Relative deviation to the QMC data.

3.2 Density dependence

As a complement to Section 3.1, in Figure 2 we investigate in more detail the density dependence of the different parameteri-

zations for two relevant temperatures, 𝜃 = 0.5 (left) and 𝜃 = 4 (right).

Most notably, the Ebeling and PDW parameterizations do not include the correct high-density (rs → 0) limit, that

is Equation 11, and therefore are not reliable for rs < 1. For 𝜃 = 0.5, f Ebeling
xc is in qualitative agreement with the correct results,

but the deviations rapidly increase with density and exceed Δfxc∕fxc = 10%, for rs = 1. At higher temperature, 𝜃 = 4, the

situation is worse, and the Ebeling parameterization shows systematic deviations over the entire density range. The STLS fit

displays a similarly impressive agreement with the exact data as for the 𝜃 dependence (cf. Figure 1), and the deviations do not

exceed Δfxc∕fxc ∼ 3% for both depicted 𝜃 values. On the other hand, the VS results are again significantly less accurate than

STLS although the deviation remains below Δfxc∕fxc = 8% for both temperatures. Further, we notice that the largest deviations

occur for rs ≥ 2, that is, toward stronger coupling, which is expected since here the pair distribution function exhibits unphysi-

cal negative values at short distance (see e.g., Ref. [54]). Again, the incorporation of the CSR has not improved the quality of

the interaction energy or the structure factor compared to STLS. The classical mapping data (PDW) does exhibit deviations not

exceeding Δfxc∕fxc = 5% for rs ≥ 1, that is, in the range where numerical data have been incorporated into the fit. Overall, the

quality of this parameterization is comparable to the VS curve although the relative deviation appears to be almost constant with

respect to the density. This is not surprising, as the approximation has not been conducted with respect to coupling (the effec-

tive classical system is solved with the hypernetted chain method, which is expected to be accurate in this regime) but, instead,

in the interpolation of the effective temperature Tc. Further, we notice a peculiar nonsmooth and almost oscillatory behavior of

f PDW
xc around rs = 5, which is more pronounced for 𝜃 = 0.5 and the origin of which remains unclear. Finally, we again consider
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FIGURE 2 Density dependence of fxc at fixed temperature 𝜃 = 0.5 (left) and 𝜃 = 4 (right). Top: Quantum Monte Carlo (QMC) data taken from Dornheim et

al.,[27] a parameterization of RPIMC data by Karasiev, Sjostrom, Dufty, Trickey (KSDT),[38] a semi-analytic Padé approximation by Ebeling,[33] a

parameterization fitted to Singwi, Tosi, Land, and Sjölander (STLS) and Vashishta and Singwi (VS) data by Ichimaru[51] and Sjostrom and Dufty,[54]

respectively, and a fit to classical mapping data by Perrot and Dharma-wardana (PDW).[37] Bottom: Relative deviation to the QMC data.

the KSDT fit based on the RPIMC data by Brown et al. [39] (a similar analysis for more temperatures can be found by Dornheim

et al.[27]). For 𝜃 = 0.5, this parameterization is in excellent agreement with the reference QMC data and the deviations are in

the sub-percent regime over the entire depicted rs range. However, for larger temperatures there appear significant errors that,

at 𝜃 = 4, reach a maximum of Δfxc∕fxc ∼ 10% for rs = 0.1, that is, at parameters where STLS, VS, and PDW are in very good

agreement with the reference QMC data. Interestingly, these deviations vanish only for rs ≤ 10−4. Naturally, the inaccuracies

of the KSDT fit are a direct consequence of the systematic errors of the input data and the lack of accurate simulation data for

rs < 1, prior to Dornheim et al.[27]

4 DISCUSSION

In summary, we have compared five different parameterizations of the exchange-correlation free energy of the unpolarized

UEG to the recent QMC data by Dornheim et al.[27] and, thereby, have been able to gauge their accuracy with respect to 𝜃 and

rs over large parts of the WDM regime. We underline that all these parameterizations are highly valuable, the main merit being

their easy and flexible use and rapid evaluation. At the same time, an unbiased evaluation of their accuracy had not been done

and appears highly important, as this allows constraining the field of applicability of these models and indicating directions for

future improvements.

Summarizing our findings, we have observed that the semi-analytic parameterization by Ebeling[33] is mostly reliable in

the high and zero temperature limits but exhibits substantial deviations in between. The STLS fit given by Ichimaru and

coworkers[50,51], on the other hand, exhibits a surprisingly high accuracy for all investigated rs–𝜃 combinations with a typical
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relative systematic error of∼ 2%. The more recent VS results,[54] which automatically fulfill the CSR, display a qualitatively sim-

ilar behavior but are significantly less accurate everywhere. The classical mapping suggested by Perrot and Dharma-wardana[37]

constitutes an approximation rather with respect to temperature than to the coupling strength and, consequently, exhibits dif-

ferent trends. In particular, we have found that the relative systematic error is nearly independent of rs, but decreases with

increasing 𝜃 and eventually vanishes for 𝜃 → ∞. Overall, the accuracy of the PDW parameterization is comparable to VS and,

hence, inferior to STLS. Finally, the more recent fit by Karasiev et al. [38] to RPIMC data[39] is accurate for large rs and low

temperature, where the input data is not too biased by the inappropriate treatment of finite size errors in the underlying RPIMC

results. For higher temperatures (where the exchange-correlation free energy constitutes only a small fraction of the total free

energy), there occur relative deviations of up to ∼ 10%.

Thus we conclude that an accurate parameterization of the exchange-correlation free energy that is valid for all rs–𝜃 combi-

nations is presently not available. However, the recent QMC data by Dornheim et al.[27] most certainly constitute a promising

basis for the construction of such a functional. In the mean time, of all the considered parameterizations, KSDT appears to be

the most accurate at low 𝜃 and large rs while the STLS fit exhibits smaller deviations elsewhere. Further, thermal DFT cal-

culations in the local spin-density approximation require a parameterization of fxc also as a function of the spin polarization

𝜉 = (N↑−N↓)∕(N↑+N↓), that is, fxc(rs, 𝜃, 𝜉) for all WDM parameters. Obviously, this will require an extension of the QMC sim-

ulations beyond the unpolarized case, 𝜉 ∈ (0, 1]; in addition, reliable data for 𝜃 < 0.5 are indispensable. This work is presently

under way. We also note that the quality of the currently available KSDT fit for fxc(rs, 𝜃, 𝜉) remains to be tested for 𝜉 > 0. The

accuracy of this parameterization is limited by (a) the quality of the RPIMC data (for the spin-polarized UEG (𝜉 = 1), they are

afflicted with a substantially larger nodal error than for the unpolarized case that we considered in the present paper, see Ref.

[22]), and (b) by the quality of the PDW results[37] that have been included as the only input to the KSDT fit for 0 < 𝜉 < 1

at finite 𝜃. Therefore, we conclude that the construction of a new accurate function fxc(rs, 𝜃, 𝜉) is still of high importance for

thermal DFT and semi-analytical models, for comparisons with experiments, but also for explicitly time-dependent approaches

such as time-dependent DFT and quantum hydrodynamics.[60,61]
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5.2 Parametrization of the Exchange–Correlation Free En-
ergy

In this section, the major result of this thesis is presented:

a complete parametrization of the exchange–correlation free energy with respect
to density, temperature, and spin-polarization2, fxc(rs,θ ,ξ ).

Since all thermodynamic properties can be expressed as derivatives of the total free
energy3, knowledge of fxc gives access to all thermodynamic properties, and thus, is indeed
equivalent to a complete thermodynamic description of the UEG. In addition, as already men-
tioned before, the functional fxc(rs,θ ,ξ ) constitutes a key input for many other applications,
most importantly, for finite temperature DFT [84] calculations of real warm dense matter
systems [85, 86, 157–160] and for models of astrophysical objects [89–93, 161].

In general, most QMC methods do not allow for the direct computation of fxc from a
single simulation. However, according to the coupling constant integration formula, fxc

is directly linked to the interaction energy4, v. Therefore, the common strategy is to use
a suitable parametrization5 of fxc(rs,θ ,ξ ), which, preferably, fulfills all known limits by
design. The free parameters are then determined from a fit to the interaction energy. Naturally,
the quality of the thus obtained functional for fxc crucially depends on the utilized data set
for v.

Up to this point, we had solely obtained QMC results in thermodynamic limit for the
unpolarized (ξ = 0) UEG down to half the Fermi temperature (θ = 0.5). Thus, there were two
remaining issues preventing us from constructing a complete parametrization of fxc(rs,θ ,ξ ).
First, we were lacking the data for the polarized (ξ = 1) case, as well as those for intermediate
polarizations (ξ = 1/3,0.6). Despite the enormous computational cost to perform all the
CPIMC and PB-PIMC calculations on a sufficiently dense rs −θ -grid and to extrapolate
each of these points to the thermodynamic limit, there was no serious obstacle regarding
this part. However, there was a second issue, which was serious indeed: both of our QMC
methods suffer from a severe sign problem at low temperatures. In particular, PB-PIMC is
not applicable below half the Fermi temperature, thus leaving open a gap to the well-known

2The spin-polarization of the UEG is defined by ξ = (N↑−N↓)/(N↑−N↓). Having a parametrization of fxc
with respect to the polarization is necessary for DFT calculations in the local spin-density approximation.

3Note that, according to the definition of fxc for the UEG, the total free energy is given by f = f0 + fxc with
f0 being the free energy of the ideal system, which is straightforwardly evaluated, see e.g. Ref. [156].

4Since fxc is linked to various kinds of energies (e.g. the kinetic energy) by standard thermodynamic
relations, all of these can in principle be used as input for the construction of a functional.

5Many different functional forms for such a parametrization have been employed. We found that the one
proposed by Ichimaru et al. [97, 153] is most suitable.
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ground state (θ = 0). To solve this problem we again employed the STLS scheme, which
was known to yield good results for the potential energy. More precisely, in the range
0 < θ ≤ 0.25, we added a weak temperature correction that was computed within the STLS
approximation onto the exact ground state QMC results [44], and thereby accurately closed
this gap.

Being equipped with this complete data set for the potential energy, in the following
paper6, Ref. [47], we parametrized fxc(rs,θ ,ξ ) over the entire warm dense matter regime with
an unprecedented accuracy of ∼ 0.3%. As a verification of the consistency, and to confirm
our data in the range 0 < θ < 0.25, we performed various cross-checks with additional,
independent CPIMC and PB-PIMC data that were not included in the actual construction of
fxc.

The comparison to previous functionals revealed that our new functional is superior by
an order of magnitude, not only with respect to its relative accuracy (∼ 0.3%), but also
regarding its consistency (in the context of known thermodynamic relations). Also, we
found qualitative differences in the spin-dependency of fxc, which, due to the former lack of
appropriate data for intermediate ξ , had been unknown.

For completeness, I note that the STLS-temperature correction and the specifics regarding
the construction of the functional for fxc(rs,θ ,ξ ) were worked out together with T. Dornheim,
in equal parts.

Finally, I mention that, in order to properly preform the finite-size correction of our
QMC data for intermediate ξ , we had to implement the STLS algorithm for intermediate ξ

ourselves.

6S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, Phys. Rev. Lett. 119,
135001 (2017). Copyright by the American Physical Society (2017).
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In a recent Letter [T. Dornheim et al., Phys. Rev. Lett. 117, 156403 (2016)], we presented the first
quantum Monte Carlo (QMC) results for the warm dense electron gas in the thermodynamic limit.
However, a complete parametrization of the exchange-correlation free energy with respect to density,
temperature, and spin polarization remained out of reach due to the absence of (i) accurate QMC results
below θ ¼ kBT=EF ¼ 0.5 and (ii) QMC results for spin polarizations different from the paramagnetic
case. Here we overcome both remaining limitations. By closing the gap to the ground state and by
performing extensive QMC simulations for different spin polarizations, we are able to obtain the first
completely ab initio exchange-correlation free energy functional; the accuracy achieved is an unprec-
edented ∼0.3%. This also allows us to quantify the accuracy and systematic errors of various previous
approximate functionals.

DOI: 10.1103/PhysRevLett.119.135001

The past decade has witnessed a rapid growth of interest
in matter under extreme excitation or compression, as in
laser-excited solids [1] and inertial confinement fusion
targets [2–5]. Astrophysical examples such as white dwarf
atmospheres and planet interiors [6,7] provide further
motivation. More down-to-earth examples appear in radi-
ation damage cascades in the walls of fission or fusion
reactors [8]. Plasmonic catalysts use hot electrons
created by the decay of plasmons in otherwise cold metallic
nanoparticles to accelerate chemical reactions [9,10].
Systems such as these, with thermal energies kBT compa-
rable to the Fermi energy EF and densities comparable to or
greater than those of ordinary solids, are said to be in the
“warm dense matter” (WDM) regime [11]. Because the
degeneracy parameterΘ ¼ kBT=EF is of the order of unity,
neither the Pauli exclusion principle nor electronic excita-
tions can be ignored and there are no small parameters in
which to expand. This makes WDM challenging to under-
stand theoretically.
The density functional theory (DFT) is by far the most

important computational approach used to study molecules
and solids at low temperatures [12–14] but relies for its
success on the availability of good approximations to the
unknown exchange-correlation (XC) energy functional. The
development in the early 1980s of accurate parametrizations
[15,16] of the ground-state local density approximation to
this functional played a decisive role in the ensuing rise of
the DFT.
The DFTwas generalized to finite temperatures [17] soon

after its invention, but applications to warm dense systems
are a recent development. In part, this is because the finite-
temperature equivalent of the local density approximation is

not known accurately. This Letter presents the first accurate
and fully ab initio calculation and parametrization of the XC
free energy per electron, fxc, as a functional of the temper-
ature, density, and spin polarization, covering the entire
range of conditions of interest in applications. The result is
the natural generalization of Perdew and Zunger’s famous
zero-temperature functional [16]. It is key input not only to
the thermal DFT [17–19] but also for quantum hydro-
dynamics [20,21] and the construction of equations of state
for astrophysical objects [22–24].
The local density approximation is based on properties

of the uniform electron gas (UEG), one of the seminal
model systems in physics [25]. Studies of the UEG led to
key insights such as the Fermi liquid theory [26,27], the
quasiparticle picture of collective excitations [28,29], and
the theory of superconductivity [30]. Accurate parametri-
zations of its ground-state properties [15,16,31–34] based
on quantum Monte Carlo (QMC) simulations [35–39] have
sparked many applications [40–42] in addition to facilitat-
ing the remarkable successes of the DFT [12–14].
QMC methods for the warm dense electron gas are much

less developed, so the first parametrizations of fxc were
based instead on uncontrolled approximations such as
interpolations between known limits [43], semiempirical
quantum-classical mappings [41,44], and dielectric (linear
response) methods [45–49]. To overcome the severe limi-
tations imposed by the fermion sign problem [50,51], the
pioneering QMC simulations of the UEG by Brown et al.
[52] used the approximate restricted path integral
Monte Carlo (RPIMC) approach, in which the nodal
structure of the density matrix is assumed. These data were
used as input for several parametrizations of fxc [46,53,54],
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the most sophisticated being that of Karasiev, Sjostrom,
Dufty, and Trickey (KSDT) [53], but were later shown to be
inaccurate [55]. The errors were ∼10% near rs ¼ 1, where
rs ≡ r̄=aB, r̄ is the radius of a sphere containing one electron
on average, and aB is the Bohr radius. Unsurprisingly, the
aforementioned models for fxc disagree substantially
(cf. Fig. 1) in the WDM regime [56].
This unsatisfactory situation has sparked much recent

work on finite-temperature fermionic QMC algorithms
[55,57–65]. By developing three complementary new
methods—configuration PIMC [55], permutation blocking
PIMC [62,63], and density matrix QMC [64,65]—we are
now able to overcome the sign problem in a broad
parameter range without relying on a fixed-node approxi-
mation [66,67]. In a recent Letter [61], we presented an
improved procedure to extrapolate the QMC results to
the thermodynamic limit and thereby obtained data for the
unpolarized UEG with an unprecedented accuracy of the
order of 0.1%. At that time, however, the construction of a
complete parametrization of fxc with respect to rs, θ, and
ξ ¼ ðN↑ − N↓Þ=ðN↑ þ N↓Þ, where N↑ (N↓) is the number
of spin-up (spin-down) electrons, was not possible. The
fermion sign problem prevented us from performing QMC
simulations for 0 < θ < 0.5. Further, we had no results for
spin polarizations other than ξ ¼ 0. The polarization
dependence of fxc is used, for example, in DFT calcu-
lations in the local spin-density approximation, which
require the evaluation of fxc at arbitrary ξ.

Here we solve these problems and present a new func-
tional. Inspired by Tanaka and Ichimaru [48,49] and the
impressive accuracy of the Singwi-Tosi-Land-Sjölander
(STLS) formalism [45,46] in the warm dense regime
[56], we bridge the gap between θ ¼ 0 and θ ¼ 0.25 by
adding the (small) temperature dependence of the STLS
interaction energy,

ΔSTLS
θ ðrs; θ; ξÞ ≔ vSTLSðrs; θ; ξÞ − vSTLSðrs; 0; ξÞ; ð1Þ

to the ground-state QMC interaction energy, which is
known very accurately [39]. Second, we carry out extensive
QMC simulations of the warm dense UEG for ξ ¼ 1=3, 0.6,
and 1 (179 data points in the ranges 0.1 ≤ rs ≤ 20 and
0.5 ≤ θ ≤ 8; see Table III in the Supplemental Material
[68]). In combination with the results from Ref. [61], this
allows us to construct the first complete ab initio para-
metrization of the XC free energy, fxcðrs; θ; ξÞ, and to attain
an unprecedented accuracy of ∼0.3%. The high quality of
our new results is verified by various cross-checks and
compared to the widely used parametrizations by KSDT
[53], Perrot and Dharma-wardana [44], Ichimaru, Iyetomi,
and Tanaka (IIT [48,49]), and the recent improved dielectric
approach by Tanaka [47].
Parametrization of fxc for ξ ¼ 0 and ξ ¼ 1.—Following

Refs. [48,49], we obtain fξxc from our QMC data for
the electron-electron interaction energy vξðrs; θÞ via the
coupling-constant integration formula

FIG. 1. Temperature dependence of the XC free energy and potential energy—the top row shows fxc (dashed lines) from this work
(red), KSDT (blue [53]), IIT (black [48,49]), Tanaka (green [47]), and Perrot–Dharma-wardana (yellow dashed line and triangles, PDW
[44]), as well as the corresponding interaction energy v (solid lines) from this work, KSDT, and the restricted PIMC results by Brown
et al. (blue dots [52]). The red rhombs correspond to ground-state QMC results plus a temperature correction function obtained from the
STLS theory. The inset corresponds to an enlargement of the gray box. The bottom row displays the relative deviations of the different
models of fxc with respect to our new parametrization.
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fξxcðrs; θÞ ¼
1

r2s

Z
rs

0

dr̄sr̄svξðr̄s; θÞ ð2Þ

⇒ vξðrs; θÞ ¼ 2fξxcðrs; θÞ þ rs
∂fξxcðrs; θÞ

∂rs
����
θ

: ð3Þ

We employ Padé representations of f1xc and f0xc
(see Supplemental Material [68], which includes
Refs. [69,70]) and fit the right-hand side of Eq. (3) to our
combined data for v1;0. To ensure the correct ground-state
behavior, we note that limθ→0f

ξ
xcðrs; θÞ ¼ eξxcðrs; 0Þ and fit

the zero-temperature limit of our Padé formula to the recent
ground-state QMC results of Spink, Needs, and Drummond
[39]. In addition, the classical Debye-Hückel limit for large
θ and the Hartree-Fock limit fHFxc ðrs; θÞ ¼ aðθÞ=rs ≡
aHFðθÞ=rs [71] for rs → 0 are exactly incorporated.
The new results for fξxcðrs; θÞ are depicted in Fig. 1 (red

dashed line) and compared to various approximations.
While all curves exhibit a qualitatively similar behavior
with respect to the temperature, there are deviations of 5%–
12% for intermediate θ (bottom row). The IIT parametri-
zation exhibits the smallest errors when ξ ¼ 0, whereas, for
ξ ¼ 1, the Perrot–Dharma-wardana points are superior,
although the IIT curve is of a similar quality. The recent
parametrization by Tanaka (green) does not constitute an
improvement compared to IIT. Finally, the KSDT curves are
relatively accurate at low θ but systematically deviate for
θ ≳ 0.5, especially at a high density (rs ≲ 4 [68]). The
deviation ofΔf=f ∼ 10% at itsmaximumcan be traced to an
inappropriate finite-size correction of the QMC data by
Brown et al. [52]; see Ref. [61]. The deviations are even
more severe for ξ ¼ 1, in agreement with previous findings
about the systematic bias in the RPIMC input data [66,67]
and with recent investigations [47,49] of fxc itself. Also
notice the pronounced bump off0xc occurring for large rs and
a low temperature (see the inset in the middle panel), which
induces an unphysical negative total entropy [72] in the
KSDT fit.
Consider now our results for the interaction energy,

shown as red rhombs and crosses in Fig. 1. We observe a
smooth connection between our QMC data for θ ≥ 0.5
(crosses) and the temperature-corrected ground-state data
(rhombs) in all three parts of the figure. The connection is
equally smooth at all other densities investigated. The solid
red line depicts the fit to vξ [Eq. (3)]. The Padé ansatz
proves an excellent fitting function, able to reproduce the
input data (vξ) for ξ ¼ 0 (ξ ¼ 1) with a mean and maximum
deviation of 0.12% and 0.68% (0.17% and 0.63%),
respectively [73].
To further illustrate the high quality of our XC functional

and to verify the accuracy of the applied temperature
correction at low θ, we carried out extensive new QMC
simulations for the XC internal energy per particle, exc, for
rs ¼ 1 and ξ ¼ 1, over the entire range of temperatures
down to θ ¼ 0.0625 (see Ref. [68] for details). The

finite-size-corrected data are compared to exc reconstructed
from our parametrization of fξxcðrs; θÞ via [53]

eξxcðrs; θÞ ¼ fξxcðrs; θÞ − θ
∂fξxcðrs; θÞ

∂θ
����
rs

: ð4Þ

This allows us to gauge not only the accuracy of fxc itself
but also its temperature derivative, which is directly linked
to the XC entropy. The results are presented in Fig. 2 and
demonstrate excellent agreement between our parametriza-
tion (red solid line) and the independent new QMC data
(red dots) over the entire range of θ. Since the new data for
exc were not used for our fit, this constitutes a strong
confirmation of the accuracy of the low-temperature results
obtained by using the STLS theory to correct the T ¼ 0 XC
energy and demonstrates the consistency of our paramet-
rization. Other functionals are much less consistent (see
blue symbols and line) [73,74].
Spin interpolation.—To obtain an accurate parametriza-

tion of fxc at arbitrary spin polarization 0 ≤ ξ ≤ 1, we
employ the ansatz [44]

fxcðrs; θ; ξÞ ¼ f0xcðrs; θ0Þ þ ½f1xcðrs; θ0 · 2−2=3Þ
− f0xcðrs; θ0Þ�Φðrs; θ0; ξÞ; ð5Þ

with θ0 ¼ θð1þ ξÞ2=3. The form and fitting procedure used
for the interpolation function Φðrs; θ0; ξÞ are described in
the Supplemental Material [68]. Interestingly, we find that a
single fitting parameter is sufficient to capture the full
temperature dependence of Φ for all values of ξ, with a
mean and maximum deviation from the QMC data at
intermediate ξ of 0.15% and 0.8%, respectively.
Note that this is the first time that Φðrs; θ; ξÞ has been

obtained accurately from ab initio data. A comparison of the

FIG. 2. Cross-check of our parametrization (ξ ¼ 1, rs ¼ 1).
The XC energy per electron (red line), as calculated from our
Padé function for fxc (dashed line), is compared to new,
independent finite-size-corrected QMC data (red dots) [68].
While our functional has been constructed solely using the
interaction energy v [cf. Eq. (3)], the KSDT curve [53] (solid
blue) was fitted to the restricted PIMC data [52] for exc (blue
circles, BCDC).
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ξ dependence of fxc with various earlier parametrizations is
depicted in Fig. 3. The IITandTanaka curves, which utilize a
different functional form for the spin interpolation [75],
exhibit the largest deviations at intermediate temperatures.
Our spin-interpolation function has the same form [68] as
that employed in the KSDT parametrization. However, due
to the absence of restricted PIMC data for intermediate ξ,
KSDT used the classical mapping of Ref. [44] to determine
the coefficients ofΦ. Overall, the KSDT fit is closest to our
parametrization at low θ, while for θ > 1 the IIT curve is
more accurate. Nevertheless, we conclude that no previous
model satisfactorily captures the ξ dependence uncovered by
our data.
Summary and discussion.—In summary, we have pre-

sented the first accurate and fully ab initio XC free energy
functional for the UEG at WDM conditions, achieving an
unprecedented precision of Δfxc=fxc ∼ 0.3%. To cover the
entire parameter range relevant to experiments, we carried
out extensive QMC simulations for multiple spin polar-
izations at 0.1 ≤ rs ≤ 20 and 0.5 ≤ θ ≤ 8. In addition, we
obtained accurate data for 0.0625 ≤ θ ≤ 0.25 by combin-
ing ground-state QMC results with a small STLS-based
temperature correction. All of our results are tabulated in
the Supplemental Material [68] and provide benchmarks
for the development of new theories and simulation
schemes as well as for the improvement of existing models.
The first step in our construction of the complete XC

functional, fxcðrs; θ; ξÞ, was to parametrize the completely
polarized and unpolarized cases. This was achieved by
fitting the right-hand side of Eq. (3) to our new data for the
interaction energy, vξ, for ξ ¼ 0 and ξ ¼ 1. The resulting
parametrization reproduces the input data with a mean
deviation of 0.17%, better by at least an order of magnitude
than the KSDT fit. As an additional test of our parametriza-
tion, we performed independent QMC calculations of exc
(the XC energy per electron) for a wide range of values of θ

down to θ ¼ 0.0625 and compared the results with values of
exc calculated using our functional for fxc. The striking
agreement obtained constitutes strong evidence for the
accuracy of the STLS-based corrections used at a low
temperature and for the consistency of our work, in general.
Equipped with our new XC functional, we have also

investigated the systematic errors of previous parametri-
zations. Overall, the functional by Ichimaru, Iyetomi, and
Tanaka [48,49] deviates the least from our results, although
at ξ ¼ 1 the classical mapping results by Perrot and
Dharma-wardana [44] are similarly accurate. The KSDT
parametrization exhibits large deviations exceeding 10%at
a high temperature and density. At low temperatures,
however, it performs surprisingly well, in part because it
does not reproduce the systematic biases in the restricted
PIMC data on which it was based.
The construction of the first ab initio spin-interpolation

function Φðrs; θ; ξÞ at WDM conditions constitutes the
capstone of this work. Surprisingly, we find that a one-
parameter fit is sufficient to capture the whole temperature
dependence of the spin-interpolation function. Furthermore,
we show that no previously suggested spin interpolation
gives the correct ξ dependence throughout theWDM regime.
We are confident that our extensive QMC data set and

accurate parametrization of the thermodynamic functions of
the warm dense electron gas will be useful in many
applications. Given recent developments in the thermal
Kohn-Sham DFT [76,77], time-dependent Kohn-Sham
DFT [78], and orbital-free DFT [79,80], our parametrization
of fxc is directly applicable for calculations in the local spin-
density approximation. Furthermore, our functional can be
used as a basis for gradient expansions [81,82] or as a
benchmark for nonlocal functionals based on the fluctuation-
dissipation theorem [83]. In addition, it can be straightfor-
wardly incorporated into widely used approximations in
quantum hydrodynamics [20,21] or for the equations of state
of astrophysical objects [22–24]. Finally, our XC functional
should help resolve several exciting and controversial issues
in warm dense matter physics, such as the existence and
locations of the phase transitions in warm dense hydrogen
[84–86] or details of hydrogen-helium demixing [87].
Computational implementations of our XC functional (in

FORTRAN, C++, and PYTHON) are available online [88].
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A. Parametrization of the exchange correlation
free energy

To represent the XC free energy for the spin-polarized
and unpolarized case, f1xc(rs, θ) and f0xc(rs, θ), we use
Padé formulae as introduced in Ref. [1]

fξxc(rs, θ) = − 1

rs

ωξa(θ) + bξ(θ)
√
rs + cξ(θ)rs

1 + dξ(θ)
√
rs + eξ(θ)rs

, (S.1)

where θ = kBT/EF , rs = r̄/aB, ξ = (N↑ − N↓)/(N↑ +
N↓), ω0 = 1 and ω1 = 21/3, and a(θ) denotes the Hartree-
Fock limit as parametrized in Ref. [2]

a(θ) =0.610887 tanh (θ−1)×
0.75 + 3.04363θ2 − 0.09227θ3 + 1.7035θ4

1 + 8.31051θ2 + 5.1105θ4
.

The coefficients b, c, d, e are again Padé formulae with
respect to temperature

bξ(θ) = tanh

(
1√
θ

)
bξ1 + bξ2θ

2 + bξ3θ
4

1 + bξ4θ
2 + bξ5θ

4

cξ(θ) =
[
cξ1 + cξ2 · exp

(
−θ−1

)]
eξ(θ)

dξ(θ) = tanh

(
1√
θ

)
dξ1 + dξ2θ

2 + dξ3θ
4

1 + dξ4θ
2 + dξ5θ

4

eξ(θ) = tanh

(
1

θ

)
eξ1 + eξ2θ

2 + eξ3θ
4

1 + eξ4θ
2 + eξ5θ

4
.

For completeness, we note that in Ref. [1], the parametriza-
tion from Eq. (S.1) was used for the interaction energy v
instead of fxc.

To parameterize fxc as a function of the spin polariza-
tion 0 ≤ ξ ≤ 1, we employ the ansatz [3]

fxc(rs, θ, ξ) = f0xc(rs, θ
0) +

[
f1xc(rs, θ

0 · 2−2/3)

−f0xc(rs, θ0)
]
Φ(rs, θ

0, ξ) , (S.2)

with θ0 = θ(1 + ξ)2/3 and the interpolation function

Φ(rs, θ, ξ) =
(1 + ξ)α(rs,θ) + (1− ξ)α(rs,θ) − 2

2α(rs,θ) − 2
, (S.3)

α(rs, θ) = 2− h(rs)e
−θλ(rs,θ),

h(rs) =
2/3 + h1rs
1 + h2rs

, λ(rs, θ) = λ1 + λ2θr
1/2
s .

First, h1 and h2 are obtained by fitting fxc(rs, 0, ξ) to the
ground state data of Ref. [4] for ξ = 0.34 and ξ = 0.66.
Subsequently, we use our extensive new QMC data set
for vξ(rs, θ) [107 data points for ξ = 1/3 and ξ = 0.6,
see Tab. III] to determine λ1 and λ2. Interestingly, we
find that the spin interpolation depends only very weakly
on θ, i.e., λ2 vanishes within the accuracy of the fit and,
thus, we set λ2 = 0.

All coefficients are listed in Tabs. I and II.

Table I: Parameters entering fξxc [cf. Eq. (S.1)], for ξ = 0 and
ξ = 1.

ξ = 0 ξ = 1

b1 0.3436902 0.84987704
b2 7.82159531356 3.04033012073
b3 0.300483986662 0.0775730131248
b4 15.8443467125 7.57703592489

b5 b3(3/2)1/2ω0

(
4
9π

)−1/3
b3(3/2)1/2ω1

(
4
9π

)−1/3

c1 0.8759442 0.91126873
c2 -0.230130843551 -0.0307957123308
d1 0.72700876 1.48658718
d2 2.38264734144 4.92684905511
d3 0.30221237251 0.0849387225179
d4 4.39347718395 8.3269821188
d5 0.729951339845 0.218864952126
e1 0.25388214 0.27454097
e2 0.815795138599 0.400994856555
e3 0.0646844410481 2.88773194962
e4 15.0984620477 6.33499237092
e5 0.230761357474 24.823008753

Table II: Parameters entering the spin-interpolation function
Φ(rs, θ, ξ) [cf. Eq. (S.3)].

h1 -3.18747258
h2 −7.74662802
λ1 −1.85909536
λ2 0

B. STLS

The static structure factor (SF) is found by the
fluctuation-dissipation theorem as a sum over the Matsub-
ara frequencies for the polarizabilities of the interacting
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system as

S(k) =
−1

βn

∞∑

l=−∞

1

vk

(
1

ε(k, zl)
− 1

)
, (S.4)

with the particle density n, the Matsubara frequencies
zl = 2πil/βh̄, and the Fourier transform of the Coulomb
potential vk = 4π/k2. Following [7], the Singwi-Tosi-
Land-Sjölander (STLS) SF is computed from the dielectric
function

ε(k, ω) = 1− vkχ0(k, ω)

1 +G(k)vkχ0(k, ω)
, (S.5)

with χ0(q, ω) being the finite-temperature polarizability
of the non-interacting UEG and G the static local field
correction in STLS approximation

G(k) =
−1

n

∫
dk′

(2π)3
k · k′
k′2

[S(k− k′)− 1] . (S.6)

The STLS SF is then obtained via a self-consistent solu-
tion of Eq. (S.4), (S.5), and (S.6), which straight-forwardly
allows to compute the corresponding interaction energy

vSTLS =
1

π

∫ ∞

0

dk[S(k)− 1] . (S.7)

C. Finite-size correction of QMC data

Since QMC simulations are only feasible for a finite
particle number N , it is necessary to extrapolate the
results to the thermodynamic limit (TDL), N →∞. This
is shown for the interaction energy in Fig. S1, where we
plot v versus N−1 for the partially spin-polarized electron
gas with rs = 1, θ = 4 and ξ = 0.6. The green crosses
correspond to the original QMC data which, evidently, are
strongly dependent on N . Therefore, we require a finite-
size correction (FSC) ∆VN that, in principle, should allow
for the exact TDL using only a single QMC simulation:

v =
V QMC
N

N
+

∆VN
N

. (S.8)

The first estimate for ∆VN at finite T was proposed
by Brown et al. [5] (BCDC). However, the results of
adding the BCDC correction to the QMC data (the yellow
asterisks in Fig. S1) are still not converged with N and,
therefore, an improved approach is needed. In a recent
Letter [6], we have shown that the main contribution to
∆VN is a discretization error in the integration of the static
structure factor S(k) that can be accurately estimated
by invoking the Singwi-Tosi-Land-Sjölander formalism [7]
(hereafter denoted FS-STLS). The thus corrected data
are depicted as the black squares. Evidently, simply
adding the new FSC onto the bare QMC interaction
energies immediately improves the accuracy by two orders
of magnitude. The small residual error is due to an
intrinsic N -dependence in the QMC results for S(k) itself
and can be removed by an additional extrapolation, the
results of which is given by the red rhomb (for additional
details see Refs. [6, 8]).
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Figure S1: Top: Finite-size correction of the interaction
energy for θ = 4, rs = 1, and ξ = 0.6. The green crosses
correspond to the raw QMC data, the yellow asterisks are
obtained by adding the FSC by Brown et al. [5] (BCDC), and
the black squares by adding the recent FSC by Dornheim et
al. [6] (FS-STLS). The red rhomb depicts the final result for
the interaction energy obtained by an additional extrapolation
of all residual errors. Bottom: Magnified part of the top
panel.

D. QMC results for the XC energy

To calculate the finite-size correction for exc used in
Fig. 2 of the main text, we first use the exact relationship
between the exchange-correlation free energy and the
potential energy:

fxc =
1

r2s

∫ rs

0

drsrsv(rs, θ). (S.9)

This allows us to write the finite size correction for fxc as

∆fxc(rs, θ) =
1

r2s

∫ rs

0

dr̄sr̄s∆v(r̄s, θ), (S.10)

and, inserting this correction into Eq. (6) of the main
text, we find

∆exc(rs, θ) = ∆fxc(rs, θ)− θ
(
∂∆fxc(rs, θ)

∂θ

)

rs

. (S.11)

Thus, we first evaluate ∆fxc, before inserting this correc-
tion into Eq. (S.11), where the derivative term is evaluated
numerically. More details of this procedure will be pre-
sented in a separate publication. For completeness, we
mention that for 0.0625 ≤ θ ≤ 0.5 we have performed an
additional twist-averaging of the QMC data as described
in Refs. [9, 10].
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E. Data tables

All interaction energies given in Table III have been
obtained by performing QMC simulations for different N ,
adding the FS-STLS correction, and removing any resid-
ual errors by an additional extrapolation. Furthermore,
Fig. S2 shows our entire data set and the resulting fit as
well as a comparison to the KSDT parametrization [11]
for both the potential energy v and the XC free energy
fxc.
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Table III: Finite-size corrected potential energy from finite
temperature QMC simulations.

ξ θ rs v · rs δv · rs

0 8.00 20.0 −0.604 414 0.000 094
0 4.00 20.0 −0.677 788 0.000 041
0 2.00 20.0 −0.726 928 0.000 022
0 1.00 20.0 −0.752 044 0.000 020
0 0.75 20.0 −0.752 948 0.000 050
0 0.75 10.0 −0.710 858 0.000 052
0 0.75 4.0 −0.637 257 0.000 267
0 0.75 2.0 −0.570 146 0.000 821
0 0.75 1.0 −0.503 977 0.002 348
0 0.75 0.5 −0.443 621 0.000 918
0 0.75 0.3 −0.403 418 0.000 537
0 0.75 0.1 −0.335 412 0.000 230
0 0.50 20.0 −0.756 936 0.000 184

1/3 8.00 20.0 −0.580 376 0.000 120
1/3 8.00 10.0 −0.484 172 0.000 294
1/3 8.00 6.0 −0.411 857 0.000 449
1/3 8.00 4.0 −0.357 279 0.000 398
1/3 8.00 2.0 −0.274 122 0.000 604
1/3 8.00 1.0 −0.209 039 0.000 126
1/3 8.00 0.5 −0.158 207 0.000 089
1/3 8.00 0.3 −0.129 225 0.000 092
1/3 8.00 0.1 −0.085 583 0.000 081
1/3 4.00 20.0 −0.659 796 0.000 055
1/3 4.00 10.0 −0.575 249 0.000 103
1/3 4.00 6.0 −0.506 857 0.000 226
1/3 4.00 4.0 −0.451 411 0.000 177
1/3 4.00 2.0 −0.362 040 0.000 303
1/3 4.00 1.0 −0.285 290 0.000 262
1/3 4.00 0.5 −0.222 982 0.000 083
1/3 4.00 0.3 −0.186 455 0.000 060
1/3 4.00 0.1 −0.129 779 0.000 045
1/3 2.00 20.0 −0.716 060 0.000 022
1/3 2.00 10.0 −0.648 594 0.000 050
1/3 2.00 6.0 −0.589 913 0.000 100
1/3 2.00 4.0 −0.540 310 0.000 082
1/3 2.00 2.0 −0.453 908 0.000 271
1/3 2.00 1.0 −0.373 593 0.000 539
1/3 2.00 0.5 −0.305 016 0.000 481
1/3 2.00 0.3 −0.262 926 0.000 177
1/3 2.00 0.1 −0.195 205 0.000 098
1/3 1.00 20.0 −0.746 370 0.000 016
1/3 1.00 10.0 −0.695 351 0.000 060
1/3 1.00 6.0 −0.649 843 0.000 125
1/3 1.00 4.0 −0.609 682 0.000 275
1/3 1.00 2.0 −0.533 920 0.000 330
1/3 1.00 1.0 −0.461 622 0.000 655
1/3 1.00 0.5 −0.395 233 0.000 664
1/3 1.00 0.3 −0.353 105 0.000 245
1/3 1.00 0.1 −0.282 035 0.000 135
1/3 0.75 20.0 −0.752 258 0.000 024
1/3 0.75 10.0 −0.706 095 0.000 112
1/3 0.75 6.0 −0.665 854 0.000 305
1/3 0.75 4.0 −0.629 244 0.000 194
1/3 0.75 2.0 −0.561 332 0.000 627
1/3 0.75 1.0 −0.491 727 0.001 049
1/3 0.75 0.5 −0.430 284 0.000 834
1/3 0.75 0.3 −0.389 745 0.000 636

ξ θ rs v · rs δv · rs

1/3 0.75 0.1 −0.321 438 0.000 135
1/3 0.50 20.0 −0.756 208 0.000 265
1/3 0.50 10.0 −0.717 354 0.001 175
1/3 0.50 6.0 −0.675 084 0.001 677
1/3 0.50 4.0 −0.647 064 0.000 515
1/3 0.50 2.0 −0.586 194 0.002 044
1/3 0.50 1.0 −0.525 908 0.002 428
1/3 0.50 0.5 −0.472 038 0.001 061
1/3 0.50 0.3 −0.436 211 0.000 508
1/3 0.50 0.1 −0.374 860 0.000 130
0.6 8.00 20.0 −0.564 678 0.000 130
0.6 8.00 10.0 −0.467 239 0.000 265
0.6 8.00 6.0 −0.396 677 0.000 580
0.6 8.00 4.0 −0.342 476 0.000 305
0.6 8.00 2.0 −0.262 646 0.000 269
0.6 8.00 1.0 −0.200 652 0.000 122
0.6 8.00 0.5 −0.152 350 0.000 110
0.6 8.00 0.3 −0.124 913 0.000 116
0.6 8.00 0.1 −0.084 291 0.000 419
0.6 4.00 20.0 −0.647 332 0.000 054
0.6 4.00 10.0 −0.560 424 0.000 094
0.6 4.00 6.0 −0.491 593 0.000 175
0.6 4.00 4.0 −0.437 054 0.000 291
0.6 4.00 2.0 −0.349 670 0.000 316
0.6 4.00 1.0 −0.276 092 0.000 232
0.6 4.00 0.5 −0.216 875 0.000 074
0.6 4.00 0.3 −0.182 187 0.000 253
0.6 4.00 0.1 −0.128 691 0.000 238
0.6 2.00 20.0 −0.708 140 0.000 025
0.6 2.00 10.0 −0.638 071 0.000 060
0.6 2.00 6.0 −0.578 400 0.000 092
0.6 2.00 4.0 −0.528 572 0.000 173
0.6 2.00 2.0 −0.443 764 0.000 460
0.6 2.00 1.0 −0.365 352 0.000 547
0.6 2.00 0.5 −0.300 452 0.000 180
0.6 2.00 0.3 −0.260 321 0.000 110
0.6 2.00 0.1 −0.196 527 0.000 285
0.6 1.00 20.0 −0.742 986 0.000 015
0.6 1.00 10.0 −0.690 110 0.000 058
0.6 1.00 6.0 −0.643 421 0.000 551
0.6 1.00 4.0 −0.602 959 0.000 130
0.6 1.00 2.0 −0.529 821 0.000 309
0.6 1.00 1.0 −0.458 146 0.000 503
0.6 1.00 0.5 −0.395 825 0.001 016
0.6 1.00 0.3 −0.354 692 0.000 300
0.6 1.00 0.1 −0.287 919 0.000 131
0.6 0.75 20.0 −0.750 356 0.000 017
0.6 0.75 10.0 −0.703 143 0.000 485
0.6 0.75 6.0 −0.661 680 0.000 177
0.6 0.75 4.0 −0.624 412 0.000 407
0.6 0.75 2.0 −0.559 316 0.000 421
0.6 0.75 1.0 −0.491 014 0.002 800
0.6 0.75 0.5 −0.433 163 0.000 603
0.6 0.75 0.3 −0.394 409 0.000 533
0.6 0.75 0.1 −0.329 384 0.000 093
0.6 0.50 20.0 −0.755 894 0.000 093
0.6 0.50 10.0 −0.714 236 0.001 111
0.6 0.50 6.0 −0.678 234 0.000 645
0.6 0.50 2.0 −0.589 876 0.000 620



5

ξ θ rs v · rs δv · rs

0.6 0.50 1.0 −0.531 667 0.000 524
0.6 0.50 0.5 −0.480 832 0.001 670
0.6 0.50 0.3 −0.445 028 0.000 740
0.6 0.50 0.1 −0.386 802 0.000 116

1 8.00 0.1 −0.086 133 0.000 027
1 8.00 0.3 −0.124 165 0.000 047
1 8.00 0.5 −0.149 504 0.000 047
1 8.00 1.0 −0.194 203 0.000 066
1 8.00 2.0 −0.252 452 0.000 303
1 8.00 4.0 −0.327 037 0.000 261
1 8.00 6.0 −0.378 252 0.000 426
1 8.00 8.0 −0.417 303 0.000 404
1 8.00 10.0 −0.448 115 0.000 486
1 8.00 20.0 −0.544 914 0.000 177
1 4.00 0.1 −0.135 554 0.000 036
1 4.00 0.3 −0.184 652 0.000 070
1 4.00 0.5 −0.216 525 0.000 082
1 4.00 1.0 −0.270 858 0.000 615
1 4.00 2.0 −0.339 262 0.000 172
1 4.00 4.0 −0.421 696 0.000 232
1 4.00 6.0 −0.474 381 0.000 083
1 4.00 8.0 −0.512 738 0.000 137
1 4.00 10.0 −0.542 639 0.000 076
1 4.00 20.0 −0.631 370 0.000 078
1 2.00 0.1 −0.211 965 0.000 104
1 2.00 0.3 −0.269 952 0.000 134
1 2.00 0.5 −0.306 107 0.000 140
1 2.00 1.0 −0.365 728 0.000 374
1 2.00 2.0 −0.436 766 0.000 385
1 2.00 4.0 −0.516 652 0.000 170
1 2.00 6.0 −0.564 960 0.000 167
1 2.00 8.0 −0.599 070 0.000 084
1 2.00 10.0 −0.624 687 0.000 078
1 2.00 20.0 −0.697 464 0.000 038
1 1.00 0.1 −0.318 360 0.000 133
1 1.00 0.3 −0.376 986 0.000 132
1 1.00 0.5 −0.412 091 0.000 138
1 1.00 1.0 −0.466 598 0.000 999
1 1.00 2.0 −0.529 651 0.000 478
1 1.00 4.0 −0.597 449 0.000 123
1 1.00 6.0 −0.636 542 0.000 086
1 1.00 8.0 −0.663 264 0.000 075
1 1.00 10.0 −0.683 287 0.000 074
1 1.00 20.0 −0.738 042 0.000 021
1 0.75 0.1 −0.368 039 0.000 107
1 0.75 0.3 −0.423 521 0.000 149
1 0.75 0.5 −0.456 112 0.000 261
1 0.75 1.0 −0.506 379 0.000 646
1 0.75 2.0 −0.564 127 0.000 187
1 0.75 4.0 −0.624 104 0.000 543
1 0.75 6.0 −0.658 458 0.000 136
1 0.75 10.0 −0.699 291 0.000 053
1 0.75 20.0 −0.747 552 0.000 012
1 0.50 0.1 −0.436 852 0.000 150
1 0.50 0.3 −0.484 687 0.000 114
1 0.50 0.5 −0.512 677 0.000 305
1 0.50 1.0 −0.553 536 0.001 915
1 0.50 2.0 −0.600 776 0.002 929
1 0.50 4.0 −0.651 476 0.000 679

ξ θ rs v · rs δv · rs

1 0.50 6.0 −0.680 010 0.001 349
1 0.50 8.0 −0.699 106 0.000 564
1 0.50 10.0 −0.713 698 0.000 201
1 0.50 20.0 −0.755 328 0.000 037
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Figure S2: Top row: Upper panel: Density dependence of the potential energy for different temperatures (top to bottom:
θ = 8, 4, 2, 1, 0.75, 0.5). Crosses: new QMC data of this work for ξ = 1/3, 0.6, and 1. For ξ = 0, the data from Ref. [6] are
plotted (indicated by the ∗ in the legend) in addition to the new data points for θ = 0.75 and also for rs = 20. Solid line: Our
parametrization (rs− θ− ξ-fit to the QMC data). Dashed line: KSDT parametrization [11]. Lower panel: Deviation of the QMC
data (crosses) and the KSDT parametrization (dashed line) from our parametrization. Bottom row: Upper panel: Density
dependence of the exchange-correlation free energy for different temperatures (top to bottom: θ = 8, 4, 2, 1, 0.75, 0.5). Solid line:
Our parametrization. Dashed line: KSDT prametrization. Lower panel: Deviation of KSDT from our parametrization.



Chapter 6

Static Density Response of the Uniform
Electron Gas

6.1 Extension of CPIMC and PB-PIMC to the Inhomoge-
neous Electron Gas

Another quantity that is of high importance regarding its utility for other applications is
the density–density response function, χ(q,ω), which describes the change in the electron
density when applying a weak external periodic potential with wave-vector q and freqency
ω . Knowledge of χ(q,ω) gives direct access to the so-called local field correction, G(q,ω),
which contains all information about the correlation effects in the density response of the
UEG.

The local field correction of the UEG, in turn, is the foundation of DFT calculations with
a truly non-local exchange–correlation functional within the adiabatic-connection fluctuation–
dissipation formulation [162–164]. Even though the usage of such non-local functionals
significantly increases the computational cost, it constitutes a promising strategy to bring
the predictive capabilities of future DFT calculations to a new level, particularly in the
context of warm dense matter research [3]. Beyond its relevance for DFT, the local field
correction of the UEG allows for the computation of dynamic structure factors within the
Born–Mermin approximation [165–167], which are nowadays routinely measured via X-ray
Thomson scattering in warm dense matter experiments [82]. Further, from accurate data
for G(q), effective (screened) pair-potentials can be constructed (as shown in Ref. [115] in
Sec. 6.2), which can then be used in molecular-dynamic simulations of the ions.

In general, the full (dynamic) density response function, χ(q,ω), can be reconstructed
from the imaginary-time density–density correlation function. This quantity is accessible
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within equilibrium QMC simulations, yet, it is often more difficult to compute than, e.g.,
energies. Moreover, the reconstruction procedure itself constitutes an ill-posed problem and
thus requires the input correlation function to be of extremely high quality (first results from
this procedure are shown in the outline of the PhD thesis of T. Dornheim [168]).

For these reasons, we restricted our first investigations of the density–density response
of the warm dense UEG to its static limit, i.e. χ(q,0), which, in contrast to its dynamic
part, can be directly computed from QMC simulations of the inhomogeneous UEG. Here,
inhomogeneous refers to the application of a weak (static) external periodic perturbation with
wave-vector q. In the ground state, this strategy was successfully pursued by Ceperley et
al. [169, 170] and Alder et al. [171, 172] to obtain accurate data for the static local field
correction, G(q,0), which were later parametrized by Corradini et al. [173].

Hitherto, at warm dense matter conditions, these investigations of the static density
response by means of finite temperature QMC simulations had not been been carried out. To
make this possible, in the following two Refs. [114] and [113], the PB-PIMC and CPIMC
approach are extended to the inhomogeneous UEG.

Within the CPIMC formalism, in addition to the two-particle excitations (type 4 kinks)
that are caused by the Coulomb interaction and are thus already present in the homogeneous
case, the application of an external field leads to the occurrence of one-particle excitations
(type 2 kinks). Together, these give rise to many new diagrams in the paths in Fock space,
the treatment of which I had to properly take into account in the CPIMC algorithm.

In addition to the extension of the general algorithm, I also investigated the applicability
of the kink potential to the inhomogeneous case. Here, it turned out that the convergence of
the results for the static density response function is considerably improved when the kink
potential is solely applied to the type 4 kinks, while no restrictions are put upon the number
of type 2 kinks.

A second achievement of the subsequent Ref. [113] is given by the successful extension of
the ground state finite-size correction for the static density response function, χ(q,0), to finite
temperatures. This correction allows for the computation of χ(q,0) in the thermodynamic
limit (N → ∞) with an accuracy of ∼ 0.2% from QMC simulations containing only N = 14
electrons.

Finally, I note that I did not contribute to the extension of the PB-PIMC method to the
inhomogeneous UEG as described in Ref.1 [114], whereas the ideas regarding the finite-
size correction of χ(q,0) presented in Ref. [113] have been developed in equal parts with
T. Dornheim.

1T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. E 96, 023203 (2017). Copyright by the
American Physical Society (2017).



PHYSICAL REVIEW E 96, 023203 (2017)

Permutation-blocking path-integral Monte Carlo approach to the static density
response of the warm dense electron gas

Tobias Dornheim,1,* Simon Groth,1 Jan Vorberger,2 and Michael Bonitz1

1Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
2Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany

(Received 2 June 2017; published 14 August 2017)

The static density response of the uniform electron gas is of fundamental importance for numerous applications.
Here we employ the recently developed ab initio permutation blocking path integral Monte Carlo (PB-PIMC)
technique [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] to carry out extensive simulations of the
harmonically perturbed electron gas at warm dense matter conditions. In particular, we investigate in detail the
validity of linear response theory and demonstrate that PB-PIMC allows us to obtain highly accurate results
for the static density response function and, thus, the static local field correction. A comparison with dielectric
approximations to our new ab initio data reveals the need for an exact treatment of correlations. Finally, we
consider a superposition of multiple perturbations and discuss the implications for the calculation of the static
response function.

DOI: 10.1103/PhysRevE.96.023203

I. INTRODUCTION

The uniform electron gas (UEG), which is composed of
Coulomb interacting electrons in a homogeneous neutralizing
background, is one of the most seminal model system in
quantum many-body physics and chemistry [1]. In addition
to the UEG’s importance for, e.g., the formulation of Fermi
liquid theory [2,3] and the quasiparticle picture of collective
excitations [4,5], accurate parametrizations of its ground-
state properties [6–10] based on ab initio quantum Monte
Carlo calculations [11–15] have been pivotal for the arguably
unrivaled success of density-functional-theory simulations of
real materials [16–18].

The density response of the UEG to a small external
perturbation as described by the density response function is
of high importance for many applications [2]. The well-known
random-phase approximation (RPA) [5] provides a qualitative
description for weak coupling strength (high density),

χRPA(q,ω) = χ0(q,ω)

1 − 4π
q2 χ0(q,ω)

, (1)

where χ0(q,ω) denotes the density response function of the
ideal (i.e., noninteracting) system. However, since Eq. (1) does
not incorporate correlations beyond the mean-field level, RPA
breaks down even for moderate coupling. This shortcoming is
usually corrected in the form of a local field correction (LFC)
G(q,ω) [19], modifying Eq. (1) to

χLFC(q,ω) = χ0(q,ω)

1 − 4π
q2 [1 − G(q,ω)]χ0(q,ω)

. (2)

Hence, by definition, the exact LFC contains all exchange-
correlation effects beyond RPA. Common approximations
for G include the approaches by Singwi-Tosi-Land-Sjölander
(STLS) [20] and Vashishta and Singwi (VS) [21]. It is
important to note that the accurate determination of G(q,ω)
is an important end in itself as it can be straightforwardly

*dornheim@theo-physik.uni-kiel.de

utilized as input for other calculations. For example, it is
directly related to the XC kernel

Kxc(q,ω) = −4π

q2
G(q,ω) (3)

of density functional theory in the adiabatic-connection
fluctuation-dissipation formulation [22–24]. This allows for
the construction of a true nonlocal XC functional, which is
a promising approach to go beyond the ubiquitous gradient
approximations [18,25] and thereby increase the predictive
capabilities of DFT. Further applications of the LFCs for
current warm dense matter (WDM, see below) research include
the calculation of the dynamic structure factor [26–29] as it
can be obtained with x-ray Thomson scattering from a variety
of systems, energy transfer rates [30,31], the electrical and
optical conductivity [32,33], and equation of state models of
ionized plasmas [34–36]. Finally, we mention the construction
of effective potentials both for WDM [37,38] and beyond
[39,40].

In the ground state, Moroni et al. [41] obtained accurate
QMC results for the static response function [i.e., ω → 0,
see Eq. (27)]—and thereby the static LFC—by simulating
an electron gas with a weak external harmonic perturbation
[42–45]. This has allowed for a systematic assessment of the
accuracy of previous approximations. Further, the ab initio
data for the LFC have subsequently been parametrized by
Corradini et al. [46], and the zero temperature limit of the
static density response is well understood.

However, recently there has emerged a growing interest
in matter under extreme conditions, i.e., at high density
and temperature, which occurs in astrophysical objects such
as brown dwarfs and planet interiors [47,48]. Furthermore,
similar conditions are now routinely realized in experiments
with laser excited solids [49] or inertial confinement fusion
targets [50–53]. This “warm dense matter” (WDM) regime is
characterized by two parameters being of the order of unity
[54]: (i) the Wigner-Seitz radius rs = r/aB and (ii) the reduced
temperature θ = kBT /EF , where r , aB and EF denote the
mean interparticle distance, Bohr radius, and Fermi energy
[55], respectively. Naturally, accurate data for the static LFC

2470-0045/2017/96(2)/023203(15) 023203-1 ©2017 American Physical Society
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at such extreme conditions are highly desirable. In fact, in lieu
of thermodynamic data often ground-state results are used at
WDM conditions, which might not be appropriate [54].

Yet, a theoretical description of warm dense electrons
is notoriously hard since it must account for the nontrivial
interplay of (a) the strong quantum Coulomb collisions, (b)
excitation effects due to the high temperature, and (c) quantum
degeneracy effects (e.g. fermionic exchange). In particular,
conditions (a) and (b) rule out perturbation expansions and
ground-state methods, respectively, leaving thermodynamic
quantum Monte Carlo methods as the most promising option.
Unfortunately, QMC simulations of degenerate electrons
suffer from the fermion sign problem (FSP) [56,57] so that
the widespread path integral Monte Carlo (PIMC) approach
[58] is limited to small system sizes and high temperatures,
preventing simulations under WDM conditions [59]. Despite
its remarkable success in the ground state, at finite temperature,
the fixed node approximation [60,61] (which avoids the FSP)
can lead to systematic errors exceeding 10% [62]. This unsat-
isfactory situation has sparked remarkable progress in the field
of fermionic QMC simulations. In particular, the joint usage of
two novel complementary approaches (in combination with an
improved finite-size correction [63]) has recently allowed us to
obtain the first complete ab initio description of the warm dense
electron gas [63,64]: (i) At high density and weak to moderate
coupling, the configuration PIMC (CPIMC) approach [65–67],
which is formulated in Fock space and can be understood as a
Monte Carlo calculation of the (exact) perturbation expansion
around the ideal system, is capable to deliver exact results
over a broad temperature range. (ii) The permutation blocking
PIMC (PB-PIMC) approach [68–70] extends standard PIMC
towards higher density and lower temperature and allows for
accurate results in large parts of the WDM regime. In this
work, we use the latter method to carry out simulations of the
harmonically perturbed electron gas under warm dense matter
conditions.

A brief introduction of the UEG model (Sec. II A) is
followed by a comprehensive introduction to fermionic QMC
simulations at finite temperature. In particular, we explain
how the antisymmetry of the density operator leads to the
fermion sign problem in standard PIMC (Sec. II B 1) and
how this is addressed by the idea of permutation blocking
(Sec. II B 2). Further, we give a concise overview of linear
response theory and how the static density response can be
obtained by simulating the harmonically perturbed system
(Sec. II C). In Sec. III, we show extensive PB-PIMC results
to investigate the dependence on the perturbation strength
(Sec. III A), the convergence with the number of imaginary
time propagators (Sec. III B), and the wave-vector dependence
(Sec. III C), which also allows to address possible finite-size
effects. Finally, in Sec. III E we consider the response to a
superposition of multiple perturbations with different wave
vectors and the resulting implications for the calculation of χ .

II. THEORY

A. Uniform electron gas

The uniform electron gas is a model system of N electrons
in a positive homogeneous background that ensures charge

neutrality. Throughout this work, we assume an unpolarized
(paramagnetic) system, i.e., N↑ = N↓ = N/2 [with ↑ (↓)
denoting the number of spin-up (-down) electrons] and, thus,

ξ = N↑ − N↓

N
= 0. (4)

To alleviate the differences between a finite model system
and the thermodynamic limit (finite-size effects), we employ
Ewald summation for the repulsive pair interaction. Therefore,
the Hamiltonian (in Hartree atomic units) is given by

Ĥ = −1

2

N∑
i=1

∇2
i + 1

2

N∑
i=1

N∑
j �=i

�E(ri ,rj ) + N

2
ξM, (5)

where �E(r,s) and ξM denote the Ewald pair potential and the
well-known Madelung constant, see, e.g., Ref. [71].

B. Quantum Monte Carlo

1. Path-integral Monte Carlo

Throughout the entire work, we consider the canonical
ensemble where the volume V = L3 (with L being the box
length), particle number N , and inverse temperature β =
1/kBT are fixed. To derive the path integral Monte Carlo
formalism [58], we consider the partition function

Z = Trρ̂, (6)

which is defined as the trace over the canonical density
operator ρ̂

ρ̂ = e−βĤ . (7)

Let us temporarily restrict ourselves to distinguishable parti-
cles and rewrite Eq. (6) in coordinate representation:

Z =
∫

dR 〈R| e−βĤ |R〉 , (8)

where R = {r1, . . . ,rN } contains the all 3N particle coordi-
nates. Since the matrix elements of ρ̂ are not readily known,
we use the group property

e−βĤ =
P−1∏
α=0

e−εĤ , (9)

with ε = β/P and α labeling the P identical factors. Fur-
thermore, we insert P − 1 unity operators of the form 1̂ =∫

dRα |Rα〉 〈Rα| into Eq. (8) and obtain

Z =
∫

dX 〈R0| e−εĤ |R1〉 〈R1| . . .

|RP−1〉 〈RP−1| e−εĤ |R0〉 , (10)

and the integration is carried out over P sets of particle
coordinates, dX = dR0 . . . dRP−1. We stress that Eq. (10) is
still exact. The main benefit of this recasting is that the new
expression involves P density matrix elements, but at a P times
higher temperature. Each of these high temperature factors can
now be substituted using some suitable high-T approximation,
e.g., the simple primitive factorization

e−εĤ ≈ e−εV̂ e−εK̂ , (11)

023203-2
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with V̂ and K̂ being the operators for the potential and kinetic
contribution to the Hamiltonian, respectively, and which
becomes exact in the limit P → ∞ [72]. The resulting high-
dimensional integral is then evaluated using the Metropolis
algorithm [73] (we employ a simulation scheme based on the
worm algorithm [74,75]).

However, to simulate fermions we must extend the partition
function from Eq. (8) by the sum over all particle permutations,
which, for an unpolarized system, gives

Z = 1

N↑!N↓!

∑
σ↑∈S

N↑

∑
σ↓∈S

N↓

sgn(σ ↑)sgn(σ ↓)

×
∫

dR 〈R| e−βĤ |π̂σ↑ π̂σ↓R〉 , (12)

with σ ↑,↓ denoting particular elements from the permutation
groups S

↑,↓
N and π̂σ↑,↓ being the corresponding permutation

operators. In practice, this leads to the occurrence of so-called
exchange cycles within the PIMC simulations, which are paths
incorporating more than a single particle, see Fig. 1. The
problem is that the sign of each configuration depends on the
parity of the permutations involved which can be both positive
and negative. Let {X} denote the set of all possible paths in
the QMC simulation. The partition function, Eq. (12), is then
given by

Z =
∫

{X}
dX W (X), (13)

where the so-called configuration weight W (X) can be neg-
ative. However, since a probability must be strictly positive,
we sample the paths according to the absolute values |W (X)|,
where the normalization of this modified configuration space
is given by

Z′ =
∫

{X}
dX |W (X)|. (14)

The correct fermionic expectation value of an arbitrary
observable Â is then computed as

〈A〉 = 〈Â Ŝ〉′

〈Ŝ〉′
, (15)

where 〈. . .〉′ denotes the expectation value corresponding to
Z′, and S(X) = W (X)/|W (X)| is the sign of the configuration
X. In particular, the denomininator in Eq. (15) is the so-called
average sign,

〈Ŝ〉′ = 1

Z′

∫
{X}

dX |W (X)|S(X). (16)

Note that the abbreviation S = 〈Ŝ〉′ is used henceforth through-
out this work.

At low temperature and high density, permutation cycles
with both positive and negative signs appear with a similar
frequency and, thus, both the enumerator and the denominator
in Eq. (15) vanish simultaneously. In this case, the signal-to-
noise ratio of the fermionic expactation value vanishes, leading
to an exponentially increasing statistical uncertainty [59]. This
is the notorious fermion sign problem [56,57], which limits
standard PIMC to weak degeneracy where fermionic exchange

FIG. 1. Screen shots of standard path integral Monte Carlo
simulations of the warm dense UEG for N = 19 spin-polarized
electrons, rs = 1, and P = 32, with θ = 8 (a), θ = 1 (b), and
θ = 0.3 (c).

plays only a minor role and, therefore, precludes its application
to warm dense matter [59]. This is illustrated in Fig. 1,
where we show random configurations from standard PIMC
simulations of the UEG with N = 19 spin-polarized electrons

023203-3
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at a density parameter rs = 1 and three different temperatures.
Each particle is represented by P = 32 so-called beads, which
are connected by the (red) kinetic density matrix elements and
thus form the eponymous paths. At high temperature, θ = 8
[Fig. 1(a)], each particle is represented by a distinct, separate
path and exchange cycles occur only infrequently. Therefore,
the FSP is not severe and PIMC simulations are feasible. At
moderate, WDM temperatures [θ = 1, Fig. 1(b)], fermionic
exchange is influencing the system significantly, and multiple
exchange cycles are visible in the screenshot. Since each pair
exchange causes a sign change in the Monte Carlo simulation,
a standard PIMC simulation is no longer feasible. Finally, at
low temperature [θ = 0.3, Fig. 1(c)] nearly all particles are
involved in exchange cycles, and the system is dominated by
the antisymmetric nature of the electrons (i.e., Pauli blocking).

2. Permutation blocking

The fermion sign problem is NP -hard [57] and a general
solution is, at the time of this writing, not in sight. Therefore,
there does not exist a single QMC method that is applicable
for all parameters. Nonetheless, it is possible to go beyond
standard PIMC by employing the recently introduced permuta-
tion blocking PIMC approach [68,69]. The first key ingredient
is the usage of antisymmetric imaginary time propagators,
i.e., determinants, which allows for a combination of positive
and negative terms into a single configuration weight [76–78].
However, while this “permutation blocking” can indeed lead
to a significant reduction of the fermion sign problem, with
an increasing number of propagators P this advantage quickly
vanishes. For this reason, as the second key ingredient, we
utilize a higher-order factorization of the density matrix
[79,80]

e−εĤ ≈ e−v1εŴa1 e−t1εK̂e−v2εŴ1−2a1

×e−t1εK̂e−v1εŴa1 e−2t0εK̂ , (17)

which allows for sufficient accuracy even for a small number
of imaginary time slices, for the definitions of the coefficients
v1, t1, v2, a1, and t0, see Refs. [68,69]. The Ŵ operators
correspond to modified potential terms combining the standard
potential contribution V̂ with double commutator terms of the
form [80]

[[V̂ ,K̂],V̂ ] = h̄2

m

N∑
i=1

|Fi |2,

Fi = −∇iV (R), (18)

where Fi denotes the total force on a particle “i”. Finally, this
allows one to obtain the PB-PIMC partition function [70]

Z = 1

(N↑!N↓!)3P

∫
dX

×
P−1∏
α=0

(
e−εṼα e−ε3u0

h̄2

m
F̃αDα,↑Dα,↓

)
, (19)

with Ṽα and F̃α containing all contributions of the potential
energy and the forces, respectively, and the exchange-diffusion
functions

Dα,↑ = det(ρα,↑)det(ραA,↑)det(ραB,↑) ,

Dα,↓ = det(ρα,↓)det(ραA,↓)det(ραB,↓) . (20)

FIG. 2. Screen shot of a permutation blocking path integral Monte
Carlo simulation of the UEG with N = 9 spin-polarized electrons
with rs = 1, θ = 1, and P = 2 imaginary time propagators. The
green, blue, and purple points correspond to the three different kinds
of time slices, see Refs. [68–70].

Here ρα,↑ denotes the diffusion matrix of a single time slice

ρα,↑(i,j ) = λ−3
t1ε

∑
n

e
− π

λ2
t1ε

(rα,↑,j −rαA,↑,i+nL)2

, (21)

with λt1ε =
√

2πεt1h̄
2/m being the corresponding thermal

wavelength. Observe that Eq. (17) implies that there are three
imaginary time slices for each propagator α = 0, . . . ,P − 1,
with Rα , RαA, and RαB denoting the corresponding sets of
particle coordinates.

In a nutshell, in the PB-PIMC approach, we do not have to
explicitly sample each positive or negative permutation cycle.
Instead, we combine configuration weights with different
signs in the determinants, which results in an analytical
cancellation of terms and, thus, a significantly alleviated sign
problem. This is illustrated in Fig. 2, where we show a random
configuration from a PB-PIMC simulation of the warm dense
UEG with N = 9 spin-polarized electrons, rs = 1 and θ = 1
for P = 2. The green, blue, and purple beads correspond to
the three different kinds of imaginary time slices due to the
higher-order factorization of the density operator, cf. Eq. (17).
In contrast to the standard PIMC configurations from Fig. 1,
every bead can be involved in multiple connections here.
In fact, each bead is connected to all N beads on the next
and previous slices although the weight of the connection
exponentially decreases with spatial difference, which is
expressed by the different line widths of the (red) connections.
Evidently, many beads of the depicted screen shot exhibit
multiple visible connections, which means that a significant
amount of analytical cancellation is accomplished within the
determinants and, unlike standard PIMC, simulations are still
feasible [59].
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This permutation blocking is most effective when λt1ε is
comparable (or larger) than the mean interparticle distance.
However, for P → ∞ the beneficial effect vanishes and the
original sign problem from standard PIMC is recovered. This
plainly illustrates the paramount importance of a sophisticated
higher-order factorization scheme such as Eq. (17).

C. Linear response theory

In linear response theory (LRT), we consider the effect of
a small external perturbation on the density of the system of
interest

Ĥ = Ĥ0 + Ĥext(t). (22)

Note that, in general, Ĥext(t) is time dependent. Throughout
this work, the unperturbed Hamiltonian Ĥ0 corresponds to the
UEG as introduced in Eq. (5) and the perturbation is given by
a sinusoidal external charge density of wave vector q,

Ĥext(t) = 2A

N∑
i=1

cos(ri · q − � t), (23)

which corresponds to the potential

φext(r,t) = 2A cos(r · q − � t). (24)

The standard definition of the density response function is
given by

χ̃ (q,τ ) = −i

h̄
〈[ρ(q,τ ),ρ(−q,0)]〉0 �(τ ), (25)

where the expectation value is with respect to the unperturbed
system. Note that Eq. (25) only depends on the time difference
τ = t − t ′ and, due to the homogeneity of the unperturbed
system, χ only depends on the modulus of the wave vector.
The corresponding Fourier transform is given by

χ (ω,q) = lim
η→0

∫ ∞

−∞
dτ e(iω−η)τ χ̃(q,τ ). (26)

Throughout this work, we restrict ourselves to the static
limit [81] that is defined as

lim
ω→0

χ (ω,q) = χ (q), (27)

i.e., the response of the electron gas to a time-independent
external perturbation

φext(r) = 2A cos(r · q), (28)

and, henceforth, the ω dependence is simply dropped. More
precisely, the physical interpretation of χ (q) is the description
of the density response [i.e., the induced charge density ρind(q)]
due to the external charge density ρext(q)

ρind(q) = ρext(q)
4π

q2
χ (q). (29)

The external density follows from the Poisson equation as

ρext(r) = − 1

4π
∇2φext(r)

= q2

4π
φext(r) = q2

4π
2A cos(r · q) (30)

⇒ ρext(q) = q2

2π

A

(2π )3

∫
dr e−ik·r

(
eiq·r + e−iq·r

2

)

= q2A

4π
(δk,q + δk,−q), (31)

and the induced density is the difference between the perturbed
and unperturbed systems:

ρind(q) = 〈ρ̂q〉A − 〈ρ̂q〉0 = 1

V

〈
N∑

j=1

e−iq·rj

〉
A

, (32)

where we made use of the fact that 〈ρ̂q〉0 = 0. Thus, it holds

χ (q) = 1

A
〈ρ̂q〉A . (33)

In order to obtain the desired static density response func-
tion, we carry out multiple QMC simulations for each wave
vector q = 2πL−1(a,b,c)T (with a,b,c ∈ Z) for different
values of A and compute the expectation value from Eq. (32).
For sufficiently small A, 〈ρ̂q〉A is linear with respect to A with
χ (q) being the slope.

Another way to obtain the response function from the QMC
simulation of the perturbed system is via the perturbed density
profile in coordinate space:

〈n(r)〉A = n0 + 2A cos(q · r)χ (q). (34)

In practice, we compute the left-hand side of Eq. (34) using
QMC and perform a fit of the right-hand side with χ (q) being
the only free parameter. Naturally, in the linear response regime
both ways to obtain χ (q) are equal.

For completeness, we mention that the dynamic response
can be obtained in a similar fashion by considering explic-
itly time-dependent perturbations, e.g., using nonequilibrium
Green function techniques [82,83] for quantum systems or
molecular dynamics [84,85] in the classical case.

A second strategy to compute the density response from
thermodynamic QMC simulations in LRT is by considering
imaginary-time correlation functions (ITCF) of the unper-
turbed system. In particular, the static response function can
be obtained from the fluctuation dissipation theorem [43],

χ (q) = − 1

V

∫ β

0
dτ 〈ρ(q,τ )ρ(−q,0)〉0 , (35)

as an integral over the imaginary time τ . If one is solely
interested in the linear response of the system, then invoking
Eq. (35) constitutes the superior strategy since all q vectors
can be computed from a single simulation. However, this
requires a QMC estimation of the ITCF on a sufficient τ grid,
which is straightforward in standard PIMC where P > 100 is
not an obstacle. For PB-PIMC, simulations are only possible
for a small number of imaginary-time propagators (typically
P � 4), see Sec. II B 2, which precludes the evaluation of
Eq. (35). Nevertheless, we stress that it is only the permutation
blocking idea that allows us to carry out simulations at warm
dense matter conditions in the first place, since standard PIMC
simulations are not feasible due to the FSP. In addition, the
application of an external perturbation allows us to go beyond
LRT and to consider arbitrarily strong perturbation strengths.

III. RESULTS

A. Dependence on perturbation strength

Let us start our investigation of the harmonically perturbed
electron gas by considering the dependence on the perturbation
amplitude A. In Fig. 3, we show PB-PIMC results for the
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FIG. 3. Density profiles along the x direction for N = 54,
rs = 10, and θ = 1. Shown are PB-PIMC results for P = 4 with
q = 2πL−1(2,0,0)T and weak (a), medium (b), and strong (c)
perturbations. The black lines correspond to fits according to Eq. (34).

density profile along the x direction for N = 54 unpolarized
electrons at rs = 10 and θ = 1 for the perturbation wave vector
q = 2πL−1(2,0,0)T . In Fig. 3(a), the depicted A values are
relatively small. The black lines correspond to fits according

to Eq. (34). Evidently, for A = 0.001 and A = 0.005, those
curves are in perfect agreement with the QMC results, which
indicates that here the linear response theory is accurate. In
contrast, for A = 0.01 significant (although small, �A/A ∼
1%) deviations appear, which are most pronounced around the
minima and maxima. In Fig. 3(a), we systematically increase
A up to a factor two. Clearly, with increasing perturbation
amplitude, the deviations between the exact QMC results
and the cosine fit predicted by LRT become more severe,
as is expected. Finally, in Fig. 3(c) we show the density
profiles for even larger perturbations. Eventually, the external
potential becomes the dominating feature, resulting in a
strongly inhomogeneous electron gas. For the largest depicted
perturbation, A = 0.1, there appear two distinct shells with a
vanishing density in between.

To systematically investigate the effect of the perturbation
amplitude on our QMC estimation of the static response
function χ (q), we show results in Fig. 4 for the induced
density ρind(q) for the same system and two different wave
vectors, q = 2πL−1(qx,0,0)T with qx = 2 [Fig. 4(a)] and
qx = 1 [Fig. 4(b)]. The black squares correspond to the direct
QMC results, cf. Eq. (32), and the green crosses have been
obtained by performing a cosine fit to the density profiles
according to Eq. (34). The red lines depict a linear fit to the
black squares for A < 0.01. First and foremost, we observe
a perfect agreement between the direct QMC results and the
cosine fits for small A as predicted by the linear response
theory. Even for A = 0.01, where the cosine fit exhibits
significant deviations to the density profile from QMC, we
find perfect agreement between the black and green points and
also to the fit. With increasing A, however, the assumptions of
linear response theory are no longer valid. Interestingly, the ρ

values obtained from the cosine fit exhibit significantly larger
deviations to the linear response prediction (red line) than the
direct QMC results. For example, at A = 0.05 the deviation of
the green points is twice as large as for the black squares.

In Fig. 4(b), the same information is shown for a smaller
wave vector, qx = 1. First, we observe a significantly smaller
density response (cf. Fig. 8). This, in turn, means that linear
response theory is accurate up to much larger A values as the
system only weakly reacts to such an external perturbation.

To further illustrate this point, in Fig. 5(a) we show the
corresponding average signs from the QMC simulations for
both wave vectors investigated in Fig. 4. For small perturba-
tions, S is equal for both q and approaches the result for the
unperturbed system. With increasing A, the system becomes
more inhomogeneous, i.e., there appear regions of increased
(and also decreased) density, see Fig. 5(b), where we show
the corresponding density profiles for strong perturbations,
A = 0.1. This, in turn, leads to increased fermionic exchange,
resulting in a significantly decreased average sign in our
PB-PIMC simulations. Since the density response is more
pronounced for qx = 2, here S exhibits a faster decrease
in dependence of A. We conclude that PB-PIMC (and also
standard PIMC) simulations of the inhomogeneous electron
gas are significantly more computationally demanding than
simulations of the UEG at equal conditions. Nevertheless,
this is of no consequence for the determination of the static
response function as this is only possible for A values that are
sufficiently small for the linear response theory to deliver an
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FIG. 4. Induced density modulation for N = 54, rs = 10,
and θ = 1. Shown are PB-PIMC results for P = 4 with q =
2πL−1(qx,0,0)T [qx = 2 (a) and qx = 1 (b)] directly computed from
QMC, cf. Eq. (32), and from fits according to Eq. (34).

accurate description, i.e., systems that are close to the uniform
case.

B. Convergence with propagators

As discussed in Sec. II B 2, PB-PIMC crucially relies on the
higher-order factorization of the density operator, Eq. (17),
to allow for sufficient accuracy with only few imaginary
time propagators. In the following section, this situation is
investigated in detail.

In Fig. 6(a), we plot direct QMC results for the induced
density for the unpolarized UEG with rs = 10, θ = 1, and
N = 34 electrons versus the inverse number of propagators
P −1. The perturbation is given by the wave vector q =
2πL−1(1,0,0)T and amplitude A = 0.01, which is well within
the linear response regime. Evidently, only the result for ρ with
P = 2 propagators significantly deviates from the rest and,
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FIG. 5. Average sign for N = 54, rs = 10, and θ = 1 (a). Shown
are PB-PIMC results for P = 4 with q = 2πL−1(qx,0,0)T . Corre-
sponding density profiles along the x direction for A = 0.1 (b).

for the P = 4 propagators used above, the PB-PIMC results
are converged within the statistical uncertainty. Figure 6(b)
shows the corresponding density profiles along the x direction.
Here, even the results for only P = 2 propagators exhibits no
significant deviations to the other curves.

As a second example, in Fig. 7 we consider the same system
as in Fig. 6 but with N = 54 electrons and a larger wave
vector for the perturbation, q = 2πL−1(5,0,0)T . In Fig. 7(a),
we again show direct QMC results for ρ in dependence of the
inverse number of propagators. However, in contrast to the data
depicted in Fig. 6, here we see significant differences for differ-
ent P . The black line corresponds to a parabolic fit of the form

ρ(P −1) = a + b

P 2
, (36)

which reproduces all QMC results within error bars.
Nevertheless, we stress that the functional form in Eq. (36)
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FIG. 6. Convergence with number of propagators P for N =
34, rs = 10, and θ = 1 with a perturbation of wave vector q =
2πL−1(1,0,0)T and amplitude A = 0.01. Shown are QMC results for
the density matrix (a) and the density profile along the x direction (b).

has been empirically chosen and does merely serve as a guide
to the eye since, for large P , the propagator error is expected to
exhibit a fourth-order decay, see Ref. [80] for a comprehensive
discussion. Evidently, for P = 4 there occurs a systematic bias
of �ρ/ρ ≈ 2% at such a large wave vector. This is reflected
in the increasing error bars towards large q in the wave-vector
dependence plot, i.e., Fig. 8, and can be understood as
follows: The propagator error is a direct consequence of the
noncommuting of the kinetic (K̂) and potential (V̂ )
contributions of the Hamiltonian. The larger the wave vector
q, the faster the spatial variations of the external potential and,
because K̂ ∝ ∇2, the larger the error terms, which involve
nested commutators of K̂ and V̂ .

Figure 7(b) shows the corresponding results for the total
potential energy, i.e., the sum of the Ewald interaction and
the external perturbation. Evidently, no deviations can be
resolved within the given statistical uncertainty, even for
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FIG. 7. Convergence with number of propagators P for N = 54,
rs = 10, and θ = 1 with the perturbation of wave vector q =
2πL−1(5,0,0)T and amplitude A = 0.01. Shown are QMC results
for the density matrix (a) and the potential energy, i.e., the sum of
Ewald interaction and external field (b).

P = 2 propagators. This is similar to previous findings for
the unperturbed UEG [69,70] and reflects the circumstance
that for V the particle interaction dominates. In stark contrast,
the induced density ρ is particularly sensitive to the small
external perturbation which, as explained above, requires a
larger number of propagators to be sufficiently incorporated.

C. Wave-vector dependence of χ (q) and finite-size effects

Due to the momentum quantization in a finite simulation
box, QMC calculations are only possible at an N -dependent
discrete q grid. Therefore, the investigation of finite-size
effects in the static response function requires us to obtain
results over a broad wave-vector range, as shown in Fig. 8.
The gray and red curves correspond to the predictions due
to the RPA, cf. Eq. (1), and with a LFC from the (finite-T )
STLS formalism [86,87], respectively. For small q, both

023203-8



PERMUTATION-BLOCKING PATH-INTEGRAL MONTE . . . PHYSICAL REVIEW E 96, 023203 (2017)

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0  0.1  0.2  0.3  0.4  0.5

kF

(a)

q

RPA
STLS

 QMC, N=54
QMC, N=34
QMC, N=20
QMC, N=14

QMC, N=8

-0.004

-0.003

-0.002

-0.001

 0.1  0.12  0.14  0.16  0.18  0.2

(b)

q

FIG. 8. Wave-vector dependence of the static response function
for the unpolarized UEG at rs = 10 and θ = 1. Shown are QMC
results according to Eq. (33) for different particle numbers (symbols)
and the predictions from RPA (gray) and STLS (red). The black arrow
indicates the Fermi wave vector, kF = (9π/4)1/3/rs . Panel (b) shows
a magnified segment.

approximations exhibit the same exact parabolic behavior [88].
With increasing q, however, there appear significant systematic
deviations with a maximum of �χ/χ ∼ 50% around q ≈ 0.35
[i.e., around twice the Fermi vector kF = (9π/4)1/3/rs]. The
symbols correspond to our QMC results obtained according to
Eq. (33) and the colors distinguish different particle numbers,
in particular N = 54 (blue crosses), N = 34 (light blue
circles), N = 20 (yellow squares), N = 14 (black triangles),
and N = 8 (green diamonds). First and foremost, we note
that the main effect of different system size is the q grid,
while the functional form itself is remarkably well converged,
even for as few as N = 8 particles, cf. Fig. 8(b) showing a
magnified segment. This is similar to the analogous behavior of
the static structure factor S(q) of the warm dense UEG found in
Refs. [59,63]. Evidently, momentum shell effects as observed
at T = 0 in Refs. [41,44] do not appear above θ = 0.5. Second,
we find that the static local field correction due to the STLS
closure relation leads to a significant improvement compared
to RPA due to the improved treatment of correlations.

We thus conclude that our QMC approach allows us, for
the first time, to unambiguously assess the accuracy of the
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FIG. 9. Wave-vector dependence of the static response function
for the unpolarized UEG at rs = 10 and θ = 4. Shown are QMC
results according to Eq. (33) for N = 8 electrons obtained from PB-
PIMC with P = 4 (black squares) and standard PIMC with P = 100
(green crosses). As a reference, we also show the predictions from
RPA (gray) and STLS (red).

multitude of existing and widely used dielectric approxima-
tions and, in addition, to provide highly accurate data, which
can subsequently be used as input for other theories. However,
a comprehensive study over a broad parameter range is beyond
the scope of this work and will be provided in a future
publication.

D. Comparison of PB-PIMC to standard PIMC

As an additional benchmark for the static response obtained
with PB-PIMC, in Fig. 9 we show χ (q) for the unpolarized
UEG with N = 8, rs = 10, and θ = 4. Since for such a
temperature fermionic exchange plays only a minor role, in
addition to PB-PIMC (green crosses) also standard PIMC
(black squares) calculations are feasible. Evidently, both
independent data sets are in excellent agreement over the
entire q range, as expected. In addition, we again show
results from RPA (gray) and STLS (red) and find qualitatively
similar behavior to Fig. 8. However, due to the 4 times higher
temperature correlations play a less important role, which
means that (i) RPA and STLS exhibit less deviations towards
each other and (ii) the density response from STLS is in
much better agreement with the QMC data. For completeness,
we note that a more meaningful assessment of the systemic
error due to the STLS approximation requires to eliminate the
possibility of finite-size effects in the QMC data (as done in
Fig. 8 at lower temperature, θ = 1) and, thus, to consider larger
particle numbers N .

E. Multiple q vectors from a single simulation

When we have to perform at least a single (or even
a few for different A) QMC simulation for each q value,
the investigation of the wave-vector dependence as depicted
in Fig. 8 is computationally quite involved. However, by
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FIG. 10. Density profile along x direction for N = 54, rs = 10,
and θ = 1 with a perturbation amplitude of A = 0.005. The green
squares correspond to a QMC simulation with a superposition of two
q vectors (qx = 1 and qx = 2), see Eq. (37), whereas the yellow and
red points have been obtained using two separate QMC simulations
each with a single perturbation. The black crosses correspond to a
superposition of the latter two. The blue lines have been reconstructed
from a fit to the green squares according to Eq. (38), i.e., by obtaining
both χ (q1) and χ (q2) from the density response of the system with
two simultaneous perturbations.

definition in linear response theory the response of a system to
multiple perturbations is described by a superposition of the
responses to each perturbation. Therefore, it should be possible
to obtain the response function for multiple q values from a
single QMC simulation where we apply a superposition of NA

harmonic perturbations,

Ĥext = 2
NA∑
k=1

[
Ak

N∑
i=1

cos(ri · qk)

]
. (37)

The induced density is then calculated for each wave vector
qk according to Eq. (32). Furthermore, the density profile in
coordinate space is given by

〈n(r)〉A = n0 + 2
NA∑
k=1

[Akcos(r · qk)χ (qk)], (38)

which means that we have to perform a fit where the free
parameters are given by the NA values of χ (qk).

In Fig. 10, we show QMC results for the density profile
in the x direction for N = 54, rs = 10, and θ = 1. The green
squares have been obtained from a simulation with a superpo-
sition of NA = 2 perturbations with q1 = 2πL−1(1,0,0)T and
q2 = 2πL−1(2,0,0)T and A1 = A2 = 0.005, i.e., an amplitude
that is expected to be well within the linear response regime.
As a comparison, the yellow and red points correspond to the
QMC results with a single perturbation with qx = 1 (yellow)
and qx = 2 (red). Further, the black crosses have been obtained
as a superposition of the latter and are in perfect agreement
with the green squares. This is a strong indication that the
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FIG. 11. Induced density for N = 54, rs = 10, and θ = 1 for a
perturbation of wave vector q = 2πL−1(qx,0,0)T . The blue crosses
have been obtained from a QMC simulation with a single perturbation,
whereas the green squares and red circles correspond to the direct
and cosine-fit results from the simulation with a double perturbation.
Finally, the black lines has been obtained by a linear fit to the green
squares.

linear response is still valid for multiple perturbations under the
present conditions. In addition, we have fitted the right-hand
side of Eq. (38) to the green squares and in this way obtained
χ (qk) for both qk values. This, in turn, allows us to reconstruct
the density response of the system to a perturbation with only
a single qk value, i.e., the blue curves. Again, we find excellent
agreement to the corresponding QMC simulations.

To further pursue this point, in Fig. 11 we show the induced
density matrix for different amplitudes A. The green squares
and red circles have been obtained from a simulation with
two qk vectors and correspond to the direct QMC estimate
and the cosine fit according to Eq. (38), respectively. The blue
crosses have been obtained from the QMC simulation with
only a single harmonic perturbation and the red line depicts a
linear fit. Evidently, all points are in excellent agreement for
all A values both for qx = 1 (panel a) and qx = 2 [Fig. 11(b)].
Therefore, we conclude that it is indeed possible to obtain
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FIG. 12. Perturbation strength dependence for a combination of
three wave vectors qi = 2πL−1(qx,i ,0,0) with qx,1 = 1, qx,2 = 2,
and qx,3 = 3. The black squares correspond to direct QMC results
according to Eq. (32), the green crosses to direct QMC results from
a simulation with a single perturbation, and the red line to a fit in the
linear response regime.

multiple values of the static density response function χ (q)
simultaneously.

Finally, to investigate the perturbation strength dependence
for a QMC simulation with a superposition of multiple q vec-
tors in more detail, we consider a combination of NA = 3 per-
turbations with q1 = 2πL−1(1,0,0)T , q2 = 2πL−1(0,2,0)T ,
and q3 = 2πL−1(0,0,3)T and equal amplitude, A1 = A2 =
A3, over a broad A range. The results are shown in Fig. 12
where direct QMC results for the induced density matrix are
shown both from the simulation with the superposition (black
squares) and, as a reference, from a simulation with only
a single perturbation (green crosses). As usual, the red line
corresponds to a linear fit within the linear response regime.
For both qx = 1 [Fig. 12(a)] and qx = 2 [Fig. 12(b)] we
observe that the linear response is accurate up to larger A.

This is expected, since the more perturbations we apply at the
same time, the more inhomogeneous the system becomes and,
thus, the stronger the total perturbation will be. Further, we
note that this effect is more pronounced for qx = 2. This is
again a consequence of the larger χ (q) value which implies
that the density response is even larger in this case.

In a nutshell, we find that, while it is possible to obtain
multiple q values of the response function within a single QMC
simulation, this comes at the cost that the linear response is
valid only up to smaller perturbation amplitudes A. However,
the smaller A, the larger the relative statistical uncertainty
of the induced density, which means that there is a trade-
off between more Monte Carlo steps for a simulation with
multiple q vectors or multiple QMC simulations with only a
single perturbation and fewer MC steps. In practice, applying
a superposition of NA ≈ 3 perturbations is reasonable.

IV. SUMMARY AND DISCUSSION

In summary, we have carried out extensive permutation
blocking PIMC simulations of a harmonically perturbed
electron gas to investigate the static density response at warm
dense matter conditions. To investigate the dependence of the
response on the perturbation strength, we varied the amplitude
A over three orders of magnitude. For small A, linear response
theory is accurate and both ways to obtain the response
function χ (q) [i.e., Eqs. (33) and (34)] give equal results. With
increasing A, the system becomes strongly inhomogeneous,
which leads to a significantly increased sign problem due
to the regions with increased density. The second important
issue investigated in this work is the convergence of the
PB-PIMC results for χ (q) with the number of propagators
P . For small to medium q, we find that P = 4 propagators
are sufficient at WDM conditions, which agrees with previous
findings for the uniform system [69,70]. However, for large
q, the external potential exhibits fast spatial variations, which
lead to increased commutator errors and thus require a larger
number of propagators to achieve the same level of accuracy.
For the largest considered wave vector, q = 2πL−1(5,0,0)T ,
at θ = 1, rs = 10, and N = 54, we find a propagator error of
�χ/χ ∼ 2%. The main effect of system size on the QMC
results for the static response function is given by the different
q grid (which is a consequence of momentum quantization in a
finite box), whereas the functional form of χ (q) is remarkably
well converged even for small particle numbers. This is in stark
contrast to previous findings at zero temperature [41,44] and
can be ascribed to the absence of momentum shell effects at
WDM conditions.

Our first brief comparison of the wave-vector dependence
of χ (q) computed from QMC to the approximate results
from RPA and STLS for rs = 10 and θ = 1 reveals the
stark breakdown of the former when coupling effects are
non-negligible. The LFC from the STLS closure relation,
on the other hand, constitutes a significant improvement,
although there remain significant deviations at intermediate
q values. Finally, we have investigated the possibility to
obtain the static response function at multiple wave vectors
from a single QMC simulation. As predicted by the linear
response theory, we found that the density response of the
electron gas to a superposition of NA external harmonic
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perturbations is given by a linear combination of the responses
to each of the perturbations. Unfortunately, however, this
means that the linear response is valid only up to smaller
perturbation amplitudes A as the system becomes increasingly
inhomogeneous for multiple NA. Thus, there is a trade-off
between NA and A, and applying a superposition of NA = 3
perturbations is a reasonable strategy.

As mentioned in the Introduction, accurate QMC results
for the static density response function—and, thus, for the
static local field correction—are of high importance for
contemporary warm dense matter research. Based on the
findings of this work, the construction of a comprehensive
set of QMC results for χ (q) over the entire relevant rs range
and temperatures θ � 0.5 appears to be within reach. First
and foremost, this will allow one to systematically benchmark
previous approximate results for the warm dense UEG, such
as STLS [86,87] (and “dynamic STLS” [89,90]), VS [87,91],
or the recent improved LFC by Tanaka [92] that is based on the
hypernetted chain equation, as well as semiempirical quantum

classical mappings [93,94]. Furthermore, the construction of
an accurate parametrization of G(q; rs,θ ) with respect to rs

and θ at WDM conditions [95–97] is highly desirable due to
its utility for, e.g., new DFT exchange-correlations functionals
[22–24], the description of Thomson scattering experiments
[26,27], and the construction of pseudopotentials [37–39].
Finally, accurate QMC results for the (weakly and strongly)
inhomogeneous electron gas can be used as a highly needed
benchmark for different exchange-correlation functionals that
are used at WDM conditions [25,64,98–102].
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Precise knowledge of the static density response function (SDRF) of the uniform electron gas serves
as key input for numerous applications, most importantly for density functional theory beyond gener-
alized gradient approximations. Here we extend the configuration path integral Monte Carlo (CPIMC)
formalism that was previously applied to the spatially uniform electron gas to the case of an inhomo-
geneous electron gas by adding a spatially periodic external potential. This procedure has recently
been successfully used in permutation blocking path integral Monte Carlo simulations (PB-PIMC) of
the warm dense electron gas [T. Dornheim et al., Phys. Rev. E 96, 023203 (2017)], but this method is
restricted to low and moderate densities. Implementing this procedure into CPIMC allows us to obtain
highly accurate finite temperature results for the SDRF of the electron gas at high to moderate den-
sities closing the gap left open by the PB-PIMC data. In this paper, we demonstrate how the CPIMC
formalism can be efficiently extended to the spatially inhomogeneous electron gas and present the
first data points. Finally, we discuss finite size errors involved in the quantum Monte Carlo results for
the SDRF in detail and present a solution how to remove them that is based on a generalization of
ground state techniques. Published by AIP Publishing. https://doi.org/10.1063/1.4999907

I. INTRODUCTION

The uniform electron gas (UEG) is one of the most impor-
tant model systems of quantum physics and chemistry.1,2 It
is composed of electrons embedded in a uniform positive
background—to ensure charge neutrality. Thus, the UEG is
well suited for thorough studies of physical effects induced
by the long range Coulomb interaction of electrons in infi-
nite quantum systems, such as collective excitations3,4 or the
emergence of superconductivity.5 The equilibrium state of the
UEG is commonly determined by three parameters: (1) the
density (Brueckner) parameter rs = [3/(4πn)]1/3/aB, with aB

being the Bohr radius and n, the total density of spin-up and
spin-down electrons, n = n↑ + n↓; (2) the degeneracy param-
eter θ = kBT/EF, with the Fermi energy6 EF; and (3) the
spin-polarization, ξ = (n↑ − n↓)/n, where, in this work, we
focus on the most relevant case ξ = 0, i.e., the unpolarized
(paramagnetic) electron gas. Of particular current importance
is the so-called “warm dense matter” regime7 where the ther-
mal energy is of the order of the Fermi energy (θ ∼ 1) while
the densities are of the order of those found in solids (rs ∼ 1)
or higher. Prominent examples for such extreme conditions are
astrophysical applications,9,10 dense quantum plasmas,11–13

inertial confinement fusion experiments,14–17 or laser or ion
beam excited solids.18,19

The static density response function (SDRF), χ (q), gov-
erns the density response to an external harmonic excitation
of low amplitude A and wave vector q, φq(r) = 2A cos(r · q),

a)Electronic mail: groth@theo-physik.uni-kiel.de

〈n̂(r)〉A − 〈n̂(r)〉0 = χ(q) φq(r) .

The SDRF (or longitudinal polarization function11) is closely
related to the static limit of the dielectric function and contains
a wealth of information on the correlations and collective prop-
erties. Therefore, the SDRF is a key property of any correlated
many-body system, for details, see Sec. II A.

In particular, the SDRF of the UEG at warm dense matter
conditions constitutes a key ingredient for finite temperature
density functional theory7,8 (FTDFT) simulations within the
adiabatic-connection fluctuation-dissipation formulation,20–22

the currently most promising way to improve DFT beyond
the wide-spread generalized gradient approximation23,24 and
thereby enhance its predictive capabilities. In addition, the
SDRF of the UEG can be used to directly compute the dynamic
structure factor within the Born-Mermin-approach,25–28 which
is nowadays routinely measured for systems at warm dense
matter conditions via X-ray Thomson scattering experiments.
Moreover, knowledge of the exact SDRF of the UEG is highly
useful for the computation of energy transfer rates,29,30 electri-
cal conductivity,31 as well as for the construction of effective
potentials.32–35

In the ground state, ab initio results for the SDRF,36–40

including a subsequent parametrization over a wide range of
densities,41 have been obtained long ago via diffusion Monte
Carlo simulations of the UEG subject to a weak periodic pertur-
bation. However, even though the UEG effectively represents
a one-component system, its simulation at warm dense mat-
ter conditions is highly challenging due to the fermion sign
problem42,44 (FSP), which is particularly severe at finite tem-
perature (cf. Sec. II B for a detailed discussion of the FSP).
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Within the last years, significant progress in this field could be
achieved45–49 via the introduction of two novel quantum Monte
Carlo (QMC) methods, which excel at complementary param-
eter regimes: permutation blocking path integral Monte Carlo
(PB-PIMC)50–52 is most efficient at low densities and strong
coupling, whereas the configuration path integral Monte Carlo
(CPIMC) approach53–56 has no FSP at high densities, i.e., at
weak coupling. Only recently, the PB-PIMC approach has been
used to compute the first ab initio results for the SDRF of the
strongly coupled UEG at finite temperature.57 However, these
results are limited to density parameters of the order of rs = 1
and larger and cannot access the important regime of higher
densities.

Therefore, in this work, we turn to the complementary
CPIMC approach53 to compute the SDRF of the high den-
sity warm electron gas. This means, we extend the CPIMC
formalism from the homogeneous to the inhomogeneous elec-
tron gas such that it allows for the exact inclusion of a (in
principle arbitrarily strong) periodic external potential. This
allows us to obtain the first ab initio data for the SDRF in the
high-density regime (rs = 0.5; 1, 0.0625 ≤ Θ ≤ 1) and opens
the way for systematic studies in the near future.

Moreover, since the simulations are restricted to finite
systems with a few tens of electrons in a finite simulation
volume V, we provide a detailed discussion of and a highly
efficient solution to the problem of finite size errors involved
in the SDRF. This is crucial because one is actually inter-
ested in the thermodynamic limit (TDL) properties, N → ∞
at N/V = const. Finally, we compare our exact result
for the SDRF in the TDL with dielectric approaches such
as the random phase approximation and the self-consistent
scheme proposed by Singwi, Tosi, Land, and Sjölander
(STLS).58,59

This paper is structured as follows: in Sec. II A, we briefly
discuss the model Hamiltonian of the inhomogeneous electron
gas and the basic linear response equations that are utilized for
the computation of the SDRF. Thereafter, Sec. II B continues
with a detailed introduction to the general quantum Monte
Carlo approach including the origin and consequences of the
FSP, followed by the generalization of the CPIMC formalism
to the inhomogeneous electron gas in Secs. II C and II D. We
proceed with a discussion of the CPIMC results for the SDRF
of the ideal and non-ideal electron gas in Secs. III A and III B.
In Sec. III C, finite size errors are investigated in detail, and
an effective solution is presented to obtain the exact SDRF in
the TDL from CPIMC simulations.

II. THEORETICAL BASIS OF THE CPIMC APPROACH
TO THE INHOMOGENEOUS ELECTRON GAS
A. Linear response theory of the uniform electron gas

The model system of the unperturbed UEG consists of N
electrons in a finite volume V = L3 subject to periodic bound-
ary conditions, where a positive homogeneous background is
assumed to ensure charge neutrality. The Hamiltonian of this
system in Hartree atomic units reads

Ĥ0 = −1
2

N∑

i=1

∇2
i +

1
2

N∑

i=1

N∑

j,i

ΨE(ri, rj) +
N
2
ξM, (1)

with ΨE(r, s) being the Ewald pair potential and ξM the
Madelung constant, see, e.g., Ref. 60. For the purpose of
computing the SDRF of the UEG, we apply a weak periodic
external potential of the form36–40

Ĥext(A) =
N∑

i=1

2A cos (r̂i · q), (2)

with q= 2π
L m, m ∈Z3 so that the (total) perturbed Hamiltonian

is given by
ĤA = Ĥ0 + Ĥext(A). (3)

In the linear response regime, i.e., for sufficiently small ampli-
tudes A, the induced density modulation is entirely determined
by the SDRF2 χ,

〈n̂(r)〉A − 〈n̂(r)〉0 = χ(q) 2A cos(r · q), (4)

where 〈n̂(r)〉0 = n0 =
N
V is the electron density of the unper-

turbed UEG. Hence, one may obtain χ(q) by computing the
expectation value of the density operator n̂(r) =

∑N
i=1 δ(r− r̂i)

in the perturbed system and then fit the RHS of Eq. (4) to the
LHS (see, e.g., Ref. 57). However, it turns out to be more con-
venient to compute χ directly from the Fourier transform of
the density operator ρ̂q =

1
V

∑N
i=1 e−iqri via the well-known

relation2,39

χ(q) =
1
A
〈 ρ̂q〉A. (5)

In practice, we carry out several simulations for different
amplitudes A of the external field and then perform a lin-
ear fit to 〈 ρ̂q〉A in dependence of A where the resulting slope
is χ.

B. Path integral Monte Carlo and the fermion
sign problem

Throughout this work, we are interested in the compu-
tation of thermodynamic expectation values in the canoni-
cal ensemble, i.e., at fixed electron number N, volume V,
and temperature T. For this task, path integral Monte Carlo
(PIMC) methods have proven to be a very powerful tool.
The general idea of all existing PIMC approaches is to
find a suitable expansion of the partition function of the
form

Z = Tre−βĤ =
∑

C

W (C), (6)

where β = 1/kBT and C denotes some high-dimensional multi-
variable with an associated weight W (C) ∈ R that is readily
evaluated. In the context of QMC, we commonly refer to C as
being a configuration. Given some concrete expansion of Z,
thermodynamic expectation values of an arbitrary observable
Ô are written as

〈Ô〉 = 1
Z

∑

C

O(C)W (C), (7)

with O(C) being the so-called estimator. If the weight func-
tion is strictly positive for all configurations, W (C) > 0 ∀ C,
such expressions can be efficiently computed via the Metropo-
lis algorithm.61 The strength of this algorithm is that it allows
us to randomly sample configurations {C0, C1, . . . , CNC } with
the correct probability P(C) = 1

Z W (C) without knowing the



164108-3 Groth, Dornheim, and Bonitz J. Chem. Phys. 147, 164108 (2017)

normalization constant Z. Starting from some initial configu-
ration C0 this is achieved by proposing a transition from Ci

to some randomly chosen C ′ and accepting this change, i.e.,
setting Ci+1 = C ′, with the probability

A(C → C ′) = min

{
1,

W (C ′)
W (C)

}
. (8)

Having properly sampled the configurations in the described
way, an asymptotically exact estimator of the expectation value
Eq. (7) is immediately given by the average

〈Ô〉 = lim
NC→∞

1
NC

NC∑

i=1

O(Ci). (9)

In practice, we are of course restricted to a finite number of
sampled configurations Ci so that the results are generally
afflicted with a statistical uncertainty that can, in principle, be
made arbitrarily small by increasing the computation time [see
Eq. (14)]. Therefore, one may refer to Monte Carlo methods
as being “quasi-exact.”

However, to this day, there exists no exact expansion of
the form Eq. (6) for generic fermionic quantum systems with a
strictly positive weight function, and hence, it cannot be inter-
preted as a probability. To nevertheless utilize the Metropolis
algorithm, one can circumvent this issue by defining a modified
(artificial) partition function

Z ′ =
∑

C

|W (C)| (10)

and rewrite the expectation values as

〈O〉 = 〈Os〉′
〈s〉′ , (11)

where s = sign(W ) so that

〈s〉′ = 1
Z ′

∑

C

sign(W )|W (C)| = Z
Z ′

(12)

is simply the average sign of all sampled configurations in the
modified configuration space. It is easy to see that the relative
statistical uncertainty of expectation values computed in this
way is inversely proportional to the average sign. Further, with
Z = e�βNf , where f is the free energy per particle, it is

〈s〉′ = e−βN(f−f ′) . (13)

Consequently, the relative statistical error of observables
grows exponentially with the particle number N and the
inverse temperature β, while it can only be reduced with the
square root of the number of generated samples NC (see, e.g.,
Ref. 43),

∆O
〈O〉 ∼

1√
NC

e βN(f−f ′) . (14)

This is the manifestation of the well-known fermion sign prob-
lem, which causes the simulation of fermions to be a highly
demanding task even in thermodynamic equilibrium. More-
over, the sign problem may even be NP-hard.44 However, this
has only been shown for a small subclass of Hamiltonians not
subject to this paper.

In the standard PIMC approach,62 the utilized expansion
of the partition function is obtained by evaluating the trace in
Eq. (6) in coordinate representation, leading to configurations

C that can be interpreted as paths or trajectories of all N parti-
cles in imaginary time. In this formulation, the required anti-
symmetrization of the density operator to correctly account
for the Fermi statistics is the source of the sign changes in the
weight function, and hence, of the FSP itself. Fortunately, the
permutation blocking PIMC (PB-PIMC) method,50–52 devel-
oped by one of us, significantly reduces the FSP through a
sophisticated rewriting of the partition function whereby paths
with a different sign are combined into a single configuration.
However, due to the formulation in coordinate representa-
tion, the PB-PIMC approach excels at strong coupling but
still suffers from an increasing FSP towards lower tempera-
ture, preventing simulations of the UEG below half the Fermi
temperature.

An alternative strategy, which is pursued in this paper, is
given by the configuration path integral Monte Carlo (CPIMC)
approach.53–56 In contrast to standard PIMC, this method is
formulated in Fock-space, which leads to a FSP that is comple-
mentary to that of PB-PIMC: there is no sign problem at all for
the ideal fermi gas but the FSP increases with coupling. For this
reason, CPIMC has been highly valuable regarding the simula-
tion of the (unperturbed) UEG at densities rs . 1, practically
across the entire relevant temperature range.55 In Sec. II C,
the CPIMC formalism will be generalized to the perturbed
(inhomogeneous) electron gas described by the Hamiltonian
Eq. (3).

C. CPIMC approach to the inhomogeneous
electron gas

For the CPIMC formulation of the electron gas, we switch
to second quantization with respect to plane wave spin orbitals
〈rσ |kiσi〉 = 1

L3/2 eiki ·rδσ,σi with k = 2π
L m, m ∈ Z3, and

σi ∈ {↑,↓}. The N-particle states are then given by Slater
determinants in Fock space

|{n}〉 = |n1, n2, . . .〉, (15)

with the fermionic occupation number ni ∈ {0, 1} of the ith
plane wave spin-orbital naturally satisfying

∑
i ni = N . In this

representation, the Hamiltonian is expressed in terms of the
creation (â†i ) and annihilation (âi) operators, which, when act-
ing on the states [Eq. (15)], create or annihilate a particle in
the spin-orbital i. These operators satisfy the usual fermionic
anti-commutation relations, thereby automatically incorporat-
ing the correct Fermi statistics. The UEG Hamiltonian Eq. (1)
takes the explicit form2

Ĥ0 =
1
2

∑

i

k2
i â†i âi +

∑

i<j,k<l
i,k,j,l

w−ijklâ
†
i â†j âlâk + N

ξM

2
, (16)

with the antisymmetrized two-electron integrals w−ijkl = wijkl

− wijlk , where

wijkl =
4πe2

L3(ki − kk)2
δki+kj ,kk+kl δσi ,σk δσj ,σl . (17)

Likewise, for the external potential Eq. (2), we have

Ĥext =
∑

i,j

aij â†i âi, (18)

with the corresponding one-electron integrals

aij = Aδσiσj (δkj−ki ,q + δkj−ki ,−q). (19)
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The main idea of CPIMC is to split the total Hamiltonian
into an off-diagonal (Ŷ ) and diagonal part (D̂) with respect
to the Fock states, Eq. (15), so that ĤA = Ĥ0 + Ĥext = D̂ + Ŷ .
The matrix elements of these operators are readily computed
according to the well-known Slater-Condon rules53

D{n} =
1
2

∑

l

k2
l nl +

1
2

∑

l<k

w−lklknlnk , (20)

Y{n},{n̄} =


aij(−1)α{n},pq , {n} = {n̄}pq
w−pqrs(−1)α{n},pq+α{n̄},rs , {n} = {n̄}p<q

r<s

with the fermionic phase factor

α {n},pq =

max(p,q)−1∑

l=min(p,q)+1

nl. (21)

The notation {n}pq describes an excitation from an occupied
orbital q to a free orbital p in the state |{n}〉. Hence, we observe
that there are only two possibilities for non-vanishing off-
diagonal elements: the states |{n}〉 and |{n̄}〉 can differ in either
exactly two (pq) or four orbitals (pqrs). This is a direct conse-
quence of the fact that the Hamiltonian only contains strings
of two or four creation and annihilation operators. For com-
pleteness, we mention that for the general case of an arbitrary
system Hamiltonian, there is an additional contribution to the
off-diagonal elements where {n} = {n̄}pq ,

Y{n},{n̄} =
∑

i=0
i,p,q

w−ipiqni(−1)α{n},pq . (22)

For the electron gas, this contribution vanishes since here the
two-particle integrals with only two equal indices are always
zero due to the Kronecker delta in Eq. (17), which ensures that
the total momentum of the two particles before and after the
excitation is conserved.

After having split the Hamiltonian into its diagonal
and off-diagonal part, we switch to the interaction picture
in imaginary time with respect to D̂ and make use of the
identity,

e−βĤ = e−βD̂T̂τe− ∫
β

0 Ŷ (τ)dτ ,
Ŷ (τ) = eτD̂Ŷe−τD̂,

(23)

with T̂τ being the time-ordering operator. Plugging this iden-
tity into Eq. (6) and computing the trace using the Slater
determinants, Eq. (15), finally yields53

Z =
∞∑

K=0,
K,1

∑

{n}

∑

s1...sK−1

β∫

0

dτ1

β∫

τ1

dτ2 . . .

β∫

τK−1

dτK

× (−1)K e
−

K∑
i=0

D{n(i) }(τi+1−τi) ×
K∏

i=1

Y{n(i) },{n(i−1) }(si). (24)

Here, we have introduced the multi-index si which defines the
two or four orbitals in which the states |{n(i)}〉 and |{n(i−1)}〉
differ, i.e., si = (pq) or si = (pqrs). Further, all non-vanishing
contributions in Eq. (24) obey the condition {n} = {n(0)}
= {n(K )}. This way we have transformed the partition function,
Eq. (6), into an exact infinite perturbation expansion with
respect to the off-diagonal part of the Hamiltonian.

Comparing Eq. (24) with Eq. (6), we straightforwardly
identify the multi-variable C of each configuration contribut-
ing to the partition function,

C = (K , {n}, s1, . . . , sK−1, τ1, . . . , τK ) (25)

with the corresponding weight function

W (C) = (−1)K e
−

K∑
i=0

D{n(i) }(τi+1−τi)
K∏

i=1

Y{n(i) },{n(i−1) }(si) . (26)

Each configuration C can be visualized as a β�periodic
“path in imaginary time.” But in contrast to standard PIMC
which is formulated in coordinate space, here the path pro-
ceeds in Fock space and can be understood as follows: starting
from an initial set of occupation numbers {n} at τ0 = 0, one
subsequently applies one- or two-particle excitations at times
τi, where the involved orbitals are defined by the multi-index
si. An example of a typical path for a system of N = 3 particles
is shown in Fig. 1.

According to the number of involved orbitals, we refer
to one- and two-particle excitations as “kinks” of type 2 and
4, respectively. Hence, in CPIMC, one randomly samples all
possible closed paths with their associated weight, i.e., the
modulus of Eq. (26), and computes observables via Eq. (11).
This is achieved by a highly complex set of Monte Carlo steps
in which one proposes to add, remove, and change a single
kink or pairs of kinks and accept or reject those changes with
the Metropolis acceptance probability Eq. (8). Starting from
an initial path without kinks, one can propose three changes:
(1) one can simply excite a whole occupied orbital (from
τ = 0 to τ = β), which is illustrated in Fig. 2. (2) One can pro-
pose to add a pair of type 2 kinks or (3) a pair of type 4 kinks
via a one- or two-particle excitation (see Fig. 3). Adding a sin-
gle kink is not possible since this would violate the condition
of β-periodicity, {n(0)} = {n(K )}.

Once one has successfully added a pair of kinks, one can
also add a single kink by changing another. A careful analysis
reveals that there are in total 14 elementary diagrams for adding

FIG. 1. Typical “path” in a CPIMC simulation of N = 3 particles: the start-
ing Slater determinant at time τ0 = 0 with the set of occupation numbers
{n} = {110010 . . . } undergoes five different one- or two-particle excitations
of type si at times τi , i = 1 . . . 5.

FIG. 2. Diagram for exciting a whole occupied orbital i (from τ = 0 to
τ = β) to an unoccupied orbital j.



164108-5 Groth, Dornheim, and Bonitz J. Chem. Phys. 147, 164108 (2017)

FIG. 3. Diagrams for adding a pair of type 2 (top) or type 4 kinks (bottom)
via a one- or two-particle excitation, respectively.

a single kink via a one- or two-particle excitation, which are all
depicted in Fig. 13 in the Appendix. Naturally, to maximize
the efficiency of the CPIMC simulation, one only proposes
to add such kinks that are associated with a non-vanishing
off-diagonal matrix element, Eq. (20), i.e., which have a non-
vanishing one- or two-electron integral. For example, when
randomly choosing the two orbitals q and p for a one-particle
excitation, one ensures that |kp �kq | = |q| with q being the wave
vector of the periodic external potential, Eq. (18). Likewise,
whenever proposing to add a type 4 kink one makes sure that
momentum conservation is fulfilled.

Finally, we point out that the major difference between the
previous CPIMC formulation for the (unperturbed) UEG54 and
the present extension to the inhomogeneous electron gas lies
in the occurrence of type 2 kinks (one-particle excitations),
which are solely induced by the one-particle matrix elements
aij of the external potential in Eq. (20). In the case of the UEG,
aij = 0, and hence, there are only momentum conserving type 4
kinks. This causes a large simplification of the algorithm since
the 14 elementary diagrams of adding a single kink (see Fig.
13) reduce to only three, i.e., those containing solely type 4
kinks.

D. CPIMC estimator for the static response function

To compute the SDRF with CPIMC via Eq. (5), we need
to derive an estimator for the Fourier transform of the density
operator, ρ̂q, in correspondence to the CPIMC expansion of the
partition function Eq. (24), i.e., we have to write its expectation
value in the form of Eq. (7). Taking into account that 〈 ρ̂−q〉
= 〈 ρ̂q〉, its second quantization representation is given by

〈 ρ̂q〉 = 1
2V

∑

i,j

δσiσj (δkj−ki ,q + δkj−ki ,−q)〈â†i âj〉, (27)

and we immediately see that it can be computed directly from
the off-diagonal elements of the one-particle density matrix
〈â†pâq〉. An estimator for these elements is readily obtained by
using the relation

〈â†pâq〉 = 1
Z

Tr
{
â†pâqe−βĤ

}
= − 1

β

1
Z
∂Z
∂apq

, (28)

and carrying out the derivative with the CPIMC expansion of
the partition function, Eq. (24). This yields

〈â†pâq〉 = 1
Z

∑

C

*,−
1
β

K∑

i=1

1
apq

δsi ,(pq)+- W (C), (29)

where the abbreviation

∑

C

B
∞∑

K=0,
K,1

∑

{n}

∑

s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK (30)

has been used. By inserting Eqs. (29) and (19) into (27), the
estimator reduces to

〈 ρ̂q〉 = 1
Z

∑

C

*,−
1

2V β

K∑

i=1

1
A
δsi ,s T2

+- W (C), (31)

where δsi ,s T2 ensures that only those kinks contribute which
are of type 2. Simply speaking, we just have to average over
the number of type 2 kinks in all sampled paths and divide by
�2V βA.

III. CPIMC SIMULATION RESULTS
A. Ideal electron gas

Besides being highly valuable for the finite size correction
of the SDRF discussed in Sec. III C, the ideal Fermi sys-
tem constitutes the natural first test case for CPIMC due to
its formulation as an exact perturbation expansion in second
quantization. It is realized by setting all two-particle matrix ele-
ments Eq. (17) to zero. In the case of the (unperturbed) UEG
there are, consequently, no kinks at all so that the weight func-
tion [Eq. (26)] is always positive, meaning that the average sign
is always one. However, in simulations of the perturbed ideal
electron gas, the sampled paths contain type 2 kinks induced
by the external field, where each of them may cause up to
two sign changes in the weight function Eq. (26) through:
(1) the factor (�1)K and (2) the phase factor Eq. (21) occur-
ring in its matrix element Eq. (20). Yet, the average sign still
remains unity. This is because in the absence of type 4 kinks,
type 2 kinks can only be added and removed in symmetric
pairs as shown in Fig. 3—this is a simple consequence of the
fact that all type 2 kinks s = (pq) must fulfill |kp � kq | = |q|.
The induced sign changes of such pairs exactly compensate
each other so that the strict positive definiteness of the weight
function remains preserved, and hence, the FSP remains
absent, in striking contrast to standard PIMC in coordinate
space.

As a first demonstration, we perform CPIMC simulations
of the unpolarized ideal electron gas at rs = 1 with N = 4
particles for different amplitudes A of the external field with
a wave vector q = 2π

L (1, 0, 0)T. Figure 4 shows the results
for the induced density 〈 ρ̂q〉 (top) and the average number of
type 2 kinks (bottom) in dependence of the amplitude for two
different temperatures θ = 0.0625 (left) and θ = 1 (right). As
a cross-check, the dotted black line has been computed from
the unperturbed ideal UEG according to Eq. (40) as discussed
in Sec. III C. In the linear response regime, both results must
coincide, which is observed for A . 0.2 at θ = 0.0625, while at
θ = 1 the linear response regime remains valid for much larger
amplitudes, i.e., up to A ∼ 0.5. This behaviour is also reflected
in the average number of type 2 kinks for the same amplitude
which is reduced by about two orders of magnitude at θ = 1
compared to θ = 0.0625. Interestingly, in both cases, the linear
regime is reached where 〈KT2〉 . 1. In addition, since the next
order beyond the linear regime is given by the cubic response
function37 χ(3), we also perform a cubic fit (blue line) of the
form

〈 ρ̂q〉 = χ(q)A + χ(3)(q)A3 (32)
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FIG. 4. Top panels: Dependence of the induced density
〈ρ̂q〉 for q = 2π

L (1, 0, 0)T on the amplitude of the external
field. Shown are CPIMC results (red crosses) for the ideal
electron gas with N = 4 electrons at rs = 1 for two different
temperatures: (a) θ = 0.0625 and (b) θ = 1 (right). The blue
curve represents a fit of Eq. (32) to the CPIMC data. The
black dotted line corresponds to the exact LR behavior
computed from Eq. (40). Bottom panels: Dependence of
the average number of type 2 kinks on the amplitude of
the external field.

to the CPIMC data up to A = 0.25, for θ = 0.0625 and A = 0.5,
for θ = 1, respectively. Clearly, also the cubic regime remains
valid for much larger amplitudes at higher temperatures.

B. Interacting electron gas

Next, we perform the same CPIMC simulations for the
interacting system (identical system parameters) as for the
ideal case discussed in Sec. III A. The results are shown in
Fig. 5 where a linear fit (dotted black) and a cubic fit (solid
blue) to the CPIMC data are depicted. For these parameters, we
observe that the range of amplitudes for which the linear and
cubic response regimes are valid is similar to that found for the
ideal system. This is because the response of N = 4 particles
at rs = 1 is comparable to that of the ideal system (grey line).
In addition, in the bottom panels, the average number of type
4 kinks (green curve) is depicted, which are induced solely
by the Coulomb interaction and which cause the average sign
(orange curve) to deviate from one. In the linear regime, the
dependence of the number of type 4 kinks on the amplitude is
negligible.

However, for larger values of A not only the average num-
ber of type 2 kinks becomes very large but also the number
of type 4 kinks increases significantly. The main reason for
this behavior is the substantial increase of the configuration
space with increasing amplitude. In particular, at θ = 0.0625
(left graphic) the average sign drops below 10�3 at A > 1 and,

according to Eq. (14), the statistical error of the corresponding
CPIMC results is clearly enhanced. As a further cross-check
of the correctness of the presented algorithm, at θ = 1 we also
compare with the PB-PIMC method (green diamonds), which
are in perfect agreement with CPIMC, as expected.

In Fig. 6, a similar investigation is carried out for a larger
system containing N = 14 electrons at rs = 0.5 and θ = 0.5.
For these system parameters, the average sign (orange curve in
the bottom panel) does not drop below 0.1, even up to values
of the amplitude A ∼ 1.5. Thus, very precise CPIMC results
for the induced density can be obtained. In comparison to the
smaller system of N = 4 electrons in Fig. 5, the linear response
regime is valid up to about twice as large amplitudes so that
the SDRF χ, given by the slope of the linear fit (dotted black
line), can be obtained with a relative accuracy of up to 0.02%.
Further, we observe that the average number of type 2 kinks
〈KT2〉 (red curve in the bottom panel) is significantly larger
than one for amplitudes A > 1.5, and still, the deviation from
the LR behaviour is only minor. Recalling that, for the smaller
N = 4 system in Fig. 5, the LR regime is valid for 〈KT2〉 . 1,
we conclude that the average number of type 2 kinks alone is
not a reliable indicator for the validity of the linear response
regime.

When further increasing the system size to N = 20, while
keeping the density and degeneracy parameters unchanged
at rs = 0.5 and θ = 0.5, the CPIMC simulations become
significantly more demanding. This is demonstrated in Fig. 7,

FIG. 5. Top panels: Dependence of the induced density
〈ρ̂q〉 for q = 2π

L (1, 0, 0)T on the amplitude of the exter-
nal field. Shown are CPIMC results (red crosses) for the
interacting electron gas with N = 4 electrons at rs = 1 for
two different temperatures: (a) θ = 0.0625 and (b) θ = 1.
The blue (black dotted) curve represents a cubic (linear)
fit [cf. Eq. (32)] to the CPIMC data. The grey solid line
shows the ideal LR behavior computed from Eq. (40).
For comparison, at θ = 1, we also plot the PB-PIMC
results (green diamonds). Bottom panels: Dependence of
the average number of type 2 kinks (red), type 4 kinks
(green), and the average sign (orange) on the amplitude
of the external field.
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FIG. 6. Top panel: Dependence of the induced density 〈ρ̂q〉 for q
= 2π

L (1, 0, 0)T on the amplitude of the external field. Shown are CPIMC
results (red crosses) for N = 14 electrons at rs = 0.5 and θ = 0.5. The dotted
black line corresponds to a linear fit. For comparison, we also plot the ideal LR
behaviour (grey solid line). Bottom panel: Dependence of the average number
of type 2 kinks (red), type 4 kinks (green), and the average sign (orange) on
the amplitude of the external field.

where we artificially restricted the simulation to those con-
figurations containing a maximum of 40 (blue), 60 (red), or
arbitrarily many (green) kinks. More precisely, once a path
with K = Kmax kinks is realized, we do not propose to add
any further kinks. First, for the result obtained without any
restrictions (green), we see that these data are afflicted with a
clearly visible statistical noise, which is due to an average sign
(bottom panel, dashed-dotted) that is smaller than 0.1 even in
the homogeneous case (A = 0). Naturally, the resulting value
for the SDRF from a linear fit to these data (not depicted)
would only be of very poor quality. However, by restricting
the total maximum number of kinks (blue and red curves),
the average number of kinks (bottom panel, solid and dotted
lines) is reduced by an order of magnitude, whereby the aver-
age sign is increased by an order of magnitude (dashed-dotted
lines).

Normally, one would expect this procedure to bias the
result for the density response since by imposing these restric-
tions, one only samples paths from a small region of the total
configuration space. Instead, one observes that, within statis-
tical error bars, all three simulations are in perfect agreement,
both for large and small amplitudes A (see inset in the upper
panel). This very favourable behaviour is explained by a com-
plete cancellation of all contributions from paths with a number
of kinks larger than the maximum. In other words, due to
the sign changes in the weight function Eq. (26), the expan-
sion of the physical partition function Eq. (24) converges for
much smaller values of K than the simulated primed partition
function Eq. (10).

A similar observation has already been reported for the
total energy of the homogeneous (unperturbed) electron gas in
Ref. 56. There, a systematic extrapolation over the maximum
number of kinks (to the exact result) was conveniently realized
by the use of an auxiliary kink potential,

FIG. 7. Top panel: Dependence of the induced density 〈ρ̂q〉 for q
= 2π

L (1, 0, 0)T on the amplitude of the external field. Shown are CPIMC
results for N = 20 electrons at rs = 0.5 and θ = 0.5, where the maximum
total number of kinks in the sampled paths has been restricted to Kmax = 40
(blue), Kmax = 60 (red), and Kmax = ∞, i.e., no restriction (green). The solid
blue line corresponds to a linear fit to the data for Kmax = 40. The black
dotted line shows the ideal LR behaviour. Bottom panel: Dependence of the
average number of type 2 kinks (solid lines), type 4 kinks (dotted lines), and
the average sign (dashed-dotted lines) on the amplitude of the external field.
The colors correspond to the restrictions on the maximum number of kinks as
labeled in the top panel.

Vκ(K) =
1

e−(κ−K+0.5) + 1
(33)

that depends on the number of kinks K of a configuration and
the maximum number κ. The procedure works as follows: the
weight function W (C), Eq. (26), is replaced by

Wκ(C) = W (C) · Vκ(K), (34)

and one performs simulations for fixed values of κ. Since it is
limκ→∞ Vκ(K) = 1, the exact partition function (and hence the
exact result) is recovered by an extrapolation to κ → ∞. This
is demonstrated in Fig. 8, where we have increased the system
size to N = 38 electrons (again at θ = 0.5 and rs = 0.5). First,
we focus on the blue data points, which have been obtained
from a complete CPIMC simulation with a fixed value of the
parameter κ in the artificially modified weight function W κ(C).
Here, the kink potential acts as a smooth but exponentially
increasing penalty for all paths that contain a total number
of kinks larger than κ. As expected, the results for the SDRF
[Fig. 8(a)] converge for sufficiently large κ, in this case at about
κ & 10. And since the average number of kinks [panels (b) and
(d)] and, consequently, the average sign [panel (c)] are clearly
not converged for κ ∼ 10, we can indeed conclude that all
contributions from paths containing more than some critical
number of kinks seem to completely cancel.
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FIG. 8. Kink potential extrapolation of (a) the SDRF and
(e) the total energy to the exact limit, κ → ∞. Shown are
the results from CPIMC simulations of the inhomoge-
neous electron gas containing N = 38 electrons at θ = 0.5
and rs = 0.5. The amplitude of the external field has been
set to A = 0.2 with a wave-vector q = 2π

L (1, 1, 1)T. Each
data point has been obtained from a complete simulation
with a fixed value for the parameter κ in the kink potential
Eq. (33). Red points: the kink potential is applied solely
to the type 4 kinks (no restriction on the number of type 2
kinks) in the sampled paths. Blue crosses: the kink poten-
tial has been applied to the total number of type 2 and 4
kinks. Green line: linear fit to the last red data points.
In addition, for both potentials, the dependence on the
parameter κ is plotted for the average number of type 4
kinks (b), average sign (c), type 2 kinks (d), diagonal (f),
and off-diagonal contribution to the energy (g).

We again stress that the difference between CPIMC sim-
ulations of the homogeneous and perturbed electron gas lies
in the existence of type 2 kinks in the latter. In particular, the
SDRF is solely computed from the type 2 kinks [cf. its estima-
tor, Eq. (31)]. In the LR regime, the average number of type
2 kinks, 〈KT2〉, is significantly smaller than 〈KT4〉 meaning
that its practical influence on the sign is negligible. Therefore,
it is reasonable to apply the kink potential only to the type
4 kinks and impose no restriction on the number of type 2
kinks. Recalling that the type 4 kinks are solely due to the
Coulomb correlations, this procedure is equivalent to extrap-
olating the true static response with respect to the correlations
in the system—this procedure converges to the exact result
with increasing κ. The result is shown by the red dots in Fig.
8. Evidently, the convergence with κ is greatly accelerated.
Even at κ = 2, the result for the response function has only a
small bias of a few percent. In contrast, when also restricting
the type 2 kinks (blue crosses), the result is off by roughly a
factor 2.

We now analyze the total energy of the inhomogeneous
electron gas. Here the convergence behaviour with respect to
the kink parameter κ is different [see Fig. 8(e)]. Here, imposing
no restrictions on the type 2 kinks (red points) seemingly slows
down the convergence with κ. This is due to a coincidental
error cancellation of the diagonal [panel (f)] and off-diagonal
contributions [panel (g)] to the total energy, E = D + Y. Both
contributions, at fixed κ, are closer to the exact result when
leaving the number of type 2 kinks unrestricted. Moreover,
even in the case where one is particularly interested in the total
energy, the potential VT4

κ (red dots) should still be used since
only this potential ensures a monotonic convergence of the
energy with κ. Naturally, a monotonic convergence is preferred
when performing a reliable extrapolation to κ → ∞.

From the investigations in this section we conclude that
the general concept of an auxiliary kink potential to enhance
the performance of CPIMC simulations that has been previ-
ously introduced for the unperturbed UEG55,56 can be used in
a similar way for the inhomogeneous electron gas. At fixed
temperature and density, this allows us to obtain the SDRF for
twice as large systems. This is an impressive efficiency gain
when considering that the FSP increases exponentially with
the system size, cf. Eq. (14). For the presented example with

θ = 0.5 and rs = 0.5, CPIMC simulations without the kink
potential are feasible for up to N ∼ 20 electrons whereas, with
the kink potential, simulations of N = 38 particles pose no
problem. On the other hand, for fixed temperature and elec-
tron number, the use of the kink potential roughly doubles the
accessible rs-range, which corresponds to a factor 8 in the den-
sity. Most importantly, it turns out that, in the LR regime, the
number of type 2 kinks is small compared to the number of
type 4 kinks so that their practical influence on the average
sign is negligible. For this reason, the accessible parameter
range regarding the particle number, temperature, and density
for which the SDRF can be computed by means of CPIMC
simulations of the inhomogeneous electron gas is almost iden-
tical to the range of applicability of CPIMC to the unperturbed
spatially homogeneous electron gas.

C. Finite size correction of the static density
response function
1. Theory

In this section, the issue of finite size errors in the compu-
tation of the SDRF χ and ways to correct them are discussed
in detail. These errors are a direct consequence of the fact that
Monte Carlo simulations can only be performed for a finite
particle number N in a finite simulation box with volume V.
This often causes the resulting functional form of χN (q) to
differ significantly from its thermodynamic limit

χ(q) = lim
N→∞

N/V=const.

χN (q) . (35)

In particular, when simulating fermionic systems with Monte
Carlo methods, one is usually limited to rather small systems,
due to the FSP, so that finite size errors are not negligible.
In addition, q-dependent quantities can only be computed for
q-vectors that satisfy the natural condition of momentum quan-
tization in the simulation box, q = 2π

L m with m ∈ Z3. Thus,
standard techniques to reduce finite size errors, e.g., those for
the total energy,45 which are all based on an extrapolation of
the finite– N results to N → ∞ (at constant density) cannot be
used for the correction of χ.

In the ground state, the most sophisticated approach to
tackle finite size errors is based on the assumption that the so-
called static local field correction (LFC) G(q) is only weakly
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dependent on the system size.37 The LFC is commonly defined
by the equation63,64

χ(q) =
χ0(q)

1 − vq[1 − G(q)]χ0(q)
, (36)

where χ0 denotes the ideal response function and vq = 4π/q2.
The random phase approximation (RPA) χRPA is obtained by
setting G = 0 in Eq. (36). Hence, the LFC contains all infor-
mation beyond the RPA and should thus be dominated by
short-range correlations, which are expected to be captured
sufficiently well in a finite simulation cell. Naturally, instead
of computing the LFC from the ideal response function in the
TDL, χ0(q)2, i.e., via

GN (q) =
1
vq

(
1

χN (q)
− 1

χ0(q)

)
+ 1, (37)

it is important to obtain it consistently from the corresponding
finite-N ideal response function χ0

N (q),

GFSC
N (q) =

1
vq

*,
1

χN (q)
− 1

χ0
N (q)

+- + 1. (38)

Assuming that the finite size errors in this consistent LFC
are negligible, i.e., GFSC

N (q) ≈ G(q), the finite size corrected
response function is given by

χFSC(q) =
χ0(q)

1 +
[

1
χN (q) − 1

χ0
N (q)

]
χ0(q)

. (39)

Therefore, in addition to the response function of the inter-
acting finite-N system, χN (q), we also need precise data for
the corresponding ideal response function χ0

N (q). In princi-
ple, these can be obtained from a complete CPIMC simulation
of the ideal perturbed electron gas for each q-vector and par-
ticle number N, as was demonstrated in Sec. III A. A more
convenient way to achieve this is given by making use of the
spectral representation of the ideal response function, which,
in the case of the UEG, takes the form2

χ0
N (q) =

1
V

∑

p,σ

nσ(p + q) − nσ(p)
εp+q − εp

, (40)

where εp = p2/2, and nσ(p) = 〈n̂p,σ〉 is the momentum dis-
tribution of the unperturbed ideal UEG, which converges to
the Fermi distribution, in the TDL, and constitutes a natu-
ral observable that is straightforwardly computed observable
within the CPIMC formalism. Thus, Eq. (40) in principle
enables us to gain access to all q-vectors of the ideal response
function from a single CPIMC simulation of the unperturbed
UEG.

However, the concrete evaluation of Eq. (40) has to be
done carefully because there are terms in which both the
numerator and denominator vanish, i.e., where ��p + q�� = ��p��. In
the ground state, it is correct to simply set those terms to zero2

and to rewrite

χ0
∗,N (q) =

1
V

∑

p,σ
|p+q |, |p |

nσ(p + q) − nσ(p)
εp+q − εp

. (41)

However, at finite temperature65 this leads to completely
wrong results, which is illustrated in Fig. 9, where the ideal

FIG. 9. Comparison of different ways to compute the ideal response function
for the UEG with N = 4 electrons at θ = 1 and rs = 1. The orange squares
correspond to the evaluation of Eq. (41). The blue diamonds show the result

from Eq. (44) for a small twist-angle t = 0.01 · (1/e, 1/π, 1/
√

(2))
T

. The red
dots correspond to Eq. (46). For comparison, the result obtained from CPIMC
simulations of the perturbed ideal electron gas, as discussed in Sec. III A, is
depicted by the green crosses. The bottom panel shows the relative deviation
to these exact data. The black solid line corresponds to the ideal response
function in the TDL.

response function of N = 4 electrons at θ = 1 and rs = 1 is shown.
The green crosses correspond to the exact result obtained from
simulations of the perturbed ideal electron gas as discussed in
Sec. III A. The orange squares, which correspond to the evalu-
ation of Eq. (41), exhibit a large bias for every second q-vector,
while every other is in perfect agreement with the result from
the unperturbed system (see deviation in the bottom panel of
Fig. 9). This is due to the fact that the condition ��p + q�� = ��p��
can only be fulfilled if q̃2 = q2L2/(2π)2 is an even number (in
what follows the tilde denotes dimensionless q-vectors with
the components q̃i ∈ Z). The proof is obvious when rewriting
said condition as

p̃2 = p̃2 + q̃2 + 2p̃q̃ (42)

⇔ q̃2 = −2p̃q̃ . (43)

Since the factor 2 ensures that the RHS is always an even
number, the equality can only be fulfilled if q̃2 is also even.
Thus, there are no critical (diverging) terms in the evaluation
of Eq. (40) for odd q̃2.

To determine the proper contribution of the critical terms
for even q̃2, we may write Eq. (40) for the UEG Hamiltonian,
Eq. (1), subject to generalized periodic boundary conditions.
Following Refs. 66 and 67, this is realized by shifting the
entire q-grid of our simulation box by a so-called twist-angle
t ∈ R3 so that the modified momentum quantization reads
q = 2π

L m + t, with m ∈ Z3. For the ideal response function,
we then have

χ0
t,N (q) =

1
V

∑

p,σ

nσ(p + t + q) − nσ(p + t)
εp+t+q − εp+t

, (44)

where, in this notation, the sum still runs over all p-vectors
with p = 2π

L m, where m ∈ Z3. Obviously, the condition for a
vanishing denominator now reads

|p + t + q| = |p + t |, (45)

which cannot be fulfilled if the components of the twist-angle
ti are irrational and linearly independent, e.g., for the choice
t = (1/e, 1/π, 1/

√
2)T . In addition, for a sufficiently small
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modulus of the twist-angle, we can expect the induced bias
to be negligible. The blue diamonds in Fig. 9 clearly show that
this is indeed the case since they perfectly agree with the exact
result (see the bottom panel).

Finally, we determine the contribution of the critical terms
in Eq. (40) by performing the limit |t → 0| of those terms in
Eq. (44) with the aid of L’Hospitals’s rule yielding

χ0
N (q) = χ0

∗,N (q) − β

V

∑

p,σ
|p+q |= |p |

[
nσ(p) − n2

σ(p)
]

. (46)

The corresponding result is depicted by the red dots in Fig. 9.
Evidently, compared to simply omitting the contribution of the
critical terms (orange squares) the improvement is substantial.
Yet, the relative deviation to the exact result is still of the order
of a few percent (bottom panel).

The residual bias is explained as follows: mathematically
it is only valid to use L’Hospital’s rule if the functional form
of the momentum distribution does not change with the twist-
angle. This condition only holds in good approximation for
large particle numbers but is increasingly violated for smaller
system sizes. Since a systematic error of a few percent in the
ideal response function is not sufficient for a reliable finite
size correction, we conclude that Eq. (46) cannot be used to
achieve this. Nevertheless, we can instead use Eq. (44), which
has been demonstrated to be asymptotically correct for small
twist-angles, to efficiently compute the finite-N ideal response
function of the UEG with high accuracy. For completeness, we
mention that L’Hospital terms vanish in the ground state, and
the functional form of the momentum distribution is indepen-
dent of the twist-angle here since it is always given by a step
function at the Fermi vector kF. Hence, Eq. (41) is indeed
correct in the ground state.

2. CPIMC results

At high densities, we expect the finite size errors involved
in the response function of the interacting system to be com-
parable to those of the ideal system. Therefore, Fig. 10 shows
the dependence of the ideal response function on the particle
number at three different temperatures. At θ = 0.0625 [panel
(a)], which is close to the ground state, the finite size errors
are extremely large even for N = 54 electrons (blue) and are
most pronounced for small q-vectors, which correspond to
large distances in real space that are not sufficiently described
in small simulation cells. It is only at a few hundred electrons

FIG. 11. Finite size correction of the density response function of the UEG
at θ = 0.5 and rs = 0.5. Top panel: Shown are the uncorrected CPIMC results
for different electron numbers in the simulation box: 4 (purple crosses), 14
(orange squares), 20 (blue diamonds), and 38 (red dots). The black symbols
correspond to the finite size corrected results computed via Eq. (39), and the
green curve shows a smooth spline fit through these data with N > 4. For
comparison, the ideal (solid black), RPA (dotted black), and STLS (brown)
results are plotted. Bottom panel: Zoom into the minimum regime of the
response function.

(red) where the convergence of the functional form eventu-
ally becomes visible. With increasing temperature, these finite
size errors are significantly reduced; yet the relative bias of,
e.g., N = 14 electrons at θ = 0.5 [green dots in panel (c)] is
still substantial. This reduction of finite size errors is due to
the fact that shell effects, which also cause quantities like the
total energy to converge non-monotonically towards the TDL,
vanish with increasing temperature.

Finally, in Fig. 11 the wave-vector dependence of the inter-
acting response function of the UEG is depicted for θ = 0.5 and
rs = 0.5. The colored symbols show the uncorrected CPIMC
results for N = 4, 14, 20, and 38 electrons, which have been

FIG. 10. Dependence of the ideal response function on
the particle number at rs = 1 and three different temper-
atures: θ = 0.0625 (a), θ = 0.25 (b), and θ = 0.5 (c). The
results for finite particle numbers have been computed
via Eq. (44) from the CPIMC result of the corresponding
finite – N momentum distribution. For comparison, black
dotted curves show the TDL result of the ideal response
function.
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obtained as discussed in Sec. III B. For N = 38, the extrapola-
tion technique with the kink potential has been used. First, we
clearly see that the uncorrected results do not lie on a smooth
curve. In particular for N = 4 and N = 14 electrons, the finite
size errors are of the order of a few percent when zooming into
the minimum region of the response function (bottom panel).
Before applying the presented finite size correction to χ, we
check if the underlying assumption regarding the weak finite
size dependence of the LFC is actually valid. For this pur-
pose, in Fig. 12 we plot the LFC of the UEG for the same
parameters. Evidently, using the ideal response function in
the TDL to compute the LFC according to Eq. (37) leads to
substantial finite size errors in its functional form. However,
when consistently using our computed CPIMC result for the
finite – N ideal response function [cf. Eq. (38)], the functional
form of the LFC is indeed indistinguishable for all three par-
ticle numbers so that a smooth spline can be fitted through
these data (green line). For comparison, we also plot the
LFC obtained from the Singwi-Tosi-Land-Sjölander (STLS)
scheme, which is of good quality for q/kF . 1 but deviates by
up to a factor of two from the exact CPIMC result, for larger
q-vectors.

Now we use the consistent LFC to correct the SDRF
according to Eq. (39). The result is shown by the black symbols
in Fig. 11. Clearly, for N > 4 all results lie on a smooth curve,
which is demonstrated by a smooth spline fit through these
data (green curve). Even though for N = 4 (black crosses), the
correction is not quite sufficient to describe the TDL behav-
ior, the reduction of the bias is still impressive (cf. purple
crosses). In addition, we plot the response function in RPA
(dotted black) and STLS (solid brown) approximation. While
the RPA exhibits systematic errors of a few percent, the STLS
approximation is accurate up to about one percent. In particu-
lar, STLS exhibits no resolvable bias for q/kF . 1, which is in
agreement with its accuracy regarding the LFC (cf. Fig. 12) in
this regime. However, even though at q/kF & 2 the systematic
error of the STLS result for the LFC is nearly a factor two,
the influence of the LFC on the total response function is sup-
pressed by the factor vq = 4π/q2 in Eq. (36) so that for q → ∞
the response function becomes equal to the ideal case.

FIG. 12. Local field correction of the UEG at θ = 0.5 and rs = 0.5 for different
particle numbers indicated in the legend (subscripts). Colored filled symbols:
LFC computed from the ideal response function in the TDL, Eq. (37). Black
symbols: LFC obtained from the finite – N ideal response function according
to Eq. (38). Green curve: spline fit to the finite size corrected LFC. Brown
curve: STLS local field correction.

We conclude that the ground state finite size correction
of the LFC and the SDRF can be generalized to finite tem-
peratures, as presented in this section. The benefit of this
correction is dramatic: it allows one to obtain accurate results
for the thermodynamic limit from CPIMC simulations for sys-
tems as small as N = 14 electrons. The price one has to pay
is to compute highly accurate results of the finite–N ideal
response function. This can be efficiently achieved via CPIMC
simulations of the unperturbed UEG by using its spectral repre-
sentation. However, in contrast to the ground state, the correct
evaluation of the spectral representation is only possible when
switching to a system subject to generalized boundary condi-
tions, which has been verified by cross-checks to the exact
result obtained from simulations of the perturbed electron
gas. Finally, we mention that the presented finite size correc-
tion is not only highly valuable for CPIMC but can be used
for finite–N data obtained with any other finite temperature
method.

IV. SUMMARY AND DISCUSSION

In summary, we have successfully generalized the CPIMC
formalism from the homogeneous electron gas to the general
inhomogeneous case. We have shown that the applied external
periodic potential results in the occurrence of type 2 kinks that
correspond to one-particle excitations in the simulated imagi-
nary time paths. This leads to numerous additional diagrams,
which have to be taken into account, so that the complex-
ity of the algorithm is significantly increased. Next, we have
demonstrated that the technique of an artificial kink-potential,
which had been introduced in Refs. 55 and 56 to mitigate the
FSP regarding the computation of the energy of the UEG,
is similarly effective for the computation of the SDRF. This
concept may even be improved when being applied solely to
the type 4 kinks while imposing no restrictions on the type
2 kinks. Interestingly, we observed that the induced type 2
kinks only influence the fermion sign problem of CPIMC
for large amplitudes of the external potential. For amplitudes
that are sufficiently small for the linear response theory to
be valid their influence is negligible. Therefore, the presented
CPIMC algorithm can be used to compute the SDRF for the
same parameters (density, temperature, and electron number)
that are accessible for the simulation of the UEG without the
external potential.

A further achievement of this work consists in the exten-
sion of ground state finite size corrections for the SDRF to finite
temperature. We have demonstrated that the SDRF obtained
from quantum Monte Carlo simulations of finite systems, i.e.,
a finite number of electrons in a finite simulation box, may
differ substantially from the TDL result. For the investigated
example of intermediate temperature (θ = 0.5) and rather high
density (rs = 0.5), the finite size errors are of the order of
several percent. Similarly to previous findings in the ground
state, the finite size effects are almost exclusively ascribed
to the ideal part of the SDRF, whereas the LFC is remark-
ably well converged with system size even for small N, i.e.,
GFSC

N (q) ≈ G(q).
To compute GFSC

N from the QMC data for the SDRF, we
found that it is crucial to use the ideal SDRF for the same finite
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number of electrons (instead of using the macroscopic result),
which turns out to be surprisingly difficult. While the finite –
N ideal SDRF is linked to the momentum distribution func-
tion via its spectral representation, at finite temperature, the
corresponding expression can only be evaluated when intro-
ducing generalized boundary conditions by means of a finite
but small twist-angle. Thereby, unbiased results for the finite –
N ideal SDRF for all wave-vectors can be obtained from a sin-
gle CPIMC simulation of the unperturbed UEG. This has been
confirmed by cross-checks with the exact results from simu-
lations of the perturbed UEG. In this way, the SDRF can be
computed in the TDL with an accuracy of ∼0.1%. Finally, our
ab initio results for the SDRF allow us to benchmark stan-
dard approximations. In particular, the RPA SDRF reveals

systematic errors of a few percent, while the STLS approx-
imation58,59 exhibits deviations of up to one percent, even at
rs = 0.5.

We expect the presented results to be of high impor-
tance for future warm dense matter research, in particular in
the context of advanced truly non-local exchange-correlation
functionals for DFT or as valuable input for the computa-
tion of the dynamic structure factor, e.g., within the extended
Born-Mermin approach.26 Furthermore, a more detailed inves-
tigation of the LFC will certainly help in determining the
large k-vector behavior of the LFC, which, in particular at
finite temperature, is an open question. In addition, a possible
maximum in the LFC is known to indicate the possibility for
charge-density waves.2

FIG. 13. All 14 elementary diagrams for adding a type
2 or 4 kink via a one- or two-particle excitation, respec-
tively, and thereby changing another kink left of the added
one.
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APPENDIX: ALGORTHM DETAILS

In this appendix, we present additional information on the
CPIMC procedure for the harmonically modulated electron
gas. Figure 13 shows all possible 14 elementary diagrams for
adding a type 2 or 4 kink via a one- or two-particle excitation,
and thereby changing another kink left of the added one.
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6.2 Effective Pair-Potentials

As a side project, in the following article2, Ref. [115], I contributed the static local field
correction, G(k), computed within the STLS scheme. As described in the article, these data
can be directly used for the computation of more refined screened ion potentials, which, in
turn, can be employed for molecular dynamic simulations of two-component plasmas at
WDM conditions.

2Z. Moldabekov, S. Groth, T. Dornheim, M. Bonitz, and T.S. Ramazanov, Contrib. Plasma Phys. (2017), 57,
p. 532-538. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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The screened ion potential in non-ideal dense quantum plasmas is investigated by

invoking the Singwi–Tosi–Land–Sjölander approximation for the electronic local

field correction at densities rs ≲ 2 and degeneracy parameters 𝜃 ≲ 1, where rs is the

ratio of the mean inter-particle distance to the first Bohr radius, and 𝜃 is the ratio of

the thermal energy to the Fermi energy of the electrons. Various cross-checks with

ion potentials obtained from ground-state quantum Monte Carlo data, the random

phase approximation, and with existing analytical models are presented. Further-

more, the importance of the electronic correlation effects for the dynamics in strongly

coupled ionic subsystems for 0.1 ≤ rs ≤ 2 is discussed.

KEYWORDS

dense plasmas, ion potential, non-ideal plasmas

1 INTRODUCTION

Even though much advance regarding the modelling and simulation of non-equilibrium electron–ion plasmas has been made

recently,[1–4] a fully self-consistent treatment has not yet been achieved because electronic quantum and spin effects together

with strong ionic correlations must be taken into account simultaneously. The main difficulties arise from the vastly different

timescales of electrons and ions, a direct consequence of their different masses. A possible way to overcome this obstacle is

through the multi-scale approach proposed by Ludwig et al.,[5] which relies on a linear response treatment of the electrons, which

is justified in the case of weak electron–ion coupling. The key to this multi-scale approach is to incorporate the fast electron

kinetics into an effective screened potential of the heavy ions, where the screening is provided by the electrons via a proper

dielectric function. Recently, we have analysed the screened ion potential in the random-phase approximation (RPA),[6] which is

naturally expected to be valid in the weak coupling regime. In this paper, we extend these investigations to the case of non-ideal

quantum electrons by making use of local field corrections which are computed within the Singwi–Tosi–Land–Sjölander (STLS)

formalism[7] and from quantum Monte Carlo (QMC) simulations.[8]

The properties of the electrons in a dense partially (or fully) degenerate plasma are generally characterized by the density

parameter rs = a/aB and the quantum degeneracy parameter 𝜃 = kBTe/EF, where a= (3/(4𝜋n))1/3, with aB being the Bohr radius,

Te the temperature of the electrons, kB the Boltzmann constant, and EF the Fermi energy of the electrons.

Bennadji et al.[9] have calculated the screened potential in the STLS approximation at a fixed temperature T = 104 K and

densities ranging from 1019 to 1026 cm−3. Nevertheless, a thorough investigation of the screened ion potential as a function of

the ion distance, as well as a careful test of the accuracy of the STLS approximation, has not been performed. Moreover, in the

studies by Fletcher et al. and Ma et al.,[10,11] the screened ion–ion interaction potential was described by a model consisting of

a “Yukawa+ a short-range repulsive potential” which has been designed to fit the results of warm dense matter studies within

the density functional theory formalism. However, this model was later criticized by Harbour et al.,[12] who investigated the

compressibility, phonons, and electrical conductivity of warm dense matter on the basis of a neutral-pseudoatom model. The

general approach of utilizing a screened pair interaction potential has been considered and implemented in numerous previous

works[13–15] to study various physical properties of semi-classical, weakly coupled plasmas. Recently, Baalrud and Daligault

extended the applicability of an effective pair interaction potential to the description of strongly coupled classical plasmas.[16]

Contrib. Plasma Phys. 2017;57:532–538 www.cpp-journal.org © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 532
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Here, we compare different models for the screened ion potential in quantum plasmas, for 𝜃 ≲ 1, and focus on the influence of

electronic correlations effects. Note that we do not take into account electron–ion recombination effects (possible bound states).

This is justified by first-principles path-integral Monte Carlo simulations,[17] which indicate that, because of the so-called Mott

effect or pressure ionization, bound states break up in the density range around rs = 1.5–2.0. Therefore, we only consider density

parameters rs ≲ 2. These high densities are in particular relevant for non-ideal (moderately) degenerate plasmas found in inertial

confinement fusion experiments[18–21] and neutron star atmospheres.[22]

This paper is structured as follows: In section 2, the theoretical formalism is presented. The results for the screened ion

potentials are shown in section 3. In the last section we summarize our findings and give a short conclusion.

2 SCREENED ION POTENTIAL

The screened potential Φ of an ion with charge Q=Z|e| can be calculated using the well-known formula (5)

Φ(r) = ∫ d3k
2𝜋2

Q2

k2𝜀(k, 𝜔 = 0)
eik⋅r, (1)

where 𝜀(k, 𝜔) is the dielectric response function of the electrons given by

𝜀(k, 𝜔) = 1 −
𝜒0(k, 𝜔)

k2∕(4𝜋e2) + G(k, 𝜔)𝜒0(k, 𝜔)
. (2)

According to Equation (1), the screening effects of the electrons are entirely determined by the static limit of the dielectric

function:

𝜀(k, 𝜔 = 0) = 1 −
𝜒0(k, 0)

k2∕(4𝜋e2) + G(k, 0)𝜒0(k, 0)
. (3)

Here, 𝜒0 denotes the finite-temperature ideal density response function of the electron gas.[23] Furthermore, all correlation

effects are incorporated in the so-called local field correction G, so that the dielectric function in the RPA is given by setting

G= 0 in Equation (3):

𝜀RPA(k, 0) = 1 − 4𝜋e2

k2
𝜒0(k, 0). (4)

A highly successful way to approximately determine the static local field correction, and thereby going beyond the RPA, is

provided by the self-consistent static STLS scheme,[7,24] which is based on the ansatz

G(k, 𝜔) ≈ GSTLS(k, 0) = −1

n∫ dk′

(2𝜋)3
k ⋅ k′

k′2
[SSTLS(k − k′) − 1] , (5)

where the static structure factor SSTLS can be computed according to the fluctuation-dissipation theorem as

SSTLS(k) = − 1

𝛽n

∞∑
l=−∞

k2

4𝜋e2

(
1

𝜀(k, zl)
− 1

)
. (6)

Note that the integration over the frequencies in the fluctuation-dissipation theorem has been re-cast in a summation over

the Matsubara frequencies zl = 2𝜋il/𝛽ℏ. Following Tanaka and Ichimaru,[7] the complex-valued dielectric function is straight-

forwardly evaluated via Equation (3) from the corresponding finite-temperature ideal response function and GSTLS. Thus,

Equations (2), (5), and (6) form a closed set of equations that can be solved iteratively until self-consistency is reached, which

finally yields the converged dielectric function 𝜀STLS(k, 0). For the RPA, STLS, and QMC result of the static dielectric function,

we readily obtain the corresponding screened potentials via Equation (1).

A widely used analytical model that incorporates screening effects is given by the Yukawa type potential

ΦY (r; n,T) = Q
r

e−kY r, (7)

with k2
Y (n,T) =

1

2
k2

TF𝜃
1∕2I−1∕2(𝛽𝜇), kTF =

√
3𝜔p∕𝜈F (the Thomas–Fermi wavenumber), and I−1/2 being the Fermi integral of

order−1/2 (see below). In the context of quantum plasmas, Equation (7) is often referred to as the Thomas–Fermi potential (TF).

The inverse screening length kY interpolates between the Debye and TF expressions in the non-degenerate and zero-temperature

limits, respectively.

Another analytical model has been provided by Stanton and Murillo (SM)[26]:

𝜙SM>(r; n,T) = Q
r
[cos(k′− ⋅ r) + b′ sin(k′− ⋅ r)]e−k′+⋅r, (8)
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FIGURE 1 Singwi–Tosi–Land–Sjölander (STLS), random-phase approximation

(RPA), and quantum Monte Carlo (QMC)[8] results for the screened ion potential at

rs = 2.0 and 𝜃 = 0.01
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where k′± = kTF(
√
𝛼SM±1)1∕2∕

√
𝛼SM , 𝛼SM = 3

√
8𝛽𝜆I′−1∕2

(𝜂0)∕𝜋, 𝜆= 1/9, b′ = 1∕
√
𝛼SM − 1. Here, Ip(𝜂) = ∫

∞

0

dx xp∕(1 +

ex−𝜂) denotes the Fermi integral and Ip
′(𝜂) its derivative with respect to 𝜂. In addition, 𝜂0 is determined by the normalization

n0 =
√

2I1∕2(𝜂0)∕𝜋2𝛽3∕2 with the inverse temperature 𝛽, and the inverse TF screening length at finite temperatures is given by

kTF = (4I−1∕2(𝜂0)∕𝜋
√

2𝛽)1∕2.

For the case 𝛼SM < 1, the SM potential takes a different form:

𝜙SM<(r; n,T) = Q
2r

[(1 + b)e−k+r + (1 − b)e−k−r], (9)

where b = 1∕
√

1 − 𝛼SM and k± = kTF(1 ∓
√

1 − 𝛼SM)1∕2∕
√
𝛼SM∕2. We note that for the ground state (𝜃 = 0) the screened

potentials (8) and (9) were derived by Akbari-Moghanjoughi.[27]

The SM potential was derived starting from the TF model with the first-order gradient correction to the non-interacting

free energy density functional.[26] Moldabekov et al.,[6] showed that this corresponds to the second-order result of the long

wavelength expansion of the inverse ideal response function. The TF potential (7) can be derived considering the lowest order

result, which is given by neglecting all k-dependent terms in the long wavelength expansion of the inverse response function

in the RPA. Therefore, both TF and SM potentials correctly describe the screening of the ion potential at large distances but

completely neglect non-ideality (correlation) effects. We note that the SM potential, at certain parameters, has an oscillatory

pattern, which is meant to mimic the so-called Friedel oscillations (see Ref. [6] for more details).

3 RESULTS

First, in Figure 1 we determine the accuracy regarding the treatment of correlation effects of the STLS approximation by com-

paring it to the parameterization of the exact ground-state QMC data[8] at rs = 2. Clearly, one can see that electronic correlations

lead to a stronger screening of the test charge potential in comparison to the RPA result. Tested against the exact QMC data,

the STLS approximation provides a qualitatively good description of the correlation effects in the screened potential. In partic-

ular, the behaviour at short distances, r ≲ a, is described much better than by the RPA ansatz. However, unlike the ion potential

based on the QMC data, which is monotonically decreasing, the STLS ion potential exhibits a shallow negative minimum

(Φmin < 10−2 Ha) at r ≃ 2.5aB > a. This appears to be an artefact of the STLS approximation. Indeed, there is no physical reason

for the appearance of the attraction between ions at the considered parameters. Additionally, this minimum is located at r > a,

meaning it cannot lead to a significant change in the structural properties of the ionic subsystem. It should be mentioned that

the ion potential obtained using QMC data has a non-monotonic feature at r > a (around the distance at which the STLS poten-

tial has a negative minimum). A possible explanation of this behaviour could be the interplay of an enhanced screening due to

correlations with the simultaneous occurrence of Friedel oscillations. In Figure 2, the STLS and RPA potential are shown for

different values of the density parameter rs at fixed 𝜃 = 0.01 (very close to the ground state). With increasing density, the neg-

ative minimum in the ion potential becomes less pronounced, i.e., the absolute value of Φmin decreases, and finally becomes

indistinguishable from the Friedel oscillations at rs ≤ 1. As expected, the difference between the STLS approximation and the

RPA reduces with increasing density.

In Figure 3, the comparison of the ion potentials in the STLS approximation and RPA are presented for different values of

the degeneracy parameter 𝜃 at rs = 1.5. Since the effect of correlations becomes less important with increasing temperature, the

difference between STLS and RPA reduces with temperature. In Figure 4, we also plot the TF[7] and SM[9] potentials. While TF,

SM, and RPA can barely be distinguished, they all differ significantly from the STLS potential since only here are correlation

effects taken into account.
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FIGURE 2 Singwi–Tosi–Land–Sjölander (STLS) and random-phase approximation (RPA) results for the screened ion potential for 𝜃 = 0.01 at different

values of the density parameter. The impact of the electronic correlations on the charge screening becomes stronger with decreasing density. The negative

minimum in the STLS ion potential can be distinguished from the Friedel oscillations only at rs > 1
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FIGURE 3 Singwi–Tosi–Land–Sjölander (STLS) and random-phase approximation

(RPA) results for the screened ion potential at different values of the degeneracy

parameter for rs = 1.5. The arrow indicates the change of the degeneracy parameter

from 0.01 to 4. On this scale, the difference between the STLS and RPA results

vanishes at large temperatures, i.e., at 𝜃 > 1

Finally, to assess the relative importance of electronic correlations in the screened ion potential, in Figure 5 we show the

ratio of the difference between the STLS and RPA potential at the mean inter-particle distance (a= rs × aB) to the character-

istic thermal energy of the ions, kBT ion =Z5/3/(rsΓi) [Ha], for different values of the degeneracy and ion coupling parameter

Γi =Q2/aikBT ion, where ai = (3Z/(4𝜋n))1/3 is the mean distance between ions. The ion coupling parameter can be written as

Γi = 2
(

4

9𝜋

)2∕3 rs

𝜃
Te

Tion

. The considered values of Γi are 1, 10, and 100, where we take Z = 1. At Γi ≥ 10, the difference in the ion

potential due to electronic correlations is comparable to the thermal energy of the ions even at rs < 1. Here we assumed that

Te ≠ T ion, which is reasonable for many warm dense matter experiments. For Z = 1, the ratio of the electron temperature to the

temperature of ions can be expressed as Te/Tion ≃ 1.84× (𝜃/rs)Γi, which for 𝜃 = 0.6, rs = 1, and Γi ≤ 100 corresponds to the

values Te/T ion ≲ 110.

4 DISCUSSION

From the presented analysis of the screened ion potential at typical parameters of non-ideal quantum plasmas, we draw the

following conclusions:
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FIGURE 4 Singwi–Tosi–Land–Sjölander (STLS) and RPA results in comparison with the Thomas–Fermi potential (TF) and Stanton and Murillo (SM)

potentials at (a) 𝜃 = 0.01 and (b) 𝜃 = 1.0 for rs = 1.5

FIGURE 5 Difference between random-phase approximation (RPA) and Singwi–Tosi–Land–Sjölander (STLS) results for the ion potential at the mean

inter-particle distance in units of the thermal energy of the ion, for different values of the ion coupling parameter. The effect of the electrons’ non-ideality on

the ion dynamics can be significant if the ionic subsystem is strongly correlated, i.e., Γi > 1

1. Changes in the screening of the ion potential due to electronic correlations can have a significant impact on the dynamics

of the ionic subsystem if Γi ≫ 1. For example, the modification of the screening of the ion potential can have impact on

the transport properties of dense plasmas. In experiments, a dense, non-isothermal plasma with a strongly coupled an ionic

subsystem can be realized. In this case, if Γi ≥ 10, the electronic non-ideality can have a significant impact on the ion

screening at rs < 1. Screening of the ion potential at these densities was previously considered to be accurately described by

the RPA. In order to confirm (or reject) the importance of the electronic non-ideality for the description of strongly coupled

ions in quantum plasmas at 0.1< rs < 1, an analysis of the dynamical and structural properties of ions using both the ion

potential in the STLS approximation and RPA (e.g., by molecular dynamics simulations) should be performed.

2. At rs ≤ 2, the ion potential in the STLS approximation has a shallow negative minimum, which is missing in the calculations

based on the QMC data for the ground state. An accurate parameterization of the local field correction using results of

first-principles QMC simulations at finite temperature[28,29] is required to extend the analysis of this feature to the warm

dense matter regime. However, the aforementioned negative minimum due to the polarization of the electrons around the ion

can fairly be neglected at rs ≤ 1, since then it becomes indistinguishable from the Friedel oscillations. One can consider the

negative minimum in the ion potential to be insignificant as long as the characteristic energy E of the considered process in

the plasma is E ≫ |Φmin|. It is worth noting that strong attractions between like-charged particles exists in both the classical

and quantum plasmas out of equilibrium, for example, the presence of a flow of mobile particles relative to the more inert

species of particles.[30–33] In the study by Shukla and Eliasson,[34] using quantum hydrodynamics (QHD), the attraction

between like-charged ions in equilibrium plasmas due to the polarization of the surrounding electrons was reported. However,

an accurate analysis based on density functional theory[35] and the density response function in the RPA[6] revealed that this

attraction is an artefact arising from an incorrect treatment of the quantum non-locality in the QHD in the static case.[36]
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3. As expected, the analytical formulas for the ion potential derived within the RPA in the long wavelength approximation are

not able to correctly describe screening effects in non-ideal plasmas. However, the SM-type potential can be improved to

take into account correlation effects by considering, for example, an expansion of the local field correction[37]

G(k) = 𝛾k2 + 𝛿k4, 𝛾 = −
k2

F

4𝜋e
𝜕2nefxc

𝜕n2
e

, 𝛿 = − 𝛾2

2(1 − g(0))
, (10)

where f xc is the exchange-correlation free energy per electron of the uniform electron gas[25], and g(0) is the value of the

electron–electron pair correlation function at r = 0.[38]

Such consideration will lead to modifications of the coefficients in the SM potential, as discussed in Ref. [26] for the case

𝛿 = 0, 𝛾 ≠ 0. A comprehensive and consistent analysis of this approach requires accurate QMC data for f xc, 𝛿, and a correspond-

ing parameterization of the local field correction G(k) over a wide range of wavenumbers k. Regarding the exchange-correlation

free energy, a highly accurate parameterization over the entire warm dense matter regime has been provided recently by

Groth et al.[29] In addition, first ab initio calculations of the local field correction at finite temperature have been successfully

performed.[39,40] Finally, an extension of the STLS for the description of dynamic (time-dependent) correlations of classical

systems was discussed by Kählert et al.,[41,42] and a similar approach could be used for quantum systems.

The screened ion potential that has been discussed in this paper can be used, for example, for the calculation of the electron–ion

transport cross section, which is an important quantity for the investigation of the transport properties of plasmas. However, at

the considered parameters, where the electrons are partially or fully degenerate, the non-locality of the electrons may render the

description of electron–ion collisions more involved (for more discussions see Ref. [43]).

Summarizing, the presented work highlights the importance of electronic non-ideality effects on the ion charge screening at

rs ≤ 2 as well as a high demand for accurate data on the static local field correction G and its parameterization for dense plasmas

at 𝜃 ∼ 1.
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Chapter 7

Summary and Discussion

7.1 Further Development of CPIMC

This thesis has been devoted to the ab initio simulation of the UEG at warm dense matter
conditions, primarily by employing the CPIMC method, which is based on a perturbation
expansion with respect to coupling around the ideal system (in second quantization repre-
sentation of quantum mechanics). As a result, it is most efficient at weak nonideality (small
values of the density parameter rs), but, due to the fermion sign problem, eventually breaks
down towards strong coupling. This is in stark contrast to the standard PIMC approach in
coordinate representation, which excels at strong coupling but becomes highly inefficient
with increasing quantum degeneracy.

While being initially formulated by T. Schoof and M. Bonitz in 2010, the CPIMC
approach was completely reformulated throughout T. Schoof’s PhD and my master thesis
to allow for the simulation of more realistic systems. Before the start of this thesis, the
method had solely been utilized for the simulation of harmonically confined spin-polarized
electrons. Together with T. Schoof, I started this work by applying it to the UEG at finite
temperature. Here, it soon became clear that the algorithm had to be further optimized for
efficient simulations in the warm dense regime. In particular, at higher temperatures, the
number of plane wave basis functions, NB, that is necessary to reach convergence can become
as large as ∼ 106. While this does not represent a general issue for the Metropolis algorithm,
which is perfectly suited for the treatment of such high-dimensional problems, it does indeed
require a very refined set of Monte Carlo steps to actually benefit from its capacities.

The specialized algorithm for the UEG was presented in the first publication included
in this thesis, Ref. [45] (Sec. 3.2). As a first test, we computed the total energy for N = 4
spin-polarized electrons for various temperatures and densities and confirmed these via
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comparisons to an exact diagonalization method. In addition, we carried out a precise
extrapolation to the limit NB → ∞.

However, for realistic system sizes (containing a sufficiently large number of electrons
N), the bare CPIMC algorithm [45] was still limited to small coupling parameters (rs ≲ 0.4).
To overcome this obstacle, I carried out a detailed analysis of the fermion sign problem to
get more insight about its specific nature within the method (Sec. 3.5). These investigations
revealed that most CPIMC diagrams of higher order (with respect to coupling), which are the
dominant source of the severe sign problem at larger values of rs, in fact, completely cancel,
and thus, do not contribute to the expectation value of observables. As I demonstrated, this
fortunate circumstance opens up for the opportunity to perform an extrapolation over the
diagram order to the exact limit. This is most conveniently realized with the aid of a so-called
kink potential, which plays the role of a smooth penalty function for higher order diagrams
within the Metropolis algorithm and which restores a strictly monotonic convergence of the
observables. Overall, at fixed temperature and electron number, the utilization of this kink
potential more than doubles the feasible density parameter, thereby pushing the method well
beyond the applicable regime of standard analytic perturbation theories. This improvement
constitutes the first major achievement of the present thesis.

With this additional enhancement, we were able to perform a direct comparison with
the RPIMC data by Brown et al. [107] at rs = 1, which were the first QMC data for the
warm dense UEG, but, these were only available for rs ≥ 1. In order to avoid the fermion
sign problem, the RPIMC method makes use of the fixed node approximation. With the
one-to-one comparison of the RPIMC data with our exact data in Ref. [46], we could, for
the first time, quantify the systematic errors that are caused by this approximation at finite
temperature. Given the fact that the nodal error is often negligible in the ground state, the
reported deviations were unexpectedly large (of the order of 10%). Since these RPIMC data
had already been used as input for various parametrizations of the exchange–correlation
free energy, it was a very important finding that called the quality of these functionals into
question.

In addition to the introduction of the kink potential, over the course of the present thesis, I
extended the CPIMC implementation such that it allows for the simulation of the unpolarized
(paramagnetic) UEG (Sec. 3.8), undoubtedly the more important case regarding its relevance
for other applications. While including both spin-up and spin-down electrons in the equations
is straightforward, regarding the implementation of the algorithm, this required additional
bookkeeping and modifications of the Monte Carlo steps. Even though the first tests for small
systems with an exact diagonalization method showed perfect agreement, the subsequent
comparison with the ground state energy of N = 14 electrons computed with the FCIQMC
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method [135] revealed a small yet statistically significant deviation. Since FCIQMC had
been a well-established ground state QMC method, I started to perform more elaborate tests
of the algorithm. Specifically, for small systems, I verified that the utilized set of Monte
Carlo steps is indeed sufficient to generate all possible paths, thereby rendering an error
in the implementation highly unlikely. Finally, the FCIQMC calculations were carried out
again and it turned out that the former data of Ref. [135] were not properly converged, which
explained the previously observed deviations.

Moreover, in the last part of this thesis (Sec. 6), I extended the CPIMC algorithm to the
inhomogeneous electron gas. This is summarized in Sec. 7.6.

7.2 Combination with PB-PIMC

As described in detail in Sec. 3.4, the PB-PIMC approach exhibits a fermion sign problem
that is inherently complementary to that of CPIMC (with respect to the density parameter of
the UEG). Furthermore, PB-PIMC greatly extends the range of parameters where simulations
are feasible, i.e., compared to standard PIMC, higher densities and lower temperatures are
accessible. This results from a beneficial interplay of two different improvements: the
usage of anti-sysmmetrized propagators (so-called determinants) together with a fourth-order
factorization of the density matrix, which leads to sufficient convergence with only few
propagators. In turn, this considerably enhances the positive effect of the determinants on the
sign problem. Nevertheless, in order to maximize this benefit two free parameters need to be
optimized. In Refs. [56, 57], where the method was first introduced and then applied to the
UEG, this optimization could be successfully carried out with the aid of the exact CPIMC
data in the high density regime, which is the most challenging case for PB-PIMC.

Subsequently, in Ref. [55] (Sec. 3.5) and Ref. [108] (Sec. 3.8), we employed both
methods, CPIMC at high and PB-PIMC at low densities, to simulate the spin-polarized and
unpolarized UEG over the entire density range1 and provided comprehensive data sets for
various energies. In this context, we found that, in the polarized case, the RPIMC data by
Brown et al. [107] exhibit systematic deviations also at intermediate densities (rs > 1) and
higher temperatures2 (θ > 0.5).

1Due to the fermion sign problem, for N = 33 spin-polarized electrons investigated in Ref. [55], all densities
are accessible down to half the Fermi temperature (θ = 0.5), whereas for N = 66 unpolarized electrons this is
possible down to θ = 0.75 (Ref. [108]).

2This complemented the investigations of Ref. [46], which were restricted to rs = 1 and θ < 0.5.
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7.3 Extrapolation to the Thermodynamic Limit

The second major achievement of this work is given by the development of an improved finite-
size correction (see Ref. [109] in Sec. 4.1) that allows for the extrapolation of our QMC data,
which are restricted to a finite number of electrons N, to the thermodynamic limit (N → ∞

at constant density). The basic idea of this correction is to combine the QMC data, which
exactly describe short-range correlation effects, with STLS data (a well-known dielectric
approach), which correctly incorporates long-range correlation effects. In combination, the
two yield the total information about correlation effects in the thermodynamic limit. As we
have shown in Ref. [109] and Sec. 2, the previously existing corrections are not applicable
over substantial parts of the warm dense regime, whereas our novel scheme works in the
whole temperature–density plane. By applying this correction to both of our QMC methods,
we obtained ab initio results for the interaction energy in the thermodynamic limit for all
densities down to half the Fermi temperature—unquestionably an important step towards the
primary goal of this thesis.

As a first outlook, in Ref. [109], we computed fxc(rs) (at fixed temperatures θ ) from our
data for the interaction energy and compared it to the corresponding results by Karasiev et
al. [99], which were based on the RPIMC data and which were, up to this point, assumed to
be the most accurate. Towards high densities, we observed deviations of up to ∼ 10%. In a
subsequent publication (Ref. [112] in Sec. 5.1), we utilized our data for fxc to test several
other existing parametrizations and found deviations of a similar magnitude to all of them.

7.4 Parametrization of the Exchange–Correlation Free En-
ergy

The main result of this thesis is the parametrization of the exchange–correlation free energy
of the UEG with respect to density, temperature, and spin-polarization, fxc(rs,θ ,ξ ) (Sec. 5.2).
At this stage, there were two remaining issues preventing us from reaching this final goal: i)
we were lacking the QMC data for the interaction energy for spin-polarizations, ξ , other than
the unpolarized case (ξ = 0), and ii) due to the fermion sign problem, our QMC methods
could not cover the entire density range for temperatures θ < 0.5, thereby leaving open a gap
to the known ground state limit [44]. While i) was only a task that required a considerable
amount of work to perform and evaluate all the calculations3, the second issue posed a more
serious problem. In Ref. [47], we overcame this last obstacle as follows: in the temperature

3For completeness, I again note that we had to implement our own STLS code to extrapolate the QMC data
for intermediate spin-polarizations to the thermodynamic limit.
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range 0 < θ ≤ 0.25, we added a small temperature correction, computed within the STLS
scheme, to the ground state QMC data4 by Spink et al. [44]. With this techniques, we were
able to produce a complete data set of the interaction energy for four different polarizations ξ .
Subsequently, we carried out an elaborate fitting procedure to these data and thereby obtained
an improved parametrization of fxc(rs,θ ,ξ ) covering the entire warm dense matter regime.
The achieved accuracy of ∼ 0.3% was confirmed by various consistency and cross-checks
(see Refs. [47, 30]) against independent QMC data that were not included in the construction
of the fit.

7.5 Testing the Quality of Existing Parametrizations and
Many-Body Approximations

After we had accomplished an ab initio description of the warm dense UEG, we were in
the unique position to assess the quality of all existing parametrizations and also of other
many-body techniques in general. Therefore, in a review article [30] (see Chpt. 2), we
carried out extensive comparisons of our new functional for fxc to prominent previous
parametrizations [99, 98, 97, 102, 101], which revealed that all of them exhibit deviations
of the order of several percent and that most are lacking a sufficient description of the spin-
dependency. In addition, with the aid of our QMC results for different energies as well as the
static structure factor, we tested various approximate approaches, including:

• different dielectric methods such as the RPA [62, 60], STLS [103, 96], quantum
STLS [174, 175], Vashista–Singwi [67, 100], and the novel scheme by Tanaka [101],

• finite temperature Green’s function methods [46, 105, 106],

• the classical mapping approach by Perrot and Dharma-wardana [98],

• and RPIMC [107].

Overall, these comparisons allow for the conclusion that some of the dielectric schemes
perform impressively well for certain quantities, in particular, when taking into account their
little computational effort. For example, the interaction energy from the STLS scheme proofs
to be accurate over wide parameter regimes.

4The data by Spink et al. represents the most recent and most accurate data for the ground UEG, also
including different spin-polarizations ξ .
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7.6 Simulation of the Inhomogeneous Electron Gas

The last achievement of this thesis is the application of the CPIMC approach to the inhomo-
geneous UEG (see Ref. [113] in Sec. 6). Here, the point is that the application of a periodic
perturbation with wave vector q allows for a direct computation of the static density response
function, χ(q).

As part of these investigations, I extended the CPIMC algorithm such that it properly takes
into account the additional diagrams that originate from the inhomogeneity. In addition, the
utilization of the kink potential was modified in order to maximize its benefit. Furthermore,
in the case of high densities, the response function usually carries a large finite-size error.
In Ref. [113], this problem was solved by generalizing the correction scheme that had been
successfully employed in the ground state to finite temperature. In combination with this
strategy, the simulation of very small systems is sufficient to obtain results of the static density
response function in the thermodynamic limit. Overall, Ref. [113] should be viewed as a
proof of principle regarding the utility of the CPIMC method to simulate the inhomogeneous
UEG.



Chapter 8

Outlook

8.1 Expected Utility of the Results for Other Applications

As mentioned before, the UEG undoubtedly constitutes an important model system for the
development of novel and innovative many-body simulation techniques [58]. Therefore,
I expect the many data tables contained in the works of this thesis (both the results for a
finite number of electrons N and in the thermodynamic limit) to be of high value for future
developments of new simulation methods, as was already demonstrated in Refs. [132, 133,
174]. A further obvious application of these data would be as a benchmark to systematically
improve the nodes that are utilized within RPIMC [35] calculations, in order increase the
accuracy of the method—possibly even with respect to its application to two-component
systems [37–42]. In addition, our QMC data for the static structure factor [110] can be used
as input for the approximate computation of the dynamic structure factor within the so-called
method of frequency moments (as discussed in Ref. [145]).

Most importantly, our novel functional for fxc can be directly incorporated into finite
temperature DFT calculations [84, 3, 85, 176, 177] in the local spin density approximation
(LSDA), and beyond that, as the basis for gradient corrections [87]. In addition, it is of
immediate use as input for astrophysical models such as Refs. [91, 89, 5, 92, 93].
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8.2 Future Applications of CPIMC

8.2.1 Detailed Investigation of the Static Local Field Correction of the
UEG

With the presented extension of the CPIMC and PB-PIMC approach to the inhomogeneous
UEG (see Refs. [113, 114] in Chpt. 6), a detailed investigation of the static local field
correction1, G(q), by means of ab initio QMC simulations is now merely a matter of time
and effort needed to carry out all calculations, and, of course, a question of the available
amount of computational resources. To my knowledge, in particular the exact asymptotic
behavior of G(q) at large q remains an open question at finite temperature. Further, similar
to the existing ground state parametrization of G(q) in dependence of the density [173, 178],
an extension of these results to finite temperature constitutes the foundation for future DFT
calculations within the adiabatic-connection fluctuation–dissipation formulation [162–164]
(as discussed in Chpt. 6). Such parametrizations for the UEG (at fixed temperature and
density) were already obtained on the basis of quantum STLS calculations [175], although,
their accuracy is unknown.

8.2.2 Investigation of the Momentum Distribution of the UEG

A further interesting quantity of the warm dense UEG is the momentum distribution, n(q).
In case of a two-component plasma, the momentum distribution plays an important role to
determine the fusion rates (e.g., in the interiors of stars) since the underlying cross-sections
strongly depend on the momentum of the particles [179]. More precisely, it is the fraction of
particles with a large momentum that cause the dominant contribution to the fusion rates.

For the ideal system, the momentum distribution is given by the Fermi distribution. On
the other hand, for the interacting UEG, there are long existing predictions regarding the
large-q behavior of the momentum distribution, e.g., according to Refs. [180, 181] it is

lim
q→∞

n(q) =
r2

s
π2

(
4

9π

)5/3

g(0)
q8

F
q8 +O(q−10) , (8.1)

with qF being the Fermi vector and g(0) denoting the so-called on-top pair-correlation
function, i.e., the value of the exact pair-correlation function at zero distance.

In CPIMC simulations of the UEG, due to the underlying quantization with respect to
plane waves, the momentum distribution is simply given by the expectation value of the

1Note that the static local field correction, G(q), is readily computed from the static density response
function, χ(q).
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Fig. 8.1 Momentum distribution of the unpolarized UEG at θ = 2 and rs = 0.5. Shown
are results from CPIMC simulations with N = 66 (red) and N = 100 (blue) electrons. For
comparison, the ideal momentum distribution, i.e., the Fermi distribution (dashed black line)
and the asymptotic behavior (solid black line, see Eq. (8.1)) from the corresponding value of
the on-top pair-correlation, g(0), are depicted.

occupation numbers of these one-particle orbitals2. Therefore, the momentum distribution
is directly accessible to CPIMC. This is in contrast to PIMC methods in coordinate space,
which require the additional sampling of the off-diagonal elements of the density matrix, e.g.,
via the worm algorithm [117, 118].

As a first outlook, I computed the momentum distribution for the UEG at θ = 2 and
rs = 0.5 with N = 66 and N = 100 electrons. The results are shown in Fig. 8.1, which span
12 orders of magnitude that are distinctly resolved. In addition, the Fermi distribution (dashed
black line) and the asymptotic behavior (solid black line) according to Eq. (8.1) are plotted3.

The momentum distribution for N = 66 electrons nicely agrees with that for N = 100
electrons and is thus well converged to the thermodynamic limit. Furthermore, we observe
that n(q) exhibits a Fermi-like exponential decay for small q, and indeed, clearly starts to
deviate from that at q ∼ 6kF. This behavior is often referred to as the quantum tail. As far as

2Note that this is a special circumstance for the UEG in combination with its natural second quantization
representation with respect to plane waves.

3Here, the pair-correlation function g(r) is required to evaluate g(0), which is obtained from the Fourier
transform of a spline to the static structure factor S(k) (also computed within CPIMC).
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the statistical error bars allow for a quantitative judgment4, the asymptotic behavior obtained
from Eq. (8.1) seems to be accurate.

The detailed investigation of the momentum distribution is an interesting topic for future
work and, as demonstrated in this section, a well suited task for CPIMC. In particular, it
would be interesting to understand the precise connection between the quantum tail and the
on-set of the linear convergence of the total energy with 1/NB, where NB is the number of
plane wave basis functions in the simulation (as was discussed in Sec. 3.7).

8.2.3 Investigation of Relativistic Effects in the UEG at Finite Temper-
ature

Another potentially interesting topic are relativistic effects of the UEG at finite temperature,
which are expected to be most important at higher densities—the realm of CPIMC. The
most straightforward approach to start with would be the substitution of the classical by the
relativistic kinetic energy, i.e.,

p2

2m
→
√

p2c2 +m2c4 −mc2 . (8.2)

However, this way important contributions from retardation effects, e.g., in the Coulomb
interaction between electrons or in the interaction of the electrons with the background,
are neglected. A more sophisticated strategy is to use a perturbation expansion of the total
relativistic Hamiltonian as derived in Refs. [182, 183] (correct to order 1/c2).

In the ground state, this expansion of the relativistic UEG Hamiltonian had been success-
fully simulated by Kenny et al. [184] by means of variational and diffusion Monte Carlo
to compute and parametrize the relativistic correction to the exchange–correlation energy
for different densities. By making use of the relativistic equivalent of the Hohenberg–Kohn
theorem, which was derived by Rajagopal and Callaway [185], such a parametrization can
be used as input for relativistic DFT5 calculations within the LDA [184].

With the aid of CPIMC, these studies could be carried out at finite temperature, which
may be particularly relevant for the description of the interiors of astrophysical objects, where
very high densities and temperatures are common.

4Note that the error bars are skewed due to the log scale.
5A comprehensive introduction to relativistic DFT can be found in Ref. [186].
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8.2.4 Investigation of the 2D UEG

The investigations presented in this work were all concerned with the UEG in 3D. These
can be, in principle, straightforwardly extended to the 2D UEG. Here, it is expected that the
fermion sign problem within both CPIMC and PB-PIMC is significantly reduced compared
to the 3D case (due to the overall reduced configuration space).

8.2.5 More Elaborate Future Applications of CPIMC

A more elaborate future application of the CPIMC method constitutes in the computation
of imaginary-time correlation functions, like the one- and two-particle Matsubara Green’s
function, which can be used for the reconstruction of the spectral function and the dynamic
structure factor, respectively (see e.g. Refs. [187, 188]). To obtain these quantities within
CPIMC, the simulation of a so-called extended configuration space by means of the worm
algorithm [48] is required. As I demonstrated in my master thesis [54], for the case of trapped
electrons in 2D, such simulations are considerably more involved and, regarding the UEG,
will supposedly be restricted to very high densities. Nevertheless, those results would again
be a valuable reference for other PIMC methods, which have access to lower densities.

Finally, I mention the possibility to extend the CPIMC approach such that it allows
for the simulation of electron–hole plasmas at finite temperature. However, compared to a
one-component system, this is expected to increase the fermion sign problem, since different
particle species that do not exchange are more challenging to be described within the method.
This is also the reason for the observed increased fermion sign problem in simulations of the
unpolarized UEG in comparison to the spin-polarized case (Sec. 3.8).

8.3 Future Improvements of CPIMC

Regarding its manyfold future applications, it would be desirable to further improve the
CPIMC method such that significantly increased coupling parameters are accessible (larger
values of rs in case of the UEG). I finish this thesis by outlining a promising strategy to
accomplish this goal.

First of all, I performed a detailed investigation of the influence of different CPIMC
diagrams on the fermion sign problem as well as their individual contributions to the ex-
pectation value of observables. Fig. 8.2 shows the five diagrams that correspond to the five
possible changes6 that are locally performed on the CPIMC path throughout the Monte Carlo

6In case of inhomogeneous systems, the number of possible diagrams is significantly increased due to the
additional occurrence of so-called type 2 kinks (see Ref. [113]).
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a) b)

c) d)

e)

Fig. 8.2 All five diagrams that correspond to the local updates proposed in the Monte
Carlo steps of the CPIMC algorithm. Diagram a): excitation of an entire orbital that is
uninterruptedly occupied from 0 to β . Diagram b): adding and removing of a symmetric pair
of kinks. In the Diagrams c)-e): three possibilities in which a single kink can be added or
removed via a two-particle excitation and a simultaneous change of a neighboring kink. The
three diagrams differ in that the added kink and the (changed) neighboring kink have exactly
two [c)], zero [d)], or one [e)] connection(s).

algorithm. In diagram a), an entire orbital is excited from 0 to β , in diagram b) a symmetric
pair of kinks is added, and the diagrams c)-e) illustrate the three possibilities in which a
single kink can be added via a certain two-particle excitation and a simultaneous change of a
neighboring kink.

In Fig. 8.3, the exchange–correlation energy of the spin-polarized UEG containing
N = 33 electrons is shown for three representative temperatures θ = 0.0625 (low), θ = 0.5
(intermediate), and θ = 2 (high). As a benchmark, the exact data from CPIMC (black dots),
in which all diagrams of Fig. 8.2 are taken into account, and from PB-PIMC (black crosses)
are included where available (taken from our Ref. [55]). For comparison, the RPIMC data by
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Fig. 8.3 Density dependence of the exchange–correlation energy of the spin-polarized UEG
containing N = 33 electrons for temperatures θ = 2,0.5, and 0.0625. Our exact results
from the combination of CPIMC (black dot) and PB-PIMC (black crosses) as presented in
Ref. [55] serve as a reference. The R-CPIMC data (yellow diamonds) were obtained by only
taking into account those Monte Carlo steps that correspond to the diagrams a) and b) in
Fig. 8.2, whereas for the R-CPIMC+ data, the diagrams c) and d) are also included, i.e.,
only neglecting diagram e). For comparison, the RPIMC data by Brown et al. [107], which
utilizes the fixed node approximation, and the DMQMC data by Malone et al. [133], which
employs the initiator approximation at θ ≤ 0.5, are plotted. For better visibility, the data for
θ = 0.5 is shifted by +0.05 Hartree.
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Brown et al. (blue squares) and the DMQMC data by Malone et al. [133], which employs
the initiator approximation at θ ≤ 0.5, are also plotted in Fig. 8.3.

For the data depicted as the yellow diamonds, I have carried out simulations in which
only those Monte Carlo steps are included that correspond to the diagrams a) and b) in
Fig. 8.2, which is called restricted CPIMC (R-CPIMC). In this approximation, the kinks in
the sampled paths only occur in symmetric pairs, and, as it turns out, the total number of all
sign changes that are introduced by those paired kinks is always even, and hence, the total
sign of each path is positive. Therefore, this approximation completely avoids the fermion
sign problem, which makes simulations at very strong coupling possible. Evidently, at low
temperature (θ = 0.0625), the R-CPIMC data (yellow) perfectly reproduce the exact CPIMC
data (black dots), which are restricted to rs ≤ 1 (due to the sign problem), and is close to the
DMQMC data for larger rs. However, towards larger temperatures (θ = 2), where the exact
CPIMC method is applicable up to rs = 2, the R-CPIMC approximation becomes worse.
Nevertheless, when considering that this approximation reduces the computational effort by
more than three orders of magnitude, its overall performance is still impressive.

Surprisingly, the additional inclusion of the diagrams c) and d) in the R-CPIMC+ results
(red diamonds), which reintroduces a sign problem, still allows for simulations at relatively
large values of rs, while considerably improving the performance for all three temperatures.
At θ = 0.0652, R-CPIMC+ is in perfect agreement with DMQMC up to rs = 2. Moreover,
at θ = 0.5, compared to all depicted methods, it apparently provides the most accurate data,
although, at higher temperature (θ = 2), this approximation clearly deviates from the exact
result, too.

These investigations allow for the conclusion that the most dominant source of the
fermion sign problem is caused by the diagram e) in Fig. 8.2. To further understand this, I
analyzed the general structure of the generated CPIMC paths in simulations with and without
diagram e). Overall, I observed that, when adding a single kink according to this diagram,
the emerging structures are highly entangled, meaning that most or even all kinks are directly
connected to four other kinks. Note that four is the maximum number of connections per
kink, whereas each kink must have at least two direct connections. These entangled structures
cause many sign changes due to the evaluation of the phase factors in the matrix element of
each kink.

This points to the possibility how this information can be used in combination with the
kink potential: instead of applying it to the total number of kinks (as before), it could be
applied to the total number of direct connections between all kinks in the paths. Subsequently,
an extrapolation of this number to infinity can be performed, which yields the exact result.
This way, we also take into account those paths which contain a large number of kinks,
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but which have only few sign changes and are thus not harmful with respect to the sign
problem. From the presented results and investigations in this section, this strategy is
likely to significantly increase the feasible density parameters, thereby allowing for CPIMC
simulations in the density regime of real solids (even at relatively low temperatures).





Appendix A

List of Acronyms

• CPIMC : configuration path integral Monte Carlo
• DFT : density functional theory
• DMQMC : density matrix quantum Monte Carlo
• FCIQMC : full configuration interaction quantum Monte Carlo
• FSP : fermion sign problem
• LDA : local density approximation
• PB-PIMC : permutation blocking path integral Monte Carlo
• PIMC : path integral Monte Carlo
• QMC : quantum Monte Carlo
• RPA : random phase approximation
• RPIMC : restricted path integral Monte Carlo
• SSF : static structure factor
• STLS : Singwi–Tosi–Land–Sjölander
• UEG : uniform electron gas
• WDM : warm dense matter
• XC : exchange–correlation





Appendix B

Selected Contributions to International
Conferences

• Almaty, Kazakhstan, 15th International Conference on the physics of Non-Ideal
Plasmas (2015) (contributed talk):
Configuration Path Integral Monte Carlo Simulation of Non-Ideal Fermions
– Simon Groth, Tim Schoof, Tobias Dornheim, and Michael Bonitz

• Hirschegg, Austria, 37th International Workshop on High Energy Density Physics
with Intense Ion and Laser Beams (2017) (contributed talk):
The Uniform Electron Gas at Warm Dense Matter Conditions
– Simon Groth, Tobias Dornheim, Travis Sjostrom, and Michael Bonitz
This talk has been awarded with the Laser and Particle Beams prize 2017 (with 2000
Euros as a travel grant).

• Vancouver, Canada, The 9th International Workshop on Warm Dense Matter
(2017) (invited talk):
The Uniform Electron Gas at Warm Dense Matter Conditions
– Simon Groth, Tobias Dornheim, Tim Schoof, Travis Sjostrom, Fionn D. Malone,
W.M.C. Foulkes, and Michael Bonitz
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