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1. Introduction

1.1. Motivation

Back in 1937, the groups of Kapitsa and Misener demonstrated that liquid helium below
2.2K behaves as if composed of two parts. The normal�uid component shows no peculiar-
ities, while the super�uid component is characterized by the complete absence of viscosity.
When set into a rotational motion, such super�uids can �ow endlessly without friction. As
classical explanations fail to describe this behavior, super�uidity was believed a consequence
of quantum physics from the very beginning. Thus, it is one of the few quantum phenomena
visible to the eyes of our macroscopic world.
The development of theoretical models showed that super�uidity is a pathology of interact-

ing Bose systems and strongly related�yet not identical�to Bose-Einstein condensation. Up
to date, super�uidity is well understood in a phenomenological sense, but analytical results
derived from microscopic models are fragmentary. Super�uidity constitutes a many-body
problem with inter-particle interactions and bosonic particle exchange and thus requires
sophisticated numerical methods for quantitative predictions.
The �rst experimental realizations of Bose-Einstein condensates with dilute alkali gases

in 1995 added another interesting aspect to the theory of these macroscopic phenomena.
Since the experiments contain only a rather small number of atoms, the question arises, how
Bose-Einstein condensation and super�uidity translate back into the world of �nite systems.
In particular, how far can one reduce the number of particles and still speak of super�uidity?
The methods for a de�nition of super�uidity in small systems are limited, as most theo-

retical considerations based on the relative motion of the macroscopic system are no longer
applicable. The common approach uses the Hess-Fairbank e�ect denoting the inevitable
deviation of the rotational moment of inertia from its classical expectation value in slowly
circulation super�uids, since only the normal�uid component rotates rigidly with the con-
tainer walls. The expectation value of the moment of inertia can be derived within statistical
theories which makes the Hess-Fairbank e�ect the method-of-choice to calculate super�uid
properties in small bosonic clusters.
This work considers the implications of this de�nition for very small Bose systems contain-

ing only a few particles. The investigation specializes to 2D systems con�ned in the harmonic
trap with repulsive Coulomb interactions. Results are obtained from both exact analytical
expressions for the ideal system and numerical simulations of the interacting system. The
latter are carried out with the path integral Monte Carlo method based on �rst principles.
Super�uidity shows some peculiar properties in small systems. In particular, super�uidity

is not restricted to interacting Bose systems anymore. It is intended to �nd methods in order
to distinguish between contributions related to the �nite size, inter-particle interactions, and
bosonic particle exchange. Additionally, some answers to the interesting question whether a
system can be simultaneously super�uid and solid are given.
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1. Introduction

1.2. Structure of this work

Chapter 1: Introduction.

Chapter 2: Quantum mechanical low temperature e�ects in Bose systems. This chap-
ter reviews two aspects of macroscopic Bose systems: Bose-Einstein condensation and
super�uidity. It aims to provide the reader with the necessary theoretical understand-
ing for the further course of this work. Aside from a thoroughly analytical investigation
of the established e�ects, an overview over the current status of research for the hotly
debated topic considering potentially super�uid solids, �supersolids�, is given.

Chapter 3: The path integral Monte Carlo method. The path integral Monte Carlo me-
thod combines the path integral description of quantum systems with e�cient Monte-
Carlo methods in order to solve the high-dimensional integrals. This second introduc-
tory chapter discusses the theoretical background and gives an overview over numerical
issues. In particular, the so-called area formula devoted to the calculation of the su-
per�uid fraction in con�ned Bose systems is derived.

Chapter 4: Mesoscopic Bose gases in harmonic traps. The �nite system breaks with some
aspects introduced in chapter 2. The question how Bose-Einstein condensation and
super�uidity as e�ects of the macroscopic world translate to mesoscopic systems is
investigated. This chapter should act as a link between the theoretical part and the
following discussion.

Chapter 5: Analytical results for ideal systems. Ideal systems have the advantage to be
completely accessible with analytical methods. A convenient way to calculate the ex-
act density matrix is presented. In particular, expressions for the condensed and the
super�uid fraction are derived. The results are discussed with respect to the macro-
scopic considerations of chapter 2 and constitute a reference case for the numerical
investigations of chapter 6.

Chapter 6: Numerical results for systems with Coulomb interaction. This chapter opens
with a short discussion of possible analytical approaches to strongly correlated Bose
systems. The quantitative results for small interacting systems were obtained with
the path integral Monte Carlo method as introduced in chapter 3. Special attention
is paid to super�uidity, which shows some peculiar e�ects unseen in the macroscopic
limit. The possibility of super�uid crystals is also considered.

Chapter 7: Conclusion.

1.3. Some remarks about the used notations

In general, derivations within this work comply to common standards. In order to avoid
potential misunderstandings, this sections lists some minor particularities, which might not
be throughout established.
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1.3. Some remarks about the used notations

Special notation for sums As usual, a shortcut like
∑

k denotes the summation over the
whole parameter space of k. In some cases, the element at k = 0 must be excluded.
This is indicated with a � ′� at the symbol, i.e.,∑

k

′
. . . ≡

∑
k

k6=0

. . . (1.1)

Averages Mathematics and physics know a great multitude of di�erent averages, but far
lesser ways to distinguish between them in the sense of notation. Due to the nature of
this work, the primary used average is the thermal average in the canonical ensemble,
which is indicated by a set of �〈〉�. In summary, this and other notations for averages
read

Thermal average (canonical ensemble) 〈Â〉 =
1
Z

Tr ρ̂Â, (1.2)

Arithmetic mean ā =
1
N

N∑
i=1

ai, (1.3)

Geometric mean ã =

(
N∏

i=1

ai

)1/N

. (1.4)

(Z is the partition function of the canonical ensemble and ρ̂ is the density operator.)
At one point, namely for the Bose distribution function n̄p, the thermal average of an
occupied single-particle state in the grand canonical ensemble is meant.

Figures Since the bulk of the obtained results is presented in �gures, some e�orts with
respect to consistent coloring have been made. Whenever possible, the color refers to
quantities calculated for a speci�c number of bosons in the system.

N 2 3 4 5 more boltzmannons1

color red green blue violet others gray

In general, boltzmannonic calculations are shown together with bosonic calculations.
Boltzmannonic quantities are always indicated with gray lines since their correspon-
dence to the number of particles is usually clear.

1Boltzmannons are (hypothetic) distinguishable quantum particles obeying Boltzmann statistics.
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2. Quantum mechanical low temperature

e�ects in Bose systems

2.1. Bose-Einstein condensation

The �eld of Bose-Einstein condensation traces its origin back to the work of Satyendra Nath
Bose. He addressed himself to Albert Einstein who arranged for the publication of his paper,
which laid the basis for what would become known as Bose statistics, in 1924 [1]. Einstein
himself considered the implications for an ideal gas at low temperatures. He released a series
of papers[2, 3] in which he proposed that atoms should collect predominantly in the ground
state of the system. This macroscopic occupation of a single-particle state became known as
Bose-Einstein condensation (BEC). It is only accessible for particles of integer spin, namely
bosons.

2.1.1. The free non-interacting Bose gas

The existence of a Bose-Einstein condensate phase follows from purely statistical arguments
(see [4]). Consider a grand canonical ensemble (T, V, µ) of free, non-interacting, and spin-
polarized bosons. In thermal equilibrium, the average occupation of an energy level obeys
Bose statistics, i.e.,

n̄p =
1

eβ(εp−µ) − 1
, (2.1)

where β is the inverse temperature and εp denotes the energy eigenvalues of the system.
Summing n̄p over momentum space yields the thermal particle number in the system and
the thermal energy when weighted with the energy eigenvalues, respectively:

〈N〉 (T, V, µ) =
∑
p

n̄p, 〈E〉 (T, V, µ) =
∑
p

εpn̄p. (2.2)

Since the energy spectrum of free particles, εp = p2/2m, is continuous, the sum can be
substituted by an integral over phase space∑

p

. . . =
V

(2π~)3

∫
d3p . . . . (2.3)

Taken together, the equations (2.1)�(2.3) allow for a complete statistical investigation of the
non-interacting Bose gas. As usual, the �rst step is to derive an expression for the chemical
potential µ.
It is important to note that eqs. (2.2) must be ful�lled by de�nition. But the integral (2.3)

would diverge for µ = εp as (2.1) is singular at this point. Hence, the chemical potential
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2. Quantum mechanical low temperature e�ects in Bose systems

cannot be positive which gives εp−µ ≥ 0. One can then use the geometric series to simplify
(2.1) into

n̄p =
e−β(εp−µ)

1− e−β(εp−µ)
=

∞∑
l=1

e−β(εp−µ)l. (2.4)

This allows for an easy evaluation of (2.3) as it now mirrors the known Gaussian integral
emerging from the theory of the classical ideal gas. One obtains

N(T, V, µ) =
V

λ3

∞∑
l=1

eβµl

l3/2
=

V

λ3
Li3/2(z), (2.5)

where λ = 2π~/
√

2πmkBT is the thermal De Broglie wave length and the polylogarithm,

Lis(z) =
∞∑
l=1

zl

ls
, (2.6)

was introduced with the shortcut z = exp(βµ). For a given temperature T and density
n = N/V , eq. (2.5) �xes the chemical potential µ = µ(T, n).
An investigation of the temperature dependence of µ(T, n) leads to a remarkable chain

of conclusions. The thermal De Broglie wave length is proportional to T−1/2, so in the
limit of in�nite temperature eq. (2.5) can only yield a �nite density when the polylogarithm
vanishes. This implies z → 0 and µ → −∞. As the polylogarithm is a monotonic function,
its argument z must grow when the system is cooled. But the initial condition µ ≤ 0 implies
z ≤ 1, so there exists a critical temperature Tc (and a critical De Broglie wave length λc),
i.e.,

nλ3
c = Li3/2(1) = ζ(3/2). (2.7)

In the last step, the fact that the polylogarithm for z = 1 reduces to the Riemann ζ-function
was used.
For T < Tc, eq. (2.5) has no solution. But its origin, eq. (2.2), must have a solution

on the whole temperature range. This means, something went wrong when replacing the
sum with an integral. In particular, the latter is una�ected by singularities of its integrand
occurring at the integration limits. For the problem in question this is exactly what happens
at the critical point where µ equals zero. A correct replacement of the sum would, therefore,
consider the ground state occupation N0 separately. Instead of eq. (2.3) one has to use∑

p

. . . = N0 +
V

(2π~)3

∫
d3p . . . , (2.8)

which alters eq. (2.5) to

N(T, V, µ) = n̄0 +
∑
p

′
n̄p = N0 +

V

λ3
Li3/2(z). (2.9)

E�ects related to a �nite size of the system shall not be investigated at this point. The
system is considered in the thermodynamic limit, which means

N →∞, V →∞, n =
N

V
= const. (2.10)
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2.1. Bose-Einstein condensation

Quantity T ≤ Tc T > Tc

Condensate fraction 1−
(

T
Tc

)3/2
0

Energy per particle 3
2kBT ζ(5/2)

ζ(3/2)

(
1− N0

N

)
3
2kBT

Li5/2(z)

Li3/2(z)

Speci�c heat capacity 15
4 kB

ζ(5/2)
ζ(3/2)

(
1− N0

N

)
15
4 kB

Li5/2(z)

Li3/2(z) −
9
4kB

Li3/2(z)

Li1/2(z)

Pressure nkBT ζ(5/2)
ζ(3/2)

(
1− N0

N

)
nkBT

Li5/2(z)

Li3/2(z)

Table 2.1.: Temperature dependence of thermal averages for the free ideal Bose gas in the macro-
scopic limit.

For any macroscopic system with typical particle numbers around 1024, this is a reasonable
approximation. In this limit, eqs. (2.5) and (2.9) give the same results for T > Tc, as the
ground state occupation N0 is �nite and, thus, negligible in an in�nite system. But unlike
its predecessor, eq. (2.9) has a solution for T < Tc. The chemical potential is obviously zero
in this region and one may write

N(T, V, µ) = N0 +
V

λ3
ζ(3/2) for T ≤ Tc. (2.11)

The right-hand term can be simpli�ed by using eq. (2.7). The temperature dependence of
the ground state occupation N0(T ) then reads

N0

N
=

1−
(

T
Tc

)3/2
, T ≤ Tc

0, T > Tc

(2.12)

Note that the fraction of particles collecting in the ground state becomes non-zero at a �nite
temperature Tc. This is far from obvious and indeed a specialty of the three-dimensional free
Bose gas. As initially mentioned, Einstein discovered this e�ect by an analogue investigation,
which established the denotation as Bose-Einstein condensation (BEC).

Occurrence of BEC shows all characteristics of a phase transition with the condensate
fraction acting as the order parameter. The quantitative behavior of the system changes,
as condensed particles no longer contribute to any physical observables. Table 2.1 collects
the temperature dependence of the most important thermal averages. They can be easily
derived from the thermal energy which itself can be calculated from eq. (2.2) with an analogue
procedure as used for the particle number.

It is not naturally given that every imaginable Bose gas has a BEC phase at su�ciently
low temperatures. For example, one can try to follow the same reasoning used above for the
one- and two-dimensional free Bose gas, respectively. The corresponding expressions for the

11



2. Quantum mechanical low temperature e�ects in Bose systems

thermal particle number in these systems then read

N =
V

λ2
Li1(z) (2D), N =

V

λ
Li1/2(z) (1D). (2.13)

In both cases the polylogarithm for z = 1 is in�nite, so there exists no critical De Broglie
wave length below which these expressions would loose their validity. Here, a BEC phase
simply does not exist.

2.1.2. The ideal Bose gas in a harmonic trap

The ideal Bose gas con�ned in a harmonic trap does also show Bose-Einstein condensation.
The thermal particle number in the system is calculated as before

N =
∞∑

nx,ny ,nz=0

n̄nxnynz , (2.14)

where n̄nxnynz denotes the Bose distribution function with the energy eigenvalues εnxnynz .
These read for particles con�ned in an arbitrarily shaped harmonic trap:

εnxnynz = ~ωx

(
nx +

1
2

)
+ ~ωy

(
ny +

1
2

)
+ ~ωz

(
nz +

1
2

)
. (2.15)

The ground state has the energy ε000 = 3
2~ω, where ω denotes the arithmetic mean of the

trapping frequencies. The transition point at which a macroscopic occupation of the ground
state occurs, is, therefore, determined by µ → µc = ε000. An evaluation of eq. (2.14) by
replacing the sum with an integral with special regard to the ground state occupation N0

yields

N =


(

kBT
~eω
)3

Li3(z), T > Tc,

N0 +
(

kBT
~eω
)3

ζ(3), T ≤ Tc,
(2.16)

where ω̃ is the geometric mean of the trapping frequencies and z = exp(β(µ − ε000)). The
transition temperature Tc can be read o� either expression by setting z = 1 or N0 = 0,
respectively:

kBTc = ~ω̃

(
N

ζ(3)

)1/3

. (2.17)

The temperature dependence of the condensate fraction becomes

N0

N
= 1−

(
T

Tc

)3

, (2.18)

which has a deviating exponent regarding eq. (2.12) for the free bosons. This constitutes the
most obvious di�erence as it a�ects all thermal quantities accordingly. They are listed in
Table 2.2. Note that the ground state energy ε000 vanishes in the thermodynamic limit, so,
as before, only non-condensed particles do contribute. Thereby, the correct thermodynamic
limit for a trapped system reads

N →∞, ~ω → 0, n ∝ N(~ω)3 = const. (2.19)
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2.1. Bose-Einstein condensation

Quantity T ≤ Tc T > Tc

Condensate fraction 1−
(

T
Tc

)3
0

Energy per particle 3kBT ζ(4)
ζ(3)

(
1− N0

N

)
3kBT Li4(z)

Li3(z)

Speci�c heat capacity 12kB
ζ(4)
ζ(3)

(
1− N0

N

)
12kB

Li4(z)
Li3(z) − 9kB

Li3(z)
Li2(z)

Pressure nkBT ζ(4)
ζ(3)

(
1− N0

N

)
nkBT Li4(z)

Li3(z)

Table 2.2.: Temperature dependence of thermal averages for the 3D ideal Bose gas con�ned in the
harmonic trap.

Eq. (2.17) yields a �nite value at the transition temperature Tc in this limit.

Another signi�cant di�erence has proved to be of major importance for the experimental
detection of BEC. All condensed particles in the free Bose gas have zero momentum. They
are, thus, evenly spread in coordinate space and inseparable from the thermal cloud of
non-condensed atoms. In contrast, the Bose-Einstein condensate in a harmonic trap has
Gaussian like density distribution around the trap center in both coordinate and momentum
space which is determined by the corresponding single-particle ground state wave functions.
Additionally, as the ground state is macroscopically occupied and all other states are not, the
condensate density sharply peaks in the �atly distributed cloud of non-condensed particles.
Occurrence of such a peak in dilute gases at low temperatures is a strong indication of
onsetting Bose-Einstein condensation [5]. Detection methods can be further improved by
putting the trapping frequencies out of tune, i.e., creating an asymmetrically shaped trap.
The condensate density will copy that shape accordingly, but the thermal atoms will still
form a cloud with radial symmetry in momentum space because of E ∝ p2.

Interestingly, BEC is possible for the two-dimensional Bose gas in a harmonic trap. The
corresponding transition temperature und the temperature dependence of the condensate
fraction then read

kBTc = ~ω̃

(
N

ζ(2)

)1/2

, (2.20)

N0

N
= 1−

(
T

Tc

)2

. (2.21)

This opens the possibility to create Bose-Einstein condensates in layered structures as con-
sidered within the scope of this diploma thesis. One of the most promising candidates for an
experimental realization are composite electron-hole bosons, called excitons, in semiconduc-
tor heterostructures [6]. Due to their very small masses compared to atoms, the transition
temperature of such a system should be larger by several orders of magnitude (see e.g.,
reviews [7, 8]).
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2. Quantum mechanical low temperature e�ects in Bose systems

2.2. Super�uidity

The original experimental observation of super�uid helium is due to two groups, Pyotr
Kapitsa's in Moscow and Don Misener's in Cambridge, and was made in 1937. It had
been already known for several years that helium remains �uid even at absolute zero due
to zero-point �uctuations. Helium develops some peculiar characteristics when cooled below
a certain transition temperature Tc, which became known as the lambda point due to the
peculiar shape of the speci�c heat capacity (resembling the form of the small Greek letter
λ). With di�erent experimental setups and aims both groups could proof the existence of
two di�erent liquid phases of helium. In the so-called He-I phase above Tc, helium behaves
like a conventional �uid, while the viscosity in the He-II phase below Tc is at least a factor
1500 smaller. For this ability to �ow without apparent friction Kapitsa coined the term
super�uidity.

Within a few months of the experimental detection Fritz London gave a qualitative expla-
nation based on the concept of Bose-Einstein condensation. BEC was originally believed to
be a special pathology of the non-interacting Bose gas which contradicts an application to
a strongly correlated �uid. However, London's key argument was the predicted transition
temperature of about 3.3K for a gas with the particle mass and density of 4He within BEC
theory. This complies rather nicely to the measured lambda point at 2.2K. Shortly after,
Laszlo Tisza expanded London's idea by noting that the observed �ow behavior could be
qualitatively understood by assuming two �uid components. In his model, the Bose-Einstein
condensed fraction of the helium atoms is accountable for the super�uid properties, while
the rest behaves like an ordinary liquid.

Probably ignorant of Tisza's earlier work Lev Landau developed a phenomenological two-
�uid description of liquid He-II which he published in a paper 1941. Landau posited super-
�uidity as a property of the ground state of a Bose liquid. He further introduced the concept
of quasiparticles as collective excitations whose discrete momenta and energies sum up to
the total momentum and energy of condensed matter at low temperatures. A gas of these
quasiparticles is thought to form the normal�uid component of He-II. This conceptual basis
for super�uidity is remarkably useful due to its intuitive approach to both the super�uid
properties and the excitation spectrum.

Interestingly, Landau's theory does not directly need the concept of Bose-Einstein con-
densation. It even con�icts with BEC as a non-interacting Bose gas cannot be super�uid
according to his theory. Oliver Penrose and Lars Onsager circumvented this problem in 1949
by generalizing the concept of BEC to interacting systems. Richard Feynman independently
discovered the same theory two years later. In general consensus, these physicists are viewed
as fathers of the modern theory of super�uidity.

Landau's theory will be reviewed in section 2.2.1, before the connection to Bose-Einstein
condensation is investigated in section 2.2.2. Section 2.2.3 provides the two commonly used
theoretical approaches within the theory of the dilute, weakly interacting Bose gas. Sec-
tion 2.2.4 closes with an overview over the current status of research concerning the possible
existence of super�uid solid, called supersolids.
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2.2. Super�uidity

2.2.1. Two-�uid model

Landau's two-�uid model divides the liquid into a normal and a super�uid component.
Unlike the normal�uid, the super�uid �ows frictionless through capillaries and is responsible
for the observed peculiar properties of He-II. However, both �uid components are thought
to interpenetrate completely and an experimental separation is impossible.
Instead of proving the frictionless �ow of a moving �uid, one can demonstrate the impossi-

bility to put a resting �uid into motion: If one considers the laminar �ow of an ordinary �uid
through a capillary, the dissipation loss from the friction between �uid and con�ning walls
will slow down the movement at the �uid boundary. It ultimately leads to the formation of
a paraboloidal shaped velocity �eld with the strongest �ow in the capillary center and zero
movement at the boundary layer. The same progression viewed from the initial rest frame
of the �uid shows a gradual development of movement starting at the boundary.
In Landau's model, the normal�uid component is thought as made up from quasiparticles

which are collective excitations out of the resting ground state. The key question is whether
the kinetic energy of the moving �uid is su�cient to excite a quasiparticle in the rest frame
of the �uid. In order to answer it one needs the relations for the total momentum and energy
of the �uid between laboratory frame (unprimed) and the �uid rest frame (primed), which
moves with velocity v against the laboratory frame. These can be easily derived using the
Galilei transformations for position x = x′ + vt and momentum p = p′ + mv of a particle
with mass m,

P = P′ + Mv, E = E′ + P′v +
1
2
Mv2. (2.22)

Here, quantities denoted with a capital letter correspond to the whole system.
Suppose the system is in its ground state having the energy Eg which will be the case at

T = 0. Then, the total energy and momentum in both reference frames will become

rest frame E′
1 = Eg, P′

1 = 0, (2.23)

laboratory frame E1 = Eg +
1
2
Mv2, P1 = Mv. (2.24)

An excitation of a quasiparticle with momentum p and energy ε(p) alters these relations to

rest frame E′
2 = Eg + ε(p), P′

2 = p, (2.25)

laboratory frame E2 = Eg + ε(p) + pv +
1
2
Mv2, P2 = p + Mv. (2.26)

The excitation of quasiparticles is possible, when the energy di�erence ∆E = E2 − E1 =
ε(p) + pv is negative. The least possible value for ∆E is achieved, when momentum of the
quasiparticle and velocity of the �uid stand anti-parallel to each other. This implies that v
must be greater than ε(p)

p . If there exists a critical velocity

vc = min
p

ε(p)
p

> 0, (2.27)

then it is impossible to excite a quasiparticle in a system which �ows slower than vc. Hence,
the �uid �ows without friction and will not slowdown when viewed from the laboratory
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2. Quantum mechanical low temperature e�ects in Bose systems

frame. A linear dispersion relation, meaning an energy spectrum of acoustic phonons, meets
equation (2.27), i.e., ε(p) = cp. He-II itself has a slightly more complex energy spectrum
with an additional so-called roton minimum, but one still can issue a critical velocity which
empirically con�rms the validity of above considerations.
The necessity of an acoustic phonon type spectrum has an important implication. As the

spectrum of the non-interacting Bose gas is that for free particles ε(p) = p2/2m there does
not exist a critical velocity and, hence, a non-interacting Bose gas cannot be super�uid. This
directly negates a general equality of condensate and super�uid fraction as originally devised
by Tisza's two-�uid model. It further states that inter-particle interaction is a requirement
for super�uidity.
So far, the system has been regarded at absolute zero. At a �nite temperature above

zero the �uid partly consists of quasiparticles emerged from thermal excitations. For energy
dissipation due to friction between capillary boundary and �uid, the reasoning above still
holds true, as only the formation of additional quasiparticles is of importance. On the other
hand, a supposable friction between super�uid and normal�uid component now has to be
taken into account.
In this case, one has to consider the relative movement of the quasiparticle gas against

the �uid. Suppose that the velocity is v viewed from the rest frame of the �uid. As it can
be easily seen by comparing eq. (2.24) to eq. (2.26), the excitation of a quasiparticle with
energy ε(p) in the rest frame of the �uid adds a quasiparticle with energy ε(p) − p · v in
the rest frame of the gas. In thermal equilibrium the quasiparticle energies are distributed
according to Bose statistics. The total momentum of the gas viewed from the rest frame of
the �uid can, therefore, be calculated via

P =
∑

i

pi n(ε(pi)− pi · v). (2.28)

Evaluating the sum with an integral over phase space and expanding the distribution in a
Taylor series yields

P = −
∫

p(p · v)
dn(ε)

dε
dτ =

v
3

∫ (
−dn(ε)

dε

)
p2 dτ, (2.29)

where dτ denotes the volume element. The last step is made by averaging over the orienta-
tions of p.
Several conclusions can be drawn from this result. Most importantly, the relative move-

ment of the gas against the �uid is connected with mass transportation. The e�ective mass
can be directly read o� the right-hand side of eq. (2.29). The remaining mass must be
carried by the �uid. The relative movement of both components to one another is stable
and, thus, frictionless since it has been obtained in thermodynamical equilibrium. Unlike
the �uid, however, nothing prevents the gas of quasiparticles to collide with the capillary
walls which causes friction. This constitutes Landau's view of a normal�uid as a gas made
up from quasiparticles.

2.2.2. Modern theory

In the modern theory of super�uidity the underlying fundamental assumption is that the
super�uid phase is connected to Bose-Einstein condensation in the following sense: At any
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given time it is possible to �nd a complete orthonormal basis of single-particle states such
that one (and only one) of these states is occupied by �nite fraction of particles, which make
up the condensate. The corresponding single-particle wave function,

χ0(x, t) =
√

n0(x, t) eiφ(x,t), (2.30)

is referred to as the condensate wave function [9]. The condensate wave function provides
phase-coherence over macroscopic distances. Yang showed that this concept can be traced
back to a peculiar characteristic of the density matrix, namely o�-diagonal long-range order
(ODLRO) [10].
The connection to super�uidity is quite simple. Calculation of the current density by using

the continuity equation yields

j0(x, t) =
i~
2m

(χ∇χ∗ − χ∗∇χ) =
~
m

n0(x, t)∇φ(x, t), (2.31)

from which the �ow velocity of the condensate can be read o� as

vs(x, t) =
~
m
∇φ(x, t). (2.32)

As this motion can occur in thermodynamical equilibrium, it is frictionless and, therefore,
de�nes the super�uid velocity. It should be emphasized that this does not imply the equality
of condensate and super�uid fraction which has already been excluded in the preceding
section.
Equation (2.32) immediately leads to the conclusion that super�uid �ow is irrotational,

because there exists a velocity potential �eld proportional to the phase of the condensate wave
function. However, as the phase and, thus, the potential is periodic, circulating �ow around
regions which are in�nite in one dimension and where |χ0(x, t)| vanishes is not forbidden in
general. For the integral over (2.32) around a circuit enclosing one of such regions Stokes'
theorem can no longer be applied, because the region is not simply connected. But as the
phase of the condensate wave function in the surrounding space must be single-valued modulo
2π, the integral leads to the Onsager-Feynman quantization condition∮

vs · dl =
h

m
n, n ∈ Z. (2.33)

This condition can be satis�ed by a pattern of �ow with vs ∝ r−1. Such a pattern is
called vortex or, more precisely, vortex line. As the hypothesis |χ0(x, t)| vanishes in the
core and, thus, vs is unde�ned, the appearing singularity of the vortex center is physically
irrelevant. In �nite con�nements, vortex lines end at the boundary of the liquid. The energy
and angular momentum of a vortex in the center of cylindrical con�nement with radius R
and height h can be calculated to

Evortex = n2ρshπ lnR/a, (2.34)

Lvortex = nρshπR2, (2.35)

where a is the radius of the vortex core.
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2. Quantum mechanical low temperature e�ects in Bose systems

Similar to the maximum translational �ow velocity as discussed in the previous chapter,
the occurrence of vortices limit the angular velocity in rotating systems. Consider a bucket
in which a �uid rotates with ω. The relations for the total angular momentum and energy
of the �uid between laboratory frame (unprimed) and the �uid rest frame (primed) are

L = L′ + Iω, (2.36)

E = E′ + L′ · ω +
1
2
Iω2, (2.37)

which can be obtained using the Galilei transformations for angle and angular momentum
of a single particle. I denotes the rotational inertia of the whole system.
With no vortices the system shall have the energy Eg. Then, the total energy and angular

momentum in both reference frames will become

rest frame E′
1 = Eg, L′1 = 0, (2.38)

laboratory frame E1 = Eg +
1
2
Iω2, L1 = Iω. (2.39)

Occurrence of a single vortex with angular momentum l and energy ε(l) changes above
relations to

rest frame E′
2 = Eg + ε(l), L′2 = ω, (2.40)

laboratory frame E2 = Eg + ε(l) + l · ω +
1
2
Iω2, L2 = l + Iω. (2.41)

Hence, the excitation of a vortex is energetically impossible for

ω < ωc = min
l

ε(l)
l

. (2.42)

Inserting expressions (2.34) and (2.35) yields for the critical angular velocity

ωc =
~

mR2
ln

R

a
. (2.43)

A �uid circulating at this speed has exactly one vortex line with n = 1. At k-times ωc

there are k such vortex lines, which array themselves in a hexagonal pattern. As an angular
velocity of at least ω ≥ 3ωc is needed to form vortices with n > 1, these are unstable against
decay into multiple n = 1 vortices. Each vortex contributes one angular momentum quantum
to the �uid.
An important e�ect for both experimental detection and numerical investigations is the

Hess-Fairbank e�ect or non classical rotational inertia (NCRI). A slow rotation of the con-
�ning bucket with an angular velocity ω < ωc will be completely ignored by the super�uid
fraction because vortex lines cannot be excited. In thermodynamic equilibrium only the
normal�uid fraction rotates with ω and, thus, contribute to the moment of inertia of the
whole system. As the moment of inertia is proportional to the mass density, the super�uid
fraction can be calculated as follows

ρs

ρ
= 1− I

I0
, (2.44)
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where I0 denotes the expected value for the rotational inertia of the whole system.

Last but not least, it should be mentioned that vortex lines do not necessarily be straight.
Particularly in capillaries, the ends of vortex lines may connect to vortex rings similar to
smoke rings. Their excitation energies are typically much smaller than those of phonons and,
thus, can further reduce the critical velocity of super�uid �ow.

2.2.3. Weakly interacting Bose-gases

So far, the theory of super�uidity has been developed based on assumptions for the un-
derlying physical system without an explicit connection to existing systems. As mentioned
several times before, the ideal Bose gas considered in section 2.1 lacks the ability to show su-
per�uidity. Inter-particle interaction is necessary and has to be introduced into the system.
Unfortunately, an exact analytical investigation of the interacting Bose gas is impossible.
However, the dilute, weakly interacting Bose gas allows for certain approximations which
lead to the desired theoretical justi�cation of super�uidity. Two di�erent approaches are
presented in this section, the Bogoliubov theory and the Gross-Pitaevskii mean-�eld theory.
Each provides a di�erent set of puzzle pieces, which complement one another to form the
frame for understanding super�uidity (see e.g., reviews [11, 12])

Bogoliubov-approach

The Hamiltonian of a free interacting system in second quantization and momentum repre-
sentation reads

Ĥ =
∑
k

~2k2

2m
â†kâk +

1
2V

∑
k,p,q

Wqâ†p+qâ†k−qâpâk, (2.45)

where the Fourier transformation of the 2-particle interaction potential, W (r) = W (r2−r1),
is used

Wq =
∫

d3r e−iq·rW (r). (2.46)

The Bogoliubov approach makes two major assumptions regarding the nature of the sys-
tem, namely that

1. the system has a Bose-Einstein condensed phase and

2. the gas is dilute and only weakly interacting.

This allows for certain approximations (see appendix A), which results in a Hamiltonian of
the following form

Ĥ =
∑
k

′~2k2

2m
â†kâk +

N2

2V
W0 +

N

V

∑
k

′
Wkâ†kâk +

N

2V

∑
k

′
Wk

(
â†kâ†−k + âkâ−k

)
. (2.47)

It was Bogoliubov's main achievement to devise a convenient method in order to diago-
nalize this Hamiltonian [13]. He introduced a new set of operators b̂†k and b̂k, which obey
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2. Quantum mechanical low temperature e�ects in Bose systems

the Bose commutation rules and correspond to the creation and the annihilation of a quasi-
particle, respectively. Their relation to the original operators

âk = ukb̂k + vkb̂†−k

â†k = ukb̂†k + vkb̂−k

, with u2
k − v2

k = 1, uk = u−k, vk = v−k (2.48)

is called Bogoliubov transformation. The transformation was originally introduced by Hol-
stein and Primako�[14] within the theory of complex spin waves in 1940 and later rediscov-
ered by Bogoliubov in 1947 [15].
If one chooses uk and vk according to

u2
k =

εk +
(

k2

2m + nWk

)
2εk

,

v2
k =

−εk +
(

k2

2m + nWk

)
2εk

,

(2.49)

where εk is used as shortcut for

εk =

√(
~2k2

2m
+ nWk

)2

− (nWk)2. (2.50)

the o�-diagonal term in eq. (2.47) vanishes. This leads to the �nal result

Ĥ =
1
2
nNW0 −

1
2

∑
k

′
(

~2k2

2m
+ nWk − εk

)
+
∑
k

′
εkb̂†kb̂k. (2.51)

Equation (2.50) describes the energy spectrum of the quasiparticles and is, therefore,
referred to as dispersion relation. It can be estimated to an acoustic phonon type spectrum
εk = c~k with a sound velocity of c =

√
nW0/m for small wave vectors k. Excitations to

large wave vectors obey a dispersion relation comparable to free particles εk = ~2k2

2m .
Complying to the de�nitions issued in the preceding sections, one would expect a weakly

interacting Bose gas to show super�uidity. Indeed, the recent experimental realizations of
BEC in dilute alkali gases veri�ed this prediction. However suggestive, the comparison to He-
II is misleading as the interaction strength in �uids is far from weak. Nevertheless, this result
underlines the importance of inter-particle interactions for the occurrence of super�uidity.
A quantity of special interest is the thermal expectation value for the number of condensed

particles N0. For its computation, consider the particle number operator

N̂ =
∑
k

â†kâk = N0 +
∑
k

′
â†kâk. (2.52)

Rewriting this operator into quasiparticle representation and calculating the thermodynamic
expectation value yields

N = N0 +
∑
k

′
v2
k +

∑
k

′
n̄k

(
u2
k + v2

k

)
, (2.53)
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where n̄k denotes the expected number of excited quasiparticles. Because of their bosonic
nature without particle number conservation, n̄k equals the Bose-Einstein distribution with
µ = 0.
The ground state can be de�ned by demanding b̂k |0〉 = 0 for all wave vectors. This cor-

responds to a state without excited quasiparticles. Altering the above equation accordingly,
one obtains for the condensate fraction

N0

N
= 1− ν

(2π~)3

∫
v2
k d3k. (2.54)

Equation (2.54) implies that even when the system is in its ground state, not all particles
are condensed. This e�ect is called condensate depletion. On the other hand, the system
is 100% super�uid in its ground state, which emphasizes the di�erence between condensate
and super�uid fraction.
Equation (2.54) predicts the existence of a critical density, nc = 1

(2π~)3

∫
v2
k d3k. Denser

gases do not show a BEC phase. This self-consistently con�rms the initial assumption of a
dilute gas.
The restriction of the inter-particle interaction to a pure contact potential type with s-wave

scattering length a allows one to issue quantitative predictions for the condensate depletion.
The condensate density will become

n0 =

n− 8
3
√

π
(na)3/2, T = 0K

n− 8
3
√

π
(na)3/2

(
1 + 6

∫∞
0 dy x

eγy−1

)
, T > 0K

(2.55)

Phonons with εk = c~k are the only quasiparticles, which can be excited at very low temper-
atures. This yields a parabolic increase of the condensate depletion with rising temperature
in �rst-order approximation:

n0(T ) = n0(0)− m

12c
(kBT )2. (2.56)

Further investigations can be found e.g., in [15] or [16].

Gross-Pitaevskii mean-�eld approach

So far, the Bogoliubov approach made it possible to draw the connection between Bose-
Einstein condensation and super�uidity. It demonstrates the role of inter-particle interac-
tions for a phonon type spectrum and explains the inequality of condensate and super�uid
fraction. However, it does not explain the dynamical properties of the condensate. In
particular, it lacks a reasonable explanation for the condensate wave function assumed in
chapter 2.2.2.
A di�erent approach to the theory of the weakly-interacting Bose gas is the Gross-

Pitaevskii mean-�eld ansatz [17, 18]. The basic assumptions are identical to those made
in the Bogoliubov theory, but its starting point is Hamiltonian in second quantization and
space representation, i.e.,

Ĥ =
∫

dr1 Ψ̂†(r1)
(
− ~2

2m
∇2

r1
+ V (r1)

)
Ψ̂(r1)

+
1
2

∫∫
dr1dr2 Ψ̂†(r1)Ψ̂†(r2)W (r1 − r2)Ψ̂(r2)Ψ̂(r1).

(2.57)
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The main idea is to replace the �eld operators by a new set of operators, which do only
act on condensed particles. In particular, these new condensate operators Ξ̂, Ξ̂† shall change
the number of particles in the condensate by 1. Under the imposed restriction that the
ground state is occupied by a macroscopic number of particles, a change of this number does
not have any major impact on the physical behavior. One can, therefore, assume that the
condensate operators do not change state of the system. This assertion is strictly valid in
the thermodynamic limit. Thus, the condensate operators are de�ned as follows

lim
N→∞

〈m,N |Ξ̂|m,N + 1〉 = Ξ, (2.58)

lim
N→∞

〈m,N + 1|Ξ̂†|m,N〉 = Ξ∗. (2.59)

Here, |m,N〉 and |m,N + 1〉 denote �identical� system states, which only di�er in the number
of particles in the system.
Calculating the thermodynamic expectation value of the condensate particles operator

gives the condensate density

〈Ξ̂†Ξ̂〉 = Ξ∗Ξ = |Ξ|2 = n0. (2.60)

In general, the gas is neither homogeneous nor stationary, so Ξ is a function of space and
time. It then is the wave function for a particle in the condensate. Obviously, the wave
functions for each condensate particle are identical, so it has the meaning of the condensate
wave function

Ξ(r, t) =
√

n0(r, t) eiΦ(r,t), (2.61)

which is exactly the same as in eq. (2.30).
The original �eld operators can be issued in the form

Ψ̂ = Ξ̂ + Ψ̂′, Ψ̂† = Ξ̂† + Ψ̂†′, (2.62)

where Ψ̂′, Ψ̂†′ describe the �remaining� operators, which act on non-condensed particles. Con-
sequently, they transfer the non-condensate part of a state |m,N〉 into a thereto orthogonal
state, i.e.,

lim
N→∞

〈m,N |Ψ̂′|m,N + 1〉 = 0, (2.63)

lim
N→∞

〈m,N + 1|Ψ̂†′|m,N〉 = 0. (2.64)

The equation of motion for the �eld operators reads

i~
∂

∂t
Ψ̂(r, t) =

{
− ~2

2m
∇2 + V (r)

}
Ψ̂(r, t)

+
∫

dr′ Ψ̂†(r′, t)W (r− r′)Ψ̂(r′, t) Ψ̂(r, t).
(2.65)

In zeroth-order approximation the �eld operators can be substituted by the condensate wave
function. This leads to the Gross-Pitaevskii equation (GPE)

i~
∂

∂t
Ξ(r, t) =

{
− ~2

2m
∇2 + V (r)

}
Ξ(r, t)

+ Ξ(r, t)
∫

dr′ |Ξ(r′, t)|2W (r− r′).
(2.66)
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Assuming that the wave function Ξ(r, t) changes slowly on atomic spacings and the inter-
particle interaction W (r− r′) is short ranged (e.g., contact potential), one can approximate
the pair interaction by pulling Ξ(r, t) out of the integral. The e�ect of the pair interaction
then reduces to a simple factor λ. Using the time evolution of the stationary wave-function,
i.e.,

Ξ(r, t) = Ξ(t)e−i ~
µ

t
, (2.67)

one arrives at the stationary Gross-Pitaevskii equation{
− ~2

2m
∇2 + λ|Ξ(r)|2

}
Ξ(r) = µΞ(r). (2.68)

This equation has the form of a non-linear Schrödinger equation. The inter-particle interac-
tion is taken into account by an additional mean-�eld term. Neglecting this term results in
the normal Schrödinger equation.
As a closing note, two applications of the stationary GPE for systems with contact inter-

action (λ = W0, µ = nW0) are presented

Acoustic phonons. A standing wave ansatz, i.e.,

Ξ =
√

n + Aei(k·r−ωt) + Be−i(k·r−ωt), (2.69)

describing small density oscillations leads to known dispersion relation (eq. (2.50))
derived within Bogoliubov theory.

Vortex lines. An ansatz of the form

Ξ(r, φ) =
√

n f

(
r

r0

)
eiφ, (2.70)

models the super�uid density distribution around a straight vortex line. By introducing
the reduced units x = r/r0 with r0 =

√
~/8πan one obtains a conditional equation for

the radial part of the wave function, i.e.,

1
x

d

dx

(
x

df

dx

)
− f

x2
+ f − f3 = 0. (2.71)

The di�erential equation itself can be only solved numerically. But an investigation of
its asymptotic behavior yields

f ∝ x → 0, for x → 0, (2.72)

f ≈ 1− 1/2x2, for x →∞. (2.73)

This complies to the initial assumption that super�uidity is completely suppressed
in the vortex core, whereas far away from the center the super�uid density of the
resting �uid is assumed. The length r0 characterizes the size of the vortex core and
is called healing length, as it corresponds to the analogous quantity for magnetic �ux
lines in type-II superconductors. For dilute, weakly interacting gases, r0 is large in
comparison to inter-particle distances, in contrast to the atomic dimensions of vortices
in liquids [16].
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2.2.4. Super�uidity in the solid phase

The occurrence of super�uidity in the �uid and gas phase of matter have led to speculations
whether macroscopically ordered states like solids could exhibit super�uidity, too. The
debate was initiated by a paper from Leggett published in 1970 [19]. He considered a
rotating solid con�ned in a cylindrical annulus. Thereby, he de�nes �solid� as a system
of atoms, whose pair correlation function in the ground state does not tend to a constant
value even deep inside the sample, i.e., showing strong variations over distances of the order
of atomic spacing. This de�nition does not imply that the many body wave function of
the ground state must be clearly disconnected, which would correspond to the conventional
picture of a solid with its localized atoms on lattice sites. If one allows for the possibility
of atoms to exchange places, one cannot exclude the occurrence of the NCRI-e�ect. Such
potentially super�uid solids became known as supersolids in literature.

A potential mechanism for particle exchange was given by Chester[20] a little time earlier
in the same year. He suggested that in a Bose solid a non-zero fraction of atoms may
occupy the zero momentum state. The existence of a Bose-Einstein condensate certainly
allows for the assumption of particle exchange. Another interesting possibility would be the
condensation of crystal defects as proposed by Andreev and Lifshits in 1969[21]. However,
Leggett issues a tentative upper limit to the expectant super�uid fraction. The value lies at
∼ 3 · 10−4, which would explain why the e�ect had so far escaped notice.

The topic grew hot again in 2004, when Kim and Chan reported their discovery of the
NCRI-e�ect observed for helium con�ned in porous materials, namely Vycor[22] and gold[23],
and later in bulk helium con�ned in an annulus channel[24]. Their detection method of choice
is a torsion experiment with a high mechanical quality factor (2 · 106) of the oscillation. The
sample is con�ned under high pressure (up to 66 bar) in a cell attached to a rod hanging below
the ceiling. The cylindrical drive and detection electrodes are each coupled capacitively to
planar electrodes attached as �ns on the cell. A lock-in ampli�er keeps the oscillation of
the cell in resonance, which is about τ ≈ 1ms and can be measured with an accuracy of
∆τ ≈ 1 ns.
In the experiment, the resonance frequency ω0 slips from its classically expected value

when the system is cooled below 230mK. Since ω0 of the cell is directly coupled to its
moment of inertia, Kim and Chan relate the drop to the NCRI-e�ect implying that solid
helium must be partly super�uid. Interestingly, they receive values for super�uid fraction
ranging up to 1.7%. However, several authors criticize these results and propose alternative
explanations for the drop of the moment of inertia. For instance, Dash and Wettlaufer[25]
suggest to take slippage of the solid, due to grain boundary premelting between the solid
and densely adsorbed layers at the container wall, into account for the missing rotational
inertia. Such an intermediate liquid layer of helium could also be super�uid accounting
for the NCRI-e�ect in the Vycor experiments, where slippage is impossible because helium
is pinned in the Vycor matrix. Numerical investigations from Khairallah and Ceperley[26]
using the path-integral Monte-Carlo method based on �rst principles (see chapter 3) provide
further evidence for such a super�uid layer. Bulk helium itself seems to consist of perfectly
localized atoms. A partly delocalized and, thus, super�uid layer is found only in between
the mismatching bulk surface and densely absorbed layer at the Vycor boundary inside a
pore.
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Nevertheless, Kim and Chan's announcement revived the interest in supersolids. Some
recent theoretical works are devoted to provide necessary preconditions which must be ful-
�lled in order to observe the phenomenon. Prokof'ev and Svistunov[27] prove that the solid
must be incommensurate, meaning it is to have zero-point vacancies, or interstitial atoms,
or both as an integral part of the ground state. In the same spirit, Shi[28] provides a general
derivation of the NCRI-e�ect as consequence of o�-diagonal long-range order (ODLRO) in
an interacting Bose system. Particularly, he demonstrates explicitly that NCRI cannot be
possessed in absence of defects. Both groups argue against supersolidity in bulk helium,
since an overwhelming part of experimental work suggests helium to be commensurate (see
e.g., review [29]).
A number of groups[30, 31, 32, 33] investigated a model system with hard-core bosons

on a triangular lattice and next-neighbor hopping. Such a system does exhibit a stable
supersolid phase, if the lattice points are nearly half occupied with bosons. Depending on
the �lling factor ρ, either the bosons (1/3 < ρ < 1/2) or the vacancies (1/2 < ρ < 2/3) form
a crystalline structure which is completely interpenetrated by a Bose-Einstein condensate
consisting of the corresponding complementary part. Interestingly, one does not �nd a stable
supersolid phase on a square lattice regardless of the �lling factor. Here, the system splits
up into solid clusters separated from one another by super�uid interfaces [34].
In very recent history, a di�erent supersolid phase was found by Boninsegni, Prokof'ev

and Svistunov[35] using numerical PIMC simulations with the newly created worm-algorithm
extension developed by the same group [36]. They created an amorphous phase of 4He by
quenching the system from its liquid phase into a frozen meta-stable state. Such a highly
disordered state possesses o�-diagonal long-range order and is, thus, super�uid. Due to its
glass like nature, this state of matter has been named superglass.
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3. The path integral Monte Carlo method

Richard Feynman introduced the path integral representation of the quantum system in
1948 which generalizes the action principle of classical mechanics. Within this theory, each
quantum particle is considered as a series of positions forming a closed trajectory in space.
The particle �moves� along this trajectory obeying a law similar to the classical action. The
physics of the system itself are derived from an functional integration over all possible paths.
However, the explicit calculation of physical observables is somewhere limited, as huge

amounts of computational time are needed in order to perform the integration. The com-
bination with Monte Carlo integration method remedies this issue and constitutes the path
integral Monte Carlo (PIMC) method. It is suited for statistical investigations of a quantum
system at any temperature. In principle, all errors due to necessary approximations can
be made arbitrarily small, which makes PIMC a powerful numerical method based on �rst
principles.

3.1. Calculation of thermal averages with path integrals

Any quantum system is fully described by its density operator [37], which in the canonical
ensemble reads

ρ̂ =
∑

i

e−βEi |i〉 〈i| = e−βĤ , (3.1)

where |i〉 denotes an eigenstate of the Hamiltonian Ĥ to the energy eigenvalue Ei, i.e.,
Ĥ |i〉 = Ei |i〉. The trace over ρ̂ yields the partition function

Z =
∑

i

e−βEi = Tr ρ̂. (3.2)

The thermal average of an observable Â in thermodynamic equilibrium is determined by

〈Â〉 =
∑

i e
−βei 〈i|Â|i〉∑

i e
−βei 〈i|i〉

=
Tr ρ̂Â

Tr ρ̂
=

Tr ρ̂Â

Z
. (3.3)

The corresponding density matrix in coordinate representation reads

ρ(R,R′;β) ≡ 〈R|e−βĤ |R′〉 =
∑

i

φ∗i (R)e−βEiφi(R′), (3.4)

with R = (r1, . . . , rN ), where ri denotes the position of the ith particle. The partition
function (3.2) in this basis is

Z =
∫

dR ρ(R,R;β), (3.5)
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3. The path integral Monte Carlo method

and the thermal average (3.3) is calculated as

〈Â〉 =
1
Z

∫
dR 〈R|ρÂ|R〉 =

1
Z

∫
dR

∫
dR′ ρ(R,R′;β) 〈R|Â|R′〉 . (3.6)

The basic idea behind path integrals relies on the group property of the density operator,
i.e.,

ρ̂(β) = e−βĤ =
[
e−

β
M

Ĥ
]M

= [ρ̂(β/M)]M , (3.7)

where M is a positive integer number. With equation (3.7), the density operator can be
expressed in terms of the density operatar at a M times higher temperature. In order to
derive an expression for the density matrix in coordinate representation, one has to insert
M − 1 identity operators resulting in an integration over M − 1 intermediate points, i.e.,

ρ(R,R′;β) =
∫

dR1dR2 . . .dRM−1 ρ(R,R1; τ)ρ(R1, R2; τ) · · · ρ(RM−1, R
′; τ), (3.8)

with τ = β/M . This is called the discrete time path integral representation of the den-
sity matrix. It deviates from the original path integral with its functional integration as
introduced by Feynman, but is more suitable for the system in question.
The term �time� refers to a number of notations commonly used in path integral speci�c

language in allusion to classical analogons. The similarity of the density operator to the
time propagator in quantum mechanics suggests to regard the inverse temperature β as an
imaginary time. The particles move along a path or trajectory given by their corresponding
positions, called beads, from the sequence of points R0, R1, . . . , RM−1, RM in discrete time
steps τ = β/M . A single Rk is referred to as the kth time slice. A link m is a pair of
consecutive time slices (Rm−1, Rm) separated by the time τ . The action of a link is de�ned
as

Sm ≡ S(Rm−1, Rm; τ) = − ln [ρ(Rm−1, Rm; τ)] , (3.9)

where ρ(Rm−1, Rm; τ) denotes the exact density matrix. By introducing this shortcut the
exact path integral expression becomes

ρ(R,R′;β) =
∫

dR1dR2 . . .dRM−1 exp

[
−

M∑
m=1

Sm

]
. (3.10)

Further notations can be found in [38].
Equation (3.8) is exact for any �nite M provided that the exact expression for the N -

particle density matrix is used. However, �nding this expression means solving the N -
particle Schrödinger equation, which is only possible in a few special cases like non-interacting
systems. This problem can be circumvented by introducing approximations to the density
matrix. The simplest approach is to split the Hamiltonian into its kinetic and potential part,
i.e., Ĥ = T̂ + V̂ , and use the primitive approximation

e−τT̂ e−τV̂ = e−τ(T̂+V̂ )+ τ2

2
[T̂ ,V̂ ] ≈ e−τ(T̂+V̂ ), (3.11)

obtained by neglecting the commutators [T̂ , V̂ ] from the exact operator identity. The error is
proportional to τ2 and vanishes in the limit M →∞ in eq. (3.11), but in the in�nite product
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3.1. Calculation of thermal averages with path integrals

in eq. (3.7) the in�nitesimal errors might build up to a �nite error. However, according to
Trotter [39] the formula

e−β(T̂+V̂ ) = lim
M→∞

[
e−τT̂ e−τV̂

]M
, (3.12)

holds as long as the operators T̂ , V̂ and T̂ + V̂ are self-adjoint and make sense separately
which is the case if their spectrum is bounded below (see [40]).

Taken in position space with the primitive approximation, the kinetic and potential parts
of the density matrix can be evaluated separately, i.e.,

ρ(R,R′;β) ≡ 〈R|e−β(T̂+V̂ )|R′〉 ≈
∫

dR1 〈R|e−βT̂ |R1〉 〈R1|e−βV̂ |R′〉 . (3.13)

This is trivial for the potential operator since it is diagonal in the position representation,
and the kinetic operator can be computed by a momentum eigenstate expansion:

ρpot(R,R′; τ) ≡ 〈R|e−βV̂ |R′〉 = e−βV (R)δ(R−R′), (3.14)

ρkin(R,R′; τ) ≡ 〈R|e−βT̂ |R′〉 =
∫

dP 〈R|P 〉 e−β
PN

i=1

p2
i

2mi 〈P |R′〉

= λ−3N
β e

− π

λ2
β

(R−R′)2

, (3.15)

where λβ =
√

2π~2β/m is the thermal De Broglie wave length and the explicit expressions
for plain waves have been inserted for 〈R|P 〉 and 〈P |R′〉. Insertion of eqs. (3.13)�(3.15) into
eq. (3.8) yields the discrete time path integral in primitive approximation

ρ(R,R′;β) ≈
∫

dR1dR2 . . .dRM−1 e
−

PM−1
i=0

π

λ2
τ

(Ri−Ri+1)2

e−
PM−1

i=0 τV (Ri), (3.16)

with R = R0 and R′ = RM .

It can be seen from eq. (3.16) that only particles within the same time slice interact with
each other and the kinetic energy depends on the moved distance during a time step. Closed
particle trajectories correspond to diagonal elements of the density matrix. Thus, the full
density matrix is obtained by integration over all possible path con�gurations with �xed
endpoints.

So far, only quantum systems with spinless particles have been considered. The spin part
of the quantum states can be ignored as long as the Hamiltonian does not depend on it, but
the statistical e�ects related to spin�namely Bose and Fermi statistics�cannot. The many
body wave function for bosons and fermions has to be symmetric or antisymmetric under
particle exchange, respectively. As Feynman shows [37], the corresponding density matrix
can be obtained as follows

ρS(R,R′;β) =
1

N !

∑
P∈SN

ρ(R,PR′;β) symmetric, (3.17)

ρA(R,R′;β) =
1

N !

∑
P∈SN

sgn(P )ρ(R,PR′;β) antisymmetric, (3.18)
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3. The path integral Monte Carlo method

where ρ is the density matrix de�ned in eq. (3.1). For the corresponding path integral, the
permutation of particle positions occurs at a single time slice only, as one can easily see by
applying the group property to eqs. (3.17) and (3.18). In principle, this time slice can be
arbitrarily chosen, but one usually takes the RM th corresponding to the permutation of the
endpoints of the particle trajectories. Howsoever, a given permutation mends the paths of
multiple particles into a single one and one has to sum over all possible inter-connections.
Such multi-particle trajectories correspond to o�-diagonal elements of the density matrix.

3.2. Solving high-dimensional integrals with the Monte Carlo
method

Path-integrals provide an elegant access to thermal quantities of a many-body quantum
system. With them, the physical part of the problem is set�what remains is a numerical
issue, which e�ectively prevents any use of path integrals until an e�cient computational
method for solving high-dimensional integrals is found. The simplest approach to compute
an one-dimensional integral chops the integration interval into n parts of equal length ∆x
and estimates the integral as the sum of rectangular areas, each spanned by ∆x and the
function's value at a chosen point xi from within ∆x. This method can be easily generalized
to N -dimensional integrations, i.e.,

∫ b1

a1

dx2

∫ b2

a2

dx1 . . .

∫ bN

aN

dxN f(x) ≈

(b1 − a1)(b1 − a1) . . . (bN − aN )
n1n2 . . . nN

n1∑
j1=1

n2∑
j2=1

. . .

nN∑
jN=1

f(xj1 , . . . , xjN ), (3.19)

where nj denotes the number of integration points in the jth dimension. Various extensions
like e.g., the Simpson's rule advance the convergence and hence improve the accuracy for
a �xed number of integration points when compared to the simple calculation rule above.
Nevertheless, those improvements do not remedy the fact that the needed computational
time scales with O(nN ) sustaining the same accuracy as a one-dimensional integration would
have. Even the most powerful computer would eventually choke on the task to compute the
3NM -dimensional path integral, if the number of particles N or beads M grew much larger
than 1. Much for the worse, the inclusion of spin statistics boosts this number by a factor
of N !.
The Monte Carlo (MC) integration e�ectively tackles the scaling problem by sampling

over randomly distributed points x̃i from the integration basis, instead of sampling function
values with points from regular integrals ∆x. This means

∫
dx f(x) =

∫
dx

f(x)
p(x)

p(x) ≈ 1
M

M∑
i=1

f(x̃i)
p(x̃i)

, (3.20)

where the probability of sampled points x̃i is given by p(x)dx. One may consider the integral
as the expectation value of the function f(x)/p(x).
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3.2. Solving high-dimensional integrals with the Monte Carlo method

In principle, the probability distribution p(x) can be chosen arbitrarily. With the simplest
possible choice, i.e., uniformly distributed points according to p(x) =

∏
i 1/(bi−ai), the MC

method is said to use straightforward sampling. However, for strongly non-uniform integrands
f(x) (e.g., peaked functions etc.) it is obviously advisable to choose p(x) to follow the general
shape of f(x), since places where the integrand is larger yield larger contributions to the
integral. This is called importance sampling. One can show that the optimal choice which
minimizes the error of the approximation reads p(x) = c|f(x)|, where c is a constant (see,
e.g., [41]). Unfortunately, to �nd the function F (y) which generates a sequence of points
distributed according to p(x) requires solving the integral

F (y) =
∫ y

−∞
dx p(x). (3.21)

This is exactly the unknown integral in eq. (3.20). Thus, the central issue with the impor-
tance sampling method is the search for a simple, but good matching probability p(x).
Reconsidering eq. (3.6), the preferred probability density for an application to canonical

ensembles is evidently given by the normalized Boltzmann factor pB = e−βĤ/Z. This guar-
antees to do the averaging only with microstates which are in thermodynamical equilibrium,
providing a high e�ciency of the Monte Carlo method. Unfortunately, the partition function
Z is needed to generate microstates distributed according to pB, but is unknown a priori.
A convenient method to overcome this problem was devised by Metropolis et al. [42]. He
proposed using the Markov chain in such a way that, starting from an initial state R0, all
further states are generated with pB. One then needs to specify the transition probability
p(Ri → Ri+1) from one state to the next. Some restrictions are placed on p(Ri → Ri+1) to
ensure that the generated states are distributed according to pB:

• Conservation:
∑

Ri+1
p(Ri → Ri+1) = 1, for all Ri.

• Convergence of pB(Ri) to the unique equilibrium state:
∑

Ri
pB(Ri)p(Ri → Ri+1) =

pB(Ri+1).

• Ergodicity : Any possible microstate is reached in a �nite number of steps.

• All transition probabilities are non-negative: p(Ri → Ri+1) ≥ 0

The evolution of the probability pB is governed by p(Ri → Ri+1) and can be described by the
Master equation, whose stationary solution is ful�lled when the more strict detailed balance

pB(Ri)p(Ri → Ri+1) = pB(Ri+1)p(Ri+1 → Ri) (3.22)

is met. Eq. (3.22) obviously does not specify p(Ri → Ri+1) uniquely, but the commonly
chosen solution reads

p(Ri → Ri+1) =
pB(Ri+1)
pB(Ri)

= min
[
1, e−β∆U(R)

]
, (3.23)

where ∆U(R) = U(Ri+1) − U(Ri) is the energy di�erence of subsequent microstates. A
new con�guration is always accepted when its energy is lower than before, or else with
a probability proportional to the Boltzmann factor. The �rst guarantees the system to
converge to an energy minimum, whereas the latter guarantees that the system will not be
stuck in a local energy minimum. A detailed derivation can be found in [41].
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3. The path integral Monte Carlo method

3.3. Path-integral Monte Carlo (PIMC)

3.3.1. General algorithm

In order to solve path integrals with the Monte Carlo method, a more generalized Metropolis
procedure is used nowadays. The transition probability p(s → s′) is written as a product
of a sampling distribution T (s, s′) and an acceptance probability A(s, s′), i.e., p(s → s′) =
T (s, s′)A(s, s′).

T (s, s′) determines the preference of the system to try a move from state s to s′. In
the original Monte Carlo method, T (s, s′) is a constant distribution inside a cube and zero
outside. In contrast, the more sophisticated smart Monte Carlo for classical systems marks
particle displacements in direction of the potential gradient as preferable (see e.g., [43]). The
acceptance probability A(s, s′) has to satisfy the detailed balance eq. (3.22), which is ful�lled
by choosing

A(s, s′) = min
[
1,

T (s′, s)p(s′)
T (s, s′)p(s)

]
. (3.24)

Each of the di�erent move types in a PIMC simulation has its particular sampling distribution
T (s, s′).
In general, the path integral Monte Carlo simulation implements the following procedure

1. Initialize the system

• Read system parameters like particle number, temperature, beads, number of
Monte Carlo steps, etc.

• Randomly assign starting positions to particles

• Initialize variables for physical observables

2. Monte Carlo step: Find a new system con�guration with the generalized Metropolis
algorithm

• Choose and attempt one of the available methods to sample a new path con�gu-
ration s′

• Check with the corresponding A(s, s′), if the move is accepted. If not, stay in the
old con�guration s.

3. Calculate the contribution of the current con�guration to the physical observables.

4. Jump back to step 2 unless the maximum number of Monte Carlo steps has been
reached.

5. Output the calculated thermal averages.

Physical observables are not recorded from the start, but after a number of initial Monte
Carlo steps needed to reach thermal equilibrium.
The main di�erence to classical Monte Carlo methods is the more sophisticated scheme to

sample new con�gurations. The classical approach to repeatedly choose a random particle
and displace it by some distance works out poorly when applied to single beads of the
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3.3. Path-integral Monte Carlo (PIMC)

path integral. The then needed displacement attempts to acquire a con�guration which
is uncorrelated to its predecessor scales with (NM)2. Thus, the method is ine�cient for
simulations at low temperatures, where larger numbers of time slices are needed.
An improved method tries to move several beads at once. For such a move, the transition

T (s, s′) and acceptance A(s, s′) probabilities must be de�ned and the satisfaction of the
detailed balance condition ensured. The common move types for indistinguishable particles
are

Whole particle displacement. A random particle is chosen and its whole trajectory dis-
placed by some distance in position space. As in classical Monte Carlo simulations,
T (s, s′) can be de�ned as a uniform distribution inside a cube with the corresponding
A(s, s′) as in the standard Metropolis algorithm (eq. (3.23)).

Multilevel move. Chooses a random particle and deforms its trajectory on all time slices
between the kth and (k + m0 − 1)th (with m0 = 2l0−1, l0 ∈ N), where k is also
randomly chosen. The deformation is carried out by displacing the middle bead in the
section and recursively proceeding with each of the two subintervals until the whole
path is reconstructed. The acceptance of the new con�guration is checked on each level,
i.e., before even �ner bisections are made. Rejection immediately aborts the further
construction, which saves computational time elsewise wasted on the futile sampling
of intermediate points.

The transition and acceptance probabilities for the lth level read

Tl(sl, s
′
l) =

pl(s′l)
pl(sl)

, (3.25)

Al(sl, s
′
l) = min

[
1,

Tl(sl)pl(s′l)pl−1(sl−1)
Tl(s′l)pl(sl)pl−1(s′l−1)

]
. (3.26)

Permutation change. Selects all particles whose indices are to be changed in a chosen per-
mutation, and simultaneously samples new trajectories to the permuted endpoints with
the multilevel method. One may restrict the method to the endpoint exchange of only
2 particles, since any permutation can be reached by pair transpositions.

The probabilities to pick a certain permutation T (P, P ′) and �nally accept the move
A(P, P ′) are

T (P, P ′) =
ρkin(Ri, PRi+i0 ; i0τ)

W (P )
, (3.27)

A(P, P ′) = min
[
1,

W (P )
W (P ′)

]
, (3.28)

where W (P ) =
∑

P ρkin(Ri, PRi+i0 ; i0τ) is the normalization factor obtained by sum-
ming over all possible endpoint permutations of the kinetic density matrix (eq. (3.15)).

For the e�ciency of the Metropolis algorithm an overall acceptance ratio of about 0.5
for proposed con�gurations is preferable. For much lower ratios it takes more attempts to
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3. The path integral Monte Carlo method

�nd new con�gurations as most are rejected. If the acceptance ratio is too high, successive
con�gurations are strongly correlated. In both cases, more Monte Carlo steps are needed to
acquire a su�cient number of independent con�gurations. The acceptance ratio can be con-
trolled by adjusting the maximum displacement length in classical Monte Carlo simulations.
The corresponding parameter for multilevel moves is the maximum number of blocks l0.

3.3.2. Estimators

Thermodynamic averages of a quantum system can be computed directly from eq. (3.6)
or as derivatives of the partition function Z. There are usually di�erent ways to obtain a
single property. A speci�c formula is called an estimator. For example, the thermodynamic
estimator of energy reads

E = − ∂

∂β
lnZ = − 1

Z

∂Z

∂β
. (3.29)

In case of a d-dimensional, N -particle quantum system (without Bose/Fermi statistics), this
estimator takes the following form in high temperature representation of the density matrix
[44]:

E =
dMN

2β
−

〈
M−1∑
k=0

Nm

2~2β2
(Rk+1 −Rk)2

〉
+

〈
1
M

M−1∑
k=0

V (Rk)

〉
(3.30)

For numerical reasons, this estimator is usually not used in PIMC simulations, since the
kinetic energy is calculated as a di�erence of two large terms diverging in the limit of in�nite
temperature. A better choice is the virial energy estimator [45].
The derivation of many useful estimators can be found in, e.g., [41, 38] and will not be

discussed in detail here. However, of particular interest for the application to quantum sys-
tems is the possibility to calculate the super�uid density γs since the super�uid fraction of
a trapped system can be de�ned via its response to slow rotations of the con�ning bucket.
Only the normal�uid component of the liquid rotates rigidly with the walls, e�ectively de-
creasing the energy needed to spin up the container. The deviation of the rotational inertia
Iqm from its classically expected value Iclass is directly related to the super�uid density, i.e.,

γs =
ρs

ρ
= 1− Iqm

Iclass
. (3.31)

Chapter 2.2 introduced this e�ect as non classical rotational inertia (NCRI).
The quantum mechanical moment of inertia Iqm can be de�ned as the work done by an

in�nitesimally small rotation rate, i.e.,

Iqm =
d 〈L̂z〉

dω

∣∣∣∣∣
ω=0

=
1
Z

Tr
[
L̂z

dρ̂

dω

]∣∣∣∣
ω=0

, (3.32)

where L̂z is the total angular momentum operator along the rotation axis (chosen as the
z-axis). L̂z reads in cylindrical coordinates

L̂z = i~
N∑

i=0

∂

∂φi
, (3.33)
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where φi is the angular coordinate of ith particle.
Equation (3.32) requires to calculate the derivative of the density matrix with respect

to ω. This can be most easily obtained in the rest frame of the rotating �uid where the
Hamiltonian is of the form

Ĥω = Ĥ0 − ωL̂z. (3.34)

Here, Ĥ0 is the Hamiltonian at rest. In order to �nd an appropriate estimator for discrete-
time path integrals consider the operator identity

d
dx

eÂ =
1
M

M∑
k=1

ekÂ/M dÂ

dx
e(M−k)Â/M . (3.35)

The application to equation (3.32) gives

Iqm =
1
Z

Tr

[
τ

M∑
k=1

L̂ze
−(M−k)τĤ0 L̂ze

−kτĤ0

]
, (3.36)

This expression can be explicitly evaluated when the high temperature approximation of the
density matrix is inserted. After some algebra one arrives at

γs =
2m
〈
A2

z

〉
βλIclass

, (3.37)

where two functions of a given path are introduced, namely the projected area

A =
1
2

N∑
i=1

M−1∑
k=0

r(i)
k × r(i)

k+1, (3.38)

and the classical moment of inertia

Iclass =

〈
N∑

i=1

M−1∑
k=0

mir
(i)
k,⊥ · r

(i)
k+1,⊥

〉
. (3.39)

Equation (3.37) is referred to as area formula in literature. It relates the super�uid fraction
to the ratio of the covered area by the particle trajectories to the cross-sectional area of the
whole system. It obviously emphasizes the importance of particle exchange, since a N -
particle permutation trajectory naturally covers more area. However, also single-particle
paths have a �nite extension, which gives rise to a non-bosonic contribution to super�uidity
in �nite systems. This is one of the points which will be thoroughly discussed in the following
chapters.

3.3.3. Basic tests

The e�ciency of the PIMC algorithm corresponds to the ratio of the number of uncorrelated
system con�gurations to the computational time needed. Naturally, the latter scales with

1The de�nition of the coupling parameter λ and other reduced units is given by eqs. (4.3)�(4.6)
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Figure 3.1.: Performance of the PIMC simulation (8 bosons, t = 0.1, λ = 10)1. This example
shows the accuracy of the energy calculation depending on the number of time slices M used (red
line) in comparison to the computational time needed (green line). The error of the energy increases
with M , as more MC-steps are needed in order to get uncorrelated con�gurations. Simulations for
more than M = 64 yield an improvement of less than 1 % to the energy, so this is an appropriate
choice for the current parameters.

the number of time slices M which is, thus, desired to be as low as possible. Improvements
like accurate actions (better than the primitive approximation) may vastly decrease M , but
tests are still needed in order to �nd its optimal value. If M is too low, the calculation
of physical quantities will be biased, the energy, e.g., is typically underestimated in this
case. If M is chosen larger than needed on the other hand, there will be no improvements
to any quantities, but the simulation needs longer to calculate them to the same accuracy.
Figure 3.1 shows this interplay. In this example, an appropriate choice for M would be 64.
Once calculated for a speci�c temperature, appropriate values for M can be simply derived
by considering eq. (3.7): At half the temperature, M must be doubled and vice versa.
Aside from this general premise, the simulation must be of su�cient length to keep the

statistical error small which scales with the number of uncorrelated Monte Carlo steps ac-
cording to

√
N . For most quantities, a total number of Monte Carlo steps of about 500, 000

is su�cient. Unfortunately, the inclusion of Bose statistics may vastly increase this number,
particularly when changes to the permutation con�guration are rare. This poses a problem at
low temperatures, since the probability of such a change decreases with M . Especially quan-
tities like the super�uid density γs which are sensible to Bose statistics may need simulation
lengths of 5 · 106 Monte Carlo steps and more (see �g. 3.2).
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Figure 3.2.: Convergence of the energy and super�uid fraction γs of a PIMC simulation (2 bosons,
λ = 30)1. Since the exchange energy is small in comparison to the inter-particle interaction in
this case, the energy computation is largely una�ected by exchange events. 500, 000 MC-steps are
su�cient for its convergence. On the other hand, exchange events become rare at low temperatures
which results in strong �uctuations of γs throughout the whole simulation. A length of 2, 000, 000
MC-steps seems to be the lower limit for its convergence.
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4. Mesoscopic Bose gases in harmonic

traps

4.1. Introduction

In chapter 2, systems in the thermodynamic limit have been considered. However, any
experimental setup can naturally contain only a �nite number of particles. Especially BEC
experiments with dilute gases in harmonic traps have been limited to a few ten thousand
particles up to date. In this regime, �nite size e�ects gain importance.

Strictly speaking, a �nite system does not display a true phase transition, which is by
de�nition an abrupt change in its physical behavior. A clearly de�ned transition temperature
Tc does not exist anymore, as the system smoothly glides from its condensate phase into
the high-temperature gas phase. Nevertheless, assuming that the exponent of the order
parameter (the condensate fraction) far below the transition regime remains unchanged, one
usually de�nes Tc by extrapolating this low-temperature curve to zero. Compared to the
analytically calculated expressions for the transition temperature (see eqs. (2.17) and (2.20)),
the experimentally observed Tc shifts to lower values. The shift can be calculated analytically
by introducing �rst-order corrections in the grand canonical partition function.

One has to bear in mind that expectation values calculated with micro-canonical, canonical
and grand-canonical ensembles no longer yield identical results. Indeed, thermal averages can
di�er dramatically in small systems with up to a few hundred particles [46]. For the system
in question with its �xed number of particles at a given temperature, the correct choice is a
canonical approach. Since the Bose-Einstein distribution (2.1) follows from grand-canonical
considerations, one must �nd a di�erent approach. The straightforward method is a direct
evaluation of the N -particle partition function as the trace over the symmetrized N -particle
density matrix, i.e., (see eqs. (3.17) and (3.5))

Z(N,T, V ) =
∫

dR ρS(R,R;β) =
1

N !

∑
P∈SN

∫
dR ρ(R,PR;β). (4.1)

The following chapter 5 provides an exact method to evaluate this expression for the ideal
Bose gas. It is based on the idea that any permutation can be decomposed into exchange
cycles. Since the particles are indistinguishable and non-interacting, only the length of such
a cycle may have an e�ect on the system's physics. Chapter 6 introduces inter-particle
Coulomb repulsion into the system. As the low-temperature N -particle density matrix for
such a system is unknown, the path-integral representation of (4.1) with high-temperature
approximation is used and numerically evaluated with Monte-Carlo methods (PIMC), as
described in chapter 3.
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4. Mesoscopic Bose gases in harmonic traps

4.2. System speci�cation

The Hamiltonian for a system of N equally charged bosons in a harmonic trap reads

Ĥ =
N∑

i=1

(
− ~2

2m
∇2

ri
+

m

2
ω2r2

i

)
+

N∑
i<j

1
4πεbε0

q2

|ri − rj |
, (4.2)

where m is the mass and q the charge of a particle. It is advisable to reduce the Hamiltonian
to a dimensionless form by introducing

Reduced length x = r/l0, (4.3)

Reduced energy ε = E/ε0, (4.4)

Reduced temperature t = kBT/ε0, (4.5)

Coupling parameter λ = l0/aB, (4.6)

where l0 =
√

~/mω is the harmonic oscillator length, ε0 = ~ω is the energy level spacing
and aB = 4πεbε0~2/mq2 is the e�ective Bohr radius. The reduced Hamiltonian reads

Ĥred =
1
2

N∑
i=1

(
−∇2

xi
+ x2

i

)
+ λ

N∑
i<j

1
|xi − xj |

, (4.7)

with Ĥred |i〉 = εi |i〉.
The coupling parameter λ measures the relative interaction strength. The limit λ → 0

formally makes the transition to an ideal system, while for λ →∞ the particles are strongly
correlated. Because of λ ∝ ω−1/2, the trap frequency ω e�ectively controls the coupling
between particles. As it also e�ects the density of the system, the transition to an ideal
system corresponds to the high density limit.
Equations (4.3)�(4.6) do not represent the only possibility to introduce reduced units.

In particular, simulations with a strong reference to experiments usually take the Hartree
εHa = ~2/maB as energy unit and the e�ective Bohr radius aB as length unit. The speci�c
advantage lies in the independence of these units from the trap frequency ω, which would
otherwise be a�ected when using ω to control the coupling between the particles.
Nevertheless, oscillator units are used throughout this diploma thesis since they consti-

tute the natural unit scales in which interesting e�ects occur. Additionally, these units
have a special numerical advantage regarding PIMC simulations: The number of time slices
needed for a simulation at a given temperature t does not depend on λ, in contrast to
simulations with a �xed temperature kBT/εHa. Note that some statements considering the
t-λ-dependence of physical quantities might change compared to experiments using a trap
frequency controlled λ.

4.3. Super�uidity in �nite systems

In chapter 2.2, super�uidity is introduced as a ground state property of macroscopic systems
with a acoustic phonon type energy spectrum. Thus, it is inseparably connected to inter-
particle interactions. The central topic of this diploma thesis is the question, how the concept
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4.3. Super�uidity in �nite systems

of super�uidity translates to systems with a �nite particle number. The chapters 5 and 6
will give quantitative answers for speci�c systems. Here, some general issues and pitfalls will
be discussed.
First of all, the proposal of Bose-Einstein condensation and super�uidity in �nite systems is

questionable. In the macroscopic limit, Bose-Einstein condensation is a phase, where a �nite
fraction of particles collects in the ground state of an in�nite system at a �nite temperature.
In �nite systems on the other hand, the ground state (and any other state) is obviously
always occupied by a �nite fraction of particles regardless of the temperature. Under these
circumstances, one should rather speak of a predominant ground state occupation (which can
be de�ned as a state where 〈N0〉 passes over a certain threshold like, e.g., 1 in very small
clusters). In the following, the term Bose-Einstein condensation is meant in this sense.
A di�erent problem arises with super�uidity. One usually de�nes the super�uid part

as the fraction of particles, which does not show a response to a rotation of the external
potential. This is introduced in chapter 2.2.2 as the NCRI e�ect (eq. (2.44)). Its appearance
depends on the possibility (or rather impossibility) to excite vortices, which bring in friction
and, thus, slow the �uid. However, in a con�ned �nite system, the excitation spectrum is
discrete, meaning there are gaps between energy levels. Here, the NCRI e�ect will be always
present at low temperatures, since the excitation of condensed particles requires a certain
threshold energy to overcome the lowest lying energy gap. Consequently, super�uidity is not
exclusively linked to inter-particle interactions anymore [47]. Nevertheless, the NCRI will be
assumed to make up the super�uid fraction in the following chapters. The closing discussion
in section 6.4.1 will review this de�nition.
Bear in mind that these �nite size e�ects are an essential part of the system's physics and

do not pose a bias like, e.g., in simulations for macroscopic systems using periodic boundary
conditions. One has to accept the oddities as long as they obey the correspondence principle
and vanish in thermodynamic limit.
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5. Analytical results for ideal systems

This chapter is devoted to the analysis of the �nite non-interacting bose gas. As Feynman
shows, particle exchange can be handled in a convenient way when described by permutation
cycles. It will be shown in this chapter that any N -particle quantity can be computed
from its corresponding single-particle quantity and the thermal average of the cycle length
probabilities.

5.1. Partition function

The starting point is the partition function computed as the trace over the symmetrized
density matrix ρS(R,R;β) (see eq. (4.1)), i.e.,

ZN (β) =
∫

dR ρS(R,R;β) =
1

N !

∑
P∈SN

∫
dR ρ(R,PR;β). (5.1)

For the non-interacting Bose gas the total Hamiltonian is a sum over independent single-
particle Hamiltonians. The partition function can be written as a product of N independent
integrals�each containing only the single-particle density matrix

ZN (β) =
1

N !

∑
P∈SN

∫ N∏
i=1

ddxi ρ1(xi, xπi ;β). (5.2)

Any permutation can be broken into cycles. Each permutation can be viewed as a set
{C1, C2, . . . , CN }, where Cq denotes the number of cycles with length q. As the particles
are unlabeled, di�erent permutations resulting in identical cycle con�gurations give identical
contributions to the partition function. One may rewrite the sum over permutations as
a sum over cycle con�gurations with an additional factor to take the number of possible
realizations into account. The partition function becomes

ZN (β) =
1

N !

∑
{Cq }

M({Cq })
N∏

q=1

(hq)Cq , (5.3)

where hq is introduced as a shortcut for the integral over the single-particle density matrices
connected with a cycle of length q. It reads

hq =
∫

dx1dx2 . . .dxq ρ1(x1, x2;β)ρ1(x2, x3;β) . . . ρ1(xq, x1;β)

=
∫

dx1 ρ1(x1, x1; qβ),

= Z1(qβ). (5.4)
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5. Analytical results for ideal systems

The integral has been reduced using the group property of the density matrix (eq. (3.7)).
With the following expression for the combinatorial factor (compare e.g., [37, 48]),

M({Cq }) =
N !∏

q Cq!qCq
, (5.5)

one arrives at the �nal result for the partition function

ZN (β) =
∑
{Cq }
restr.

N∏
q=1

Z1(qβ)Cq

Cq!qCq
, (5.6)

where
N∑

q=1

qCq = N (5.7)

poses the restriction for the possible cycle con�gurations in a N -particle system. The restric-
tion can be lifted by introducing a chemical potential. This implies switching from canonical
to grand canonical statistics as the total number of particles is no longer kept constant. This
is done e.g., in [48] and ultimately leads to the recursion relation for the canonical partition
function shown in eq. (5.11). In the following a di�erent ansatz is used, which does not leave
canonical grounds.
With an analog argumentation as for the partition function itself, one can evidently de�ne

〈Cq〉 as

〈Cq〉 (β) =
1

ZN (β)

∑
{Cr }
restr.

N∏
r=1

Z1(rβ)Cr

Cr!rCr
Cq. (5.8)

Note that terms with Cq = 0 do not contribute. Splitting the product into the factors with
r 6= q and the factor r = q yields

〈Cq〉 (β) =
1

ZN (β)
Z1(qβ)

q

∑
{Cr }
restr.

Z1(qβ)Cq−1

(Cq − 1)!rCq−1

N∏
r=1
r 6=q

Z1(rβ)Cr

Cr!rCr
. (5.9)

The substitution of Cq − 1 by Cq alters the restriction condition from
∑

q qCq = N to∑
q qCq = N − q. Thus, the remaining sum in the equation above can be identi�ed as the

partition function of a system with q particles less. One ends up with the �nal formula for
the mean cycle occupation number

〈Cq〉 (β) =
ZN−q(β)
ZN (β)

Z1(qβ)
q

. (5.10)

Inserting this formula into the constraint (eq. (5.7)) immediately yields the recursion
relation for the partition function

ZN (β) =
1
N

N∑
q=1

ZN−q(β)Z1(qβ). (5.11)

Equations (5.10) and (5.11) provide an exact and numerically undemanding access to
non-interacting Bose systems.
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5.2. Thermodynamic averages

5.2. Thermodynamic averages

5.2.1. Energy

One obtains the average energy of a system in the canonical ensemble as follows

〈E〉 (β) = τ2 ∂ lnZN (τ)
∂τ

. (5.12)

where τ = β−1. With eq. (5.6), the derivative of the full partition function becomes

∂ZN (τ)
∂τ

=
∑
{Cq }

N∑
r=1

r−1∏
q=1

Z1(τ/q)Cq

Cq!qCq

 1
Cr!rCr

∂(Z1(τ/r)Cr)
∂τ

 N∏
q=r+1

Z1(τ/q)Cq

Cq!qCq


=
∑
{Cq }

 N∏
q=1

Z1(τ/r)Cr

Cr!rCr

 N∑
r=1

∂ ln
(
Z1(τ/q)Cr

)
∂τ

=
N∑

r=1

∂ ln (Z1(τ/r))
∂τ

∑
{Cq }

 N∏
q=1

Z1(τ/q)Cq

Cq!qCq
Cr

 .

The desired expression for the derivative in eq. (5.12) follows by applying eq. (5.8)

∂ lnZN (τ)
∂τ

=
N∑

r=1

∂ ln (Z1(τ/r))
∂τ

〈Cr〉 . (5.13)

If one reuses eq. (5.12) to replace the derivation of the single-particle partition function by
the single-particle energy, one arrives at the �nal formula for the average energy

〈E〉 (β) =
N∑

q=1

E1(qβ) 〈qCq〉 . (5.14)

5.2.2. Single-particle density

The integration of the diagonal density matrix over all coordinates except one yields the
single-particle density

n(x1, β) =
1

N !

∑
P∈SN

∫
ddx2ddx3 . . .ddxN

ρ(R,PR;β)
ZN (β)

. (5.15)

One can split the sum over all permutations up into multiple parts
∑

P =
∑N

q=1

∑
Pq
,

where each Pq contains only permutations in which particle 1 sits in a cycle of length q. The
integration over such a cycle can be separated from the rest and reduces to the single-particle
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5. Analytical results for ideal systems

density matrix with the group property. It follows

n(x1, β) =
N∑

q=1

1
N !

1
ZN (β)

∑
Pq

∫
ddx2ddx3 . . .ddxN

N∏
i=1

ρ1(xi,xπi ;β)

=
N∑

q=1

Mq

N !
1

ZN (β)
ρ1(x1,x1; qβ)

∑
Pq

∫ N∏
i=q

ddxi ρ1(xi,xπi ;β)

=
N∑

q=1

Mq(N − q)!
N !

ZN−q(β)
ZN (β)

ρ1(x1,x1; qβ),

where Mq = (N − 1)!/(N − q)! is the number of possible realizations for q-cycles containing
particle 1. Using eq. (5.10) yields

n(x, β) =
1
N

N∑
q=1

ρ1(x,x; qβ)
Z1(qβ)

〈qCq〉 =
1
N

N∑
q=1

n1(x, qβ) 〈qCq〉 . (5.16)

The result is normalized to the particle number. An integration over the remaining coordi-
nate directly leads to the restriction conditions eq. (5.7).

5.2.3. Heat capacity

The heat capacity is de�ned as follows

CN (τ) =
∂EN (τ)

∂τ
. (5.17)

Together with eq. (5.14) one obtains

CN (τ) =
N∑

q=1

C1(τ/q) 〈Cq〉+ E1(τ/q)
∂ 〈qCq〉

∂τ
. (5.18)

The derivative of the mean cycle occupation number with respect to τ can be most easily
obtained by using the recursion relation (eq. (5.11)). This gives

∂ 〈Cq〉
∂τ

= 〈Cq〉
∂ ln 〈Cq〉

∂τ

=
(
−∂ lnZN (τ)

∂τ
+

∂ lnZN−q(τ)
∂τ

+
1
q

∂ lnZ1(τ/q)
∂(τ/q)

)
〈Cq〉

=
1
τ2

(−EN (τ) + EN−q(τ) + qE1(τ/q)) 〈Cq〉 . (5.19)

The de�nition for the energy eq. (5.12) was reused in the last step.
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5.2. Thermodynamic averages

5.2.4. Condensate fraction

The occupation number Ni of an arbitrary energy level Ei can be calculated as the derivative
of the partition function with respect to βEi (see [46]), i.e.,

〈Ni〉 (β) = − 1
ZN (β)

∂ZN (β)
∂(qβ)

. (5.20)

Application to eq. (5.6) and using the fact Z1(β) =
∑

i e
−βEi yields

〈Ni〉 =
N∑

q=1

e−qβEi

Z1(qβ)
〈qCq〉 . (5.21)

This formula can easily be adjusted to compute the condensate fraction when taken at the
ground state energy E0

N0

N
=

1
N

N∑
q=1

e−qβE0

Z1(qβ)
〈qCq〉 . (5.22)

5.2.5. Super�uid fraction

The NCRI e�ect relates the normal �uid fraction of a rotating Bose system to fraction of
quantum mechanical to classical moment of inertia (see (2.44)). One can compute the quan-
tum mechanical moment of inertia as the response to rotations. In non-rotating situations
with 〈L̂z〉 = 0 this yields (compare eq. (3.32))

Iqm = β 〈L̂2
z〉 . (5.23)

The classical moment of inertia is de�ned as

Iclass = m

N∑
j=1

〈x2
j + y2

j 〉 . (5.24)

In order to obtain 〈L̂2
z〉, consider a system in a trap which is invariant to rotations around

the z-axis. The single-particle Hamiltonian ĥ and the single-particle angular momentum
operator l̂z then have the same eigenfunctions as the operators commute. This gives

ĥ |nr,m, nz〉 = εnrmnz |nr,m, nz〉 , l̂z |nr,m, nz〉 = m~ |nr,m, nz〉 , (5.25)

where the eigenfunctions are classi�ed by three quantum numbers for the radial nr =
0, 1, 2, . . ., rotational m = 0,±1, . . ., and axial nz = 0, 1, 2, . . . degrees of freedom. The
total Hamiltonian Ĥ and total angular momentum operator L̂z are given by the sum over
their corresponding single-particle operators for each particle. The expression for the thermal
average 〈L̂2

z〉 reads

〈L̂2
z〉 =

Tr ρ̂L̂2
z

ZN
=

1
ZN

1
N !

∑
P∈SN

∑
n1,...,nN

〈n1, . . . , nN |
N∑

j,k=1

l̂(j)z l̂(k)
z e−βĤ |nπ1 , . . . , nπN 〉 , (5.26)
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5. Analytical results for ideal systems

where the sum over all states is carried out in the basis of single-particle states nj =
(nr,j ,mj , nz,j). The matrix element factorizes to a sum of matrix elements for only one
particle, where each of the elements takes one of the following forms:

〈nj |e−βĥ(j) |nπj 〉 = e−βεnj δnj ,nπj
, (5.27)

〈nj |l̂(j)z e−βĥ(j) |nπj 〉 = ~mje
−βεnj δnj ,nπj

, (5.28)

〈nj |(l̂(j)z )2e−βĥ(j) |nπj 〉 = (~mj)2e
−βεnj δnj ,nπj

. (5.29)

Due to the Kronecker-δ's in each of these factors, only permutation cycles whose participating
particles are in the same state contribute to the thermal averaging in eq. (5.26). The sum
over one such q-cycle depends on the number of angular momentum operators associated to
it, so there are again three di�erent possibilities:∑

nj

e−qβεnj = Z1(qβ), (5.30)

∑
nj

~mje
−qβεnj = 0, because εnr,m,nz = εnr,−m,nz , (5.31)

∑
nj

(~mj)2e
−qβεnj =

2~2e−qβ~ω⊥

(1− e−qβ~ω⊥)2
Z1(qβ). (5.32)

The factor in the third expression follows by using the explicit expression for the energy
eigenvalues εnr,m,nz = ~ω⊥(2nr + |m|+ 1) + ~ω‖(nz + 1/2).
For a given number Cq of q-cycles there are qCq particles in these cycles and each can be

paired with q other particles on their own cycle (including itself). So there are q2Cq ways
of pairing two angular momentum operators resulting in eq. (5.32). With this combinatorial
factor eq. (5.26) can be rewritten as

〈L̂2
z〉 =

1
ZN

1
N !

∑
{Cq }
restr.

M({Cq })
N∑

q=1

2~2e−qβ~ω⊥

(1− e−qβ~ω⊥)2
q2Cq

N∏
r=1

Z1(rβ)Cr , (5.33)

where M({Cq }) is de�ned as in eq. (5.5). Together with eqs. (5.23) and (5.8), the quantum
mechanical moment of inertia becomes

Iqm = 2~2
N∑

q=1

qβe−qβ~ω⊥

(1− e−qβ~ω⊥)2
〈qCq〉 . (5.34)

The classical moment of inertia can be obtained by following the analogous procedure for
〈x2

j + y2
j 〉 as above. Here, the appearing matrix elements are most easily evaluated by using

the eigenstates |nx, ny, nz〉, i.e.,

∑
nj

〈nj |(x2
j + y2

j )e
−qβĤ |nj〉 =

~
mω⊥

1 + e−qβ~ω⊥

1− e−qβ~ω⊥
Z1(qβ). (5.35)
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5.3. Discussion

This leads to the following expression for the classical moment of inertia

Iclass =
~

ω⊥

N∑
q=1

1 + e−qβ~ω⊥

1− e−qβ~ω⊥
〈qCq〉 . (5.36)

Eqs. (5.34) and (5.36) allow the computation of the super�uid fraction totally based on
cycle occupation numbers, i.e.,

ρs

ρ
= 1−

∑N
q=1 qβ~ω sinh−2(−qβ~ω/2) 〈qCq〉
2
∑N

q=1 coth(−qβ~ω/2) 〈qCq〉
. (5.37)

5.3. Discussion

The major advantage of an access to quantum systems totally based on cycle occupation
numbers is the clearly expressed e�ect of Bose statistics. As in the classical non-interacting
gas, all thermal averages depend only on single-particle quantities: An exchange cycle of
length q contributes to a thermal average like a single-particle at a q times lower temperature.
Weighted with the thermal expectation value for the number of particles occupying such a
cycle 〈qCq〉, the contributions from each q-cycle sum up to the total value of the physical
quantity.
As a remark, the picture of exchange cycles as single particles at lower temperatures is

used in the same spirit by path-integrals�only in the opposite direction. Here, a single
particle is described as a closed path, precisely a cycle, whose beads behave like particles at
higher temperatures.
One can easily turn o� Bose statistics in any expression for thermal averages listed above

by restricting to C1 = N and Cq, q = 2 . . . N . This allows only the identity permutation
and, thus, switches to Boltzmann statistics. A comparison between both cases singles out
e�ects related to Bose statistics.
So far, no speci�cations to the system itself have been issued besides that it is non-

interacting and composed of bosons (not counting the specialized derivation for the super�uid
fraction, which is only valid in a harmonic trap with axial symmetry). The expressions for
the thermal averages stated above only show the reduction to single-particle quantities,
which themselves depend on the single-particle partition function Z1. Naturally, one needs
its explicit expression in order to proceed with a quantitative investigation for the system in
question. For 2D trapped systems, Z1 reads

Z1(β) = (2 sinh(~ωβ/2))−2 . (5.38)

See appendix B or, e.g., [48] for the complete derivation.

5.3.1. Cycle distribution

Asbeforementioned, the e�ect of Bose statistics can be measured with a single quantity,
the thermal expectation value of the cycle occupation number 〈Cq〉. Figure 5.1 shows the
probability that a 2D trapped system has an exchange cycle of length q, i.e., pCq(t) =
〈qCq〉 /N .
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Figure 5.1: Cycle con�guration
for 2D trapped systems contain-
ing 5 (top) and 20 (bottom) non-
interacting bosons. The topmost line
denotes the probability for the iden-
tity permutation pC1(t). The sec-
ond to top line denotes the probability
for a particle to participate in a two-
particle exchange pC2(t), the third to
top corresponds to the three-particle
exchange pC3(t) and so on. At any
temperature, the sum over all cycle
length probabilities is 1. The low-
temperature limit where every permu-
tation is equally probable is indicated
with a horizontal black line.

In the high-temperature limit, pC1(t →∞) reaches unity and the probability for any other
permutation becomes zero. This complies to the expectation that any quantum system
should develop into a classical one at high temperatures (correspondence principle). One
can issue an approximate temperature tB below which the di�erence between Bose and
Boltzmann statistics becomes signi�cant, e.g., by de�ning tB as the temperature, at which
pC1 falls below a certain threshold value (see appendix C). Adding particles to the system
does not change the e�ective volume of an ideal system, but increases its density. This
encourages particle exchange and, thus, shifts tB to higher values. Note that the critical
temperature Tc is correlated but not identical to tB (compare �gs 5.1 and 5.2).

In the low-temperature limit, every permutation of a quantum system becomes equally
probable, i.e., pCq(0) = 1/N for all q. At t = 0, every boson in an ideal system occupies its
single-particle ground state level. The fully symmetrized many-body wave function equals
a product of N identical single-particle wave functions. One obtains the same result for
a system of boltzmannons since those do also occupy the same single-particle state in this
limit. This implies that the additional inclusion of bosonic particle exchange does not al-
ter expectation values of observables obtained for the system's ground state. Consequently,
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5.3. Discussion

Figure 5.2: Di�erent possibilities to
obtain the transition temperature Tc,
here shown for a 2D trapped system
of non-interacting bosons. In the up-
per �gure, the function 1 − (T/Tc)2

is �tted to the condensate fraction at
low temperatures (see text). Verti-
cal dashed lines emphasize the calcu-
lated transition temperatures for each
particle number. The lower �gure
shows the temperature dependence of
the heat capacity per particle in units
of kB. All curves converge to the high
temperature limit of C = 2kBN indi-
cated with the horizontal dashed line.
The peaks of the curves roughly co-
incide with the Tc's from the upper
�gure.
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thermal averages calculated for bosonic or boltzmannonic systems must be identical for both
the high- and the low-temperature limit and di�erences can only be expected at interme-
diate temperatures, i.e., for temperatures within 0 < t . tB. The plots for speci�c heat,
condensate, and super�uid fraction (�gs. 5.2 and 5.4) verify this predication.

5.3.2. Condensate Fraction

The temperature dependence of the condensate fraction is shown in the upper plots of the
�gures 5.4(a), 5.4(b) and 5.2. Naturally, the condensate fraction reaches unity at t = 0
and decays to zero in the high-temperature limit as consequence of particle excitation from
the ground state. In the thermodynamic limit, the condensate fraction is of the form (see
chapter 2.1)

1− (T/Tc)x. (5.39)

In particular, N0/N shows a parabolic decay (i.e., x = 2) for the 2D trapped system.
This behavior can also be found for �nite systems�at least for temperatures well below the
transition temperature Tc, which is broadened into an extended transition regime showing an

51



5. Analytical results for ideal systems

co
nd

en
sa

te
 fr

ac
tio

n 
N

0/
N

temperature T/Tc

exact
estimated

  0

0.2

0.4

0.6

0.8

  1

 0  0.5  1  1.5  2

Figure 5.3: Estimation of the
condensate fraction with the
cycle length threshold method.
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non-interacting bosons. The
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asymptotic decay of N0/N to zero. However, by �tting the polynomial in eq. (5.39) with Tc

as open parameter to the condensate curve, one can approximately determine the transition
temperature to Tc. This procedure is compared to another method�using the �singularity�
of the speci�c heat curve at the transition temperature�in �gure 5.2. Both methods are in
good agreement to each other although the assumption of a parabolic dependence is only
ful�lled satisfactorily for N & 25. Smaller systems mainly display the Gaussian like behavior
of the extremal boltzmannonic case (which corresponds to the 1-boson case). The so obtained
Tc can be compared with equation (2.20), which lies at higher temperature values. This is
the temperature shift which is also observed experimentally.

The condensate fraction can be estimated from the cycle length distribution. The method
uses the fact that all particles in an exchange cycle must be in the same state (see derivation
of γs above). Since particle exchange only occurs at temperatures below tB, one may assume
that the common state is the ground state of the system. The general idea is to issue a
threshold value x and de�ne the condensate consisting of particles on the longest permutation
cycle, whose probability is greater than pc = x/N . The knowledge of exact analytical results
for both condensate fraction and cycle length probability allows for a test of this method. It
is found that the approximation reproduces the exact value of the condensate fraction quite
good for T < Tc, when a threshold value of x = 0.6 is used. For temperatures above Tc, the
approximation over-estimates the condensate fraction.

The major advantage of this method is its application in numerical PIMC investigations
of quantum systems with inter-particle interaction. Here, a direct determination of the
condensate fraction is delicate, since the energy spectrum of the system is inaccessible. On
the other hand, the probability of a q-cycle can be easily computed by simply counting the
number of con�gurations containing such a cycle. However, one thatt guarantee the validity
of the empirically determined threshold value of 0.6 for interacting systems. Unfortunately,
the estimation can only determine the condensed particles to integral numbers, which renders
its application to very small systems (N . 10) practically useless.
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Figure 5.4.: Temperature dependence of the condensate fraction N0/N (top) and super�uid fraction
γs (bottom) for 2D trapped systems with 5, 25 and 100 bosons. In the left panel, the temperature scale
is normalized to oscillator units. The solid gray line indicates the results obtained for a quantum
system containing an arbitrary number of boltzmannons. In the right panel, the temperature scale is
normalized to the analytically calculated transition temperature from equation (2.20). The condensate
fraction obtained in the thermodynamic limit is denoted with the solid gray line.

5.3.3. Super�uid Fraction

Asbeforementioned in chapter 4.3, �nite systems have a discrete spectrum with energy gaps,
which allows even ideal systems to show the NCRI e�ect. The de�nition of super�uidity
in con�ned systems is based on this e�ect and has been used in the derivation of expres-
sion (5.37). The results for various particle numbers with and without Bose statistics are
shown in �gure 5.4.

Like the condensate fraction, the super�uid fraction γs reaches unity at t = 0 and asymp-
totically decays to zero in the high-temperature limit, but the functional forms of both
quantities di�er from one another (N0/N ≥ γs). Justifying from �gure 5.4(a), adding parti-
cles into the system seemingly increases γs. However, rescaling the temperature axis in units
of the macroscopic transition temperature Tc (see eq. (2.20)) reverses this behavior, i.e., γs

decreases. This complies to the expectation that an ideal system in the macroscopic limit
does not exhibit super�uidity, which satis�es the correspondence principle.

Figure 5.4(a) also indicates that boltzmannonic systems produce a �nite super�uid frac-
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5. Analytical results for ideal systems

tion. This is not prohibited since super�uidity is a ground state property and, thus, not
directly a consequence of Bose statistics. However, using the picture of viewing permutation
cycles as single particles at lower temperatures, bosons condensate at higher temperatures
into the ground state of the system. The more particles are in the system, the longer the
possible permutation cycles can become and the higher the temperature with signi�cant
values for γs will be. In contrast, thermal averages remain una�ected when changing the
number of particles in a boltzmannonic system. Hence, the di�erence between bosonic and
boltzmannonic calculations for γs increases with increasing particle number.
Bose-Einstein condensation does not occur in a macroscopic system consisting of boltz-

mannons, or, in other words, a �nite occupation of the ground state is only found at absolute
zero. Thus, e�ects like BEC and super�uidity are solely a consequence of Bose statistics in
the macroscopic limit. As explained, this statement does not hold if one transfers the concept
of BEC and super�uidity to mesoscopic systems. Certainly, Bose statistics remains coupled
to these e�ects, but is not their cause. This change of understanding has been thoroughly
discussed in chapter 4.3.
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6. Numerical results for systems with

Coulomb-interaction

6.1. Analytical methods

An analytical access to �nite bosonic systems based on the canonical ensemble is still an open
question in statistical physics. As explained in chapter 3, the density matrix of interacting
systems is unknown a priori, so one has to solve the N -particle Schrödinger equation in order
to �nd it. Kleinert states in his book[48] that theoretical papers on the topic are generally in
disagreement with each other and experimental results for dilute gases, respectively. Possible
approaches considered for this diploma thesis are shortly discussed below.

Weakly interacting systems

Naturally, approximations must be introduced to treat the inter-particle interaction. This
can be done within perturbation theory, if the interaction is weak. The method is currently
under development in the Kleinert group.

Strongly interacting systems

It is known that trapped particles which strongly repel each other form ordered structures,
called Wigner crystals, at low temperatures [49]�[53]. In good approximation, the particles
can be considered sitting in their own local potentials centered on the classical equilibrium
positions. By expanding the potential energy V̂ around the equilibrium positions in a Taylor
series, one can issue an unitary transformation into eigenmode representation which diago-
nalizes the Hamiltonian Ĥ [54, 55].
On the plus side, the density matrix is now known, since Ĥ describes a system of inde-

pendent quasiparticles (the eigenmodes) each sitting in a harmonic trap. Unfortunately, the
inclusion of Bose statistics turns out to be problematic, since one still has to symmetrize
the density matrix in position space. Neglecting the fact that an exchange of particles cor-
responds to large displacements out of the equilibrium positions uncovered by the initial
approximation, a permutation of any number of particles usually a�ects all modes (except
the center-of-mass modes, which always remain unchanged). Thus, an elegant analysis via
the cycle length decomposition as used for the ideal case is impossible. Another problem is
the rotational mode with its �trapping� frequency of ω = 0, for which the density matrix of
the harmonic oscillator is singular. Simply excluding any rotations will not do, as permu-
tations a�ect the rotational state. One encounters a similar problem in molecular physics,
known as the impossibility to completely separate vibrational and rotational motion from
one another [56]. A separation can only be achieved by introducing further approximations,
valid e.g., in strong magnetic �elds [57], which do not apply for the system in question.
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6. Numerical results for systems with Coulomb-interaction

Nevertheless, the method can be tried for the two particle system, where an exchange only
alters the sign of the breathing mode. Unfortunately, the results are in disagreement with
the PIMC simulations presented below, which reinforces Kleinert's predication. Therefore,
further investigations were abandoned at this point.

6.2. 2 particles in a trap

The following sections are devoted to the numerical results obtained for 2D trapped particles.
The dependence for various physical quantities on the temperature t, coupling strength λ and
particle number is investigated. In total, data obtained with close to 1000 PIMC simulations
has been evaluated. The needed computational time for a single run ranged from a few
minutes up to several hours.

This section focuses on the 2-particle case and is restricted to a discussion of the energy,
the density distribution, and the super�uid fraction. The next section broadens the spectrum
of investigated quantities and takes e�ects related to the particle number (N = 2 . . . 5) into
account. The most intruding results are summarized in the closing chapter.

6.2.1. Overview

The general behavior of the 2-particle system is presented in �gure 6.1. Shown is the density
distribution around the trap center viewed from a body �xed frame. The attachment to
this frame suppresses the blurring due to rotational symmetry. Appendix D describes the
procedure in detail.

One can distinguish four di�erent �phases� of the system:

Bose-Einstein condensate. In the nearly ideal case, the particles completely overlap with
one another and form a single cloud in the trap center. The radius of this cloud
increases with the coupling parameter λ.

Crystal. For strongly coupled systems, the bosons form a crystal like structure at interme-
diate temperatures. They are strongly localized and separated by a certain distance
with the trap center in between them. The distance grows with increasing λ.

Thermal excitation. At temperatures above ∼ 1, thermally excited �uctuations of the par-
ticles around their equilibrium positions cause a broadening of the density distribution
primarily in radial direction, which corresponds to the breathing mode of the system.

Quantum melting. At very low temperatures, the particles extend in angular direction while
staying localized in the radial direction. At some point, depending on the interaction
strength, the density closes into a ring with completely delocalized particles.

The plotted distributions do not di�erentiate whether the broadening of the density relates
to thermal (vibrational) �uctuations or quantum mechanical expansion. However, rotations
of the system around the trap center are suppressed leaving only the breathing mode and the
two center-of-mass modes as thermally motivated contributions. Thus, an angular broad-
ening must be due to the expansion of the particles themselves. Furthermore, one does
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Figure 6.1.: Density distribution for 2 bosons in a 2D harmonic trap. A section of 16 l0 × 16 l0
with the trap center in the middle is shown in each plot. The top row shows the ideal case calculated
analytically with eq. (5.16). The remaining rows show results from PIMC simulations obtained from
an overlay of 2000 particle con�gurations, where the arbitrary rotation around the trap center has
been suppressed. The �kink� in some of the plots from the rightmost column results from a biased
suppression a�ecting primarily weakly correlated systems (see appendix D).
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6. Numerical results for systems with Coulomb-interaction

(a) Boltzmannons. (b) Bosons.

Figure 6.2.: Comparison of the
bosonic and boltzmannonic density
distribution at λ = 10 and t = 0.05.
A section of 8 l0 × 8 l0 is shown.
The blocky appearance is an arti-
fact due to the speci�c calculation
of the density.

observe the stable molecule like phase where neither of both e�ects occur. This stable phase
is apparently situated in between.

As a remark, the quantum melting is not an e�ect directly related to Bose statistics. The
analog density diagram for boltzmannons (very much like �gure 6.1 for bosons) shows only
di�erences at the second glance. One speci�c comparison for λ = 10 and t = 0.05 is presented
in �gure 6.2. In general, Bose statistics encourage ring formation but are not its cause. The
additional bosonic particle exchange e�ectively behaves like an attractive interaction.

6.2.2. Energy

The dependence of the energy per particle on the temperature and the relative interaction
strength is shown in �gure 6.3. Obviously, the PIMC results reproduce the analytically
computed data nicely in the limit λ → 0.
The system reaches its ground state energy level of ε = 1 at approximately t ≈ 0.2 in

the ideal case. This temperature seems to be almost universal regardless of the interaction
strength save a slight tendency to higher values. In good approximation, the ground state
energy is proportional to λ2/3 for λ > 10. A simple analysis for 2 classical point particles
shows

x0 =
(

λ

4

) 1
3

ε(x0) =
3
2

(
λ√
2

) 2
3

, (6.1)

where x0 is the classical equilibrium distance to the trap center which minimizes the potential
energy. Every graph in �gure 6.3(bottom) converges against this limit with increasing λ, as
the system becomes locked in the strongly bounded state.

On the other hand, inter-particle interaction grows less important with increasing temper-
ature. This is shown in �gure 6.3(top) where all curves converge into the one of the ideal
system at high temperatures. It can also be seen in �gure 6.3(bottom) where the energies
for the ideal system are marked by short gray lines. The higher the temperature, the faster
the curves converge into this limit for λ → 0.
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6.2. 2 particles in a trap

Figure 6.3.: Energy per par-
ticle for 2 bosons. The up-
per �gure shows the depen-
dence on temperature for var-
ious coupling parameters λ.
The ideal limit is indicated
by a solid black line. Red
lines connect data points ob-
tained from PIMC simulations
for the same λ. Horizon-
tal gray lines indicate the as-
sumed ground state energy for
the corresponding λ. The
lower �gure displays the en-
ergy dependence on the in-
teraction strength λ. Here,
each red line corresponds to
a �xed temperature. Values
obtained for the ideal asymp-
totics are indicated by short
gray lines. In good ap-
proximation, the bottommost
line for t = 0.01 corre-
sponds to the ground state en-
ergy which asymptotically con-
verges into a λ2/3 law (pre-
cisely eq. (6.1)) in the strongly
correlated regime.
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6.2.3. Radial density distribution

The radial density n(r) and pair distribution function f(r12) re�ect the behavior of the
energy. When the ground state energy level is reached, both quantities, n(r) and f(r12),
remain unchanged (see �g. 6.4). The peak in the radial density occurs at the classical
equilibrium position x0 of two point-particles in a trap. The distance from the trap center
scales with the coupling parameter λ according to x0 ∝ λ1/3 (eq. (6.1)). The pair distribution
f(r12), i.e., the probability to �nd a particle at the distance r12 from a reference particle,
obviously has its maximum at 2x0, since the trap center lies exactly in the middle.

With increasing temperature the radial density distribution broadens and the peak height
lessens due to thermal �uctuations. At the same time the density in the trap center in-
creases. If the temperature grows su�ciently high, the peak of n(r) vanishes completely and
individual particles cannot be distinguished anymore. This indicates the dissociation of the
crystal and a transition to a gaseous phase.

59



6. Numerical results for systems with Coulomb-interaction

   0

0.05

 0.1

 0  2  4  6  8  10  12
distance r in l0

pair distribution f(r12)

   0

0.05

 0.1

0.15
radial probability ρ(r)

   0

0.05

 0.1

radial density n(r)

t=0.01
t=0.1
t=1.0
t=3.0

(a) λ = 10.
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Figure 6.4.: Radial density n(r) (top), radial probability ρ(r) = 2πrn(r) (middle) and pair distri-
bution function f(r12) (bottom) for 2 particles with λ = 10 in the left and λ = 100 in the right panel,
respectively. The distance r on the x-axis denotes the distance to the trap center in the upper two
plots and the inter-particle distance in the bottom plot. The plots for t = 0.01 (red line) and t = 0.1
(green line) lie exactly on top of each other leaving only the latter visible. The graphs are valid for
both Bose and Boltzmann statistics.

(a) λ = 1000. (b) λ = 500. (c) λ = 100. (d) λ = 50. (e) λ = 10.

Figure 6.5.: Density distribution for 2 bosons at t = 0.02. From left to right the relative interacting
strength λ decreases. The size and form of a cloud is seemingly independent of λ as long as the
particles do not overlap.
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6.2. 2 particles in a trap

Figure 6.6.: Super�uid frac-
tion γs for 2 trapped bosons.
The dependence of γs on
the temperature is shown in
the upper �gure and the de-
pendence on the interaction
strengths λ in the lower �g-
ure. The solid black line
indicates the result for the
ideal case computed analyti-
cally with eq. (5.37). Symbols
with error bars denote PIMC
data. They are connected with
red lines to guide the eye. In
the case of λ = 10, γs shows a
peculiar two-step behavior as a
result from two di�erent con-
tributions to the NCRI. Only
the low-temperature contribu-
tion is a ground state e�ect.
The thermal high-temperature
contribution is caused by the
�nite volume of the system
(see text).
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With decreasing temperature, however, the crystal melts into a ring like structure with
completely delocalized particles. The density only spreads along the angular direction in
this procedure which leaves the radial density pro�le unchanged. Both radial density and
pair distribution function are insensitive to the occurrence of such a phase.

6.2.4. Super�uidity

The behavior of the super�uid fraction γs is shown in �gures 6.6�6.8. One can divide its
temperature dependence into three di�erent cases�the nearly ideal, the intermediate, and
the strongly correlated regime.

Nearly ideal systems reach the 100 % super�uid state at approximately t ≈ 0.2. Above
this temperature γs decays asymptotically to zero. In general, the shape of the graph re-
sembles the analytical results obtained for the ideal case (see �g. 5.4), but is shifted to lower
temperatures with increasing interaction strength λ.
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Figure 6.7.: Topological diagram for the super�uid fraction γs in the 2D trapped system. Shown
are the lines of equal γs. The corresponding values are indicated in the attached labels. Note that
the lines end at a �nite temperature in the limit λ → 0, while converging asymptotically to t = 0 for
λ →∞.

A system of intermediate coupling strength displays a peculiar aspect, as the graph de-
velops a two step behavior: When the system is cooled, γs �rst seems to saturate at some
value until it has a second rise up to 1 beginning at the characteristic temperature tB. This
is exactly the point at which bosonic and boltzmannonic calculations start to di�er (see
�g. 6.8). The contributions to γs result from di�erent origins above and below tB.

Ground state contribution t < tB. This regime is characterized by bosonic particle ex-
change. The cycle-picture developed in chapter 5 implies that all particles partici-
pating in the same cycle must be in the same state, presumably the ground state. The
jump of γs with the beginning of particle exchange below tB can, thus, be related to
Bose-Einstein condensation which should obviously yield a high super�uid response
considering the energy gap to the �rst excited state.

Thermal contribution t > tB. Concluding from the reasoning above, contributions to γs

above tB cannot be a consequence of Bose-Einstein condensation and must, thus, be
solely related to the �nite size of the system. An intuitive explanation can be drawn
from the area formula (eq. (3.37)) used in PIMC simulations to calculate the NCRI.
The area formula relates NCRI to the ratio of the covered area to the cross section of
the whole system. The latter is �nite and quantum particles always have a �nite exten-
sion which results in a non-zero value for the NCRI. This explanation works whether
the system is in its ground state or not since also non-condensed particles have a �nite
extension.
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Figure 6.8.: Two-step behavior of the super�uid fraction γs. The upper panel shows the di�erence
in γs due to Bose (colored lines) and Boltzmann (gray lines) statistics. The calculations for three
di�erent relative interaction strengths λ are presented. The probability of the identity permutation
pC1 in the bosonic systems. The vertical dashed lines indicate the approximate temperature below
which the bosonic and boltzmannonic calculation start to di�er.

One can extrapolate the second contribution down to t = 0 as shown in �g. 6.6(top) by
the gray line. It represents the dominant contribution in weakly interacting systems, but
decreases with increasing λ since the size of the system also increases (see �g. 6.4) while the
extension of the particles remains unchanged (see �g. 6.5).
It is not implied that boltzmannonic systems only yield �nite size contributions to γs. On

the contrary, since boltzmannons condensate into the ground state at a �nite temperature,
the system should also experience a jump in γs at this point (see the λ = 10 case in �g. 6.8).
This corresponds to the observation made for ideal systems that bosonic and boltzmannonic
simulations may only di�er in intermediate temperature regions.
In the strongly correlated regime the distance between the classical equilibrium positions

becomes quite large which e�ectively suppresses particle exchange. Figure 6.6(top) suggests
that only the �nite size contribution to γs is at λ = 500. However, there is no �hard�
transition to this behavior (which is never the case in �nite systems), tB rather converges
asymptotically to zero for λ → ∞ (see �g. 6.7). In principle, γs should always reach unity,
but tB grows so small for very high interaction strengths that the region becomes inaccessible
with PIMC simulations.
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6.3. 2�5 particles in a trap

This section is devoted to the investigation of e�ects related to the number of particles.
For 2D systems with Coulomb interaction it is advisable to start with a small increase up
to 5 particles. In these systems the particles array themselves on a ring around the trap
center in their ground state con�guration. Adding another particle opens a new shell with
a particle in the trap center. E�ects related to shell formation will not be considered within
this diploma thesis since the bulk of the obtained data from PIMC simulations was biased
or did not converge on time.

6.3.1. Overview

The following pages provide a general overview of the system for N = 2, . . . , 5 (�gs. 6.10�
6.13). In the whole picture, the situation does not signi�cantly change when more particles
are added to the system. The statements issued for the 2-particle system in the previous
chapter remain valid for larger N , in particular, one can again separate the parameter space
into the 4 �phases�. Di�erences are subtle and are related dominantly to the change of the
density. The implications are considered separately for each quantity.

6.3.2. Energy

In a non-interacting system, the energy per particle in the ground state is independent of the
particle number. For the system in question that is ε = 1 as seen in �gure 6.9. At a �nite
temperature a system with more particles has a lower energy, which is a characteristic e�ect
for bosons due to their negative exchange energy. Arguing with the picture of exchange
cycles as single particles at lower temperatures, particles can condensate into the ground
state at higher temperatures than distinguishable particles could. The larger the particle
number, the longer the possible permutation cycles and the lower the temperature for a cycle
can be. Thus, putting more bosons together e�ectively decreases the energy per particle.

Interestingly, this e�ect is reversed for strongly correlated systems. Here, more particles
mean a higher energy per particle. From the classical viewpoint the repulsion forces the
particles out of the trap center into a ring like structure, whose radius increases with each
particle added (see �gure 6.14). The farther a particle sits from the center, the higher its
energy. In good approximation, each particle sits in its own harmonic potential centered
around the classical equilibrium position. In quantum mechanics the point-particles are
replaced with wave functions, namely the typical Gaussian for the ground state in this case.
Taking Bose statistics into account does not change much, although the system in principle
can lower its energy compared to a boltzmannonic system. But �rstly, the possible slip
from exchange energy is negligibly small against the large interaction term and secondly, the
stronger localization suppresses the exchange probability (see �gure 6.18).

According to �gure 6.9(b), the point at which exchange and interaction energy hold the
balance lies at λrev ≈ 0.2 for intermediate temperatures. Bosonic exchange has no e�ect on
the energy for t → 0 and t → ∞, so the transition point vanishes, as it is λ → 0 in these
cases.

Aside from the additional dependence on the particle number, the arguments issued in
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Figure 6.9.: Dependence of the energy per particle ε on the relative interaction strength λ. The
left-hand �gure gives the general idea of the behavior. All graphs converge into the classical limit
ε ∝ λ2/3 for λ → ∞. The right-hand �gure shows the weakly interacting case in detail. For nearly
ideal systems the energy per particle is lowered in larger systems due to the the negative exchange
energy. Since the inter-particle interaction is repulsive, the situation reverses with increasing λ.

the previous section for the energy behavior with respect to temperature and interaction
strength are still applicable. In summary, the energy is independent of t and proportional
to λ2/3 for low temperatures, and strongly correlated systems behave like an ideal system in
the limit of high temperatures.

6.3.3. Radial density distribution

Figure 6.14 shows the density distribution for di�erent particle numbers. They are compared
to each other for 4 di�erent parameter pairs (t, λ) ranging from ideal to strongly correlated
setups. They are rounded out by the plots for the radial density distribution n(r) shown in
�gure 6.15(a).

In non-interacting systems at t = 0 the density shows the typical Gaussian like distribution
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Figure 6.10.: Density distribution for 2 bosons.
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Figure 6.11.: Density distribution for 3 bosons.
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Figure 6.12.: Density distribution for 4 bosons.
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Figure 6.13.: Density distribution for 5 bosons.
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Figure 6.14.: Direct comparison of the density distribution for N = 2 . . . 5 bosons at 4 chosen
parameter sets. The e�ective system size increases due to inter-particle repulsion. The size and the
localization increase with the particle number in case of strongly correlated systems (bottom row).
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Figure 6.15.: Comparison of the radial density distribution and the pair distribution function in 2D
trapped systems for varying particle numbers (N = 2 . . . 5). From top to bottom, the plots correspond
to the con�gurations shown in the �rst, third and forth line of �gure 6.14. The pair distribution
function was not calculated for the ideal system.

corresponding to |Ψ|2 of the single-particle ground state wave function

Ψ(x) ∝ e
− 1

2

“
x
l0

”2

(6.2)

of the quantum mechanical harmonic oscillator. The peak continuously dissolves into a �atly
distributed cloud when the system is heated. It is characteristic for bosonic systems that the
transition can also be invoked by changing the particle number in the system. The resolution
of the planar density plots is unable to demonstrate this, but the radial density shows a small
but clearly visible sharpening of its peak. For example, compare the radial density for 4
particles to the sharper peak in the 5-particle case. The latter system must acquire the same
density distribution as the 4-particle system at some higher temperature since the transition
is continuous. Consequently, adding more particles shifts the system further to its ground
state con�guration. This complies to the energy behavior discussed previously. Additionally,
since the radial density plots in �gure 6.15(a) are normalized to the particle number, the
peak in the distribution is actually N times higher. The occurrence of an extremely sharp
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peak in position (and momentum) space over a �atly distributed thermal cloud is the method
of choice for detecting Bose-Einstein condensation in experimental setups. In these (nearly)
macroscopic systems the transition occurs abrupt.

Again, the inclusion of a strongly repulsive interaction seemingly reverses the behavior
of the density distribution. Adding particles broadens the width and shrinks the height of
the peak in the radial density plots. What the radial distribution does not show is that,
in spite of the peaks broadening, the particles actually get more localized at their classical
equilibrium positions. The density's angular distribution width decreases, as more particles
try to �t onto the same ring leaving less space for an individual one, although the ring's
radius slightly increases (�g. 6.16).

The pair distribution function f(r12) (�g. 6.15(b)) is a common method-of-choice in order
to investigate the state of matter, at least for macroscopic systems. Clearly separated peaks
indicate strong particle localization found in bounded, crystal like phases. For the system
in question, its usefulness is limited since the particle number is too small for f(r12) to
develop a characteristic behavior. For example, 2- and 3-particle systems only show a single
peak because the particles are equally distanced from one another. Whether the system is
bound or not cannot be reliably resolved in these cases. The situation improves for 4 and
5 particles, where two di�erent inter-particle distances occur in the bound state. According
to �gure 6.15(b) the system forms a crystal at t = 0.02, λ = 100 (lower �gure), but not at
t = 0.1, λ = 10 (upper �gure). The deeper notch in the 5-particle case indicates the stronger
localization in this system. The peaks are approximately of equal height since each particle
has two neighbors close-by and two farther away. With 4 particles each particle has only one
remote neighbor leading to a second peak with half the height of the �rst.
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(a) Relative inter-particle distance �uctuations.
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Figure 6.17.: Temperature dependence of relative inter-particle distance �uctuations ur (left �gure)
and the radial distance �uctuations vr (right �gure). The colored lines and gray lines correspond
the bosonic and boltzmannonic calculations, respectively. A drop of ur indicates increasing particle
localization. If ur falls below a value of ∼ 0.2, the system can be considered to crystallize.

6.3.4. Relative distance �uctuation

Another property directly linked to the state of matter is the relative inter-particle distance
�uctuation ur, i.e.,

ur =
2

N(N − 1)

N∑
i≤j

√
〈r2

ij〉
〈rij〉2

− 1, (6.3)

where rij is the distance between the ith and jth particle. ur measures the �uctuations
of the inter-particle distance relative to its corresponding average. A similar quantity, the
radial distance �uctuation, can be de�ned by choosing the trap center as reference point.
The temperature dependence of both quantities is shown in �gure 6.17 for di�erent coupling
parameters λ.

The degree of freedom for the movement of a particle is speci�c for the state of matter. A
phase transition (like e.g., solid→�uid) can, thus, be made visible with a sudden jump in ur.
Such a jump is less sudden and more continuous in mesoscopic systems since a �hard� phase
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transition does not exist here. However, one can issue a threshold value for the solid��uid
transition below which the system is assumed to be in a solid like state. Within harmonic
lattice theory[58] the threshold can be determined to ∼ 0.15 for classical systems and to
∼ 0.249 for bosonic systems (see [59] and references therein). Strictly speaking, these values
only apply to simulations for macroscopic systems with a speci�c lattice structure. A value
of ∼ 0.2 seems appropriate for the system in question considering the density distribution
(�g. 6.14).
Ideal and nearly ideal systems do not show any sign of a phase transition, ur remains

essentially constant within the simulated temperature range. Its value of 0.5 characterizes
the absence (resp. insigni�cance) of inter-particle interactions. Bosonic systems achieve
even higher values for their vr due to particle exchange on top of thermal �uctuations. The
cause is an abrupt and e�ectively arbitrary change of the particle's radial distance when it
is dislocated to the position of another particle. This e�ect vanishes at low temperatures
since all particles then sit in the trap center on the average. Particle exchange alters the
inter-particle distance only marginally, i.e., primarily to particles not participating in the
permutation cycle, so ur shows traces of the e�ect only for larger particle numbers. In short,
an above boltzmannonic value for distance �uctuations can be achieved by a combination of
thermal and exchange induced contributions, particularly, when measured to a �xed reference
point.
Correlated systems obviously show lesser distance �uctuations due to particle localization.

The degree of localization primarily depends on the strength of the particle repulsion, but
also on the particle number, as already discussed in the previous section. For example
only the 3-, 4-, and 5-particle system's relative distance �uctuations clearly drop below the
threshold value of 0.2 in the λ = 100 case at low temperatures indicating a solid like state
according to above point of reference. In all cases, however, ur typically stays constant below
t . 0.2 where changes in the energy are also no longer observable. Attached to this plateau
regime is the ascent to the gaseous phase�with a steeper slope for larger particle numbers.

6.3.5. Super�uidity

Figures 6.19(a) and 6.19(b) show the dependence of γs on the temperature and relative
interaction strength, respectively. Generally speaking, the annotations issued for the 2-
particle case also apply for greater particle numbers. Di�erences largely result from the
deviating system size and characteristic temperature.
As the 2-particle case demonstrated with its peculiar two-step behavior, two di�erent

contributions to γs can be distinguished and must be considered separately.

Thermal contribution t > tB. The thermal contribution depends only on the extension of
the particles in comparison to the whole area of the system. It can be observed for
higher values of λ only where it is undisguised by the ground state contribution. In this
regime the volume of the system increases with each particle added while the particles
themselves become more localized. Visual judgment of the density distribution alone
(last line of �gure 6.14) already allows to estimate the value of γs to be larger in smaller
systems, which is con�rmed by �gure 6.19(a).

Ground state contribution t < tB. The ground state contribution always pushes γs to unity
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(a) Ideal case (Analytical results).
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Figure 6.18.: Temperature dependence of the cycle length distribution. The left and right panel
show the ideal case and the situation for λ = 10, respectively. Vertically stacked plots are sorted by
particle number in ascending order (N = 2 . . . 5). Note that the temperature scale of the right �gure
is decreased by the factor 10 compared to the left.

at lower temperatures. The transition to this behavior occurs at the temperature
tB which is determined by the drop of the 1-cycle probability pC1 . It shows that
tB is virtually identical for all particle numbers in the case of λ = 10 (�g 6.18(b))
and depends on the particle number otherwise. In the nearly ideal case it shifts to
higher values with increasing particle number (�g 6.18(a)) and to lower temperatures
otherwise. This reversal is re�ected in graphs for γs�larger particle numbers result in
higher values for γs in nearly ideal systems, in contrast to the systems with stronger
interactions (�g. 6.19(a)). Due to the peculiar shape of the curves for γs, the exact
value for λrev, where the reversal occurs, slightly varies with the temperature (see
�g. 6.19(b)). It does not coincide with the energy reversal point.

Figure 6.19(a) (λ = 100) does not show a two-step behavior for particle numbers other than
2 anymore. The only contribution to γs seen for more than 2 particles results from the �nite
size of the system. However, one should expect to �nd a transition temperature tB when
making calculations for even lower temperature values than shown, but this regimes grows
rapidly more di�cult to access for PIMC simulations.
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Figure 6.19.: Super�uid fraction γs in 2D trapped system with N = 2 . . . 5 particles. The dependence
on the temperature is shown in the left-hand panel. Starting from top, the �gures correspond to the
ideal, λ = 10 and λ = 100 situations, respectively. The colored lines indicate values obtained from
bosonic calculations. The corresponding boltzmannonic values are denoted by gray lines. In the ideal
case the single gray line applies to an arbitrary number of Boltzmannons. The dependence of γs on
the relative interaction strength λ is shown in the right-hand panel.

6.3.6. Condensate Fraction

Last but not least, the results for the condensate fraction shall not remain unmentioned.
However, the calculations presented in �gure 6.20 for the 5-particle system relies on the
estimation formula introduced in section 5.3 for ideal systems. As mentioned there, its
validity is uncon�rmed for interacting systems. Because of the restrictions to the accuracy
of this method (the error of ±1-particle translates to ±1/N in the condensate fraction),
the results need to be taken with a pinch of salt. Nevertheless, the general trend that
the condensation is suppressed with increasing coupling parameter λ seems believable. A
condensate depletion at absolute zero, like in the macroscopic system, is not observed.

Unfortunately, the 5-particle system is still too small to determine a good estimate for the
transition temperature Tc. These limitations should be overcome in simulations for larger
clusters.
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Figure 6.20: Condensate
fraction for 5 particles for
varying values of λ. Symbols
indicate the estimated values
calculated from the cycle
con�guration with a threshold
value of x = 0.6 (see sec. 5.3).
The error bars of ±0.2 for
each value are not drawn for
clarity's sake. Symbols which
belong to the same λ are
connected with lines in order
to guide the eye. The exact
values for the ideal system are
indicated with the solid black
line.
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6.4. Discussion

6.4.1. Super�uidity

Probably the most intruding conclusion drawn from the previous investigations is that the
concept of what is known as �super�uidity� in macroscopic systems consists of various dif-
ferent contributions in �nite systems. This section intends to summarize their causes and
e�ects.
First of all, re�ect the de�nition of super�uidity in con�ned mesoscopic systems. The whole

investigation is based on the measurement of the deviation from the quantum mechanical
moment of inertia from its classical expectation value. Strictly speaking, this quantity solely
measures the NCRI whose connection to super�uidity in �nite systems has yet to be proven.
In macroscopic systems, phase coherence of the wave function over long distances (ODLRO,
see above) is a necessary precondition to super�uidity. In particular, Shi recently showed
that NCRI can be derived as a consequence of ODLRO in interacting Bose systems [28].
Naturally, the concept of ODLRO is not applicable in systems whose size is comparable with
the inter-particle spacing. Thus, other causes for NCRI might exist in mesoscopic systems.
The investigation of γs in the preceding chapter allows to di�erentiate between two com-

peting major contributions

Ground state contribution. Since the energy spectrum of a �nite quantum system is dis-
crete, i.e., the excitation of a condensed particle requires a �nite energy in order to
overcome the energy gap, the ground state always gives rise to NCRI. In particular,
ideal systems and even boltzmannonic systems show NCRI.

Thermal contribution. According to the area formula, the NCRI relates to the ratio of
the covered area of particle trajectories to the cross-section of the system. Quantum
particles always have a �nite extension, so this produces some kind of o�set contribution
with a λ depending maximum value at absolute zero. This contribution is not a ground
state e�ect and shall be referred to as thermal NCRI.
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A connection of the second contribution to super�uidity certainly is problematic at the least,
since ODLRO cannot be assumed if particles are not condensed in the ground state at the
same time. On the other hand, super�uidity in ideal systems or without bosonic particle
exchange seems plausible as long as these e�ects remain a pathology of mesoscopic systems.
In conclusion, only the �rst of the two listed e�ects should relate to super�uidity.

Thus, a method in order to distinguish between both contributions is needed when using
NCRI as a measure for super�uidity. Bosonic particle exchange fortunately provides the nec-
essary lever. As demonstrated, the plots for γs show a peculiar two-step behavior at certain
coupling parameters λ. The step occurs at the λ depending temperature tB, which marks
the transition point to Bose statistics. The boost of γs below tB relates to the predominant
ground state occupation stimulated by particle exchange. Contributions to γs above tB are
solely a consequence of the thermal NCRI. However, this does not imply that contributions
below tB must be solely a ground state e�ect. But if not, one has to �nd a way in order to
eliminate the interfering thermal part. A simple subtraction of its assumed value will not do,
as this would e�ectively negate the likely possibility that the system is completely super�uid
at low temperatures. So far, this remains an open question.

Viewed upside down, the cause for the peculiar NCRI in mesoscopic systems is obviously
constituted by its �nite size. The �niteness itself is twofold as it implies a �nite volume and
a �nite particle number. One may associate the observed NCRI contributions to either of
them.

Finite particle number. The always �nite ground state occupation poses the most impor-
tant e�ect of a �nite particle number. As a consequence, any mesoscopic system
reaches the point, where the ground state occupation is comparable to Bose-Einstein
condensation�a state of matter which can only be achieved by some bosonic systems
in the macroscopic limit. The result for the small clusters in question is the observed
(ground state) NCRI in boltzmannonic systems. In this sense, the only di�erence
between bosonic and boltzmannonic systems is that particle exchange allows for a con-
densation into the ground state at higher temperatures. The picture of permutation
cycles as single particles at lowered temperatures serves as an illustration.

Finite volume. The thermal NCRI is a direct consequence of the �nite volume (see above).
Increasing the e�ective volume, e.g., by increasing λ or adding particles to the system,
suppresses this contribution. Another consequence of the �nite volume is the discrete
energy spectrum, which supplies the basis for super�uidity in non-interacting systems.

In all cases, the thermodynamic limit leaves only the ground state contribution. However,
only a macroscopically occupied ground state can give rise to super�uidity, so this e�ect is
a characteristic of certain bosonic systems which show Bose-Einstein condensation.

6.4.2. Supersolidity

Supersolidity is a state of matter which is both macroscopically ordered (solid) and super-
�uid. The existence of such a phase in solid helium is a hotly discussed topic fueled by Kim
and Chan's recent claim of experimental evidence. Section 2.2.4 gives an overview about the
current status of research in this area.
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6.4. Discussion

temperature t

re
la

tiv
e 

in
te

ra
ct

io
n 

st
re

ng
th

 λ

0.1

0.2
0.5

0.95

0.25

0.3

0.35

0.4

0.45

 0  0.2  0.4  0.6  0.8  1
 0

 20

 40

 60

 80

 100

temperature t

re
la

tiv
e 

in
te

ra
ct

io
n 

st
re

ng
th

 λ

 0  0.2  0.4  0.6  0.8  1
 0

 20

 40

 60

 80

 100

temperature t

re
la

tiv
e 

in
te

ra
ct

io
n 

st
re

ng
th

 λ

 0  0.2  0.4  0.6  0.8  1
 0

 20

 40

 60

 80

 100

(a) N = 2.

temperature t

re
la

tiv
e 

in
te

ra
ct

io
n 

st
re

ng
th

 λ

0.1

0.2

0.5

0.95

0.15
0.2

0.25

0.3

0.4

 0  0.2  0.4  0.6  0.8  1
 0

 20

 40

 60

 80

 100

temperature t

re
la

tiv
e 

in
te

ra
ct

io
n 

st
re

ng
th

 λ
 0  0.2  0.4  0.6  0.8  1

 0

 20

 40

 60

 80

 100

temperature t

re
la

tiv
e 

in
te

ra
ct

io
n 

st
re

ng
th

 λ
 0  0.2  0.4  0.6  0.8  1

 0

 20

 40

 60

 80

 100

(b) N = 5.

Figure 6.21.: Topological diagrams showing the correlation between super�uid fraction γs and rel-
ative inter-particle distance �uctuations ur for 2 (left) and 5 (right) particles. Red lines indicate
isolines of equal γs, the labels on the left-hand side denote the speci�c values. The isolines of equal
ur are shown in green, their corresponding values are denoted in the right-hand tags. The solid gray
line separates the bosonic regime in the lower left from the boltzmannonic regime in the upper right.
The values of γs in the latter result from the thermal NCRI (see text).

The analogon to solids in the mesoscopic world of small clusters is the crystal like bound
state found for large values of λ at low temperatures. A quantitative measure for the bound-
ing strength is the relative inter-particle distance �uctuation as introduced in section 6.3.4.
A simultaneous investigation of the super�uid response allows to identify possible parame-
ter regimes in which supersolid behavior can be expected. Figure 6.21 presents the results
obtained for the 2- and 5-particle system.

Super�uidity and localization show opposite trends with increasing coupling parameter λ.
Super�uidity is at its strongest in nearly ideal systems where the particles do not crystallize.
The situation is reversed in the strongly correlated regime. Contrastingly, both quantities
change with temperature in a uniform manner�at least for not too small λs, super�uidity
and localization both increase when the system is cooled. The existence of super�uid crystals
can, thus, be expected.

However, the discussion so far implied the equality of NCRI and super�uidity. Taking the
considerations from the previous section into account, one has to di�erentiate between both
e�ects. The solid gray line in �gure 6.21(b) indicates the λ dependence of the transition
temperature tB. The area to the left and below the line shows values for γs, which are
in�uenced by bosonic particle exchange. Restriction of super�uidity to this region drastically
decreases the possible parameter ranges for which super�uid crystals can be expected.
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6. Numerical results for systems with Coulomb-interaction
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Figure 6.22: Evidence for reentrant
melting in bosonic systems. Shown
is the radial distance �uctuations for
5 particles. Unlike the boltzman-
nonic calculations, the distance �uc-
tuations for bosons show an increase
at low temperatures. As a conse-
quence, a bosonic system may �rst
crystallize and then melt again when
cooled down from high temperatures.

6.4.3. Reentrant melting

The investigation of the relative distance �uctuations hint the possible existence of a com-
pletely new e�ect, which is shown in �gure 6.22 in detail. As discussed in section 6.3, a
system crystallizes at low temperatures if the coupling is strong enough. The distance �uc-
tuation typically levels o� at a constant value, which corresponds to the localization strength
for the chosen coupling parameter. The simulations for boltzmannonic systems clearly show
this behavior. However, simulations for bosonic systems indicate a peculiar increase towards
lower temperatures which must be a result of particle exchange, of course. Asbeforemen-
tioned, particle exchange can only produce a di�erence if the radial distance is altered during
an exchange. At low temperatures, however, one expects identical radial distances for every
particle which would not lead to an increase by particle exchange itself. This is the reason
why the deviation of bosonic and boltzmannonic calculations vanishes at low temperatures
in the ideal case. Hence, the observed e�ect for correlated systems must correspond to
larger particle �uctuations due to some additional e�ect of Bose statistics. Up to date, such
exchange induced low-temperature melting has not been reported.
It should be noted that the simulations for these regions need yet to be carefully checked.

The observed e�ect might be a statistical artifact since exchange e�ects at very low temper-
atures become very rare, particularly in combination with the large number of time slices
needed.
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7. Conclusion

7.1. Summary

Super�uidity is de�ned as the suppression of friction in spatially homogeneous systems for
a linear motion slower than the velocity of sound. The phenomenon is constrained to a
fraction of the �uid only, the super�uid fraction. Within the two-�uid model of super�uidity,
the remaining normal�uid component is considered to be composed of collective excitations
from the ground state of the system, namely quasiparticles, with a linear dispersion relation.
Super�uidity is, thus, inseparably connected to inter-particle interactions and to the presence
of a Bose-Einstein condensate (sec. 2.2.1).
However, this conclusion is only valid for systems without an energy gap between the

ground state and the �rst excited state. In this case, a �nite energy is needed which surpasses
the energy gap in order to excite a particle from the ground state. Otherwise, the excitation is
impossible which leads to suppression of friction for su�ciently slow motions. If a condensate
is present, such a system shows a super�uid response without the need of inter-particle
interactions1.
Particularly, �niteness enables non-interacting trapped systems to show a super�uidity

since the single-particle energy levels are quantized. Such systems are both 100 % condensed
and 100 % super�uid at absolute zero (sec. 5.3)�a peculiarity unseen in macroscopic systems,
as inter-particle interaction results in a depletion of the condensate (sec. 2.2.3). Super�uidity
vanishes according to the correspondence principle, since the energy gaps are required to close
in the thermodynamic limit.
A quantitative measure for the super�uid fraction is provided by the Hess-Fairbank e�ect,

also referred to as non classical rotational inertia (NCRI): The super�uid fraction completely
ignores a slow rotation of the con�ning potential, which leads to a deviation of the moment
of inertia Iqm from its classical expectation value Iclass. For the discrete time path integral
representation of quantum systems, the NCRI can be computed with the so-called area-
formula (sec. 3.3.2). This formula relates NCRI to the ratio of the projected area enclosed
by particle trajectories to the cross-section of the whole system, both taken perpendicular
to the rotational axis.
Although strictly valid in the macroscopic limit, the equality of NCRI and super�uidity in

mesoscopic systems is not yet proven. Obviously, super�uidity in such systems still leads to
NCRI, but one cannot exclude other origins. The area-formula illustrates this in a straight-
forward manner: The (e�ective) area of the whole system is obviously �nite as well as the
spatial extension of quantum particles. This gives a non-zero value for the NCRI regardless
whether the system is in its ground state or not. Thermal and ground state contributions
result in a peculiar two-step behavior of the NCRI observed in interacting systems (sec. 6.2).

1The energy gap itself may be a consequence of inter-particle interaction as, e.g., in superconductors.
However, this does not negate the existence of other origins.

81



7. Conclusion

The e�ects of temperature, interaction strength, particle number, and bosonic exchange
should be considered separately for both contributions

Ground state contribution. If all particles are condensed, the contribution to the NCRI
reaches unity. The value obviously decays with rising temperature due to thermal
excitations. The temperature t0 below which signi�cant values are obtained is a�ected
by other parameters.

• A stronger coupling parameter shifts t0 to lower values.

• Inclusion of Bose statistics shifts t0 to higher values in comparison to the boltz-
mannonic case2.

• The direction of the shift due to a change of the particle number depends on the
coupling parameter. In (nearly) ideal systems the shift is positive, whereas it is
negative for strongly correlated systems.

Thermal contribution. Due to its relation to the area ratio, this contribution is a�ected by
a change of the e�ective system size and the extension of the particles, respectively.
Larger systems or smaller particle extensions result in a lesser contribution. In any
case, their ratio yields a �nite value smaller than 1 at absolute zero.

• The extension of quantum particles decreases with increasing temperature.

• A stronger interaction strength increases the size of the system.

• The e�ect of the particle number depends on the interaction strength. In the
(nearly) ideal case the size of the system decreases with increasing particle num-
ber, and for strongly interacting systems vice versa.

Bosonic particle exchange is linked to the condensation of particles and, therefore, gives
rise to a ground state contribution only. The temperature tB below which bosonic particle
exchange becomes important coincides with the temperature t0 indicating the transition
from thermal to predominant ground state contributions (sec. 6.2.4 and 6.3.5). However,
since exchange is not essentially needed in �nite systems for particles to collect the ground
state, also boltzmannonic calculations show a two-step behavior.
Even in strongly interacting systems, the values obtained from the NCRI for the super�uid

fraction are not negligibly small. The particles form a crystal like structure in this regime,
which constitutes the analogon to the �supersolid� in the macroscopic world. However,
considering only the ground state contribution of the NCRI as super�uidity the possible
parameter regime where such a super�uid crystal is found shrinks drastically (sec. 6.4.2).
For the sake of completeness, here is a short remark about other quantities than the

super�uid fraction: As these quantities are not directly sensible to particle exchange, they
are a�ected by Bose statistics in nearly ideal systems only. This is due to the negligibly
small (negative) exchange energy compared to the (positive) Coulomb energy in strongly

2It does not matter how the ground state is reached. In particular, also boltzmannons (distinguishable
quantum particles obeying Boltzmann statistics) give rise to the NCRI, since they may occupy identical
single-particle states. The inclusion of Bose statistics encourages condensation into the ground state,
so the temperature below which signi�cant contributions to the NCRI are obtained is shifted to higher
values.
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7.2. Central results

correlated systems. Since both energies have opposite signs, addition of particles into the
system has an opposing e�ect on a quantity in nearly ideal and strongly correlated systems.

7.2. Central results

• Super�uidity traces back to the impossibility of excitations from the ground state.
Either a linear dispersion relation or an energy gap between single-particle ground
state and �rst excited state provide a mechanism for this.

• A mesoscopic ideal Bose gas in a harmonic trap shows super�uidity.

• Bose statistics promote super�uidity in mesoscopic systems, but are not its cause.

• The NCRI has a thermal and a ground state contribution in mesoscopic systems which
leads to a two-step behavior in its temperature dependence.

• Super�uidity is possible in a crystal like state.

7.3. Outlook

As a closing note, some shortcomings and possible extensions of this work are presented.

• The most intruding question left unanswered by this work is the in�uence of shell
formation, which occurs in correlated systems with more than 5 particles. In particular,
one can speculate on a boost of the super�uid fraction for clusters without perfect
symmetry. In the macroscopic limit, such systems correspond to incommensurate
solids, meaning it is to have zero-point vacancies, or interstitial atoms, or both as an
integral part of the ground state. In general opinion, this is a necessary condition for
�supersolids� [27, 28].

• The results for the NCRI must be investigated more closely. In particular, an alterna-
tive estimator for the super�uid fraction in mesoscopic systems is needed. A possible
approach could use the momentum distribution, but the calculation is more complex
as it depends on o�-diagonal elements of the density matrix. Additionally, one might
try to reproduce the results for the NCRI using di�erent con�nements and interaction
potentials, respectively.

• A central numerical issue of PIMC simulations is the low acceptance probability for
permutation changes of strongly correlated systems at low temperatures. A possible
solution is the worm algorithm extension proposed by Boninsegni et al. [36], which
introduces a set of new moves providing a mechanism in order to handle open trajec-
tories, called worms. Boninsegni et al. claim vastly improved acceptance ratios for
particle exchanges.
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A. Derivation of the e�ective Bogoliubov

Hamiltonian

The Hamiltonian of a free interacting system in second quantization reads

Ĥ =
∑
k

~2k2

2m
â†kâk +

1
2V

∑
k,p,q

Wqâ†p+qâ†k−qâpâk, (A.1)

where

Wq =
∫

d3r e−iq·rW (r) (A.2)

denotes the Fourier transformed pair potential W (r) = W (r2 − r1).
Consider the following assumptions

1. the system has a Bose-Einstein condensated phase and

2. the gas is dilute and only weakly interacting.

Then, two major approximations can be placed upon the Hamiltonian:

1. The dominant contribution to the pair potential results from interactions with at least
one condensated particle. Particularly, one can expand the 2-particle interaction in a
series with respect to the number of participating condensate particles, i.e.,

Ŵ = terms with zero âk (one possibility)

+ terms with one âk (not possible)

+ terms with two âk (6 possibilities)

+O(â3
k).

(A.3)

Here, âk denotes an annihilation (or creation) operator for a non-condensate particle
with k 6= 0.

2. Addition or subtraction of a single particle to the condensate does not change the
physics of the system. This implies that the e�ect of the condensate annihilation
and creation operators â0, â

†
0 corresponds to a simple multiplication of

√
N0 without

changing the state, i.e.,

â0| . . . , N0, . . .〉 =
√

N0| . . . , N0 − 1, . . .〉 ≈
√

N0| . . . , N0, . . .〉, (A.4)

â†0| . . . , N0, . . .〉 =
√

N0 + 1| . . . , N0 + 1, . . .〉 ≈
√

N0| . . . , N0, . . .〉. (A.5)
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A. Derivation of the e�ective Bogoliubov Hamiltonian

The �rst approximation simpli�es Ŵ to

Ŵ =
1

2V
W0â

†
0â
†
0â0â0 +

1
V

∑
κ

′
(W0 + Wκ) â†0â0â

†
κâκ

+
1

2V

∑
κ

′
Wκ

(
â†0â

†
0âκâ−κ + â†κâ†−κâ0â0

)
(A.6)

and the second further reduces it to

Ŵ =
N2

0

2V
W0 +

N0

V

∑
k

′
(W0 + Wk) â†kâk +

N0

2V

∑
k

′
Wk

(
â†kâ†−k + âkâ−k

)
. (A.7)

Since the occupation of the condensate is still unknown, one can replace N0 with

N0 = N −N ′ = N −
∑
k

′
â†kâk. (A.8)

Insertion of this expression again yields contributions of the order O â4
k, which can be ne-

glected. The �nal result for the approximated Hamiltonian reads

Ĥ =
∑
k

′~2k2

2m
â†kâk +

N2

2V
W0 +

N

V

∑
k

′
Wkâ†kâk +

N

2V

∑
k

′
Wk

(
â†kâ†−k + âkâ−k

)
. (A.9)

This Hamiltonian can be diagonalized using the Bogoliubov transformation.
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B. Density matrix for a single particle in

the 1D harmonic trap

As Feynman[37] shows, the density operator obeys the di�erential equation (see also eq. (3.1))

− ∂ρ̂

∂β
= Ĥρ̂, (B.1)

with the initial condition ρ(0) = 1 or ρ(r, r′; 0) = δ(r − r′) in position representation,
respectively. Application to the Hamiltonian of a single 1D-particle in a harmonic trap
(using the reduced form, see eq. (4.7)) yields

− ∂ρ

∂f
= −∂2ρ

∂x2
+ x2ρ, (B.2)

where f = 1/t is the inverse reduced temperature (eq. (4.5)) and x the reduced length
(eq. (4.3)). The initial condition in reduced units reads ρ(x,x′; 0) = δ(x− x′)/l0.
The equation can be solved with the ansatz

ρ = e−[a(f)x2+b(f)x+c(f)], (B.3)

leading to the following conditional equations for the coe�cients

a′ = 1− 4a2, b′ = −4ab, c′ = 2a− b2. (B.4)

The equations are integrated to give

a =
1
2

coth f, b =
A

sinh f
, c =

1
2

ln(sinh f) +
A2

2
coth f − lnB, (B.5)

where A and B are constants. Insertion into eq. (B.3) yields

ρ(x, x′; f) =
B√

sinh f
exp

{
−
(

x2

2
coth f +

Ax

sinh f
+

A2

2
coth f

)}
. (B.6)

In the high temperature limit f → 0, the particle should act like a free particle, as its
probable kinetic energy is so high. The density matrix will then be given by eq. (3.15), i.e.,

ρ → B√
f

exp
{
−x2 + 2Ax + A2

2f

}
≈ 1

l0
√

2πf
exp

{
− 1

2f
(x− x′)2

}
, (B.7)

which determines the constants to A = −x′ and B = 1/l0
√

2π. The �nal expression for the
density matrix of a particle in a harmonic trap reads

ρ(x, x′; f) =
1

l0
√

2π sinh f
exp

{
− 1

2 sinh f

[
(x− x′)2 cosh f − 2xx′

]}
. (B.8)
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B. Density matrix for a single particle in the 1D harmonic trap

Generalization to the d-dimensional case is simply achieved as each dimension contributes
the same factor, i.e.,

ρ(x,x′; f) =
(
2πl20 sinh f

)− d
2 exp

{
− 1

2 sinh f

[
(x− x′)2 cosh f − 2x · x′

]}
. (B.9)

If the harmonic potential is asymmetric, appropriate geometric means for l0, sinh f and
coth f must be inserted.
Integration over the diagonal elements of the density matrix, i.e.,

ρ(x,x; f) =
(
2πl20 sinh f

)− d
2 exp

{
−x2 tanh f

}
, (B.10)

results in the partition function

Z1(β) = (2 sinh(~ωβ/2))−d . (B.11)
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C. Transition temperature tB to Bose

statistics

The temperature tB shall be de�ned as the temperature below which bosonic and boltzman-
nonic calculations start to di�er. Since the transition does not occur abruptly, one has to
use some estimation for its value. A good indicator is the probability for the identity permu-
tation pC1 , as its value deviates from unity if bosonic particle exchange becomes important.
The straightforward method is to issue a threshold value pcrit and de�ne

pC1(tB) = pcrit. (C.1)

A value of pcrit = 0.95 . . . 0.99 seems appropriate by trial and error.
The exact functional dependence for pC1 is only known for ideal systems (eq. (5.10)).

However, the plots of pC1 for various coupling parameters λ suggest (�g. C.1(a)) that there
exists a shift parameter a(λ) with

pλ
C1

(t) = pideal
C1

(t/a(λ)). (C.2)

Interestingly, the shift parameter a(λ) seemingly shows a linear dependence on λ (see
�g. C.1(b)). This can be used to estimate tB for large interaction strengths, where PIMC
simulations do not yield reliable results for particle exchange anymore.
Using the shift parameter, one needs to determine tB only once, which is done preferably for

the ideal case. Since a(λ) is independent from pcrit, adjustments to pcrit can be investigated
more easily.
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C. Transition temperature to Bose statistics
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Figure C.1.: The left-hand panel shows the functional dependence of pC1 for various coupling
parameters λ. The particle number increases from 2 in the top to 5 in the bottom �gure. In each
case, the coupling increases with each graph from right to left. A single graph can be �tted in good
approximation by a shifted ideal function pideal

C1
(t/a(λ)), where a(λ) is the �tting parameter. Solid

gray lines indicate the �ts. The right-hand panel displays the dependence of the obtained values for
a(λ) on the coupling parameter λ. It is a = 1 for the ideal case and a ∝ λ for large λs.
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D. Visualization of densities

Two methods are commonly used in order to visualize path con�gurations from PIMC sim-
ulation.

Snapshot Shows the path con�guration by connecting particle positions on consecutive time
slices in a x-y plot. Di�erent colors may help to distinguish between separate particles.
If the snapshot shows a con�guration with permuted end points, the corresponding
particle trajectories mend into single longer paths.

World-line view Unravels the snapshot view by showing the position of a speci�c coordinate
(e.g., x or y) separately for each time slice.

Such visualizations can be used to give the reader a general idea over the typical particle
con�guration obtained with a PIMC simulation for the speci�cally chosen parameter set.
However, both methods cannot claim to have any statistical relevance since they present
only a snapshot from a single con�guration. In particular, contributions to the density
distribution due to thermal �uctuations are obviously excluded. This drawback can be
remedied by simultaneously plotting multiple path con�gurations on top of each other. The
rotational symmetry of the system in question unfortunately blurs the density into annular
shapes even if the particles actually form strongly correlated crystal like structures.

A method which aims to provide a statistically reliable density distribution in order to gain
information about the state of matter needs to exclude the arbitrary rotations. This can be
done by choosing a body-�xed frame as reference frame. This means that each snapshot has
to be rotated by some angle before joining them to a single plot. Thereby, it is assumed that
the particles form a molecule like body with known equilibrium positions for each particle.
The center-of-masses from every path are each associated with a speci�c position in the
molecule. The average from their angular di�erence gives the transformation angle of the
whole snapshot. As an illustration, the 2-particle snapshot is rotated in such a way that the
connecting line between the particles lies parallel to the x-axis of the plot.

This procedure corresponds to the so-called Eckart frame transformation[60] primarily
used in molecular chemistry, which �nds the greatest possible separation of rotational and
vibrational modes (a complete separation is impossible) [56]. In this analogy, the here
applied transformation singles the rotational motion out, leaving only density �uctuations
corresponding to vibrational motion.

The method works well as long as the system maintains the molecule like state which is
the case if the temperature is not too high and the system is far from ideal. In principle,
ideal cases are also unproblematic if the system is in its ground state, where the particles sit
in the trap center and the wave function is invariant under rotations. Thermal excitations,
however, lead to particle displacements out of the trap center. On average, the particles are
then distanced to each other which is misinterpreted as a molecule formation and results in
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D. Visualization of densities

a �kink� in the density plots as it can be seen, e.g., in the upper right plots of �gure 6.1. Fur-
thermore, due to the speci�c nature of the transformation, thermal (vibrational) �uctuations
and quantum mechanical broadening of the density cannot be distinguished. Fortunately,
the �rst occurs at high and the latter at low temperatures and a more or less stable molecule
like phase is typically situated in between. In short, the density plots do not yield any sound
quantitative results but can help to identify di�erent phases qualitatively.
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