
Diploma thesis

Coulomb scattering and ionization processes
in strong laser fields

by

Sebastian Bauch

Kiel, 6th March 2008

Institut für
Theoretische Physik und Astrophysik

der Christian-Albrechts-Universität zu Kiel



Supervisor/1st examiner : Prof. Dr. Michael Bonitz

2nd examiner :



Contents

1 Introduction 3
1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Atoms in laser fields 5
2.1 Effects in laser field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Field strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Photoionization and resonant excitations . . . . . . . . . . . . . . . . . . 6
2.1.3 Multi-photon ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Above threshold ionization . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Strong field effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 Higher harmonics generation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Atom-light-field interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The dipole approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Overview of theoretical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Perturbative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Strong field approximation (SFA) . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Floquet states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Numerical method 15
3.1 The numerical solution of the Schrödinger equation . . . . . . . . . . . . . . . . . 15

3.1.1 1D-Crank-Nicolson method . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Solving the two-dimensional Schrödinger equation . . . . . . . . . . . . . 17
3.1.3 Accuracy, stability and efficiency . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.5 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Including the laser field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 The Kramers-Henneberger frame of reference . . . . . . . . . . . . . . . . 24
3.2.2 Back and forward transformation of the Kramers-Henneberger frame . . . 25

3.3 Calculation of expectation values . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Energy spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Free particle spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Detecting scattered particles . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Comparison between both methods . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Implementation in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Numerical concepts and basic calculations 31
4.1 Convergence behavior of the CN-Method . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 1D harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 2D harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Wave packet scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



Contents

4.2.2 Simple application: the potential well . . . . . . . . . . . . . . . . . . . . 35
4.3 The regularized Coulomb potential . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Transmission and reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 1D eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 2D eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Excitation and ionization in laser fields 43
5.1 Weak laser fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Excitation of the harmonic oscillator . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Excitation and ionization phenomena of the 1D Coulomb potential . . . . 44
5.1.3 Angle-resolved electron spectra . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Above threshold ionization (ATI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 TDSE solution for a 1D model atom . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Comparison with the strong field approximation (SFA) . . . . . . . . . . . 55
5.2.3 Angle-resolved 2D ATI spectra . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Scattering with slow electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Coulomb scattering 61
6.1 Coulomb scattering in a one-dimensional model . . . . . . . . . . . . . . . . . . . 61

6.1.1 Single ion collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.2 Instantaneous Coulomb collisions . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.3 Scattering on ion pairs: resonance phenomena . . . . . . . . . . . . . . . . 65
6.1.4 Scattering on chains of Coulomb potentials . . . . . . . . . . . . . . . . . 67

6.2 Two-dimensional Coulomb scattering . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.1 Coulomb scattering without a laser field . . . . . . . . . . . . . . . . . . . 71
6.2.2 Including laser fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 Scattering on one ion in a strong laser field . . . . . . . . . . . . . . . . . 74
6.2.4 Scattering on an ion pair . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.5 Scattering in a confined setup . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusions and outlook 85

A Conversion of atomic units 89

B Frequently used abbreviations 91

C The Schrödinger equation in the Kramers-Henneberger coordinate frame 93

D Strong field approximation for 1D Coulomb ionization 95

E Proof of the 1D-non-degeneracy theorem 97

2



1 Introduction

The effect of a laser (or light) field on atoms or, more general, matter is an intensively studied
field in physics. It all started with the famous explanation of the photo effect by A. Einstein
1905 [1] who used the quantum hypothesis of Planck [2] - the birth of modern physics and quan-
tum mechanics. With the construction of the first laser by Maiman in 1960, a high-intensity
radiation source with monochromatic character became available which soon led to a wide range
of applications and newly discovered effects resulting from the interaction between photons and
any kind of matter exposed to it. Still this field shows a fast developing dynamics. Especially
the improvements achieved in laser technology during the last decades [3] play an important
role. The first experiments exploring non-linear optical effects due to multi-photon absorption
mechanisms were performed in the early 1970s with nanosecond pulses where the pulse form
could be described only on a statistical level [4]. In contrast, recently developed laser systems
are able to produce pulses with only a few optical cycles with a well-defined, stabilized and
controllable carrier-envelope (CE) phase [4, 5]. Powerful new high-intensity radiation sources,
such as the X-ray free-electron laser (X-FEL), give access to new intensity regimes and the aris-
ing effects are far from being understood. State-of-the-art two-color photoemission experiments
in pump-probe-like setups, where a few-cycle infrared (IR) pulse is combined with an extreme
ultraviolet (XUV) pulse in the attosecond regime, allow for the investigation of time-dependent
dynamics of electronic excitations [6, 7]. Recently, it became possible to measure the ionization
and rescattering process of an electron time-resolved with the help of such attosecond pulse
trains (APT) [8]. Furthermore widely used higher-harmonics generated (HHG) vacuum ultravi-
olet (VUV) pulses offer the possibility to investigate surface dynamics on the femtosecond scale
which has been actively studied during the last years [9].

These newly developed techniques lead to an increasing interest for precise and time-resolved
quantum theories. The objective of the present thesis is to implement a method based on the
numerical solution of the time-dependent Schrödinger equation (TDSE). It allows for the inves-
tigation of ionization, emission and scattering processes in (strong) laser fields on a microscopic
level within the one-particle picture. The first central part of the thesis at hand is dedicated
to non-linear optical effects, e.g., the above threshold ionization in strong laser fields and the
corresponding angle-resolved photoemission spectra. Secondly, Coulomb scattering in strong
laser fields will be addressed. Both phenomena are strongly related as can be seen for instance
in the mechanism of HHG. Being motivated by the work of H.-J. Kull et al. [10, 11, 12] and the
prediction of anomalous high-intensity HHG by electron-ion collisions in plasmas [13], the aim is
to find a mechanism to use correlated scattering processes on the nanometer scale to generate a
distribution of laser-accelerated fast electrons. A mechanism recently used in table-top sources
for the generation of fast electrons is known as wake field acceleration where electrons “surf” on
the plasma wake field wave [14].

Finally, as a briefly mentioned outlook, the implemented techniques and acquired experiences
can be used as a benchmark for further, more enhanced approaches, such as the non-equilibrium
Green’s functions [15], which may help to explore correlated many-body effects like for instance
the prominent rescattering knee observed in double-ionization spectra of Helium [16, 17].
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1 Introduction

1.1 Chapter overview

The present work is organized as follows:

• Chapter 2 gives an overview on fundamental processes in strong laser fields and their
theoretical treatment based on the classical field-atom-interaction Hamiltonian. Central
are the discussion of the TDSE and the most common approximations for its analytical
solution such as time-dependent perturbation theory and the strong field approximation
(SFA).

• Chapter 3 contains a detailed discussion of the numerical treatment of the TDSE on spa-
tial grids by implementation of the Crank-Nicolson method and the alternating direction
implicit technique. The treatment of the laser field, the calculation of observables and the
construction of initial conditions are of special interest.

• Chapter 4 introduces centrally used approaches as, e.g., the wave packet formalism and
the representation of the Coulomb potential on numerical grids. In addition the conver-
gence behavior of the implemented techniques presented in Chapter 3 is addressed.

• Chapter 5 deals with one main topic of the present thesis: ionization and excitation
processes in laser fields. Low-intensity as well as strong-field processes are discussed on
the basis of one- and two-dimensional model systems where the latter gives access to angle-
resolved photoemission spectra of single model atoms. The results of TDSE calculations are
compared to other common approaches. The chapter ends with a discussion of scattering
processes of slow electrons on ions which leads over to the next part.

• Chapter 6 discusses a further central issue, the scattering of electrons on spatially cor-
related positively charged ions in the presence of a strong laser field with the objective to
demonstrate the generation of fast electrons. The underlying mechanisms are illustrated
in model systems in terms of single-ion collisions considering TDSE simulations and clas-
sical approaches. This helps construct improved scattering setups which finally leads to
two-dimensional correlated electron scattering on ions in externally confined systems.

• Chapter 7 gives a summary of the results. It further discusses questions that arose during
the work on the thesis at hand. They form the starting point for future investigations.
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2 Atoms in laser fields

This chapter introduces effects that occur if atoms are exposed to time-dependent electro-
magnetic radiation. The classification of the light field strength in terms of the Keldysh param-
eter γ, Eq. (2.5), is followed by a phenomenological introduction to ionization and excitation
phenomena. First, weak fields and single-photon processes are considered being followed by a
quantitative discussion of multi-photon (MP) processes, above threshold ionization (ATI) and
related phenomena, such as higher harmonics generation (HHG).

The next section concentrates on the theoretical treatment of the electro-magnetic field and its
coupling to the Hamilton operator. Different gauges and the dipole approximation are outlined.
A discussion of several approximative approaches to ionization and excitation processes, i.e., the
time-dependent perturbation theory for low-intensity pulses and the strong field approximation
(SFA) developed by Keldysh, Faisal, Reiss and others, concludes this chapter. More special
methods like quasi-energy states (QES) are briefly mentioned.

2.1 Effects in laser field

Atoms, i.e., bound electrons in an (ionic) Coulomb-like potential, react on external electric and
magnetic fields due to their charge e. The following part will give an overview on the most
prominent effects caused by this interaction.

2.1.1 Field strengths

First of all it is important to characterize the different regimes of laser field strengths. Clearly,
the ionization potential of the atom Ip (cf. Fig. 2.2) and the field induced external potential
energy have to be connected. The latter one is the ponderomotive energy Up which is defined
as the energy a free electron contains in its quiver motion caused by a changing electric field.
If this additional energy is small compared to the binding energy, the perturbing field is small,
otherwise we speak of a strong field. The Newtonian equations of motion offer the simplest
approach for an estimation of Up. The result of a quantum calculation is given at the end
of this chapter. The electrical force acting on an electron with mass me and charge e0 in a
monochromatic electric field with the frequency ω and the amplitude E0 is given by

me
d2

dt2
r(t) = e0E0 cos(ωt) . (2.1)

By integration one obtains the quiver velocity

v(t) =
e0

me
· E0

ω
sinωt = v0 · sinωt . (2.2)

Thus the kinetic energy of the electron evaluates to

Ekin(t) =
1
2
mev(t)2 =

e2
0

2me

E2
0

ω2
sin2(ωt) . (2.3)
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2 Atoms in laser fields

Figure 2.1: Overview of field strengths and the processes which occur in monochromatic light fields [3]

The ponderomotive potential UP is determined by the kinetic energy averaged over an oscillation
period

Up = 〈Ekin〉 =
1
4
e2

0

me

E2
0

ω2
. (2.4)

Using this quantity we introduce the Keldysh (or adiabatic) parameter [18, 19]:

γ =
ω

E0

√
2Ip ·

√
me

e0
=
√

Ip
2UP

. (2.5)

In experiments the intensity of a pulse is usually the characterizing quantity. It is derived from
the Poynting vector and is determined by

I =
1

8π
cE2 , (2.6)

where c is the velocity of light in vacuum. Fig. 2.1 shows the appearing effects for different
intensity regimes and the related Keldysh parameter. For γ � 1 the field can be treated as a
small perturbation of the atomic system, whereas for γ � 1 the atom is a small perturbation of
the strong laser field.

2.1.2 Photoionization and resonant excitations

First we mention effects in light fields for γ � 1. Experimentally, this region is covered by
low-intensity pulses. The well-known effects which helped understand the electronic structure
of atoms are the direct photoionization and the resonant absorption of photons (cf. Fig. 2.2).
For intensities clearly in the perturbative regime the electron can absorb photons only

• if ∆E = ~ω, where ∆E is the energy difference between two discrete levels (Bohr condition)

6



2.1 Effects in laser field

continuum states

ionization potential Ip

ionic potential

ground state

excited states

direct ionization
h̄ω > Ip

h̄ω = ∆E
resonant excitation

0

Figure 2.2: Schematic view of the model atom in a weak laser field. The energy levels (red dashed lines)
in the Coulomb potential remain nearly unchanged. The discrete bound states (En < 0) are coupled to a
continuum with E > 0. Two processes can appear, depending on the photon energy ~ω of the light field:
The direct ionization into a free electron state (~ω > Ip) and the resonant excitation (~ω = ∆E) into a
higher bound state (linear effects).

• or if the photon energy is high enough (~ω > Ip) and the electron is excited to the
continuum (ionized).

These effects are so called linear effects.

2.1.3 Multi-photon ionization

The ionization of a quantum system is non-linear if the energy of one single irradiated pho-
ton is not sufficient to ionize the atom directly (ω < Ip) and at least two photons are needed.
Clearly, this statement violates the well-known description of the atomic photo effect by Einstein
which postulates the absorption of single quanta. But according to Heisenberg’s principle the
energy-time uncertainty of any process is given by ∆E ·∆t > ~. Hence the transition from an
initial state |0〉 to a final state |v〉 occurs within the energy width ∆E. The electron stays in
the state |v〉 of the energy Ev = E0 + ~ω for a time ∆t. Within this very small time it is able to
absorb a second photon if the intensity of the external field is increased to about 1014 W/cm2

and higher. Such an energy level |v〉 is a called virtual state as it exists only for a very small time.

The electron can now climb a ladder of these intermediate virtual states |vi〉 until it reaches
a final state |f〉 with an energy Ef = nthres · ~ω larger than the binding energy Ip [cf. Fig. 2.3
(a)]. This process is known as multi-photon ionization (MPI). The natural number nthres is the
minimal number of energy quanta (threshold) needed to raise the electron into the continuum.

If the final state |f〉 is a not a free state but a discrete atomic energy level which fulfills the
resonance condition

nthres · ~ω = Ef − E0 (2.7)

the analogous process of multi-photon excitation is possible. Eq. (2.7) can be regarded as an
extended Bohr condition.

The MPI is a rather complex process and was theoretically first described by Keldysh [18]
for short-range potentials. A discussion of his theory is given in Chapter 2.3.2. According to
[21, 18] the rate of the MPI is determined by

w = σ(nthres)(ω, ρ)(I/ω)nthres . (2.8)
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2 Atoms in laser fields

Above Threshold
Ionization

ionization potential Ip

Multiphoton
Ionization

ionic potential

ground state

h̄ω

virtual states

0

(a) Schematic view of multi-photon processes (b) ATI spectrum of Argon [20]

Figure 2.3: For pulses with sufficiently high intensity and ~ω < Ip multi-photon processes occur. This
non-linear effect allows an electron to absorb nthres photons of the energy ~ω. If the intensity is high
enough, additional photons are absorbed which increase the kinetic energy of the free electron. Fig. (b)
shows such an above threshold ionization spectrum measured on an Argon gas [lower curve in (b)] in
comparison with a numerical solution of the one-particle time-dependent Schrödinger equation [upper
curve in (b)]. The numbers give the intensity of the laser pulse in TW/cm2.

I is the intensity of the laser excitation and σ(ω, ρ) denotes the multi-photon cross section. ρ
is a parameter which describes the ellipticity of the radiation [21]. Notable is the power-law
behavior on I and therefore on the electrical field strength E.

2.1.4 Above threshold ionization

An effect related to MPI is the above threshold ionization (ATI). Fig. 2.3 (b) shows a mea-
surement and a calculation of a typical ATI spectrum of Argon atoms. For already ionized
electrons, for instance by a MPI process, exists the probability to absorb k additional photons
in high-intensity fields. Hence, the final energy of the electron is given by

Ef = (nthres + k)~ω k = 1, 2, 3, . . . . (2.9)

These additional photons increase the kinetic energy of the ionized electron. It is accelerated
to a significant cut-off energy Emax = 8 · Up. For electrons below this energy the well-known
ATI-plateau is formed. Although the ATI effect itself can be explained in terms of a perturba-
tive theory, many effects need theories beyond this approach. The most prominent example is
the near threshold effect : Some of the lower photon peaks (nthres, nthres+1, . . . ) disappear with
increasing intensity. In contrast perturbation theory predicts a decrease in the intensity for an
increasing number of absorption processes. The review books [19, 21] of Delone and Krainov
and the review article of Eberly and Javanainen [22] give an comprehensive outline of this topic.

2.1.5 Strong field effects

We now switch to high-intensity laser pulses with γ � 1, hence the regime of electric field
strengths where the electronic structure of the atom is strongly deformed. The boundary ap-
proximately corresponds to an intensity of I = 1 a.u. = 3.4 · 1016 W/cm2. The occurring effects
are sketched in Fig. 2.4. The external potential becomes comparable to the atomic electric field
strength or even larger. Modern laser systems easily reach intensities far beyond this threshold.
Dominant effects are now tunneling processes and over barrier ionization (OBI). Again the first
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2.2 Theoretical framework

electric field

modified

Coulomb potential

ground state

ionic potential

0

tunnel ionization

(a) Strong field effect: tunnel ionization

over barrier ionization

electric field

modified

Coulomb potential

ground state

ionic potential

0

(b) Strong field effect: over barrier ionization

Figure 2.4: Optical field ionization: Modification of the ionic Coulomb potential due to the strong
external field (γ � 1). The atomic potential is strongly deformed and the ground state electron can leave
its bound state by tunnel ionization (a) and/or over barrier ionization (b).

theory was given by Keldysh. The rates of the strong field ionization are [21, 18]

w ∼ exp

(
−2

3
(2Ip)3/2

E

)
. (2.10)

A comparison with Eq. (2.8) shows the significant difference to the MPI mechanism. The
exponential function indicates a tunneling process. For slowly varying electric fields (ω small),
Eq. (2.10) describes the usual tunnel effect of an electron in a time-independent electric field.
Thus the underlying physical mechanism is totally different from the MPI.

If the field strength gets even higher, a stabilization of the ionization rate is observed. The
electron is then bound in quasi-states (very high-energy Rydberg states modified by the external
potential). This effect is not in the focus of this introduction.

2.1.6 Higher harmonics generation

A direct consequence of multi-photon processes and strong field ionization (MPI, tunneling or
OBI) is the generation of higher harmonics radiation. If the freed electron is driven back to
its parent ion by the laser field it can recombine and during this scattering process it radiates
a photon. Since the accelerated electron (by e.g. MP processes) lies high in the continuum
this emitted photon exhibits very large energies. The resulting electro-magnetic radiation shows
higher harmonics of the irradiated laser frequency and is used experimentally to create high-
energy extreme ultraviolet (XUV) pulses. Fig. 2.5 visualizes the mechanism. A lot of theoretical
and experimental work has been done on this topic [3].

2.2 Theoretical framework

The adequate theoretical tool for the investigation of ionization processes on a microscopic scale
in the non-relativistic regime is the time-dependent Schrödinger equation (TDSE). The electro-
magnetic field is treated classically within this work. No additional field quantization (QED)
is applied. Thus effects like the spontaneous emission or absorption of photons and the corre-
sponding life times and the decay of states cannot be described. However the classical treatment

9



2 Atoms in laser fields

Electric Field

Ionization

photon emission
h̄ωXUV

back driven electrons

0

Figure 2.5: The mechanism for generation of higher harmonic radiation (HHG). The ionized electrons
(MPI or optical field ionization) with large kinetic energies are driven back to the ion and undergo a
complicated rescattering process. They emit photons with frequencies (~ωXUV) multiple times higher
than the irradiated laser field. This process is widely used in experiments as a source for high-energy
radiation.

includes the reaction of a system exposed to light fields very precisely since stimulated emis-
sion/absorption of photons exceeds the spontaneous effects by orders of magnitudes.

The vector potential A(r, t) and the scalar potential φ(r, t) characterize the electric field
E(r, t) and the magnetic field B(r, t) by [23]:

E(r, t) = −∇φ(r, t)− 1
c

∂A(r, t)
∂t

and B(r, t) = ∇×A(r, t) (2.11)

which are determined by the solution of Maxwell’s equations.

2.2.1 Atom-light-field interaction

The TDSE for one particle in an external potential V (r) interacting with a vector potential
A(r, t) and a scalar potential φ(r, t) reads in atomic units (~ = m = e = 1, see Appendix A)

1
2

(
p̂+

1
c
A(r, t)

)2

Ψ(r, t)− φ(r, t)Ψ(r, t) + V (r)Ψ(r, t) = i
∂

∂t
Ψ(r, t) , (2.12)

with the operator of momentum p̂ = −i ∇. V (r) denotes the one-particle potential, i.e., the
ionic Coulomb potential.

As it is known from electro-dynamics, the observable fields E(r, t) andB(r, t) are not changed
under a gauge transformation to new potentials A′(r, t) and φ′(r, t):

A′(r, t) = A(r, t) + ∇Λ(r, t) and φ′(r, t) = φ(r, t)− 1
c

∂Λ(r, t)
∂t

, (2.13)

where Λ(r, t) is a scalar function. There exist an arbitrary number of different possible gauges.
Concerning the matter-field interaction two gauges are mostly used in the literature: The radia-
tion (also Coulomb or transversal) gauge and the field (also length or longitudinal) gauge. Since
Eq. (2.12) contains the potentials A and φ the resulting phase of the wave function Ψ(r, t) is
changed by exp(ieΛ/mc) under such a transformation. The observables of the quantum system
are not changed (gauge-invariant).

10



2.2 Theoretical framework

For a source-free field (ρ(r, t) = 0) the scalar potential vanishes. Thus, only the vector
potential A is coupled to the system in Eq. (2.12). By expanding the brackets one obtains for
the Hamiltonian (note: [p̂,A(r, t)] 6= 0):

Ĥ =
1
2

(
p̂+

1
c
A(r, t)

)2

+ V (r) (2.14)

=
p̂2

2
+ V (r)︸ ︷︷ ︸
Ĥatom

+
1
2c
A(r, t) · p̂+

1
2c
p̂ ·A(r, t) +

1
2c2
A(r, t)2︸ ︷︷ ︸

Ĥint

. (2.15)

Ĥatom describes the atomic degrees of freedom, i.e., the energy levels of the ionic potential
and is time-independent. The whole interaction with the electro-magnetic field is included in
Ĥint(t). Up to this point everything is exact except for the classical treatment of the fields.

2.2.2 The dipole approximation

The exact Hamiltonian Eq. (2.15) explicitly contains the scalar products p̂ ·A and A · p̂. Things
become much easier if the dipole approximation is introduced:

Usually the vector potential A(r, t) varies in space as

A(r, t) = A0 cos(k · r − ωt) , (2.16)

where k is the wave vector. If the interaction region is small and the vector potential is not
changing strongly within this area (k · r � 1), its spatial dependence can be neglected.
A Taylor expansion (up to first order) with respect to k · r gives

A(r, t) = A0 cos(k0r0 − ωt)︸ ︷︷ ︸
Adipole(r0,t)

−A0 sin(k0r0 − ωt)(kr − k0r0)︸ ︷︷ ︸
Aquadrupole(r,t)

+ . . . (2.17)

Therefore Adipole(r0, t) is independent of r and the electric field shows according to

Edipole(r, t) = −1
c

∂

∂t
Adipole(t) ≡ E(t) (2.18)

also only a time-dependent behavior. The main result is that p̂ and ADipole(t) commute:
[p̂,A(t)] = 0. Hence within the dipole approximation the interaction Hamiltonian, Eq. (2.15),
is given by (radiation gauge)

Ĥradiation
int =

1
c
A(r, t) · p̂+

1
2c2
A(r, t)2 . (2.19)

This representation of the interaction contains the vector potential and not the field itself. It is
often useful for theoretical approaches like the strong field approximation (SFA) discussed later
in this chapter. For numerical and practical reasons it is often better to use another gauge. The
quantum mechanical observables are invariant under the phase transformation

Ψ′(r, t) = exp
(
− i
c
A(r, t) · r

)
Ψ(r, t) . (2.20)

This is equivalent to a gauge transformation of the interaction Hamiltonian, Eq. (2.19). Using
the TDSE (2.12) and inserting the new wave function Ψ′(r, t) one resolves

i
∂

∂t
Ψ(r, t) =

(
1
2
p̂2 + r ·E(t) + V (r)

)
Ψ(r, t) . (2.21)
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2 Atoms in laser fields

Thus the new interaction part of Eq. (2.15) is given by

Ĥfield
int (t) = r ·E(t) (2.22)

which is the representation in field gauge. Eq. (2.22) is only correct within the dipole approxi-
mation. In the following the validity of this approximation shall be discussed.

The dispersion relation of a free electro-magnetic wave is given by

k = |k| = ω

c
. (2.23)

Therefore the product k · r for the Taylor expansion Eq. (2.17) is of the order 1/c ≈ 1/137
where a typical radius of r ≈ 1Å and a maximum energy of the exciting quantum of 1.0 a.u.
is assumed. These atomic parameters give a good upper boundary. For wavelengths of visible
light, 1/k ≈ 1000− 10000 Å, the product becomes even smaller: k ·r ≈ 10−3 . . . 10−4. Therefore
the dipole approximation is applicable for standard laser sources and atoms. If dipole forbidden
transitions become important (allowed for instance by quadrupole transitions or magnetic field
induced transitions) it fails earlier. In strong fields this scenario may be realistic. For XUV
pulses and/or larger geometries the product k · r has to be evaluated and compared to 1/c.

2.3 Overview of theoretical approaches

Since an exact analytical solution of the TDSE is not possible, many theoretical tools for its
approximate solution have been developed in the last decades. While the perturbation theories
for weak field effects were discovered very early in the history of quantum mechanics the accurate
description of strong field effects especially for Coulomb-like long-range potentials is still actively
studied [4, 24].

2.3.1 Perturbative methods

The best-known method to calculate transition probabilities induced by an external time-
dependent field is the time-dependent perturbation theory. Its derivation is outlined in most
textbooks on quantum mechanics, e.g. [25]. In [26] the focus lies especially on atomic systems.

The basic idea is to split the total Hamilton operator:

Ĥ = Ĥatom + Ĥint(t) . (2.24)

Ĥatom is usually the unperturbed atomic system with known eigenenergies En and eigenfunctions
|φn〉

Ĥatom|φn〉 = En|φn〉 . (2.25)

Ĥint(t) describes, as in the previous case, the interaction with the electro-magnetic radiation but
is assumed to be small compared to Ĥatom.

Let the system at the time t0 be in the eigenstate |φn〉. Now the perturbation, i. e., the laser
field is switched on. It induces transitions between the energy levels |φn〉 ↔ |φm〉. By expanding
the perturbed solution in terms of the complete orthonormal system of Ĥatom one finally obtains
for the probability amplitude to find the system in the state |φm〉

cm(t) = δmn − i

~

∫ t

t0

dτ 〈φm|Ĥint(τ)|φn〉 exp [i(Em − En)τ ] . (2.26)

12



2.3 Overview of theoretical approaches

The Kronecker symbol δmn indicates the initially populated state |φn〉. Hence the probability
to find the system in a different state |φm〉 is given by

pm(t) = |cm(t)|2 =
1
~2

∣∣∣∣∫ t

t0

dτ 〈φm|Ĥint(τ)|φn〉 exp [i(Em − En)τ ]
∣∣∣∣2 for m 6= n . (2.27)

For perturbations with monochromatic character, i. e., Ĥint(t) = V̂0 sin(ωt) with the frequency
ω and a coupling to continuous states |φm〉, the integral in Eq. (2.27) can be evaluated analyti-
cally and one determines in the limit t→∞ the famous golden rule of Fermi:

P−n→m =
2π
~

∣∣∣〈φm|V̂0|φn〉
∣∣∣2 δ(Em − En + ~ω) for m < n , (2.28)

P+
n→m =

2π
~

∣∣∣〈φn|V̂0|φm〉
∣∣∣2 δ(Em − En − ~ω) for m > n . (2.29)

These equations describe the induced emission (P−n→m) and the induced absorption (P+
n→m) of a

photon with the energy ~ω. The δ-function assures energy conservation. Eqs. (2.28) and (2.29)
can only be applied to transitions into continuous states.

2.3.2 Strong field approximation (SFA)

Keldysh was the first who described strong field processes on a non-perturbative level [18].
His approach gives access to ionization rates in a closed analytical form and demonstrates the
treatment of high-intensity fields.

The transition probability amplitude of a system initially prepared in the state |φi〉 to a final
state |φf 〉 reads according to [24]

pi→f = −i
∫ ∞
−∞

dt 〈φf (t)|Ĥint(t)|φi(t)〉 . (2.30)

One recognizes the similarity to the time-dependent perturbation theory, Eq. (2.26). Again
Ĥint is determined by Eqs. (2.19) or (2.22). If the state |φf 〉 is a full solution of the TDSE
this expression is exact. But of course this solution is unknown, thus one has to make a reliable
approximation for the final state. Keldysh used the wave function of a free electron in a changing
electro-magnetic field, the so-called Volkov states:

φf (k, r, t) =
1

(2π)3/2
exp (ik · r) exp

(
−ik

2

2
t

)
exp [iδ(k, r, t)] , (2.31)

where δ(k, r, t) is the Volkov phase

δ(k, r, t) = A?(t) · r − k
∫ t

∞
dt′A?(t′)− 1

2

∫ t

∞
dt′
[
A?(t′)

]2
. (2.32)

A? denotes the vector potential A multiplied by c. Eq. (2.31) is the solution of the TDSE (2.12)
without the atomic potential V (r).

For the case of a monochromatic linearly polarized laser field with frequency ω the Volkov
state can be written as [cf. Eq. (D.3)]

φf (k, r, t) = exp (ik · r − iEV t+ δosz) . (2.33)

δosz indicates a time-dependent oscillating phase. The energy EV is constantly shifted by the
term Up:

EV =
k2

2
+

1
4
E2

0

ω2
=
k2

2
+ Up . (2.34)
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2 Atoms in laser fields

This additional energy is nothing else than the ponderomotive energy derived classically in
Chapter 2.1.1, Eq. (2.4).

The initial state in Eq. (2.30) is given in terms of a bound electron state, i.e., an eigenfunction
of the unperturbed Hamiltonian. Better accuracy can be achieved if the time-dependent Stark
and Zeeman effects, which affect the electronic structure of atoms in laser fields, are included.
Using circularly polarized light fields and the free Volkov states Keldysh was able to resolve
the rates for MPI and tunnel ionization, Eqs. (2.8) and (2.10). The generalization to linearly
polarized fields was given by Reiss [27]. Faisal derived similar expressions earlier with the use of
another gauge [28]. Therefore the SFA is also known as Keldysh-Faisal-Reiss (KFR) theory.

The Volkov states cannot accurately describe the transition rates for long-range potentials
like the Coulomb potential. Since the final state has a plane-wave character no correction due
to the additional ionic potential is included. Such effects are called Coulomb effects. Recent
works use distorted wave approximations where the final Volkov states are multiplied with a
Coulomb-induced distorting function. The most commonly used method is based on the first
Born approximation [24] and is referred to as Coulomb-Volkov-Approximation (CVA). Many
comparisons between those approaches and benchmarking numerical full TDSE solutions are
available in the literature, e.g. in [4, 29, 30] — an example is presented in Chapter 5.2.2.

2.3.3 Floquet states

Quasi-energy-states (QES) offer another important tool for the evaluation of ionization rates
in intense laser fields. This shall be mentioned only briefly, although it is a widely used and
powerful approach. Delone and Krainov give a broad outline of this method in [19]. A short
introduction can be found in [26].

For a monochromatic external field with frequency ω, the Hamilton operator possesses a
periodic time dependence with the period T = 2π/ω. Thus a possible ansatz for the solution of
the TDSE is

Ψ(t) = exp (iEt) ΦE(t) with ΦE(t+ T ) = ΦE(t) , (2.35)

and therefore leads to a solution with the same period except for the phase. By inserting this
ansatz into the TDSE one obtains the defining equation for ΦE :(

Ĥ − i ∂
∂t

)
ΦE(r, t) = EΦE(r, t) . (2.36)

This is an eigenvalue problem for the operator Ĥ − i∂/∂t. The eigenenergies are quasi energies
and the corresponding eigenstates ΦE are Floquet states. For this problem time-independent
perturbation theory is applicable. Applications and detailed calculations of ionization rates can
be found in the monograph of Manakov [31].
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3 Numerical method

This chapter deals with the numerical solution of the one-particle time-dependent Schrödinger
equation (TDSE). As discussed before in Chapter 2.2 this gives the opportunity to study ion-
ization and scattering processes on a microscopic scale within the one-particle picture without
any further approximations.

The first part contains a detailed description of the numerical solution of the TDSE in terms of
an implementation of the Crank-Nicolson procedure on spatial grids. Different types of bound-
ary conditions are discussed. Afterwards we address the construction of initial conditions. Two
techniques, namely the imaginary time stepping and the shooting method are mentioned. As the
focus of this thesis lies on effects in laser fields the transformation of the TDSE to an adapted
coordinate frame [Kramers-Henneberger (KH) frame] is introduced. The following paragraph
deals with the computation of observables and energy spectra. One central problem is the mod-
elling of a detector for scattered parts of the wave function (fast electrons). Finally this chapter
closes with a description of the implementation scheme in the programming language C.

3.1 The numerical solution of the Schrödinger equation

In spatial coordinate representation, the Schrödinger equation for a single particle reads

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t) . (3.1)

Ĥ is the Hamilton operator which is defined as:

Ĥ = − ~2

2m
∆ + V (r, t) , (3.2)

and V (r, t) denotes the potential energy which includes all time-dependent external excita-
tions such as laser fields or static (time-independent) ionic potentials. Additional confinement
potentials can also be treated with this term.
In the atomic system of units (~ = m = e = 1) Eq. (3.1) transforms into

i
∂

∂t
Ψ(r, t) = −1

2
∆Ψ(r, t) + V (r, t)Ψ(r, t) . (3.3)

The numerical solution of the TDSE is a widely studied subject. There exist many different
approaches. Each computational technique has its own range of applicability. One has to choose
the best fitting procedure according to the system of investigation. This may enormously affect
the resulting efficiency and accuracy. For an overview see e.g. [32].

The central systems investigated throughout this work are scattering situations in one and
two dimensions. Spatial cartesian coordinates become apparent to be the optimal choice for the
representation of the TDSE. The numerical schemes best adapting these types of systems are
grid methods based on finite differences.
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3 Numerical method

Ψ1 ΨN

∆xi = 1 i = N

Figure 3.1: Schematic view of the one-dimensional grid. The TDSE is solved within the marked region.
i = 1 and i = N are given by the boundary conditions.

3.1.1 1D-Crank-Nicolson method

The TDSE is a complex diffusion-like initial value problem supplemented by boundary condi-
tions. In order to construct a stable differencing scheme it is necessary to use a fully implicit
second order method since explicit schemes are not assuring the unitarity of the wave function
[33].

The one-dimensional version of Eq. (3.3) reads

i
∂

∂t
Ψ(x, t) = −1

2
d2

dx2
Ψ(x, t) + V (x)Ψ(x, t) . (3.4)

Its formal solution is well-known:

Ψ(x, t) = e−iĤtΨ0(x) . (3.5)

Ψ0(x) represents the initial wave function for t = 0. Ĥ is assumed to be time-independent. This
is true even for time-dependent external potentials because only the time evolution for very
small times ∆t is important while the external perturbation is supposed to be nearly constant.
A differencing scheme in time which leads to the Crank-Nicolson procedure is based on Cayleys
form of the operator e−iĤt [33]:

e−iĤt ≈ 1− 1
2 iĤ∆t

1 + 1
2 iĤ∆t

. (3.6)

This expansion implies a unitary time evolution, hence the normalization of the wave function∫ ∞
−∞
|Ψ(x, t)|2dx

is assured to be one for all times t. Using Eq. (3.6) one resolves for the time propagation of ∆t
of a state Ψ(x, t) ≡ Ψn

i to the state Ψ(x, t+ ∆t) ≡ Ψn+1
i(

1 +
1
2
iĤ∆t

)
Ψn+1
i =

(
1− 1

2
iĤ∆t

)
Ψn
i . (3.7)

The index i indicates the spatial discretization with the step size ∆x whereas the superscript n
denotes discretization in time with time step ∆t. Now, the Hamiltonian Ĥ is replaced by a finite
difference approximation. Throughout this work a second-order expression for the derivatives is
used:

∂2
xΨn

i ≡
d2

dx2
Ψ(x, t) ≈ Ψn

i+1 − 2Ψn
i + Ψn

i−1

(∆x)2
. (3.8)

Combining Eqs. (3.7) and (3.8) with the notations

α =
1
4
i

∆t
(∆x)2

(3.9)
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3.1 The numerical solution of the Schrödinger equation

and
ai = −α = ci , bi = 1 + 2α+

1
2
i∆tV n+1

i , i = 2 . . . N − 1 (3.10)

yields for the left hand side of Eq. (3.7):(
1 +

1
2
i∆tĤi

)
Ψn+1
i = aiΨn+1

i−1 + biΨn+1
i + ciΨn+1

i+1 . (3.11)

Analogously the right hand side of Eq. (3.7) transforms into(
1− 1

2
iĤ∆t

)
Ψn
i = Ψi

(
1− 2α− 1

2
i∆tV n

i

)
+ αΨn

i−1 + αΨn
i+1 ≡ rni , (3.12)

i = 2 . . . N − 1 .

Expressing the combination of Eq. (3.11) and Eq. (3.12) in matrix form one obtains a tridiagonal
system of linear equations for the unknown variable Ψn+1

i :
b1 c1 0 0
a2 b2 c2 0
. . . .
0 0 aN bN

 ·


Ψn+1
1

Ψn+1
2

.

Ψn+1
N

 =


rn1
rn2
.
rnN

 . (3.13)

The elements b1, c1 and rn1 are defined by the boundary conditions at the left edge of the grid,
see Chapter 3.1.4. In analogy, bN , cN and rnN are defined at the right edge. Eq. (3.13) can be
solved very efficiently, for instance with algorithms found in [33], Chapter 2.6. Unfortunately, in
the most common numerical libraries (e.g. GNU scientific library, NAG) no specialized routines
are implemented.

3.1.2 Solving the two-dimensional Schrödinger equation

In the following section a generalization of the one-dimensional Crank-Nicolson procedure to 2D
grids is presented. It is based on the operator splitting technique.
Already expanded by the usage of Cayleys form, the TDSE in two spatial coordinates reads [cf.
Eq. (3.7)]: (

1 +
1
2
i∆tĤ

)
Ψ(x, y, t+ ∆t) =

(
1− 1

2
i∆tĤ

)
Ψ(x, y, t) . (3.14)

Similar to the 1D case, a finite differencing scheme for the 2D Hamilton operator

Ĥ = −1
2

(
d2

dx2
+

d2

dy2

)
+ V (x, y) (3.15)

has to be derived. The wave function Ψ(x, y, t) and Ĥ are replaced by their discretized versions
Ψn
i,j and Ĥi,j . The indices i, j denote the spatial grid coordinates x and y (Fig. 3.2). Again, n

denotes the discretization in time.

Since the potential energy operator V̂ is diagonal in the spatial coordinate representation its
replacement by a discrete function Vi,j is simple:

V (x, y)Ψ(x, y, t)→ Vi,jΨn
i,j . (3.16)

The differential operators are approximated in second order [cf. Eq. (3.8)] by

d2

dx2
Ψ(x, y, t) ≈ Ψn

i+1,j − 2Ψn
i,j + Ψn

i−1,j

(∆x)2
≡ ∂2

xΨn
i,j , i, j = 2 . . . N − 1 (3.17)
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∆x

∆y

i = 1
j = 1

i = N
j = M

given by boundary conditions

x

y
Figure 3.2: Schematic view
of the two-dimensional grid.
The white region is defined by
the boundary conditions (val-
ues fixed). Within the central
region the tridiagonal equation
system is solved via the oper-
ator splitting method. Usually
∆x = ∆y is chosen.

d2

dy2
Ψ(x, y, t) ≈ Ψn

i,j+1 − 2Ψn
i,j + Ψn

i,j−1

(∆y)2
≡ ∂2

xΨn
i,j , i, j = 2 . . . N − 1 (3.18)

∆x and ∆y are the parameters of the spatial grid in the x and y direction. For simplicity
∆x = ∆y is chosen. Hence the discretized version of Eq. (3.14) becomes with

Ĥ → Hi,j = −1
2
(
∂2
x + ∂2

y

)
+ Vi,j : (3.19)(

1 +
1
2
i∆tĤi,j

)
Ψn+1
i,j =

(
1− 1

2
i∆tĤi,j

)
Ψn
i,j . (3.20)

Comparing Eq. (3.20) with its one-dimensional analogon, Eq. (3.7), one recognizes the addi-
tional index j. The straightforward solution leads to a system of equations which has additional
diagonal elements. It is obviously not tridiagonal (tridiagonal with fringes). Since the solution of
such systems requires a lot more computational effort as well as storage memory for the matrix
elements an alternative procedure has been chosen: The alternating direction implicit (ADI)
method.

The basic idea is to perform the finite differencing steps independently in the x and y direc-
tion. An additional step is done for the potential V . To ensure the same accuracy as in the
one-dimensional case the size of the time step is decreased by a factor of three. The underlying
mathematical treatment is given by the operator splitting technique [33].

Hence, the whole propagation scheme can be expressed as(
1− 1

4
i
∆t
3
∂2
x

)
Ψ
n+ 1

3
i,j =

(
1 +

1
4
i
∆t
3
∂2
x

)
Ψn
i,j , (3.21)(

1− 1
4
i
∆t
3
∂2
y

)
Ψ
n+ 2

3
i,j =

(
1 +

1
4
i
∆t
3
∂2
y

)
Ψ
n+ 1

3
i,j , (3.22)(

1 +
1
2
i
∆t
3
Vi,j

)
Ψn+1
i,j =

(
1− 1

2
i
∆t
3
Vi,j

)
Ψ
n+ 2

3
i,j . (3.23)

The first two equations belong to the spatial dimensions x and y whereas the third step involves
the potential. The major advantage is that each individual sub step in x and y direction can be
evaluated similar to the 1D case.

Thus, the first step gives for the left hand side of Eq. (3.21)(
1− 1

12
i

∆t
(∆x)2

∂2
x

)
Ψ
n+ 1

3
i,j = aiΨ

n+ 1
3

i−1,j + biΨ
n+ 1

3
i,j + ciΨ

n+ 1
3

i+1,j . (3.24)
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3.1 The numerical solution of the Schrödinger equation

And for the right hand side analogously(
1 +

1
12

∆t
(∆x)2

i∂2
x

)
Ψn
i,j = αΨn

i+1,j + (1− 2α) Ψn
i,j + αΨn

i−1,j ≡ rni (3.25)

with the notations

α =
1
12
i

∆t
(∆x)2

, ai = −α = −ci , bi = (1 + 2α) . (3.26)

Like in the 1D case this is a tridiagonal system of equations for the unknown variable Ψ
n+ 1

3
i,j :

ai ·Ψn+ 1
3

i−1,j + bi ·Ψn+ 1
3

i,j + ci ·Ψn+ 1
3

i+1,j = rni . (3.27)

During this step, only the x-direction is propagated. The solution for the y-direction is calculated
in the same manner and yields

aj ·Ψn+ 2
3

i,j−1 + bj ·Ψn+ 2
3

i,j + cj ·Ψn+ 2
3

i,j+1 = r
n+ 1

3
j (3.28)

with
r
n+ 1

3
j = αΨ

n+ 1
3

i,j+1 + (1− 2α)Ψ
n+ 1

3
i,j + αΨ

n+ 1
3

i,j−1 . (3.29)

Finally, the last sub step for the potential, Eq. (3.23), gives

Ψn+1
i,j =

(
1− i∆t

6
Vi,j

)
Ψ
n+ 2

3
i,j ·

(
1 + i

∆t
6
Vi,j

)−1

=
(1− β)
(1 + β)

Ψ
n+ 2

3
i,j (3.30)

with β = i∆tVi,j/6.

Beyond two dimensions

Obviously, this procedure can easily be extended to 3D systems involving four sub steps. It
is also usable to solve the multi-particle Schrödinger equation since it is basically a d × N -
dimensional problem. d denotes the spatial degrees of freedom and N the number of particles.
The many-body Hamiltonian can be applied in terms of the operator splitting method for each
sub dimension of the d×N dimensional Hilbert space. Of course, with each additional dimension
of the system the computation time and the memory usage increase enormously. Hence, for
more than two particles this method is not applicable and one has to use theoretical many-body
approaches like non-equilibrium Green’s functions (NEGF) or time-dependent density functional
theory (TDDFT).

3.1.3 Accuracy, stability and efficiency

The Crank-Nicolson procedure is an unconditionally stable differencing scheme. Thus it assures
the normalization to unity of the wave function as mentioned above independently of the grid
parameter ∆x and the time step size ∆t. The accuracy of the calculated solution of course
does depend on those parameters. Numerical convergence tests on simple example systems are
demonstrated in the next chapter. As the method is second order in time and space the accuracy
increases by a factor of four if the step sizes are halved.
The numerical effort depends most on the algorithm which solves the tridiagonal system of
linear equations. For each time step such a system with some ten thousand unknowns has to be
computed. Efficient algorithms [33] based on the LU decomposition scale with O(N) where N
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dim Ψ coefficient in equation system

1 Ψn
i=1 = 0

Ψn
i=N = 1

a1 = aN = 0
b1 = bN = 1 + i
c1 = cN = 0
r1 = rN = 0

2 Ψn
i=1, j=1...M

Ψn
i=N, j=1...M

Ψi=1...N, j=1

Ψn
i=1...N, j=M

a1, j=1...M = aN, j=1...M = 0
b1, j=1...M = bN, j=1...M = 1 + i
c1, j=1...M = cN, j=1...M = 0
r1, j=1...M = rN, j=1...M = 0
analogous

Table 3.1: Dirichlet boundary conditions and the “edge” coefficients in the tridiagonal system of equa-
tions.

is the number of grid points. Thus the Crank-Nicolson method allows for a very fast algorithm
for solving diffusion-like partial differential equations.

For 2D systems the total computation time and needed memory scales with O(N ×M). The
maximum grids available for computations on common computer hardware are therefore limited
to ≈ 6000 × 6000 grid points. For long simulation runs of several ten thousand time steps
even this size exceeds the capacity of usual personal computers. A recently developed high
order method promises to enhance the accuracy enormously [34] allowing for larger time steps.
However it was not implemented during this work.

3.1.4 Boundary conditions

The initial value problem of the TDSE is supplemented by boundary conditions. Several pos-
sibilities are available. The best-known are Dirichlet and von Neumann boundary conditions
which close the partial differential equation mathematically. Within this work only the first
one is considered. The second one can be used to introduce flows at the grid edges by setting
the derivative of the wave function to a finite value. The central calculations during this thesis
concern problems where effects of the finite numerical grids have to be avoided. There exist some
numerical useful approaches to minimize these boundary effects. A mathematical non-rigorous
method in terms of imaginary absorbing potentials is discussed below.

Dirichlet boundary conditions

The conditions
lim
x→∞Ψ(x, t)→ 0 and lim

x→−∞Ψ(x, t)→ 0 (3.31)

create a simulation box with reflecting grid boundaries. It assures the conservation of the
normalization for all times if no dissipation is artificially included (e.g. absorbing potentials,
see below). Eq. (3.31) can be fulfilled if the wave function vanishes for all times t at the grid
edges. This can be assured by setting the first and the last elements in the tridiagonal system
of equations according to Table 3.1. Obviously, this type of boundary conditions requires very
large grids in order to allow for long simulation runs without influence of reflected parts of the
wave function.
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3.1 The numerical solution of the Schrödinger equation

Periodic boundary conditions

The solution of the TDSE with periodic boundary conditions Ψn
i=0 = Ψn

i=N is also possible.
But the occurring system of linear equations is not tridiagonal. Two additional elements d and
e appear in the matrix of the coefficients. Such systems are called cyclic tridiagonal equation
systems and have the form

b1 a1 0 d
a2 b2 a2 0
. . . .
e 0 aN bN

 ·


Ψn+1
1

Ψn+1
2

.

Ψn+1
N

 =


rn1
rn2
.
rnN

 .

Reference [33] again gives an algorithm to solve this problem.

Absorbing boundary conditions

Pure Dirichlet boundary conditions require very large grids to allow for long calculations without
any disturbance from edge-reflecting parts of the wave function. To overcome this limitation
absorbing boundary conditions are useful. There are basically two methods to be found in the
literature.

The first one is especially important for one-dimensional calculations. It is based on a math-
ematical theory which allows to absorb the wave function at a specific grid point exactly [35].
Its computational implementation is difficult and for high-dimensional systems not applicable
[36]. Thus it is not used within this work. The second method uses additional potentials in the
system and enables a rather simple implementation.

If an imaginary part is added to the potential V (x) in the system the wave function Ψ(x, t) is
damped during time propagation over this region. This can be explained in terms of the equation
of continuity since this imaginary part of V acts like a dissipation term. One finds that this
damping increases with higher energies of the propagated particle. Thus the faster, for instance,
a wave packet like an electron travels the more it can be efficiently absorbed by the potential.
This becomes important for situations where fast electrons are produced by scattering processes
(Chapter 6). It has to be mentioned that those absorbing potentials have to be chosen carefully.

Every change in the potential, no matter if real or imaginary, leads also to a reflected part of
the wave function. This can be minimized by using potentials which slowly vary in space. In
this work only linear absorber potentials of the form

V (x) = i(a · x− V0) (3.32)

are used. The parameters for good damping and negligible reflection V0 and a are chosen by
experience. It appears that both have to be small (of the order 0.1 . . . 0.01). If grid sizes do
really matter more efficient potentials are available in the literature [37, 38]. Fig. 3.3 (a) shows
the implemented linear absorbing potential for a 2D grid. Fig. 3.3 (b) displays the absorption
of a one-dimensional wave packet. Only a very small fraction (10−7) survives the damping and
is reflected. These kinds of boundaries are of course not boundary conditions in a mathematical
sense. The equation system (3.13) still has to be closed by usual Dirichlet conditions.

3.1.5 Initial conditions

The time propagation of the TDSE needs an initial state Ψ0(r) = Ψ(r, t = 0). It describes the
system before excitation (for example a laser field) is turned on. Two different situations are
distinguished: Either the system is in an eigenstate of the ionic potential (bound electron) or
the wave function represents a moving particle (e.g. Gaussian wave packet, see Chapter 4.2).
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Figure 3.3: The implemented linear imaginary absorbing potential iV (x)

In the following two different procedures to construct eigenstates are discussed: The solution
of the time-independent Schrödinger equation by a symplectic scheme and the iteration of the
TDSE in imaginary time direction. The first one is rather efficient for one- and special two-
dimensional systems whereas the latter can be applied to arbitrary potentials and dimensions.

Solving the stationary Schrödinger equation

The eigenstates ψn of a 1D system with the potential V are given by the stationary Schrödinger
equation

−1
2

d2

dx2
ψn(x) + V (x)ψn(x) = Enψn(x) , (3.33)

where En are the corresponding energy eigenvalues. One simple method to solve Eq. (3.33) is
the shooting method [39]. This is a special case of the so called Two Boundary Value Problem.
The idea is to probe for each energy E if it is an allowed eigenvalue En. This is only true for
functions ψn(x) which satisfy all given boundary conditions. In most cases the wave function
has to disappear at infinity.

The algorithm reads:

1. select an arbitrary energy E

2. integrate Eq. (3.33) from the left with boundary conditions ψ(x→ −∞) = 0 and
d

dxψ(x)|x→−∞ 6= 0

3. if boundary condition ψ(x→∞) = 0 is satisfied, an eigenvalue E is found, if

ψ(x→∞) −→∞ try another energy

The usage of the bisection method in the vicinity of the eigenvalues enhances this method. The
shooting algorithm is only applicable for two-dimensional problems if the wave function ψ(x, y)
can be separated into a product ψ(x, y) = φ1(x) · φ2(y). Then the shooting algorithm can be
applied for each dimension individually.
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3.2 Including the laser field

Imaginary time propagation (ITP)

If a time propagation code already exists, it can easily be used to calculate stationary states by
replacing the time step ∆t by an imaginary time i∆t [36]. An arbitrary state can be written as
a superposition

|Ψ(t)〉 =
∑
j

cj exp(−iEjt)|ψj〉 , (3.34)

with |ψj〉 describing the stationary states. Now if the imaginary time is inserted, one obtains

|Ψ(t)〉 =
∑
j

〈ψj |Ψ(t)〉 exp(Ejt)|ψj〉 (3.35)

and the corresponding states are exponentially decaying or increasing during the TDSE propa-
gation depending on the sign of the energy eigenvalue. Only the ground state survives because
it decays less or increases much faster than the other states. Of course this scheme does not
conserve the normalization of the wave function thus the wave function has to be renormalized
at each time step.

Excited states are also available. The orthogonalization of |ψ(t)〉

|ψ⊥n+1〉 = |ψn+1〉 −
n∑
i=0

〈ψn+1|ψi〉 · |ψi〉 (3.36)

which is, in coordinate representation,

ψ⊥n+1(r) = ψn+1(r)−
n∑
i=0

(∫ ∞
−∞

d3rψ∗n+1(r)ψi(r)
)
· ψi(r) (3.37)

at each time step will force the wave function to converge to the next unknown eigenfunction.

During the imaginary iteration procedure several convergence indicators can be used. The
total energy appears to be an improper criterion especially for higher excited states. Its con-
vergence is very fast but not sensitive to density changes. Thus a density based quantity such
as

∆ξ =
∫ ∞
−∞
|Ψ(x, t)−Ψ(x, t+ ∆t)|2 dx (3.38)

seems to be of higher accuracy. Fig. 4.8 shows a comparison between the shooting method and
the imaginary time propagation applied to the one-dimensional Coulomb potential. The big
advantage of the ITP is that it works as well for higher dimensions (cf. Fig. 4.10).

3.2 Including the laser field

Chapter 2.2.1 describes the different possibilities to represent the laser field. Two gauges were
introduced, the length gauge and the radiation gauge. The numerical treatment of the TDSE is
performed within the field gauge in dipole approximation:

−1
2

d2

dx2
Ψ(x, t) + Vatom(x)Ψ(x, t) + f(t)E0x sin(ωt)Ψ(x, t) = i

∂

∂t
Ψ(x, t) . (3.39)

The laser parameters are the frequency ω, the electrical field strength E0 and the shape (or
envelope) function f(t). The laser field is updated at each complete time step n→ n+ 1.
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3 Numerical method

3.2.1 The Kramers-Henneberger frame of reference

Additionally a second powerful method is implemented which can decrease the needed spatial
grid sizes. It is convenient to describe processes in laser fields not only in the usual laboratory
frame of reference [Eq. (3.39)] but in a transformed frame, the so called Kramers-Henneberger
(KH) coordinate frame [40, 41, 42]. In the following the TDSE in the new coordinate represen-
tation will be derived.

The Schrödinger equation in the laboratory frame reads in minimal coupling:

1
2

(
1
i
∇− 1

c
A(t)

)2

Ψlab(r, t) + V (r)Ψlab(r, t) = i
∂

∂t
Ψlab(r, t) . (3.40)

Now, we can introduce a new wave function ΨKH(r, t) = ÛΨlab(r, t) which is generated by
the unitary transformation

Û = exp
(
i

∫ t

−∞
Ĥint(τ)dτ

)
= exp

[
i

∫ t

−∞

(
i

c
A(τ) ·∇ +

1
2c2
A2(τ)

)
dτ
]
. (3.41)

Ĥint includes the field part of the Hamiltonian, hence

Ĥint =
1
2

(
1
i
∇− 1

c
A

)2

+
1
2

∆ . (3.42)

Since the dipole approximation is used (A is independent of r) we can split the transformation
operator

Û = Û transl · Ûphase = exp
(
−
∫ t

−∞
1
c
A(τ) ·∇dτ

)
· exp

(
i

2c2

∫ t

−∞
A2(τ)dτ

)
. (3.43)

The operator Û transl is simply a translation operator. Its action on an arbitrary function f(r)
is given by

Ûf(r) = f

(
r −

∫ t

−∞
1
c
A(τ)dτ

)
. (3.44)

In Appendix C, it is shown that ΨKH(r, t) satisfies

−1
2

∆ΨKH(r, t) + V [r +α(t)]ΨKH(r, t) = i
∂

∂t
ΨKH(r, t) , (3.45)

with α = − ∫ t−∞ 1
cA(τ)dτ . This is the Schrödinger equation in the Kramers-Henneberger frame.

An interpretation is straightforward: For a vanishing scalar potential φ one determines the
electrical field from the relation E = −1

c
∂
∂tA and hence

∂2

∂t2
α = −1

c

∂

∂t
A(t) = E(t) (3.46)

holds. Thus the atomic potential is shifted by the classical free electron displacement. This
can be interpreted as the observer “sitting” on the electron which performs the classical quiver
motion in the external electric field. The big advantage of the KH frame is the vanishing potential
at large distances from the center of the grid. In field gauge the Schrödinger equation contains
V (x) = Ex sin(ωt) which produces large potential energies far away from the atomic potential.
Within the KH frame the electron behaves like a free particle in regions far away from the ion.
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Figure 3.4: Behavior of a wave packet in a laser field. No additional potentials are included. Shown is a
comparison between the calculation in the KH (a) and the laboratory frame (b). (a) can be transformed
into (b) by applying a shift with b(t) which corresponds to the classical movement of the electron (c). The
left figures show the density |Ψ(t)|2 for different times. The right figures display the laser excitation, the
expectation value of x in the laboratory frame and the transformation function b(t) given by Eq. (3.50)

3.2.2 Back and forward transformation of the Kramers-Henneberger frame

The transformation to the KH frame is given by Eq. (3.43). The backward transformation to
the laboratory frame can therefore be written as

Û−1 = exp
(∫ t

−∞
1
c
A(τ)dτ∇

)
· exp

(
− i

2c2

∫ t

−∞
A2(τ)dτ

)
. (3.47)

A free electron in a laser field E(t) = E0 · sin(ωt) illustrates the advantage of the KH-frame.
First of all the vector potential A for the chosen electric field is calculated:

A(t) = −c
∫ t

0
E(t)dτ =

cE0

ω
[cos(ωt− 1)] . (3.48)

The transformation operator Û1 evaluates to

Û1 = exp
[
−E0

ω

(∫ t

0
cos(ωτ)dτ − t

)
∇
]

= exp
[
−
(
E0

ω2
sin(ωt)− E0

ω
t

)
∇
]
, (3.49)

which corresponds to a shift of the density

b(t) =
E0

ω2
sin(ωt)− E0

ω
t . (3.50)

b(t) is exactly the classical shift of the electron. The phase transformation of the wave function
is not important in this example. By applying the translation operator Û1 with the function b(t)
both calculations yield the same results, as shown in Fig. 3.4. The mean value 〈x〉(t) calculated
within the laboratory frame has exactly the same behavior as the translation function b(t).
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3 Numerical method

3.3 Calculation of expectation values

Several physical observables can be calculated from the wave function Ψ(t). In the following, only
1D calculations are shown. The same methods apply to 2D systems if an additional integration
variable for the y-direction is included. Diagonal operators are the simplest to calculate:

• normalization Γ of Ψ(x, t):

Γ(t) =
∫ ∞
−∞
|Ψ(x, t)|2dx ≈

N∑
i=1

|Ψn
i |2 ·∆x , (3.51)

• potential energy Epot(t) with respect to the ionic potential (no laser field energy included):

Epot(t) = 〈V 〉(t) =
∫ ∞
−∞
|Ψ(x, t)|2V (x)dx ≈

N∑
i=1

|Ψn
i |2Vi ·∆x , (3.52)

• expectation value of x

〈x〉(t) =
∫ ∞
−∞
|Ψ(x, t)|2xdx ≈

n∑
i=0

|Ψn
i |2xi ·∆x . (3.53)

Non-diagonal operators require more computational effort. For example the kinetic energy is
calculated using two different methods:

First, it is obvious to use the relation

Ekin(t) =
〈
−1

2
d2

dx2

〉
Ψ(x,t)

= −1
2
〈Ψ|Ψ′′(x, t)〉 . (3.54)

The main numerical task is to calculate the second derivative of Ψ(x, t). The easiest way is the
approximation by two applications of the difference quotient

f ′(x) ≈ f(x)− f(x+ ∆x)
∆x

, (3.55)

which is not very accurate.

An alternative procedure uses the wave function in momentum representation Ψ(k, t) which
can be obtained via a Fourier transform of Ψ(x, t) with respect to the x-coordinate (Chapter
3.4.1). Within this representation the operator of the kinetic energy is diagonal thus no derivative
is needed and its calculation is easy:

Ekin(t) =
〈
k2

2

〉
Ψ(k,t)

=
1
2

∫ ∞
−∞

dk|Ψ(k, t)|2k2 . (3.56)

Since the fast Fourier transform (FFT) scales with O(N logN) this is the method of choice
especially for large 2D systems.

Finally, an important value is the energy that is introduced into the system by an external
laser field Efield. This quantity is of particular interest for testing the total energy conservation
of the numerical scheme in dependence on the parameters ∆x and ∆t. Efield should be equal
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3.4 Energy spectra

to the energy gain ∆E(t) = E0 − Ekin − Epot where E0 = E(t = 0). From the relation
dW/dt = −〈ẋ〉E(t) one obtains by integration by parts

Efield(t) = −
∫ t

t0

dt〈x(t)〉
(
∂

∂t
E

)
(t) . (3.57)

Efield describes the energy being absorbed by the particle in the laser field. Thus the total energy
of the whole system is given by

Etot = Ekin + Epot + Efield , (3.58)

which should be constant during time propagation.

3.4 Energy spectra

For many situations the energy distribution of the propagated wave function is an interesting
quantity. Two different methods are presented. The first can be applied easily to 1D systems
and the second shows its advantages in at least two-dimensional systems.

3.4.1 Free particle spectrum

In one dimension, the energy spectrum can be obtained by transforming the wave function into
momentum space via the Fourier transform with respect to the x-coordinate:

Ψ(k, t) =
1

2π

∫ ∞
−∞

dx exp(ikx)Ψ(x, t) . (3.59)

Using the free particle dispersion relation

E =
k2

2m
(3.60)

one can calculate the energy distribution Ψ(E) of the wave function. Now one big advantage
of the KH-frame comes into play: The potential energy vanishes for regions outside the interac-
tion, thus the particles are considered to be free and Eq. (3.60) can be applied. The direction of
scattering is indicated by the sign of the energy. Scattering to the left is defined to give negative
energies and scattering to the right results in positive energies.

This method obviously runs into problems if calculations are performed on a two-dimensional
grid. One has to choose one-dimensional lines on the grid and calculate one-dimensional FFT
spectra on those lines. But in this case interpolating routines have to be used. Within this work
an alternative procedure is chosen.

3.4.2 Detecting scattered particles

A different way which allows to calculate angle-resolved spectra in two (and more) dimensions
is to model a detector. This is simply done by storing the time-dependent wave function on
selected grid points. To resolve an energy spectrum, a Fourier transform with respect to the
time has to be performed:

Ψ(x,E) =
1

2π

∫ ∞
−∞

dt exp(iEt)Ψ(x, t) . (3.61)
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3 Numerical method

Figure 3.5: Geometry of the 2D detector. The wave function on the red marked grid points is stored
during the simulation for all time steps. A Fourier transform with respect to time allows for the calculation
of an angle and energy-resolved electron spectrum. The parameter K adjusts the angular resolution of
the detector. K = 1 represents the whole sphere and larger values of K increase the resolution ∆ϕ. The
angle ϕ denotes the direction of scattered particles. ϕ = 0 and ϕ = π correspond to the x-axis to the left
and right, respectively. The grey marked region displays the optional imaginary absorbing potential.

Fig. 3.5 shows the setup of a 2D circular detector. The radius r has to be large enough such
that near field effects are excluded and an experimental situation is imitated. The variable K
selects the detector resolution according to

∆ϕ =
2π
K

. (3.62)

The introduced angle ϕ describes the direction of scattering:
ϕ = 0 indicates scattering to the left (negative x values), ϕ = π scattering to the right. A big

advantage of this procedure is that the grid sizes can be much smaller if absorbing boundary
conditions are included. No fully spatial resolution of the wave function is needed. Only some
selected points of the detector are stored during the time propagation. However the amount of
data to be saved and processed to gather information about all angles is large and can easily
increase up to 20 GB for typical scattering simulations in two dimensions.

3.4.3 Comparison between both methods

A simple test of both detection methods is the calculation of a free particle energy spectrum. The
1D wave function of a free particle with k0 = 1.0 a.u. is propagated in time (Fig. 3.6). During
its movement it runs over the detector. The time series on this specified grid point is recorded
(lower figure). Applying both methods described above gives the same results and shows a
maximum at the expected value of E = k2

0/2 = 0.5 a.u. The width of the energy distribution
results from the finite time series as well as the finite spatial width of the wave packet. It agrees
with Heisenberg’s principle.
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Figure 3.6: Energy spectrum of a free particle (k = 1.0 a.u.). The upper left figure shows the time
evolution on the spatial grid. The dashed blue line indicates the detector grid point at x = 100 a.u. The
lower left figure displays the time-dependent value on this selected grid point. The right figures give the
energy spectrum of the particle: in the upper picture calculated via the momentum distribution (FFT
with respect to the x-coordinate) and the free particle dispersion relation, Eq. (3.60), and in the lower
figure via the detected wave function (FFT with respect to time t). Both methods agree perfectly with
the theoretical value k2

0/2 = 0.5 a.u.

3.5 Implementation in C

The methods described above are implemented in the programming language C. Fig. 3.7 shows
the flow diagram of the main program parts. The input file inp.ini contains all information
needed for a simulation run. A user manual and a commented input file come with the program
package. The code compiles under Linux with the GNU g++ compiler. Due to a live-gnuplot
viewing feature no other operating systems are supported. The FFT routines are taken from
the GNU scientific library (gsl). Thus it is needed for successful linking. An additional analysis
program (analyse.out) is available. It calculates the detector spectra and other expectation
values after the simulation run. The compiling and linking is done simultaneously with the main
program.
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Figure 3.7: Flow chart of the C-program
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4 Numerical concepts and basic calculations

This chapter begins with a discussion of selected numerical tests for the program introduced
and described previously. The convergence behavior of the Crank-Nicolson algorithm depending
on the parameters ∆t and ∆x is analyzed. Additionally, it was extensively tested on various
other systems [43, 44]. All the results obtained agree with the well-known solutions for simple
one-dimensional systems as well as for more complex multi-dimensional situations.

The second part of this chapter deals with useful concepts for numerical solutions of the
TDSE like the wave packet scattering formalism. It closes with a discussion of the one- and
two-dimensional Coulomb potential and its computational treatment in terms of a regularized
soft-core potential.

4.1 Convergence behavior of the CN-Method

The convergence behavior of the Crank-Nicolson grid method concerning the spatial grid reso-
lution ∆x and the discretization in time ∆t is essential. These two (user chosen) values are the
free parameters of the numerical algorithm. They surely affect the accuracy of the solution and
the efficiency of the algorithm. This kind of simulations always requires a compromise between
running time and accuracy of the solution. As an example, well-known simple quantum systems
are studied. The comparison of their analytical solution with the numerical treatment of the
TDSE gives estimations of the optimal parameter ranges.

4.1.1 1D harmonic oscillator

The first example checks the ∆x and ∆t dependence of the one-dimensional Crank-Nicolson
procedure. A coherent state is prepared in a harmonic confinement, Ω = 0.25 a.u. (Fig. 4.1),

V (x) =
1
2
mΩ2x2 . (4.1)

The first eigenstate [45]

ψ0 =
1√
σ
√
π

exp
(
−1

2
x2

σ2

)
, (4.2)
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Figure 4.1: Convergence tests: Schematic view of
the system. The ground state ψ0 of a harmonic os-
cillator, Ω = 0.25 a.u., is displaced to the position
x0 = 5.0 a.u. (coherent state)
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Figure 4.2: Behavior of the one-dimensional Crank-Nicolson method for different ∆t. ∆x = 0.1 is
fixed. The left figure shows the density of a coherent state in a harmonic confinement after two complete
oscillations (T = 4π/Ω). The time evolution of the potential energy and normalization is shown in the
right panel. The blue dashed line indicates the expected accurate period.

with σ = 1/
√

Ω = 2.0 a.u. is displaced to x0 = −5.0 a.u. from the center of the trap. It performs
a harmonic oscillation with the frequency Ω of the external potential without any deformation
of its initial Gaussian shape. The potential energy Epot oscillates with twice the trap frequency,
i.e., a period of T = π/Ω = 4π. Figure 4.2 shows the behavior of the TDSE solution for different
time step sizes ∆t for a fixed spatial grid resolution (∆x = 0.1).

The final density after T = 4π/Ω and the oscillation of the potential energy show a strong
dependence on ∆t. For large time steps it is deformed due to an occurring decoherency of the
state. Furthermore, the potential energy shows a strong damping and a shift of its period. This
is a direct result of insufficient numerical accuracy. The influence of the spatial step size is not
as dramatic although for very large ∆x the spatial oscillations of the wave function are too fine
for the chosen accuracy. Since the Crank-Nicolson method is unconditionally stable and unitary,
the normalization of the wave function equals one for all ∆t and ∆x. Therefore this observable
does not have any practical information concerning the accuracy of the simulation.

Figure 4.3 shows the error in the total energy depending on ∆t and ∆x after a time propagation
for two complete oscillations. Decreasing the spatial step size increases the accuracy of the
simulation with a power law behavior (second order). The dependence on ∆t shows a different
behavior. The accuracy cannot be increased below a significant step size depending on ∆x.
Hence if the time-dependent characteristics are resolved accurately enough, only the spatial step
size affects the total result. For the specific problem shown above, ∆t = 0.03 and ∆x = 0.1 are
a good compromise between computational effort and accuracy.

An analogous calculation for the behavior of externally excited systems (eigenstate in a dipole
laser field) leads to the same values for ∆t and ∆x. Calculations with these parameters are
shown in Chapter 5. This check does of course not imply universality. The obtained parameters
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give only a possible range. The convergence behavior, e.g. spectral features independent of ∆t
and ∆x etc., should be tested separately for each system studied. Otherwise, numerical artefacts
may influence the physical solution.

4.1.2 2D harmonic oscillator

The TDSE in more than one dimension is solved via the operator splitting method (cf. Chap-
ter 3.1.2). Therefore a different dependence on the simulation parameters is expected. The time
propagation of a coherent state in a two-dimensional harmonic oscillator potential

V (x, y) =
1
2
mΩ2(x2 + y2) , (4.3)

Ω = 0.25 a.u., is investigated. The dynamics of the first eigenstate excited to (x0, y0) =
(−3.0, 0.0) for one oscillation period T = 2π/Ω = 8π again depend on ∆x = ∆y and ∆t.
As in the one-dimensional example the potential energy oscillates with twice the trap frequency.
Figure 4.4 shows the time evolution of the potential energy and the normalization for different
parameters. A strong dependence on the time step size is visible. The potential energy oscillates
with a wrong frequency and undergoes a damping for large ∆t (decoherency effect like in the
1D case). The influence of the spatial grid resolution ∆x is smaller. The optimal parameter for
the spatial resolution can be identified as ∆x = ∆y = 0.1. Since the operator splitting method
performs two independent one-dimensional steps in each direction this result agrees with the 1D
harmonic oscillator. For the time step size ∆t = 0.01 is derived. This is no surprising result
because the two-dimensional method consists of three sub steps where each one is calculated
with a step size of ∆t/3.

4.2 Wave packet scattering

A central method used widely in this work is based on wave packet scattering. In the following a
short introduction to this formalism and its results compared to usual quantum approaches are
given. Although many calculations, especially for packets of Gaussian shape, can be performed
analytically, in this work all results have been resolved by using the numerical solution of the
TDSE since this method can be applied to arbitrary scattering geometries.

4.2.1 Method

The main focus of this work lies on wave packets with a Gaussian shape. In the 1D case it is
given by

Ψ(x, 0) =
1√
2πσ

exp
(
−(x− x0)2

2σ2

)
exp(ik0x) . (4.4)

The parameters are:

• σ: initial width of the wave packet

• k0: initial momentum of the wave packet

• x0: initial position of the wave packet center
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Figure 4.5: Wave packet scattering setup. The initial packet with the width σ is located at x0 left of a
potential whose scattering features are analyzed. It has the initial momentum k0 travelling to the right
towards the potential. After the scattering process the wave packet has separated into a reflected and a
transmitted part.

Central properties of potentials in quantum systems are the transmission and the reflection
coefficient - especially for scattering situations. These fundamental values can be calculated
using wave packets via

Pleft(t∗) =
∫ −a
−∞
|Ψ(x, t∗)|2 dx , Pright(t∗) =

∫ ∞
a
|Ψ(x, t∗)|2 dx , (4.5)

where P describes the probability of finding the particle left or right of the scattering region
(Fig. 4.5). These probabilities directly correspond to the transmission/reflection coefficients, if
Ψ is normalized to one and the time t∗ is chosen long enough after the scattering process. An
important free parameter is the width of the wave packet which plays an important role for the
energy resolution of the values. This can be illustrated with the next example.

4.2.2 Simple application: the potential well

The best-known system from standard quantum mechanics is the potential well. Figure 4.6
(b) illustrates the system and introduces the used parameters. The analytical result for the
transmission coefficient of the potential well describes resonances in the region of the eigenstates
of the infinite-depth potential well. Their energies are calculated via

En =
n2π2

8a2
− V0 . (4.6)

V0 is the depth of the potential well of width 2a. The corresponding momentum of a wave packet
is given by

kn =
√

2En =

√
2
(
n2π2

8a2
− V0

)
. (4.7)

The transmission coefficient shows resonance maxima for initial momenta k0 around kn. In the
calculations V0 = 2.88 and a = 2.5 are used (∆x = 0.1, ∆t = 0.03). The variation of σ for the
initial wave packet results in different energy resolutions [Fig. 4.6 (a)] since the spatial width
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Figure 4.6: Transmission coefficient of potential well calculated via wave packet scattering. The width
σ of the wave packet has been varied. The influence on the energy resolution is obvious. The smaller the
wave packet on the spatial grid the lesser is the energy resolution. Finally, all resonance peaks (analytical
calculation) are disappearing (σ = 1.0). Note: The abscissa displays k0 and not E as usual.

of the wave packet is connected with its momentum spreading. Thus its energy uncertainty
depends on σ via a Fourier transform (Heisenberg principle). Therefore the expected sharp
resonance peaks of the transmission coefficient are smeared out within the wave packet scattering
approach. The smaller σ the less significant details of energy-dependent scattering properties
can be resolved. This is truly a fundamental limiting factor especially for large two-dimensional
systems. The wave packet has to be chosen as small as possible to reduce the computation time
and large enough to gain a sufficient energy resolution.

4.3 The regularized Coulomb potential

The Coulomb potential plays an important role throughout this work. Thus, it is essential to
investigate its properties very carefully. For computational reasons the regularized Coulomb
potential

V (x) = − Z√
x2 + κ2

resp. V (x, y) = − Z√
x2 + y2 + κ2

(4.8)

is introduced. It avoids numerical divergences at the location of the ion but leads to some non-
trivial complications concerning the eigenstates and eigenenergies. Z is the atomic number of
the ion and κ a small cut-off parameter. κ prevents the singularity at x = 0 which occurs in
the pure Coulomb case. Fig. 4.7 (a) shows the potential for different κ. The minimum of the
potential energy at the origin x = 0 is obviously −1/κ.

4.3.1 Transmission and reflection

Using the wave packet scattering method it is possible to calculate the transmission and reflection
properties of the potential. Fig. 4.7 (b) shows the reflection coefficient for different regulariza-
tion parameters. Obviously, the reflection increases enormously if the potential is tuned to be
more Coulomb-like. Secondly, one recognizes that this value monotonically depends on k0 of
the incident wave packet: The faster the particle, the less probable it will be reflected by the
potential. This becomes an important statement for the understanding of multiple scattering
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Figure 4.7: The regularized 1D Coulomb potential for Z = 1.0 and different κ.

events in the presence of more than one Coulomb potential and the probability of these multiple
scattering events (Chapter 6).

4.3.2 1D eigenstates

To understand the underlying problem for the regularized Coulomb potential, Eq. (4.8), it is a
good starting point to investigate the properties of the pure one-dimensional Coulomb potential

V (x) = − Z

|x| . (4.9)

The important aspect here is the modulus function which results in a reflection symmetry around
the singularity at x = 0. The eigenfunctions can be calculated as usual, starting from the one-
dimensional time-independent Schrödinger equation

−1
2

d2

dx2
ψn(x)− 1

|x|ψn(x) = Enψn(x) . (4.10)

This equation has to be solved for the regions x > 0 and x < 0 separately. The main problem
now is the combination of the two solutions in the singular point of the potential. A basic
discussion of the form of the total wave function can be given in terms of quantum mechanical
arguments.

In order to be able to construct even and odd wave functions, i.e., forming a complete set
of eigenfunctions, there have to exist solutions that are of even and of odd parity [ψeven(x) =
ψeven(−x) and ψodd(x) = −ψodd(−x)]. By introducing a small cut-off parameter [for example as
in Eq. (4.8)] one can start from the Sturm-Liouville theorem. It states that a one-dimensional
potential has a nodeless even ground state wave function. The excited states are alternating
between odd and even parity and are not degenerate, as can be proven for any non-singular
one-dimensional potential (see Appendix E). But if now the cut-off tends to zero (κ→ 0) even
and odd states are affected differently: For odd states, ψodd(0) vanishes so there is no influence
of the singular behavior of V (x). But for the even states, since ψeven(0) is finite, the second
derivative has to be infinite and the slope of the even wave functions has to be discontinuous.
Now, the even and the odd wave states are constructed from the same functions but are con-
nected differently at the singular point of the potential. This creates a degeneracy of even and
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odd states in the pure Coulomb case. The ground state wave function plays a different role: It
is non-degenerate and its density forms a δ -distribution at the origin.

Finally, the eigenstates of the one-dimensional pure Coulomb potential can be calculated
explicitly. The mathematical treatment is rather involved, details can be found in [46]. The final
solution has been calculated via a limiting process by using the regularized Coulomb potential
V (x) = −Z/(α + |x|) which shows the same features as the potential used within this work.
The wave functions are given in atomic units, L1

n denotes the associated Laguerre polynomial
L(n− 1, x):

• odd normalized states:

ψn(x) =

√
2

n5(n!)2
exp

(
−|x|
n

)
xL1

n(2|x|n) , (4.11)

• even normalized states:

ψn(x) =

√
2

n5(n!)2
exp

(
−|x|
n

)
|x|L1

n(2|x|n) , (4.12)

• ground state:

ψ = lim
α→0

1√
α

exp
(
−|x|
α

)
, (4.13)

which leads to a density localized at x = 0:

|ψ(x)|2 = δ(x) . (4.14)

This state has an infinite binding energy and clearly no physical meaning. However it
appears to be present in the numerical calculations for the regularized potential with
κ 6= 0.

The energy eigenvalues (in atomic units) of the pure Coulomb potential follow a Balmer-like
law:

En = −1
2

1
n2

. (4.15)

Hence, the first two eigenfunctions (E1 = −0.500 a.u.) besides the ground state read:

• first odd wave function, Eq. (4.11) with n = 1:

ψ(x) =
√

2 exp(−|x|) · x · L1
1(2x) =

√
2 exp(−|x|) · x , (4.16)

• first even wave function, Eq. (4.12) with n = 1:

ψ(x) =
√

2 exp(−|x|) · |x| · L1
1(2x) =

√
2 exp(−|x|) · |x| . (4.17)

These two functions are displayed in the upper right picture in Fig. 4.8 (b).

In order to construct the correct bound states for excitation processes, the eigenfunctions
of the regularized potential have been investigated with the imaginary time stepping and the
shooting method. The results are given in Figs. 4.8 and 4.9. The behavior of the eigenvalues
and the wave functions discussed above becomes clearly visible. For small cut-off parameters
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Figure 4.8: Behavior of the eigenstates of the 1D regularized Coulomb potential depending on κ.
The occurring degeneracy of the odd and even wave functions becomes clearly visible for small κ. The
analytical energy eigenvalues calculated with Eq. (4.15) are

n 0 1,2 3,4 5,6 7,8
En −∞ -0.500 -0.125 -0.0555 -0.03125

and in perfect agreement with the numerical results for the eigenvalues of the odd wave functions with
very small κ. The pure Coulomb eigenfunctions are given by Eqs. (4.16) and (4.17).

E0 = −3.825a.u.
E1 = −0.4746a.u.
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Figure 4.9: First five eigenfunctions of the regularized Coulomb potential (κ = 0.1) calculated with
the imaginary time stepping method. The deeply bound ground state wave function is an artefact of
the regularization. Each odd wave function is followed by an even wave function with a weaker binding
energy and a non-vanishing probability amplitude in the center of the potential. In the pure Coulomb
case each pair has the same binding energy.
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Figure 4.10: First eight eigenfunctions (density plot) of the 2D regularized Coulomb potential, κ = 0.1,
calculated via the 2D imaginary time stepping algorithm. The structure of the eigenfunctions and the
broken degeneracy of the s- and p-orbitals (n = 2) and of the s-, p- and d-orbitals (n = 3) due to the
regularization is visible. The topology of the eigenfunctions is nearly the same as for the 3D hydrogen
atom. From bottom left to top right (decreasing binding energy): deeply bound, unphysical ground state
(E = −1.32 a.u.) being followed by px- and py-like orbitals (perfectly degenerate, E = −0.221 a.u.).
With slightly smaller binding energy (E = −0.194 a.u.) the s-wave function is located, exhibiting a non-
vanishing density at the center. In the upper row, again the two px- and py-like states and additionally
a d-state is found. These three states show a perfect degeneracy (E = −0.0800 a.u.). Finally, the
energetically higher s-state, again with a finite probability distribution at the center, is given.

κ the eigenfunctions appear in pairs with nearly degenerate energies. In κ regions used for
calculations later in this work (κ = 0.1), these eigenfunctions have to be treated independently.
They represent two eigenstates of a bound electron with completely different binding energy. In
the following the first odd state (state with the lowest energy besides the artificial ground state)
will be treated as the physical ground state although it is not a nodeless wave function as it is
claimed by the Sturm-Liouville theorem.

4.3.3 2D eigenstates

Investigating ionization and scattering processes in more than one dimension requires to know
the eigenstates of the 2D Coulomb potential. Again, it is essential for the numerical treatment
to use the regularized potential [cf. Eq. (4.8)]. Like in the 1D case this produces a characteristic
behavior of the eigenvalues and eigenfunctions. Especially the ordering of the energies and the
degeneracy of the eigenfunctions are affected.

The construction of the wave functions is done with the ITP-procedure described in Chap-
ter 3.1.5. The shooting method cannot be applied to this problem. Fig. 4.10 shows the first eight
eigenfunctions (density plot) of the two-dimensional regularized Coulomb potential (κ = 0.1).
The first state is, as in the 1D case, a non-physical δ-like artefact state of the regularization with
a very high binding energy. The energetically higher states show a hydrogen-like structure but
without the well-known perfect degeneracy. First the two-fold degenerated p-like states occur
(px- and py-like states) being followed by a higher energetic non-degenerate s-state. In the true
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Coulomb case these orbitals should all have the same binding energy. The explanation of this
behavior can be given in analogy to the one-dimensional regularized Coulomb potential: The
non-vanishing probability to find the electron at the core (finite potential energy at the origin)
for the s-state leads to a significant difference to the p-states where the wave function vanishes
at the potential minimum (singularity in the pure Coulomb case). The calculations have been
performed on a 750 × 750 grid with i · ∆t = 0.01 and ∆x = ∆y = 0.1 using the density as a
convergence indicator with ∆ξ = 1 · 10−7, cf. Eq. (3.38). The convergence of the total energy is
not sufficient in this case.
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5 Excitation and ionization in laser fields

In this chapter excitation and ionization processes of model atoms in dipole laser fields are
discussed. In the first part effects in the perturbative regime are presented. Numerical TDSE
calculations are compared to analytical results based on perturbation theories (Fermi’s golden
rule) and dipole matrix arguments. Both 1D and 2D systems are considered. The second part
is dedicated to multi-photon processes and above threshold ionization in strong laser fields. A
comparison between TDSE calculations and the strong field approximation (SFA) is given. The
last part focuses on scattering processes with slow electrons (k0 = 0) which also leads over to
the next chapter “Coulomb scattering” in laser fields.

5.1 Weak laser fields

First we want to study the influence of a weak laser field, i.e., low-intensity pulses, on electrons
in bound states of simple model systems. For that purpose it is useful to consider the time-
dependent occupation numbers. The TDSE is solved on a spatial grid as described in Chapter 3
and the resulting wave function Ψ(t, x) is projected onto the eigenstates of the ionic potential
at each time step. The set of eigenstates is constructed using the imaginary time stepping
algorithm. Then the occupation number for the state n is simply given by

occ(n, t) = |〈ψn|Ψ(t)〉|2 =
∣∣∣∣∫ ∞−∞ d3rψ∗n(r) ·Ψ(r, t)

∣∣∣∣2 . (5.1)

Since the calculations are performed on a spatial grid, a good representation of the continuum
states is available. This is especially important for ionization problems, for instance in the case
of the Coulomb potential. The calculations in the natural orbital representation of the binding
potential can lead to problems concerning the representation of free electron states.

For all the simulations presented in the following, a Gaussian shaped laser excitation of the
form

Vlaser(t, x) = E0x cosωt · exp
(
−1

2
(t− t0)2

(∆t)2

)
(5.2)

is used. The electrical field is linearly polarized along the x-direction. E0 denotes its amplitude
and ω the light frequency. The pulse is centered around the time t0 where the pulse exhibits
its maximum (cf. Fig. 5.1). The parameter ∆t adjusts the pulse duration. According to
Chapter 2.2.2, Eq. (5.2) corresponds to an interaction Hamiltonian in field gauge within the
dipole approximation.

5.1.1 Excitation of the harmonic oscillator

The one-dimensional harmonic oscillator gives the opportunity to study the reaction of a simple
quantum system to time-dependent external excitations. A trap frequency of Ω = 1/8 is chosen
and the system is initially prepared in the ground state. The energy levels are all equidistant
and separated by the energy Ω. Fig. 5.1 shows the excitation behavior for two different laser
pulses. Both are centered at t0 = 240.0 a.u. with ∆t = 50 and an amplitude E0 = 0.01 a.u. but
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Figure 5.1: Laser excitation of the ground state of a one-dimensional harmonic oscillator (trap frequency
Ω = 0.125). The first four states are shown in the left figure. Two different Gaussian shaped laser pulses
are used: one resonant pulse with ω = Ω (lower figures) and one off-resonant pulse with ω = 0.1875 (upper
figures). The right figures display the time-dependent properties during the excitation: the occupation
numbers and the energies in the system.

differ in frequency.

The first one (ω = 0.1875 6= Ω) is not able to excite the system (upper figures) although
during the pulse a small change in the occupation numbers and the energies can be observed.
The laser field accelerates the particle in the potential but after one cycle it acts against this
motion and decelerates it again thus the total energy gain after the symmetric pulse is zero and
the final state has exactly the same shape as initially prepared.

For the second pulse (ω = Ω) the situation is totally different. The dipole field acts resonantly
and stores energy during each cycle of the pulse. Hence the total energy is increased. After
the excitation, the system is in a superposition of energetically higher states and the density
performs a harmonic oscillation because the dipole-field can only couple to the center of mass
(c.m.) motion. The Gaussian shape of the initial wave function is not distorted during this
process. The time-dependent behavior of the occupation numbers is of special interest. Since
only dipole transitions1 are allowed, we expect that the energy levels are filled subsequently one
after another starting with the first excited state. The TDSE calculations clearly verify this
result. At the beginning the ground state is depopulated while the first excited state is filled.
Then the electron can be lifted from this level to the next higher one and so on.

5.1.2 Excitation and ionization phenomena of the 1D Coulomb potential

To include ionization features we now turn our attention to the one-dimensional Coulomb po-
tential. We concentrate on the regularized potential [cf. Eq. (4.8)] with κ = 0.1. The expected
processes differ from the excitation in the harmonic oscillator. The energy levels are not equidis-
tant and also continuum states are accessible. Fig. 5.2 shows the TDSE calculations for three
laser pulses (t0 = 240 a.u., ∆t = 50, E0 = 0.01 a.u.) with different frequencies ω. The system is
prepared in the physical ground state which means the first odd wave function (cf. Chapter 4.3)

1The matrix elements for the dipole operator x̂ in the oscillator basis |m〉 can be calculated by:
〈n|x̂|m〉 = 1/

√
2〈n|(â†+â)|m〉 = 1/

√
2(
√
m+ 1〈n|m+1〉+

√
m〈n|m−1〉) = 1/

√
2(
√
m+ 1δn,m+1+

√
mδn,m−1)
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Figure 5.2: Laser excitation of bound states in a one-dimensional soft-core Coulomb potential, κ = 0.1.
The uppermost figure displays the system and the selected excitations. For all pulses the system is
initially prepared in the physical ground state (first odd wave function, n = 1). Three different pulses
are used: (a) the photon energy is smaller than the ionization potential but does not fulfill any Bohr
condition. (b) the photon energy is larger than the binding energy, hence the electron can be lifted into
the continuum and (c) the photon energy fulfills the Bohr condition E2 − E1 = ω, thus the system can
be resonantly excited to the next higher level. The lower figures show the time-dependent energies and
occupation numbers. Note that the scale of the occupation numbers is changed from (b) to (c).
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Figure 5.3: Comparison between Fermi’s golden rule and the TDSE solution. The second state of a
1D Coulomb potential with the ionization potential Ip = 0.258 a.u. is excited with a monochromatic
laser pulse, ω = 0.4 a.u. The electron energy spectrum is calculated after 16 laser periods. Negative
energies denote emission to the left, positive energies to the right of the Coulomb potential. The second
peak appears due to higher-order effects. The dashed lines indicate the theoretical position of the photon
peaks according to Fermi’s golden rule. The width of the peaks obtained numerically stems from the
finite excitation time and the resulting spectral broadening of the laser pulse.

with a binding energy of E1 = −0.476 a.u. The first pulse with ω = 0.1 a.u. can neither ionize
the state nor excite the system to a higher state since no Bohr condition is fulfilled. The next
energy level with E2 = −0.258 a.u. is separated by more than twice the photon energy. Similar
to the harmonic oscillator only a small change in the occupation numbers during the excitation
occurs and after the pulse the system is again in the initial state. For larger photon energies
(middle figures, ω = 0.5 a.u.) the electron can access the continuum by absorption of one single
photon. The initially filled energy level becomes depopulated and no other bound state is filled,
thus this missing probability describes free electrons which have escaped the potential. As can
be seen in the small change in the occupation number (and the only minor energy difference)
the ionization yield is very small for the chosen intensities and pulse durations.

The strongest effect is obtained by irradiation with a frequency which fulfills the Bohr condition
∆E = ω. The right figures show such an arrangement (ω = E2 − E1 = 0.217 a.u. ). The initial
state is drastically depopulated while the next level is filled. Since no ionization is possible and
no other resonant state is accessible from this level the occupation is increased monotonously
and no further excitation occurs. After the pulse the laser has increased the total energy of the
system.

Comparison with Fermi’s golden rule

For further investigations of the populated continuum states we analyse the energies of directly
ionized electrons (ω > Ip). A reasonable approximation to describe effects in these weakly
excited systems is given by time-dependent perturbation theory. For monochromatic excitation
with infinite duration, this formalism leads in first order to Fermi’s golden rule, cf. Chapter 2.3.1,
Eq. (2.28) and Eq. (2.29). Only final states with energies E = ~ω−Ip can be accessed. Thus the
electron spectrum shows discrete peaks. For higher-order processes, multiple final states with
En = n · ω − Ip can be expected.

Fig. 5.3 shows the electron spectrum for a direct excitation of a state with the ionisation
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Figure 5.4: Angle-resolved ionization spectra of a single 2D model H-atom (2D-Coulomb system).
The left figures show the initially prepared state (s- and px-, py-like states with Ep = −0.221 a.u. and
Es = −0.194 a.u., cf. Fig. 4.10). The right figures show the corresponding electron energy distributions
obtained from a TDSE solution. The emitted electron is detected at a distance of r = 50 a.u. The used
excitation with ω = 0.5 a.u. and E0 = 0.002 a.u. can ionize the system with one single photon. The angle
is measured with respect to the polarization axis of the laser field, ϕ = 0, π (cf. Chaper 3, Fig. 3.5).

potential of Ip = 0.258 a.u. The photon energy is chosen as ω = 0.4 a.u. which allows for a
direct ionization by the absorption of one single photon. In fact, the calculated electron spectrum
shows discrete peaks at the correct position, but due to the finite pulse duration (16 laser cycles)
they show a broadening. Because of second-order effects (absorption of two photons) a second
peak appears in the spectrum. Both peaks are accurately separated by the photon energy ω.
The spectrum is symmetric with respect to the center of the Coulomb potential, which shows
that no explicit direction of emission is preferred since the exciting pulse is symmetric regarding
the net acceleration of the electron to the left or right (long pulse duration and no additional
phase shift).

5.1.3 Angle-resolved electron spectra

The simple model of a one-dimensional system can be improved enormously if it is extended to a
two-dimensional model atom. In such systems additional quantities like the angular distribution
occur. In the following we concentrate on the ionization of a 2D hydrogen-like atom (2D regular-
ized Coulomb potential with κ = 0.1). The eigenstates are discussed in Chapter 4.3.3, Fig. 4.10.
The first three states besides the unphysical ground state are investigated. The results are shown
in Fig. 5.4. The laser frequency was chosen to be ω = 0.5 a.u. thus the initially bound electron
can be directly ionized like in the 1D case. A detector is placed at a distance of r = 50.0 a.u.
where the electrons are considered to be free and not driven back to the core. It was secured
that the spectrum is independent of the distance r of the detector. After the detection the wave
function is damped with an imaginary absorber potential in order to allow for a smaller size of
the simulation box.

The first order photon peak appears for all three states at the expected energy E = ω− Ip. A
remarkable feature is the angle dependence for different types of states. The spherically symmet-
ric s-state (n = 2) is ionized predominantly along the polarization axis of the laser field (ϕ = 0
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Figure 5.5: Absolute square of the dipole matrix elements αi(k, ϕ) for different states of the 2D model
hydrogen atom, cf. Eq. (5.4). The possibility of dipole transitions from a bound state (s-, p- or d-state)
to a free plane wave with fixed wave vector length k = 1.0 a.u. and different angles ϕ is shown.

and ϕ = π) whereas no perpendicular emission (ϕ = π/2 and ϕ = 3π/2) is observed. A totally
different picture is obtained for the px- and py-states. Both spectra show four distinct minima
but are rotated by π/4 with respect to each other, as is the density of the initial states. As can
easily be seen in Fig 5.4, neither the preferred direction of emission nor the drop in the intensity
of the resolved photoelectrons correspond to the polarization axis of the laser field. The position
of the minima strongly depends on the orientation of the initial state with respect to the field
polarization axis but the number of drops (2 in the case of a s-state and 4 in the case of both p-
states) seems to be a universal quantity depending on the angular momentum of the initial state.

The calculation of the dipole matrix

αi,k = 〈φi|x̂|φk〉 (5.3)

helps get insight into the physical mechanism behind those forbidden regions. φi denotes the
initial bound state and φk a plane wave, exp(ik · r). The angle ϕ = tan−1(kx/ky) (analogously
the other branches of the arcus tangens function), which corresponds to the direction of the
plane wave, and the length k of the wave vector are the free parameters. We will use cartesian
coordinates to evaluate Eq. (5.3) because the initial states φi are constructed via the ITP-
algorithm on a cartesian grid. An integration in polar coordinates would be easier but requires
a transformation of the φi computed numerically.

In the chosen coordinate representation, the dipole matrix can be written as

αi(k, ϕ) =
∫ ∞
−∞

∫ ∞
−∞

dx dy φ∗i (x, y)x exp [ik(x cosϕ+ y sinϕ)] . (5.4)

The integration is performed numerically for every angle ϕ. The length of the wave vector,
k =

√
k2
x + k2

y, is fixed and chosen according to Fermi’s golden rule to k =
√

2ω = 1.0 a.u. The
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results are displayed in Fig. 5.5.

At first sight, one recognizes the strong variation of the angle dependence when different
atomic states φi are chosen. The dipole matrix elements of the s-state, indicated by the red
solid line, show two minima at the angles ϕ = π/2 and ϕ = 3π/2 which is exactly perpendicular
to the field-polarization axis. States with larger angular momentum, i.e., the p-states and the
displayed d-state, behave differently: As in the numerically obtained solutions of the TDSE,
the px- (blue dashed line) and the py- (green dashed line) states possess four minima which can
be identified up to more than six orders of magnitude. The angles of those drops do neither
coincide with the field polarization axis nor are they perpendicular to it. They are observed at
exactly the same angles as in the angle-resolved photoelectron spectra of the direct ionization
which were obtained by means of numerical solutions of the TDSE, cf. Fig. 5.4.

The specific positions of the minima depend on the alignment of the states with respect to the
field polarization axis, which can be seen from the equidistant shift of the drops for the differently
oriented px- and py-states. Additionally, these positions are independent of the quantum number
n. This can be seen in Fig. 5.5, where the 3py-state and the 2py-state exhibit the same angle
dependence of the dipole matrix elements (see Chapter 4.3.3, Fig. 4.10 for the corresponding
densities of φi). Therefore, the observed features in the dipole matrix elements can be interpreted
as a consequence of the angular momentum l of the state φi. The calculation of the dipole matrix
for a d-state (larger angular momentum) supports this interpretation. Here, six distinct minima
can be identified (magenta line in Fig. 5.5).

As a closing remark, the perfect agreement between both methods considered, the full TDSE
approach and the calculation of the angle-dependent dipole matrix elements, is pointed out. One
may conclude that the observed angle-dependent features in the two-dimensional photoelectron
spectra shown in Fig. 5.4 can be explained in terms of dipole-forbidden transitions.

Angle dependence of allowed dipole transitions for the hydrogen atom

Now, it seems worthwhile to investigate the ionization of the hydrogen atom based on the ap-
proach developed for the two-dimensional case. It appears that the technique for the calculation
of the angle-dependent dipole matrix elements can be easily extended to the 3D case. The
generalization of Eq. (5.3) is straightforward and the resulting dipole matrix elements are now
dependent on the two spherical angles ϕ and θ:

αi(k, ϕ, θ) =
∫ ∞

0
dr′

∫ π

0
dθ′

∫ 2π

0
dϕ′ r′2 sin θ′φ∗i (r

′, θ′, ϕ′)r′ sin θ′ cosϕ′ Π(k, θ, ϕ, r′, θ′, ϕ′) .

(5.5)
Π(k, θ, ϕ, r′, θ′, ϕ′) represents the plane wave in spherical coordinate representation and the
φi(r, θ, ϕ) are the wave functions of the hydrogen atom which are well-known from quantum
mechanics.

They can be split into an angular part Yl,m(θ, ϕ) and a radial part Rn,l(r):

ψn,l,m = Rn,l(r) · Yl,m(θ, ϕ) . (5.6)

As we learned in the two-dimensional case from the similar behavior of the 2py- and 3py-state,
only the angle-dependent part, the Yl,m, should play a role in the calculation of angle-dependent
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dipole transitions. The first three corresponding functions read

Y0,0(θ, ϕ) =
1√
4π

, (5.7)

Y1,0(θ, ϕ) =
3√
4π

cos θ , (5.8)

Y1,±1(θ, ϕ) = ∓ 3
8π

sin θ exp±iϕ . (5.9)

As can be seen in the case of Y1,±1, the resulting density is the same for m = 1 and m = −1.
Thus the different orientation of the wave function with respect to a laser polarization, as studied
in the two-dimensional case of the px- and py-states, cannot be present for all three functions.
However, this may be of special interest in the observation of the angle-dependent drops in the
dipole matrix elements.

Now the orbitals of the hydrogen atom and hydrogen-like atoms known from chemistry come
into play. Orbitals with different angular orientation for a fixed quantum numbers l, are given
by superpositions of the spherical harmonics with different m [Eqs. (5.8) and (5.9)], such that
the resulting orbital wave function is real. For a nomenclature see for instance [47]. There are
three real and orthogonal p-orbitals, which are differently oriented in space and exhibit similar
features as the px- and py-states obtained for the two-dimensional case. They are constructed
from Y1,m and are given by

ψn,pz(r, θ, ϕ) = Rn,1(r)Y1,0(θ, ϕ) =

√
3

4π
Rn,1(r) · cos θ , (5.10)

ψn,px(r, θ, ϕ) =
1√
2
Rn,1(r)(−Y1,1(θ, ϕ) + Y1,−1(θ, ϕ)) =

√
3

4π
Rn,1(r) · sin θ cosϕ , (5.11)

ψn,py(r, θ, ϕ) =
1
i
√

2
Rn,1(r)(−Y1,1(θ, ϕ)− Y1,−1(θ, ϕ)) =

√
3

4π
Rn,1 · sin θ sinϕ . (5.12)

Analogously, five independent d-orbitals can be constructed from Y2,m:

ψn,dz2 = Rn,2(r)Y2,0(θ, ϕ) =

√
5

16π
Rn,2(r)(3 cos2 θ − 1) , (5.13)

ψn,dxz =
1√
2
Rn,2(r)(−Y2,1(θ, ϕ) + Y2,−1(θ, ϕ)) =

√
15
4π
Rn,2(r) sin θ cos θ cosϕ , (5.14)

ψn,dyz =
1
i
√

2
Rn,2(r)(−Y2,1(θ, ϕ)− Y2,−1(θ, ϕ) =

√
15
4π
Rn,2(r) sin θ cos θ sinϕ , (5.15)

ψn,dx2−y2 =
1√
2
Rn,2(r)(Y2,2(θ, ϕ) + Y2,−2(θ, ϕ)) =

√
15

16π
Rn,2(r) sin2 θ cos 2ϕ , (5.16)

ψn,dxy =
1
i
√

2
Rn,2(Y2,2(θ, ϕ)− Y2,−2(θ, ϕ) =

√
15

16π
Rn,2(r) sin2 θ sin 2ϕ . (5.17)

The radial part Rn,l of the wave function remains the same as for the usual representation of
the eigenstates of the hydrogen atom. The angle dependence of the orbitals [Eqs. (5.10) - (5.17)]
is displayed in Fig. 5.6. Each orbital shows a different spatial orientation, as observed in the
two-dimensional calculations via the ITP (cf. Chapter 4.3.3, Fig. 4.10). We will consider these
orbitals to evaluate the angle-dependent dipole matrix elements, Eq. (5.5), since their densities
are more alike in their shape as the 2D densities obtained numerically and treated previously in
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Figure 5.6: Angle dependence of the orbitals of the hydrogen atom for n ≤ 3 according to Eqs. (5.10) -
(5.17). The orbitals are constructed from Yl,m such that the resulting wave function is real. To obtain
the final wave function, these orbitals have to be multiplied by the radial part Rn,l(r).
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Figure 5.7: Angle dependence of the absolute square of the dipole matrix elements αi(k = 1, θ, ϕ),
Eq. (5.5), for different states φi of the hydrogen atom, cf. Fig. 5.6. The color, in a linear presentation,
indicates the probability for a dipole transition from high (bright color) to low (dark regions).
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this chapter. Additionally, the explicit choice of the basis should not affect the physical solution
of the problem investigated.

The integration of Eq. (5.5) is performed numerically in spherical coordinates for different
angles ϕ and θ of the final plane wave Π(k, θ, ϕ, r′, θ′, ϕ′). The length of the wave vector was
again fixed to k = 1.0 a.u. The results for the discussed initial bound states φi are presented in
Fig. 5.7. Shown are the dipole-allowed transitions from the state φi to a plane wave in dependence
on the angles ϕ and θ with respect to the dipole polarization axis (which corresponds to the
angles ϕ = 0, π and θ = π/2). At first glance one observes, in analogy to the two-dimensional
case, no dependence on the quantum number n. The angle-dependent dipole matrix elements
show a similar behavior for the 1s-, 2s- and 3s-states. The same statement holds as well for the
2px- and 3px-state and accordingly the py- and pz-states.

As in the two-dimensional case, the quantum number l of a state is an important quantity to
describe the resolved angle dependence. Additionally, the different adjustments of the orbitals
with respect to the polarization axis, corresponding to different quantum numbers m as given
by Eqs. (5.10) - (5.17), come into play. As observed previously, the higher l the more complex
features appear, i.e., more drops in the transition probability to a plane wave at certain angles.
Furthermore, the orientation of the orbitals results in a different structure. The 2p-orbitals
(second row in Fig. 5.7) may be mentioned as an example. Here, the different alignment results
in a totally different angle dependence of the dipole matrix elements and the orientation of the
initial state φi is also found in the angle dependence of the allowed dipole transitions. In addition
the angle-dependent shape of the bound state φi plays an important role in the formation of
the observed structures for the d-states. As an example, we mention the 3dz2-orbital where the
coincidence of the shape of the atomic wave function and the angle dependence of the dipole
matrix elements is apparent2.

Comparison with literature results

The qualitative theoretical explanation found in [48] agrees with the results obtained numerically
and presented above. The phenomenon can be interpreted in terms of the selection rules for
dipole-allowed transitions holding for the hydrogen atom. The important condition for our case
is given by ∆l = ±1. The final state in Eq. (5.5) described by an angle-dependent plane wave,
can equivalently be described by an outgoing spherical wave. These waves carry, in analogy to
the atomic wave functions, an angular momentum and have as well s-, p- and d-character.

By applying the selection rules one easily obtains that for an initially prepared s-wave function
(l = 0) the final electron wave must carry the angular momentum l = 1 since this alone is a dipole-
allowed transition. The final wave possesses a shape like the px-state because the characteristic
axis is the polarization axis of the field in our case the x-axis. By comparing the results of
the angle-dependent dipole matrix for a s-state, cf. Fig. 5.7 upper row, with the atomic wave
function of a px-state, Fig. 5.6, one immediately recognizes the relation. The results obtained
are sectional drawings of the final, spherical electron wave with px-character.

An analogous interpretation can be given for the states with higher angular momentum l.
As an example, let us mention the angle-dependent dipole transitions for the 2py-state. The
accessible final electron wave has to be of s-character for the case ∆l = −1 or of d-character for
the case ∆l = +1. By again comparing the observed transition angles with an atomic d-state,
Fig. 5.6, one finds that the angle distribution is a sectional drawing of such a spherical wave,
but now with dxy-character.

For the states with even higher angular momentum, in our case the d-states, the interpre-
tation becomes more involved. Now, spherical waves with f -character and p-character (and of

2the famous “Doppelschnuller” structure, cf. Fig. 5.6 3dz2
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course superpositions) can be occupied. This explains the rather complicated structure of the
angle-dependent dipole matrix elements shown in Fig. 5.7, last two rows.

The rigorous analytical treatment, briefly mentioned in [48] and the references therein, is
rather complex. According to [48] the angle dependence of the ionization spectrum created by
a linearly polarized dipole field is given for any state by the simple formula

I(θ) =
σ

4π

[
1 +

β

2
(
3 cos2 θ − 1

)]
. (5.18)

The angle θ is measured against the polarization plane of the light field, σ is the total ionization
cross section and β the anisotropy parameter. β is the single parameter used to describe the
whole angle dependence of the spectrum. Its estimation involves the phase differences between
the different partial waves and the cross sections for the production of the l− 1 and l+ 1 partial
waves. It has no additional angle dependence. By analyzing the results presented in Fig. 5.7
for the s-state, one immediately finds the cos2 θ behavior predicted by Eq. (5.18). However,
states which show a different angular behavior in their allowed transitions, again we exemplarily
mention the 3dz2-state, cannot be described accurately by this formula.

Now, the question arises how the results obtained above can be interpreted, especially con-
cerning the orientation of the orbitals with respect to the laser polarization and a possible
experimental realization. The investigation of angle-dependent features in the dipole matrix
arose from the observation of intensity minima in the photoelectron spectra depending on the
initial atomic state within a two-dimensional model. This could accurately be explained by
dipole-allowed transitions. Therefore, in the case where both considered methods agree, the
preparation of an atom in a corresponding orbital or an atom with an equivalent highest occu-
pied orbital should also verify the results within an experimental setup — assuming that these
experiments are feasible. Although, the case for the hydrogen atom may be more involved.
Additional numerical simulations for angle-resolved photoelectron spectra seem worthwhile in
order to verify the results obtained from the angle-resolved dipole matrix elements.

5.2 Above threshold ionization (ATI)

If the intensity of the laser field is increased to about 1014 W/cm2 and more, not only linear
effects describable by Fermi’s golden rule with one photon can appear. Non-linear effects like
multi-photon (MP) processes described in Chapter 2.1.3 become relevant. In the following we
will concentrate on above threshold ionization (ATI) which is an important MP process. During
all calculations the photon energy ω is smaller than the binding energy and only non-linear
ionization is observed in the electron spectra.

5.2.1 TDSE solution for a 1D model atom

The first simple model again uses the regularized one-dimensional Coulomb potential with κ =
0.1. The system is prepared in one of the first three eigenstates which were obtained by the
imaginary time propagation algorithm. The exciting laser pulse has a photon energy of ω =
0.2 a.u. which is not sufficient to ionize one of those states directly. But with an electric field
amplitude of E0 = 0.2 a.u. the intensity of 7.4 · 1015 W/cm2 enables multi-photon ionization.
Fig. 5.8 shows the calculated electron spectra after propagating the TDSE for 16 laser cycles.
The spectra consist of a distribution of equidistant peaks forming the above threshold ionization
plateau (cf. Chapter 2.1.4). Each single event corresponds to the absorption of a single photon.

54



5.2 Above threshold ionization (ATI)

E2 = −0.258

E1 = −0.476

E0 = −3.84

Energy [a.u.]

In
te

n
si

ty
[a

rb
it

ra
ry

u
n
it

s]

emission to left emission to right

first excited state

ground state

second excited state

in
it

ia
l
p
ro

b
ab

il
it
y

d
en

si
ty

cut-off energy Ecut-off

−6 −4 −2 0 2 4 6

1000

1000

1000

10000

10000

10000

Figure 5.8: ATI spectra of a one-dimensional model H-atom (soft-core Coulomb, κ = 0.1). The initially
prepared states (constructed via ITP-method) before the laser excitation are given in the right picture,
the dashed green line indicates the binding potential. The photon energy ω = 0.2 a.u. is smaller than
the ionization potential for each state, the electric field E0 = 0.2 a.u. corresponds to an intensity of
7 ·1015 W/cm2. Therefore non-linear multi-photon ionization is possible. The left figures show the TDSE
photoelectron spectrum after 16 laser cycles. Negative (positive) energies indicate emission to the left
(right). The blue dashed lines indicate the cut-off energies according to Ecut-off = 8 · Up.

The peaks are well resolved and accurately separated by the photon energy ω. Depending on the
binding energy the spectrum shows different orders. The lower the state the more photons have
to be absorbed to free the electron from the potential. Additional photons which will form the
ATI spectrum are only absorbed with a small probability (very high order effect). For example
the (unphysical) ground state with Ip = 3.84 a.u. needs 20 photons to lift the electron into a
continuum state. As can be seen in the spectrum (lowest pictures in Fig. 5.8), the ATI breaks
down and only a few peaks in the intensity appear. For higher states with lower binding energy
only a few quanta are needed for the ionization and the additional photons will form the ATI
spectrum up to 18 photon orders (both upper figures).

An estimation of the cut-off is given in terms of the empirical formula Ecut-off = 8 · Up where
Up is the ponderomotive energy determined by Eq. (2.4). For the parameters used herein this
cut-off evaluates to Ecut-off = 2.0 a.u. (blue dashed lines in Fig. 5.8) which can be verified in
the calculations. Also the main structures of the experimentally observed spectrum shown in
Fig. 2.3 (b) can be reproduced.

5.2.2 Comparison with the strong field approximation (SFA)

A powerful theoretical tool for investigations of non-linear processes is the SFA (cf. Chap-
ter 2.3.2). The transition probability from the first odd wave function φ1 to the final Volkov
states φf

P1→f =
∣∣∣∣−i ∫ ∞−∞ dt〈φf |V (t)|φ1〉

∣∣∣∣2 (5.19)
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Figure 5.9: ATI spectrum of the first odd state in the 1D Coulomb potential (Ip = 0.5 a.u.). The photon
energy is adjusted to ω = 0.2 a.u. (only non-linear effects can appear). Shown is a comparison between
the SFA and the full TDSE solution. The laser pulse with E = 0.2 a.u. is instantaneously switched on at
t = 0. The calculations were performed over 16 laser cycles.

is calculated numerically. Within the SFA the pure Coulomb potential (κ = 0) is used because
its eigenfunctions can be given analytically. Then the spatial integration of the scalar product
in Eq. (5.19) can be evaluated (see Appendix D for a detailed description) which decreases the
computational effort drastically.

Fig. 5.9 shows the ionization of the first odd wave function in the 1D Coulomb potential. For
the benchmarking TDSE solution the regularized Coulomb potential is used. But according to
the results in Chapter 4.3 this regularization has only little effect on the odd states. All other
parameters are the same for both calculations. The methods show perfect agreement concerning
the position of the photon peaks, but due to Coulomb effects the spectra differ in the height of
the peaks and the range of the ATI plateau. The SFA is not able to reproduce the correct cut-off
energy and shows a decrease in the intensity at lower energies. A distorted final state as used in
the Coulomb Volkov approximation (CVA), where the influence of the long-range effect of the
Coulomb potential on the final state is included, would give better agreement [24]. Additionally
the chosen pulse intensity of 7 · 1015 W/cm2 is at the lower boundary of the validity of the SFA.
Still, this example clearly shows the importance of this approximation of Keldysh.

5.2.3 Angle-resolved 2D ATI spectra

As in the case of weak excitation, the two-dimensional model gives access to the angular distri-
bution of emitted electrons. Fig. 5.10 shows an angle- and energy-resolved ATI spectrum for two
different states (s and px) in the 2D regularized Coulomb potential (κ = 0.1) [49]. The direction
of the highest energy yield is along the field polarization axis for both states (ϕ = 0, π). Hence
for the multi-photon absorption, the dipole single-photon selection rules of the weak excitation
(cf. Fig. 5.4) are broken up. Each photon line in the spectrum now possesses its own substruc-
ture forming a rather complex angle dependence. The photoelectron spectrum of the isotropic
s-state, Fig. 5.10 (a), shows a perfect symmetry along the polarization axis ϕ = π of the laser
field whereas the spectrum of the px-state, Fig. 5.10 (b), exhibits an asymmetry, especially in
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5.2 Above threshold ionization (ATI)

(a) ATI of the s-state, density: cf. Fig. 5.4

(b) ATI of the px-state, density: cf. Fig. 5.4

Figure 5.10: Angle- and energy-resolved ATI spectra for two states of the 2D soft-core Coulomb po-
tential, κ = 0.1. The color key indicates the intensity (logarithmic plot). The angle ϕ is measured
with respect to the field polarization axis x (ϕ = 0, π). The upper figure shows the ionization of the
isotropic s-state and the lower figure the spectrum of the px-state. Both calculations performed within
the KH-frame are for a laser pulse (t = 16 cycles) with ω = 0.2 a.u. and E0 = 0.2 a.u. corresponding to
an intensity of 7 · 1015 W/cm2.
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Figure 5.11: Electron spectrum of a scattering process with k0 = 0 electrons in the vicinity of an ion
(regularized Coulomb potential with κ = 0.1) in a strong laser field (ω = 0.2 a.u., E0 = 0.2 a.u., t = 16
laser cycles).

the lower photon orders. But its dominant direction of multi-photon ionization is also along the
polarization axis. The maximum cut-off energy along the field (ϕ = π) is the same as in the 1D
case.

5.3 Scattering with slow electrons

This part leads over to another central issue of this work, time-dependent Coulomb scattering in
strong laser fields. The physical mechanisms behind the absorption of photons during scattering
processes and ionization are basically the same. Hence in the following the connection point
between both, at first sight different topics, will be worked out.

We consider the scattering of very slow electrons in the vicinity of an ion in a strong laser
field. This can be achieved within the wave packet formalism introduced in Chapter 4.2 [10].
The Gaussian shaped wave packet of the form given by Eq. (4.4) with a wave vector k0 = 0
and a very large spatial spread σ = 1000.0 a.u. represents those electrons. Applying a laser field
allows them to gain energy via absorption of photons, similar to the ATI mechanism. Therefore
the resulting energy distribution of scattered electrons is expected to show the features of an
ATI spectrum, symmetric in both scattering directions.

Fig. 5.11 presents the energy distribution of such a scattering process in one dimension, ob-
tained by solving the TDSE. The laser parameters are the same as in the ATI case (ω =
0.2 a.u., E0 = 0.2 a.u., t = 16 laser cycles). The ATI features in the spectrum are clearly visi-
ble and the relation between scattering and ionization becomes apparent. Therefore scattering
processes in strong laser fields obey the same absorption rules and mechanisms as multi-photon
ionization processes. Since the electron is already free, the cut-off energy is higher than in the
pure ATI case. Of course for situations with k0 > 0 the setup becomes highly asymmetric and
the ATI spectrum distorts. These asymmetric situations are presented in detail in the next
chapter.
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5.3 Scattering with slow electrons

Figure 5.12: Angle-resolved spectrum of a scattering process with k0 = 0 electrons within a strong laser
field (ω = 0.2 a.u., E0 = 0.2 a.u.). The color indicates the intensity of the detected electrons (logarithmic
plot) on a detector at the distance r = 75.0 a.u.

Nearly the same arguments hold for the 2D case (Fig. 5.12). The simulation box sizes are
somewhat smaller since the grid sizes are more limited in two dimensions. Hence the initial state
has a width of σ = 50 a.u. All other parameters are the same as in the 1D case. Here, it becomes
clear that the scattering of slow electrons involves all lower states of the binding potential since
the Gaussian shaped initial wave function can be expanded in terms of the eigenfunctions of
the Coulomb potential. The spectrum is symmetric with respect to the polarization axis of the
field. All subfeatures due to different alignment of the wave functions (like px- or py-orientation)
are smeared out and superposed to a total spectrum which exhibits angular symmetry around
ϕ = 0, π. The maximum energy gain is again slightly higher compared to the ATI since the
electrons are already free. The cut-off energy in the polarization direction of the external field is
the same as in the one-dimensional case (≈ 3.8 a.u.). Thus, for the estimation of cut-off energies
the 1D model seems to be a reasonable simplification.
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6 Coulomb scattering

In the beginning of this chapter a simple one-dimensional model for electron scattering on
single ions in laser fields is introduced. This model illustrates the arising effects based on
numerical solutions of the time-dependent Schrödinger equation for wave packet scattering on a
regularized Coulomb potential. It follows a classical approach to scattering processes within the
static field limit (instantaneous Coulomb collisions [10]) which gives the opportunity to estimate
maximum energies and helps construct improved and more efficient scattering setups. This will
be the central issue of the following section: the investigation of resonance phenomena and the
generation of high-energy electrons on a microscopic scale utilizing scattering processes on two
and more ions in adequate distances.

In the second part we concentrate on Coulomb scattering in two-dimensional systems and the
corresponding angle dependences of scattered electrons. After discussing classical Coulomb scat-
tering without any laser field and its comparison to quantum mechanical wave-packet scattering,
the case of different laser intensities is investigated. Special attention is payed to the collision of
electrons with single ions in the presence of a strong field and the corresponding angle-resolved
energy spectra within the framework of the TDSE. Various scattering geometries and detector
resolutions are presented. Finally, we adapt the previously constructed 1D scattering setups to
two dimensions. First, electron scattering on an ion pair is considered and finally this setup is
enhanced by an additional confinement potential. Again, the angle- and energy-resolved electron
spectra are discussed.

6.1 Coulomb scattering in a one-dimensional model

In the following, Coulomb scattering on a one-dimensional model ion in a strong laser field
is discussed. Again, for numerical reasons, the regularized Coulomb potential, Eq. (4.8) with
κ = 0.1, is used to represent the ion with atomic number Z = 1. The electron is modelled by
a Gaussian-shaped wave packet [cf. Eq. (4.4)]. Fig. 6.1 shows the scattering setup for a single
ion. Besides single-ion scattering also electron scattering on ion pairs as well as arrangements
of three ions will be discussed. Fig. 6.1 holds schematically for all one-dimensional scattering
geometries considered in this thesis. The initial wave packet is placed at the position −x0 left
of the ion. x0 is chosen according to the initial momentum k0 of the wave packet such that the
center of the wave packet is in a symmetric position x0 after time propagation:

x0 = k0 · τ2 with τ = Nlaser · 2π
ω
. (6.1)

NLaser denotes the total number of laser cycles during the collision process (usually NLaser ≈ 16
is chosen). For simplicity no laser pulse shaping is applied. All calculations presented in this
chapter are performed within the Kramers-Henneberger frame of reference. Therefore the quiver
motion of the electron is eliminated and the Coulomb potential moves back and forth. Thus
the electron wave function behaves like a free particle until it reaches the ion and the obtained
results are not sensitive to the chosen NLaser.

An additional free parameter is the width σ of the wave packet. As is shown for the case of
scattering on a potential well in Chapter 4.2, this is a critical parameter for sufficient resolution
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6 Coulomb scattering

−x0

k0

potential
initial wave packet

x0

Figure 6.1: Wave packet scattering on a single ion (soft-core Coulomb potential). −x0 indicates the
initial position of the center, determined by Eq. (6.1). +x0 represents the final position of the wave packet
if its motion would not be perturbed (symmetric situation). k0 indicates the initial momentum of the
electron.

in the energy domain. Furthermore, the width of the Gaussian wave packet increases while
traveling over the potential-free region before the collision. Therefore it is chosen in relation to
x0 and k0 such that the influence of any additional spreading is small and the energy resolution
is high enough to accurately resolve the distinct photon orders:

σ = 0.4 · x0 . (6.2)

This condition also assures that the initial wave function has only a small probability amplitude
in the region of the scattering center.

6.1.1 Single ion collisions

We are interested in the energy distribution of an electron after the collision with an ion in a
laser field. The numerically obtained solution of the TDSE for wave packet scattering processes
on a regularized Coulomb potential is shown in Fig. 6.2. The initially prepared wave packet
at the position x = −x0 travels with a wave vector of k0 = 1.0 a.u. (a) [k0 = 4.0 a.u. (b)]
towards the Coulomb potential at x = 0. The whole system is excited by a strong laser field
with ω = 0.2 a.u. and E0 = 0.2 a.u. This corresponds to an intensity of 7 · 1015 W/cm2. The
resulting energy spectrum of the scattered electron is obtained with both methods outlined in
Chapter 3.4: firstly by using the momentum distribution in combination with the free particle
dispersion relation and secondly by placing a detector at a distance r = 50.0 a.u. The positions
of the detectors are indicated in the right figures. For situation (a) also the time-dependent
density on these selected grid points is displayed which provides the raw data for the energy
spectrum shown in the left figures. First of all, both methods perfectly agree, cf. Fig. 6.2 (a),
left graphs, in the energy cut-offs as well as in the relative height of the corresponding photon
orders. Therefore all simulations presented later in this chapter use the approach with less
computational effort according to the individual investigated problem. If no special remark is
made this will be the detector technique.

The right graphs in Fig. 6.2 (a) and (b) display the initial Gaussian wave packet and the final
state after colliding with the potential (t = 480 a.u.). The main part of the density is located at
the expected position x0 but is strongly deformed due to the collision process. The packet has
separated into a reflected and a transmitted part. From the behavior of the reflection coefficient
for the regularized Coulomb potential (Chapter 4.3.1, Fig. 4.7) one easily recognizes that the
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6.1 Coulomb scattering in a one-dimensional model

(a) Electron scattering on a single ion with k0 = 1 a.u.
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(b) Electron scattering on a single ion with k0 = 4 a.u.

Energy [a.u.]

backward scattered
detectors

final state
forward

initial state

In
te

n
si

ty
[a

rb
it

ra
ry

u
n
it

s]

left detector right detector

scattered

spectrum via momentum distribution

x-coordinate [a.u.]

classical cut-offs

D
en

si
ty

−2000 −1000−25 −20 −15 −10 −5 0

0

0

0.00125

0.0025

5 10

100

1000 2000

10000

Figure 6.2: Wave packet scattering on a single ion located at a strong laser field with ω = 0.2 a.u. and
E0 = 0.2 a.u. which corresponds to an intensity of 7 · 1015 W/cm2. (a) and (b) show the same process
but with different initial momenta k0 of the wave packet. The upper right picture displays the initial
(red) and the final density (green) after the collision. The detector positions at a distance of r = 50.0 a.u.
are marked by magenta crosses. The lower right graphs in (a) show the time series on the detector grid
point and the left figures present the total energy spectrum after the collision process, calculated with
both methods introduced in Chapter 3.4. The direction of the scattered electron is indicated by positive
(right) and negative (left) energies. In (b) the application of only one technique is shown. The classical
cut-off energies are estimated within the static field limit, see Chapter 6.1.2.
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6 Coulomb scattering

k0/a.u. 1.0 2.0 3.0 4.0 5.0
kmax/a.u. −3.0 −4.0 −5.0 −6.0 −7.0
kmin/a.u. 1.0 0.0 −1.0 −2.0 −3.0
Emax/a.u. −4.5 −8.0 −12.5 −18.0 −24.5
Emin/a.u. 0.5 0.0 −0.5 −2.0 −4.5

Table 6.1: Cut-off energies and maximum/minimum momenta for electrons in the case of electron
scattering on a single ion in a laser field with ω = 0.2 a.u. and E0 = 0.2 a.u. calculated according to the
classical theory within the static field limit, Eq. (6.4) and Eq. (6.5). The negative energies and momenta
indicate backward scattering.

probability of reflection is reduced with increasing wave vector. Hence the wave packet with
k0 = 4 a.u. shows a much smaller reflected fraction.

As discussed in Chapter 5.3 for scattering processes of k0 = 0 electrons a finite initial mo-
mentum k0 of the electron introduces an asymmetric situation. The main mechanism of energy
absorption from the laser field is the same as in the ATI case (multi-photon absorption). Both
spectra in Fig. 6.2 (a) and (b) show this asymmetry in forward (positive energies) and backward
scattering (negative energies). The highest intensity peak in each spectrum comes from the
unscattered initial wave packet and is located at an energy E = k2

0/2. In the case of the electron
spectrum resolved on the detector also the initial wave packet travelling over the left detector
produces a very large peak at E = −k2

0/2, cf. Fig. 6.2 (a) lower left. The interesting part of
the spectrum is now formed by the backward scattered fraction of the wave packet, i.e., the
electrons reflected by the potential. They form a large plateau in intensity up to a significant
cut-off energy at Emax = −5.0 a.u. for k0 = 1.0 a.u. and Emax = −18.0 a.u. for k0 = 4.0 a.u. The
energy absorption mechanism of single photons is obvious since the whole spectrum consists of
isolated peaks separated by the photon energy ω.

6.1.2 Instantaneous Coulomb collisions

A classical approach [10] is quite effective in approximately describing the shape and the cut-off
energies of the resolved electron spectra. The collisions in the time-dependent laser field are
treated within the static field limit where the electric field of the excitation is assumed to be
constant during the scattering time. This approximation is valid if the collision time is much
smaller than one period, T = 2π/ω, of the laser field.

The momentum conservation law of an elastic scattering process reads:

k + pE = −(k0 + pE) . (6.3)

The momentum of the electron before the collision is given by k0 and k indicates its momentum
after the collision. pE = v0 cosφ with φ = ωtc is the quiver momentum at the collision time tc.
v0 = E0/ω0 determines the amplitude of the quiver velocity, cf. Eq. (2.2). The quantity pE can
then be regarded as the additional momentum the electron obtains from the electric field of the
laser. Its value exhibits a maximum if the field reaches the turning points where cosφ = ±1
holds which corresponds to collision times tc = n · π/ω , n = 1, 2, . . . . Hence, the resulting
maximum and minimum momenta after the collision are simply determined by

kmax = −k0 − 2v0 and kmin = −k0 + 2v0 . (6.4)

The sign indicates the direction of the particle after the collision. The corresponding character-
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6.1 Coulomb scattering in a one-dimensional model

−x0

k0

potential
initial wave packet

x0

D

(a) Wave packet scattering setup with two ions

k0

k0 + 2v0

k0 + 4v0

field 2 field 1

(b) Mechanism of energy absorption

Figure 6.3: Scattering on an ion pair. k0 is again the initial momentum of the wave packet, v0 the
ponderomotive velocity of the electron in the laser field. Fig. (b) shows the mechanism of resonant
acceleration by two subsequent scattering processes. The lines field 1 and 2 indicate the instantaneous
dipole potential at time of scattering. This corresponds to φ = n · π/ω, n = 1, 2, . . . in Eq. (6.3).

k0/a.u. 1.0 2.0 3.0 4.0 5.0
D/a.u. 47.12 62.83 78.54 94.24 109.95

Emax/a.u. 12.5 18.0 24.5 32.0 40.5

Table 6.2: Resonance distances and cut-off energies for electron scattering on an arrangement of two ions
in a laser field with ω = 0.2 a.u. and E0 = 0.2 a.u. within the classical approach according to Eq. (6.6)
and Eq. (6.7).

istic cut-off energies can be written as

E =
k2

2
= (k0 ± 2v0)2 . (6.5)

Table 6.1 gives the cut-off energies in the case of single ion scattering shown previously. The
comparison with the TDSE calculations presented in Fig. 6.2 for k0 = 1.0 a.u. and k0 = 4.0 a.u.
show accurate agreement concerning the high-energy cut-offs in the spectrum of the scattered
electron (blue dashed lines in the electron spectra).

6.1.3 Scattering on ion pairs: resonance phenomena

Using the classical approach of instantaneous Coulomb collisions allows for a simple derivation of
a resonance condition for an optimal distance D of two ions where a maximum energy yield of the
scattered electrons should be achieved [11]. Fig. 6.3 (a) shows the considered scattering geometry
and (b) illustrates the occurring scattering processes with the classically expected momentum
transfers. The first process is in analogy to the single ion scattering. The wave packet separates
into the reflected part considered previously and a transmitted fraction which is now of special
interest. This transmitted part can scatter with the second ion where it increases its momentum
according to Eq. (6.4). A maximum momentum transfer is obtained if the electric field of the
laser has its maximum and acts in the correct direction. Then the electron is able to accumulate
up to 2v0 additional momentum and travels back to the first ion. If the distance D of the two ions
is accurately chosen such that the electric field has changed its direction completely when the
electron hits the left core, it again increases its momentum in a second scattering process. The
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6 Coulomb scattering

(a) Electron scattering on an ion pair, k0 = 1.0 a.u.

classical
resonance
D = 47.12 a.u

D = 20.0 a.u.

D = 30.0 a.u.

D = 40.0 a.u.

D = 50.0 a.u.

D = 60.0 a.u.

D = 70.0 a.u.

D = 80.0 a.u.

Energy [a.u.]

back scattered

classical cut-off

forward scattered

−10 −7.5 −5 −2.5 0 2.5 5 7.5 10 12.5 15

(b) Electron scattering on an ion pair, k0 = 4.0 a.u.
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Figure 6.4: Wave packet scattering on an ion pair. Both figures show the electron energy distribution
after the collision process for different distances D of the two ions (schematically drawn in the right).
The whole setup is placed in a strong laser field, ω = 0.2 a.u. and E0 = 0.2 a.u. The classically expected
cut-offs in the energy are indicated by the blue dashed lines and are estimated within the static field
limit.
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6.1 Coulomb scattering in a one-dimensional model

optimal distance is therefore simply given by half of the laser period and the initial momentum
k0 of the electron:

D =
1
2

(k0 + 2v0) · T = (k0 + 2v0) · π
ω
. (6.6)

v0 is again the amplitude of the quiver velocity of the electron in the laser field. Since the
electron is faster after the second collision this resonance condition is not fulfilled for a following
scattering event and it leaves the arrangement to the right with increased momentum.

The maximum energy gain of the twice scattered electrons is then

Emax =
1
2

(4 · v0 + k0)2 . (6.7)

Table 6.2 contains the estimation of cut-off energies and the corresponding resonance distances
D for different initial momenta k0 of the wave packet. A strong laser field with ω = 0.2 a.u. and
E0 = 0.2 a.u. is assumed.

The resulting electron energy spectra obtained from TDSE simulations [50] are displayed in
Fig. 6.4 for k0 = 1.0 a.u. and k0 = 4.0 a.u. The distance between both scattering centers is varied
around the classical resonance condition, Eq. (6.6). Fig. 6.4 (a) shows the complete spectrum
for forward and backward scattered electron distributions. The backward scattered part shows
nearly the same behavior as in the case of single ion scattering. This is not surprising because an
important fraction of the wave packet is already scattered without reaching the second Coulomb
potential. The spectrum of the forward scattered electron, Fig. 6.4 (a) and (b), now shows an
enhanced plateau up to the classical cut-off energy in the case of a resonant distance between
both ions. Hence the classical static field limit is, also in this case, a reasonable approximation.
The distinct photon peaks indicate again the energy absorption process in the laser field. For
the scattering of electrons with k0 = 4.0 a.u. an energy of up to 64.0 Rydberg can be observed.
This corresponds to an energy of 870 eV. Therefore already this setup can be used to accelerate
electrons on microscopic dimensions (≈ 5 nm).

6.1.4 Scattering on chains of Coulomb potentials

The next step is to increase the maximal energy transferred to the electron by choosing further
improved scattering setups. A näıve idea is to simply add more Coulomb potentials to the
system — at the correct distances. Unfortunately the reflection and transmission properties of
the Coulomb potential change with the energy of the scattered particle by orders of magnitude,
cf. Fig 4.7 (b). Therefore higher-order scattering processes are less likely and the already small
fraction of high-energy electrons will be decreased significantly for each additional collision.
Nevertheless an optimal setup for Coulomb potentials can be derived with the help of the classical
static field limit.

Scattering on an arrangement of three ions

A first approach is to add one more ion, i.e., one additional Coulomb potential. The occurring
setup is given in Fig. 6.5 (a). The expected scattering processes, which increase the energy of
the electron, are schematically drawn in Fig. 6.5 (b). The already demonstrated process leading
to a fast-electron distribution by scattering on two ions is accompanied by a collision process on
the third ion. To maximize the momentum transfer it has to be placed at a resonant distance
D2 from the first ion in that sense that the electric field has changed its direction when the
already accelerated electron reaches the rightmost potential. This field behavior is visualized by

67



6 Coulomb scattering

−x0

D1 D2

k0

potential
initial wave packet

x0

(a) Scattering setup with three ions
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Figure 6.5: Scattering on an arrangement of three ions within the distances D1 and D2. All other
quantities are the same as in Fig. 6.3.

k0 D1 D2 Ecut-off 1 Ecut-off 2 Ecut-off 3

1.0 47.12 31.4 4.5 12.5 24.5
4.0 94.24 31.4 8.0 32.0 50.0

Table 6.3: Recapitulatory table of all cut-off energies which can be identified in a scattering process on
three ions in the resonant distances D1 and D2 (Fig. 6.6) in the strong laser field (ω = 0.2 a.u., E0 =
0.2 a.u.).

the green lines in Fig. 6.5 (b) marked by “Field 1 . . . 3 ”.

The first two ions are placed at the same distance like in the previous case, cf. Eq. (6.6),

D1 = (k0 + 2v0) · π
ω
. (6.8)

The electrons scattered by this process gain the momenta given by Eq. (6.4). Hence, the optimal
distance for the additional potential from the first ion is given by

D1 +D2 = (k0 + 4v0) · π
ω

which leads to
D2 = 2v0 · π

ω
. (6.9)

According to this formula, the third ion has to be placed at a distance independently of the
initial momentum k0 since only the additional momentum absorbed from the electric field by
the last scattering process plays a role. An estimation of the maximum energy yield and the
distances D1 and D2 is shown in Table 6.3. For k0 = 4.0 a.u. this corresponds to electrons with
an energy of 1.3 keV, accelerated over a setup which measures only 6.5 nm.

Since the electron collides with the third ion lastly, the distribution with the highest kinetic
energy is expected to be scattered to the left of the whole arrangement. But due to the transmis-
sion and reflection properties the total intensity should be small. Figure 6.6 shows the resulting
energy spectrum of a wave packet scattering simulation, k0 = 1.0 a.u. The laser properties are as
before. The ions are placed at the distances D1 and D2 according to Table 6.3 where an optimal
energy yield is expected. Since the spectra of those multiple scattering processes contain very
weak signals, these kinds of simulations have to be done very carefully. Otherwise the signal of
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6.1 Coulomb scattering in a one-dimensional model

forward scattered

Energy [a.u.]

In
te

n
st

iy
[a

rb
it

ra
ry

u
n
it

s]

backward scattered

cut-off 1

cut-off 2

cut-off 3

−30 −20 −10 0 10

10

20

102

103

104

105

106

107

108

Figure 6.6: Wave packet scattering k0 = 1.0 a.u. on an arrangement of three ions in resonant distances
in a strong laser field, ω = 0.2 a.u., E0 = 0.2 a.u. The energy spectrum is obtained from a numerical
solution of the TDSE. The classical cut-off energies, cf. Table 6.3, are indicated by blue dashed lines.

the three-fold scattered electron cannot be distinguished from the underlying numerical noise.
Therefore very fine grids with parameters ∆t = 0.001 and ∆x = 0.0125 are used. This increases
the computational effort enormously because very large computational grids (N ≥ 200000 and
Nt = 480000) are required. For these parameters the signal of the third scattering process can
clearly be identified in the electron spectrum (cut-off 3 in Fig. 6.6). The noise is more than one
order of magnitude lower. Furthermore the traces of all other scattering processes described
previously in this chapter can be found in the spectrum: the scattering on one single ion in the
backward scattered fraction (cut-off 1) and the two-fold scattered fraction of electrons in the
forward direction (cut-off 2). Therefore, the instantaneous Coulomb collisions model developed
in [10] is also able to describe all significant cut-offs in Fig. 6.6.

Since the reflection coefficient of the one-dimensional Coulomb potential is increased dramat-
ically if κ is decreased, the total yield could be increased if the cut-off parameter is chosen to
be smaller for the last Coulomb potential. But since an adjustable cut-off parameter, as it is
essential for 1D simulations, does not have any physical meaning, these further investigations
were not (yet) performed. A more physical approach is the change of the atomic number Z for
the related potential since it also affects the transmission and reflection rates of the whole setup.
However, introducing a third ion with an atomic number of Z = −0.1 a.u., i.e., a higher reflec-
tion coefficient, does not noticeably change the situation. A significant increase in the intensity
of high-energy electrons, compared to the case shown in Fig. 6.6, could not be verified in the
simulations.

Scattering on longer chains

As displayed in Fig. 6.5 (b) the exiting electron beam from a setup consisting of three ions lies
in the direction of the incident electron wave packet. Hence a further increase in the energy
yield can only be achieved if this exiting electron collides with an additional ion. This ion has
to be placed in front of the first one. Therefore it seems to be impossible to enhance the shown
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Figure 6.7: Schematic drawing of the two-dimensional scattering setup. A wave packet with initial
momentum k0 ‖ x is launched on the x-axis (ϕ = 0, π). An additional scattering parameter d adjusts
the distance from a central collision of the wave packet center. The laser field — if included — is linearly
polarized along the same axis (green arrow).

setup to longer chains of potentials by using the same energy absorption mechanism introduced
above. However, lots of situations with equidistant and non-equidistant potentials have been
simulated but no significant resonances could be found. A more sophisticated setup which uses
the non-monotonous behavior of the quantum reflection and transmission properties of potentials
is proposed in the last chapter “Outlook”.

6.2 Two-dimensional Coulomb scattering

The one-dimensional model allows for an easy and fast access to scattering processes in (strong)
laser fields and the corresponding distribution of fast electrons. Nevertheless it is not able to
make robust predictions for experiments since the intensity of high-energy electrons is clearly
overestimated due to an additional angular degree of freedom. A two-dimensional model is some-
what closer to reality. As already shown in Chapter 5.2.3, the angular distribution of electrons
emitted by multi-photon processes can accurately be calculated within a two-dimensional model.
Thus the generalization of the 1D case gives us the opportunity to investigate the angle depen-
dence of the scattering processes observed previously and additionally a possibility to estimate
the total yield of the high-energy electrons in each direction.

First of all, we present a recap of the well-known scattering of particles on a single Coulomb
potential in three dimensions. This leads to the famous Rutherford formula and the correspond-
ing cross sections. These are then compared with the results of two-dimensional wave packet
scattering (solutions of the TDSE). Additionally, this formalism is set into relation with the
classical trajectories of a scattered particle. Then the collision of electrons with single ions in
laser fields, beginning with low-intensity fields, and the change in the cross sections caused by
a linearly polarized pulse are discussed. Finally, the scattering geometries constructed in the
previous part are extended to the two-dimensional case and adjusted to increase the total yield
of fast electrons [51, 52].
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6.2 Two-dimensional Coulomb scattering

Figure 6.8: Scattering geometry for particle scattering on a potential at x, y = 0. The incident particle
beam is scattered into the solid angle element dΩ at the scattering angle ϕ.

6.2.1 Coulomb scattering without a laser field

First we will discuss the elastic scattering of particles, in our case electrons, on positively charged
ions without any laser field. In this case an analytical solution is possible and leads to the well-
known Rutherford formula [53]

dσ
dΩ

=
(
Z1Z2

4E

)2 1
sin4 (ϕ/2)

. (6.10)

For naming conventions see Fig. 6.8. Eq. (6.10) gives the differential scattering cross section
for a particle scattered on a Coulomb potential. It determines the fraction between the number
of scattered particles per time and solid angle element dΩ and the total number of incoming
particles per time and area. Z1 and Z2 are the atomic numbers of the collision partners, which
can be positive or negative. Within this thesis Z1 = −Z2 = 1.0 a.u. is chosen. ϕ = 0 . . . π
is the scattering angle at which the fraction dσ/dΩ of particles is detected. The initial energy
of the particle far away from the partner is denoted by E. The angle-dependent cross section
replaces the transmission and reflection coefficients of the one-dimensional potential. The inten-
sity predicted by the Rutherford formula diverges at scattering angles where the sine function
vanishes. This is a direct effect of the long-range potential, i.e., a Coulomb effect. In reality this
singularity plays no important rule since nearby scattering centers will prevent its appearance.
As will be seen in the discussion of the classical trajectories below, this singularity stems from
particles collected from regions with extremely large scattering parameters d.

It is remarkable that Eq. (6.10) is exact in the case of pure Coulomb interaction. The classical
derivation first done by Rutherford and nowadays printed in many introductory textbooks on
physics, gives exactly the same result as a full quantum mechanical treatment of the scattering
process. Here an additional interesting property of the Coulomb potential can be found: the
quantum mechanical derivation of Eq. (6.10) in the first Born approximation and the complete
exact calculation, e.g. given in [54], agree.

We now turn our attention to wave packet scattering in two dimensions. Fig. 6.9 shows
a comparison of wave packet scattering (numerically obtained TDSE solution) on a repulsive
Coulomb potential (a) and an attractive Coulomb potential (b) to its classical analogon. The
density |Ψ(x, t)|2 is indicated by contour lines for the initial wave packet at the left and for
a snapshot at a time after the scattering process (t = 25 a.u.). Additionally, the classical
trajectories are drawn (red solid lines). These were obtained by solving Newton’s equations of
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(b) Scattering on an attractive Coulomb potential

Figure 6.9: Two-dimensional scattering on one single repulsive (a) and attractive (b) Coulomb potential
in the center of the figures. Shown are the classical trajectories (red solid lines) of a particle obtained by
solving Newton’s equations of motion for different scattering parameters d. The contour plots are density
snapshots from quantum calculations (TDSE solution of wave packet scattering, k0 = 1.0 a.u.) for the
initial state (left) and a state after the collision (right, t = 25 a.u.) [43].

motion using a standard 4th-order Runge-Kutta integration method. All physical parameters
are the same for the quantum and for the classical calculations. As one easily sees, the wave
packet formalism gives access — due to the spatial width σ of the initial distribution — to a
plethora of possible classical trajectories. Each corresponds to a different scattering parameter
d, cf. Fig. 6.7.

The density of the electron is mainly located in the vicinity of the classical paths. But this is
— of course — not the whole story: the scattering process in the quantum case is much more
involved. An interference pattern discussed later arises in the case of an attractive Coulomb
potential, Fig. 6.9 (b). Additionally, for quantum calculations the transmission and reflection
properties of the potential come into play and the equality of Eq. (6.10) to its full quantum
mechanical counterpart is, in fact, just a coincidence. Nevertheless, what one should keep
in mind is that the wave packet formalism involves a distribution of scattering parameters d.
Together with the quantum properties of the potential (reflection/transmission), the scattering
of the electron into an arbitrary angle ϕ is possible, even in the case of wave packets with small
width σ. This spatial effect is supplemented by the additional uncertainty in the momentum
space which makes even more trajectories accessible.

To construct the corresponding cross sections, we now analyse the angular distribution of
such scattering processes. Fig. 6.10 shows the angle- and energy-resolved spectrum of the wave
packet after colliding with a soft-core Coulomb potential (TDSE solution for (a) k0 = 1.0 a.u.
and (b) k0 = 2.0 a.u.). First one immediately recognizes that the spectrum corresponds to
elastic scattering. Since no relevant absorption processes or exciting forces are present, the
peak intensity appears at the free particle energy E = k2

0/2 for each scattering angle ϕ. The
width in the energy domain is a direct consequence of the small spatial size of the wave packet
(σ = 10.0 a.u.). The main intensity appears at an angle of ϕ = π. This is the direction of the
initial momentum k0. The intensity experiences an angle-dependent modulation similar to the
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6.2 Two-dimensional Coulomb scattering

(a) Scattering with k0 = 1.0 a.u. (b) Scattering with k0 = 2.0 a.u.

Figure 6.10: Energy- and angle-resolved spectrum of Coulomb scattering without a laser field. The
width of the initial wave packet is chosen to be σ = 10.0 a.u. A detector is placed at a distance r = 50 a.u.,
ϕ = π indicates the direction of the initial wave packet. The resolved distribution corresponds to elastic
scattering with E = k2

0/2 = 0.5 a.u. and E = 2.0 a.u. resp.
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Figure 6.11: Angle-dependent scattering probability: Rutherford cross section, cf. Eq. (6.10) shifted
by π, compared with a time-dependent two-dimensional soft-core Coulomb collision using wave packets
(k0 = 1.0 a.u. and k0 = 2.0 a.u.). The angle-resolved energy distribution of the TDSE solution, cf.
Fig. 6.10, is integrated over all energies. Additionally, the angular integrated spectrum is normalized to
unity. The Rutherford cross section is fitted to the asymptotic behavior of the k0 = 1.0 a.u. case (green
line).
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interference phenomenon observed in a single slit experiment. For higher initial momentum k0,
and therefore higher energies E, the parts scattered into large angles are significantly smaller.
This agrees with the Rutherford formula, Eq. (6.10), where E appears in the denominator.

The total cross section for a particle being scattered at an angle ϕ is obtained by integrating
the angle-resolved spectrum over the energy. This result can then be related to Eq. (6.10).
Fig. 6.11 shows the normalized intensity for both situations discussed in Fig. 6.10. Additionally,
the Rutherford cross section, fitted to the graph for the case k0 = 1.0 a.u., is drawn. It describes
the scattering at large angles very well but the distribution for small angles differs a lot. The
singularity in the Rutherford cross section is diminished. This is a direct effect of the finite size of
the wave packet. Since the Coulomb potential “collects” all particles (probability distributions)
for large scattering parameters d and focuses them to the angle ϕ = π, the wave packet formalism
shows a significantly smaller intensity. Furthermore, the modulation already mentioned appears
in the integrated spectrum. In this illustration the relation to the interference pattern is more
obvious. The behavior of the intensity can be qualitatively explained with the formula [55]

I(ϕ) =
sin2 x

x2
with x = π · b · k sin(ϕ) . (6.11)

b describes the width of the slit and ϕ denotes the diffraction angle measured from the optical
axis. The oscillations are faster for larger values of k. This dependence can be identified in the
numerically obtained graphs, Fig. 6.11. One also recognizes that the fraction of total backward
scattered electrons (φ = 0, 2π) is very small compared to the incident wave packet. Additionally,
it is further decreased for larger momenta (k0 = 2.0 a.u., red line). This already illustrates
the difficulties that will arise when the one-dimensional scattering situations presented in the
previous part are generalized to the 2D case.

6.2.2 Including laser fields

We have now developed the tools for investigating two-dimensional Coulomb scattering processes
in laser fields. We restrict ourselves to linearly polarized fields in this work. Fig. 6.7 indicates
the polarization direction of the field along the x-axis which is also the direction of the incoming
particle beam. The influence of the field strength E0 of a laser for a fixed photon energy
ω = 0.2 a.u. is presented in Fig. 6.12. First of all, relatively weak fields (E0 ≤ 0.01 a.u.) seem to
have nearly no effect on the scattering process itself. The energy integrated angular spectrum
shows no significant field dependence. But for laser intensities approaching the strong field
regime (E0 ≥ 0.05 a.u.), a change especially in the distribution of backward scattered electrons
can be observed. For E0 = 0.05 a.u. the curve in Fig. 6.12 is shifted upwards whereas in the case
of a strong field (E0 = 0.2 a.u.) additional new angle-dependent features arise. The direction of
the laser field polarization (ϕ = 0, 2π) becomes visible by two maxima. Two significant drops,
marked with p1 and p2 in Fig. 6.12, are identified and a strong increase of approximately one order
of magnitude in the intensity of backward scattered electrons is obtained. Thus this direction of
scattering becomes more likely in the case of a linearly polarized laser field - depending strongly
on the intensity. This effect is important because the probability of backward scattering is an
important quantity for efficient generation of fast electrons by scattering processes.

6.2.3 Scattering on one ion in a strong laser field

We now have a detailed look at the scattering of electrons on one single ion in a strong laser field in
two dimensions. The increased fraction of backward scattered electrons was already mentioned.
Fig. 6.13 shows the energy- and angle-resolved spectrum of 2D wave packet scattering on a single
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Figure 6.12: Energy integrated angular distribution for the intensity of scattered electrons after the
collision with one single ion depending on the electric field strength of the laser (ω = 0.2 a.u). The initial
momentum of the wave packet was chosen to be k0 = 1.0 a.u. for all calculations.

ion for two different initial momenta k0. The detector is placed at a distance of r = 75.0 a.u.,
which is large compared to the active scattering region. Furthermore, it was assured that the
variation of r does not change the electron spectra. Hence, near-field effects are negligible in
the formation of the presented spectra. The strong angle dependence, not only in the cross
section but also in the energies, becomes apparent. As in the one-dimensional case a plateau in
intensity in the distribution of backward scattered electrons (ϕ = 0, 2π) is observed. The cut-off
energy can be identified to approximately Ecut-off = 5 a.u. for k0 = 1.0 a.u. (Ecut-off = 8 a.u. for
k0 = 2.0 a.u.) which agrees with the instantaneous Coulomb collision model introduced for the 1D
case. The forward scattered fraction, with most intensity coming from the elastically scattered
part of the wave packet at ϕ = π and an energy E = k2

0/2, exhibits also an increase in energy.
In analogy to the one-dimensional setup a cut-off energy can be identified. The relation between
multi-photon processes in scattering processes and the above threshold ionization becomes again
visible (cf. Fig. 5.10).

In both spectra the photon orders are clearly separated by exactly the photon energy ω =
0.2 a.u., although for numerical reasons a small width of σ = 10 a.u. in the case for k0 = 1.0 a.u.
(σ = 40 a.u. for k0 = 2.0 a.u.) is chosen. Furthermore, both distributions show qualitatively
a similar structure but in the case of k0 = 2.0 a.u. an additional angular quantization with
forbidden regions at certain scattering angles ϕ becomes visible. This has to be an effect of
angular momentum conservation. As shown previously for the case of the ionization of different
states (cf. Chapter 5) the emission at specific angles is impossible due to the dipole selection
rules which are a consequence of angular momentum conservation (∆l = ±1). Fig. 6.13 (b)
visualizes that each absorption of a photon shifts the forbidden regions by a certain angle. This
can then be connected with the increase of the angular momentum of the electron by a constant
factor for each subsequent photon line. Thus, the arising fringe structure seems to be a trace of
the multi-photon ladder.

If one now remembers the result of the scattering process with slow electrons (k0 = 0), shown
in Chapter 5, Fig. 5.12, one recognizes that no angle-dependent substructure is present whereas
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(a) Scattering with k0 = 1.0 a.u., σ = 10.0 a.u.

(b) Scattering with k0 = 2.0 a.u., σ = 40.0 a.u.

Figure 6.13: Energy- and angle-resolved electron spectra of central (d = 0) wave packet scattering on
one single ion in a strong laser field ω = 0.2 a.u. and E0 = 0.2 a.u. The electrons are detected at a
distance of r = 75.0 a.u. The spectra are not dependent on this special choice.
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6.2 Two-dimensional Coulomb scattering

Figure 6.14: Central wave packet scattering (d = 0) on one single Coulomb potential in a strong laser
field (ω = 0.2 a.u., E0 = 0.2 a.u.) for different detector resolutions ∆ϕ = 2π/K. The initial momentum
is chosen to be k0 = 1.0 a.u., the width σ = 10.0 a.u.

Figure 6.15: Same setup as Fig. 6.14 but for different scattering parameters d. The parameter of the
resolution was fixed at K = 256.
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in the case of scattering with k0 = 1.0 a.u., Fig. 6.13 (a), already a weak modulation can be
spotted (indicated by a shift in each photon line). One can now conclude that the additional
initial momentum k0 and the corresponding angular momentum of non-central parts of the wave
packet (with respect to the central potential) play an important role in the formation of this
substructure. Further investigations, on numerical as well as on an analytical basis, are planned.

The resolution of the detector is a limiting factor for the experimentalist. Of special inter-
est is therefore, how the angle-resolved spectra depend on the angular resolution of a possible
detector. Fig. 6.14 shows the spectrum for the case k0 = 1.0 a.u. with different parameters
K (cf. Chapter 3.4.2, Fig. 3.5) The resolution is simply given by ∆ϕ = 2π/K. As one can
easily see, the substructures in the spectrum vanish but the main cut-off energies are still re-
solvable for nearly all investigated parameters K. Of course the finer the resolution, large K,
the more underlying structures like angular quantization are observable. But the distribution of
fast electrons generated by collisions in laser fields are detectable over a wide range of resolutions.

The next question is how the spectra are affected when the wave packet is not sent centrally
(d = 0) to the scattering region which is difficult to realize experimentally. A simple idea for an
experiment occurred during the discussion of this work [56]:

The positively charged ions are made available by an ion beam and the electrons are irradiated
perpendicular to the direction of ions. The crossing point of both beams is located in a strong,
linearly polarized laser field, e.g., the X-FEL at DESY Hamburg. This setup will lead to collisions
with scattering parameters d distributed over a wide range. But as already mentioned previously
in the discussion of the classical trajectories, the wave packet scattering formalism already shows
this distribution intrinsically. Only the intensity at specific angles should vary if the center of
the wave packet travels on a trajectory displaced from the central axis. Fig. 6.15 shows the
wave packet calculations with k0 = 1.0 a.u. for different scattering parameters d. The graph with
d = 0 is the same as in the previous picture, Fig. 6.13 (a). The results support the arguments
above. The structure of the spectra is not affected by variation of d. Only the intensity decreases
and up to d = 15.0 a.u. nearly no change is observed. The main peak at ϕ = π is shifted to
the angle of the new scattering axis which can be identified as an effect of the relatively small
distance r between the scattering center and the detector. But the main contributions to the
fast electrons in the backward direction are not affected. For d = 25.0 a.u. this fraction finally
vanishes in the background because nearly no part of the wave packet hits the ion anymore
(finite width σ = 10.0 a.u. of the wave packet). Thus the process of generating fast electrons
should be detectable also in the case of scattering with an ensemble of scattering parameters d.

6.2.4 Scattering on an ion pair

In the following, the generation of high-energy electrons by correlated collisions in strong laser
fields (see Chapter 6.1.3) is extended to 2D scattering geometries. As mentioned in the first part
for the one-dimensional case, the optimal setup to increase the total energy yield formed by two
ions can be estimated with the help of the classical resonance condition, Eq. (6.6). This equation
holds also for the multi-dimensional case, since we have restricted ourselves to linearly polarized
laser fields. For the case of k0 = 1.0 a.u. this corresponds to a distance D = 47.12 a.u., cf.
Table 6.2, of the two scattering centers. The considered setup is sketched in Fig. 6.16. The wave
packet is launched centrally (d = 0) towards the scattering centers. The field is polarized along
the direction of the alignment of the ion pair, which corresponds to an angle of ϕ = 0, π. As
we already learned from electron scattering on single ions in the 2D case, the expected effect is
weaker as for the one-dimensional setup. The cross sections for backward scattering, where the
maximum energy yield is obtained, is very small. Additionally, we are interested in the special
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Figure 6.16: Two-dimensional wave packet scattering on an ion pair in a laser field.

case of doubly scattered electrons, and therefore an even smaller fraction of scattered particles.
The simulations, i.e., the solutions of the TDSE, have to be performed on very large spatial

grids since the initial wave packet needs a sufficient width σ and the scattering process itself
needs to be followed for a reasonable scattering time over several laser periods, comparable to
those in 1D. Additionally, due to the expected weakness of the effect, the simulation parameters
∆x and ∆t have to be adjusted carefully. Choosing parameters too large will increase the noise
in the spectra and hide the expected physical effect in the background. Choosing ∆x too small
makes the simulations nearly impossible since the grid becomes incredibly large. A dimension
of 300 a.u.× 300 a.u. seems to be a reasonable simulation box size but already with a resolution
of ∆x = 0.05 a.u. this corresponds to an enormous amount of 3.6 × 107 grid points. Here, the
advantage of an effective imaginary absorbing potential becomes apparent. Additionally, the de-
tected wave function becomes a computational challenge. It needs to be stored on approximately
16000 grid points to give a sufficient resolution for all time steps, which can easily increase up
to Nt = 96000 since ∆t has to be chosen sufficiently small. A total amount of several ten GB of
data is created for each simulation run which need to be post processed by effective algorithms
to obtain the angle-resolved energy spectra.

After a detailed analysis with different parameters ∆x and ∆t, grid sizes and zero-padding
for the FFT algorithms, the best spectrum of the detected electrons after the scattering process
is given in Fig. 6.17. The final numerical parameters are given in the caption. The significant
cut-off energy for the single ion scattering process in the backward direction (ϕ = 0, 2π) is
again identified (Ecut-off ≈ 5 a.u.). The photon orders are well resolved and separated by the
photon energy ω. But in comparison to the single ion scattering spectrum, cf. Fig. 6.13 (a), the
distribution is strongly distorted due to the second collision event.

However, the expected second classical cut-off in the forward direction, which corresponds to
the electrons with the highest kinetic energy, cannot be reliably identified. It vanishes in the
numerical noise of the spectrum (black regions in the graph correspond to the noise level). Still,
a very weak distribution in the forward direction can be observed. An interpretation of the
missing signal is straightforward: The fraction of the wave packet being scattered at the second
ion, namely the backward scattered fast electrons from the first collision, is too small in the
two-dimensional system to give a reasonable intensity for the second collision. Nevertheless the
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Figure 6.17: Electron energy spectrum of wave packet scattering on two ions, k0 = 1.0 a.u., D =
47.12 a.u. The simulation parameters are: N = 7500, M = 5000, ∆x = ∆y = 0.05, ∆t = 0.005, Nt =
96000. Laser parameters as before: ω = 0.2 a.u., E0 = 0.2 a.u. The classical estimations for the cut-off
energies according to the instantaneous Coulomb collision model are indicated by white dashed lines.
They hold for complete backward (ϕ = 0, 2π) and forward (ϕ = π) scattering.

distorted substructure in the spectrum due to multiple collisions is of interest since it should be
present in all scattering experiments in the gas phase where such resonant distances between
two particles should appear occasionally. Further investigations of this fundamental process in
gases and plasmas seem to be worthwhile since there are also open questions, for instance, in
the generation of higher harmonics which can possibly be explained by such correlated collisions
[57].

6.2.5 Scattering in a confined setup

A possible way to overcome the problem of the vanishing signal discovered in the case of pure
two-dimensional scattering is to use an additional confinement potential. This leads to two
valuable effects: firstly, the electrons are focused into the desired directions of true forward
respectively backward scattering. Secondly, it allows for the usage of smaller, i.e., rectangular,
grids. This helps keep the simulation time smaller and enormously decreases the required mem-
ory size. Therefore the entrapment of the scattering setup has beneficial effects on the physical
nature of the problem as well as on the numerical treatment within the TDSE framework.

Throughout the remaining part of the present chapter, a harmonic confinement with the trap
frequency Ω along the y-direction, i.e. perpendicular to the scattering direction, is used (cf.
Fig. 6.18):

Vconf =
1
2
mΩ2y2 . (6.12)

The initial conditions for the simulation are adjusted according to the trap: along the x-
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Figure 6.18: Scattering on one single ion in an additional harmonic confinement along the y-direction.

direction a free traveling Gaussian wave packet with the initial momentum k0 is still used.
In the y-direction however, the first eigenstate of the harmonic confinement, i.e., a Gaussian
distribution with the width σy = 1/

√
Ω is chosen.

The confinement now allows for grid sizes in x-direction which are comparable to those in
the 1D problem since the size of the numerical grid in y-direction is strongly limited. The grid
resolution is determined according to the maximum energy occurring in the expected scattering
processes. This cut-off energy is estimated by means of the classical approximation presented
above. The grid size is identified by the condition that the confinement energy at the grid
boundary should be significantly larger than the highest expected kinetic energy of the electron
in order to avoid perturbing boundary effects. It appears that for trap frequencies used herein, a
relatively small grid in y-direction is adequate. Therefore large widths in the k0 direction of the
initial wave packet are possible and lead to a high energy resolution for the scattering process
itself.

Scattering on one single ion

First we are interested in a comparison with solutions already obtained and a survey of the in-
fluence of different confinement strengths. Therefore, wave packet scattering on a single ion in a
harmonic confinement is considered. Within this setup the transition from the one-dimensional
geometry to the 2D system can be investigated. Fig. 6.19 shows the energy spectrum of the
backward scattered electrons in a pure 1D, a pure 2D and entrapped systems of different con-
finement strengths. The laser parameters are as usual (ω = 0.2 a.u., E0 = 0.2 a.u.). The initial
momentum of the wave packet in x-direction is k0 = 1.0 a.u. and its width is chosen to be
σ = 50 a.u.

In order to obtain comparable results, the calculations of the spectra were done by integration
over an angle of ∆ϕ = 0.2/2π centered at the direction of total backward scattering (ϕ = 0).
After the integration, the spectra are normalized.

Furthermore, one has to keep in mind that the choice of the first eigenstate of the harmonic
potential in y-direction adds energy to the system. Hence, it is increased by

E0 = Ω
(
ny +

1
2

)
= Ω/2 . (6.13)
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Figure 6.19: Energy spectra of the backward scattered fraction of an electron-ion collision in a strong
laser field (ω = 0.2 a.u., E0 = 0.2 a.u.). The graphs show the result for the pure two-dimensional
case (uppermost spectrum), the pure one-dimensional case (lowest graph) and the result for different
confinement strengths Ω. Weaker confinement is closer to the 2D case, stronger confinement closer to 1D.
The trap is schematically drawn in the right. The intensity of each spectrum (y-axis) runs from 10−5 to
1 on a logarithmic scale. The background noise level is below the plotted graphs. The blue dashed line
indicates the height of the intensity plateau found in the 2D calculation as a reference.
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D
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Figure 6.20: Scattering on an arrangement of two confined ions in a laser field.

To account for this effect, the energy scale for each spectrum in Fig. 6.19 is shifted by the
corresponding value. At first glance, one recognizes the accurately obtained photon orders which
are located at the same energies for all systems considered. Thus the shift of the energy scale
according to Eq. (6.13) is correct. Furthermore, all spectra show a similar structure with a
cut-off energy within the same energy region. For a comparison of the intensities (logarithmic
scale) the height of the backward scattering plateau for the 2D case is indicated by a blue dashed
line. The trend which arises by introducing the confinement is easily observed: The intensity of
backward scattered electrons is increased with stronger entrapment. This is of course the effect
of the expected focusing. The comparison with the 1D calculations (lowest graph) is difficult.
The normalization of the spectrum underestimates the total yield since no corresponding angle
element is available. Therefore the blue line should be located somewhat lower as indicated in
Fig. 6.19. Further calculations — also on larger grids with a better signal to noise ratio — are
planned for the future.

Scattering on an ion pair

In this last part we discuss the correlated scattering on an ion pair in a harmonic confinement.
The whole setup is schematically given in Fig. 6.20. The laser field is polarized along the
alignment axis of both ions which also corresponds to the external trap. The laser parameters
are as usual (ω = 0.2 a.u. and E0 = 0.2 a.u.). The initial momentum of the incoming electron was
chosen to be k0 = 1.0 a.u. and again in y-direction the first eigenstate of the harmonic potential
with Ω = 1.0 a.u. has been used. This trap frequency results in a very strong confinement.
Both ions are placed at a distance D = 47.12 a.u. which allows for the generation of resonantly
scattered electrons with high energies. The corresponding energy spectrum of the forward and
backward scattered electrons is shown in Fig. 6.21. The spectra are obtained as in the single
ion case by integrating over an angle element ∆ϕ = 0.1, but now for both directions, ϕ = 0 and
ϕ = π.

The strong asymmetry (as observed in the one-dimensional case, cf. Fig. 6.4) in the spec-
trum becomes apparent, i.e., the relatively low-energy part of backward scattered electrons and
the broad plateau of forward scattered electrons with higher energies. The intensity structure
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Figure 6.21: Energy spectrum of a correlated electron-ion pair collision, k0 = 1.0 a.u., in a harmonic
confinement with Ω = 1.0. The laser field parameters are ω = 0.2 a.u., E0 = 0.2 a.u. Negative energies
indicate backward scattering and forward scattering is marked by positive energies. The classical cut-off
energies (instantaneous Coulomb collision model) are denoted by dashed blue lines. The highest peak
results from the incident electron energy with E = k2

0/2.

of the one-dimensional case, especially the substructure of the height of subsequent photon
peaks, cannot be reproduced accurately within this model. Nevertheless the classical cut-offs
can be identified more readily than in the pure two-dimensional case and therefore the addi-
tional harmonic confinement allows for the construction of a more efficient scattering setup in
two dimensions.

As in the case of single ion collisions presented above, cf. Fig. 6.19, an analogous effect of
focusing due to the external confinement can be observed in the simulations of correlated scat-
tering processes. By comparison of the resolved intensity of doubly scattered electrons without
confinement, Fig. 6.17, and the results shown in Fig. 6.21 (Ω = 1.0 a.u.), one finds an increase in
the yield of high-energy electrons by several orders of magnitude. Due to the vanishing signal in
the case of ion pair scattering for Ω = 0, a more precise quantification is not possible. However,
since the signal of the twice scattered electrons can be verified for Ω = 1.0 a.u., the introduction
of an additional harmonic confinement promises an increase of efficiency in the generation of
high-energy electrons by correlated scattering processes.

A (last) remark on a possible experimental realization is in order. The scattering centers,
i.e., the ions, can be represented by interfaces in a semi-conductor hetero-structure [58]. The
specific shape of a Coulomb potential is not the critical necessity. The distance between both
scattering centers, or alternatively the laser frequency, has to be adjustable to allow for resonant
scattering. The external confinement is the limiting factor. It should be very strong, especially
for the generation of very high-energy electrons. This may be achievable, e.g., with tip electrodes
near a surface.
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7 Conclusions and outlook

In the present work ionization processes and electron-ion collisions in the presence of (strong)
laser fields were addressed. The central method was the numerical solution of the time-dependent
Schrödinger equation (TDSE). To this end a code package based on the Crank-Nicolson method
and the alternating direction implicit procedure was developed. It allows for the solution of
the multi-dimensional TDSE on large spatial grids in the usual laboratory frame as well as in
the adapted Kramers-Henneberger [40, 41] representation which eliminates the quiver motion
of an electron in a time-dependent field. The program contains routines for the construction of
initial conditions such as the shooting method and the imaginary time propagation [36] which
give access to the eigenstates of the considered potential. Furthermore the calculation of various
quantum mechanical observables is included, with special interest in the calculation of the energy
distribution of scattered or ionized electrons. This was achieved by modelling a detector-like
situation in combination with (imaginary) absorbing potentials.

The convergence behavior and several tests of the implemented code were presented within
this thesis showing the desired agreement with well-known analytical results. The central sys-
tems investigated in the work were based on the one- and two-dimensional Coulomb potential.
As it is necessary for their numerical treatment, regularized soft-core potentials were used to
prevent the singularity at x = 0. The arising complications such as broken degeneracies were
discussed in detail. In addition the formalism of wave packet scattering was accurately described
and applied to potentials in order to obtain quantum properties as, e.g., their transmission and
reflection coefficients. These implemented and well-tested techniques allowed for the investiga-
tion of ionization, emission and scattering processes in strong laser fields on a microscopic level.
The results are restricted to linearly polarized laser fields with intensities up to 7 · 1015 W/cm2.
The coupling of the electro-magnetic field to the Hamilton operator is treated within the classi-
cal electro-dynamics and, for simplicity, the dipole approximation is used which appeared to be
sufficient for the systems investigated.

One central topic of the thesis at hand was the investigation of excitation and ionization of
electrons initially bound in model potentials such as the regularized Coulomb potential. Within
manageable one-dimensional systems, well-known linear phenomena occurring for excitations in
the perturbative regime were confirmed numerically. In particular, the dipole-selection rules
and Fermi’s golden rule were addressed. For two-dimensional situations, the numerical solution
of the TDSE gave access to the angle-resolved distribution of photoionized electrons. Distinct
minima depending on the angular momentum l of the initial state were observed, corresponding
to forbidden ionization angles. These numerical results could be verified in the calculations
of the allowed angle-dependent dipole transitions. To this end the dipole matrix elements for
transitions between bound atomic states and free plane waves with certain angles of the wave
vector k measured with respect to the laser polarization axis were calculated. In addition, these
two-dimensional results were generalized to the 3D hydrogen atom. Depending on the initial
state preferred directions for the emission of electrons could also be observed.

Moreover, non-linear multi-photon processes with the focus on above threshold ionization
(ATI) in strong laser fields were simulated within the framework of the TDSE and compared
with results obtained within the strong field approximation (SFA) firstly introduced by Keldysh
[18]. Good agreement, besides the well-known deviations of the SFA due to long-range Coulomb
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effects [24], could be demonstrated. Furthermore, angle-resolved ATI spectra for different initial
states of a two-dimensional model hydrogen atom were calculated. As a related effect to ATI [10],
the scattering of slow electrons (with initial momentum k0 = 0) on a single Coulomb potential
was investigated and the connection to the issue of “Coulomb scattering in strong laser fields”
could be pointed out. In both cases MP processes are the dominant effects leading to accelerated
electrons.

Another concern of the present thesis was the investigation of electron-ion collisions (k0 > 0)
in strong laser fields with the goal to generate high-energy electrons by correlated scattering
processes. Within a one-dimensional model, based on ideas by H.-J. Kull [10, 12], the energy-
transfer mechanisms between laser field and electrons by collision processes were illustrated.
With the help of the classical approach of instantaneous Coulomb collisions, cut-off energies in
the electron spectra could be estimated and resonance conditions for setups consisting of two and
three spatially fixed ions could be derived. Simulations of wave packet scattering with the help
of numerical solutions of the TDSE confirmed the results predicted by the classical treatment. A
distribution of scattered, high-energy electrons could be observed exhibiting kinetic energies up
to 50 times higher than their initial energy. These electrons were accelerated over a scattering
setup in a laser field (I = 7 · 1015 W/cm2) which measured only a few nanometers.

To account for additional angular degrees of freedom in real experiments, this one-dimensional
approach was extended to the 2D case. It was demonstrated that high-energy electrons can be
generated by collisions on single ions in this model as well. The investigation of angle-resolved
electron spectra revealed that the maximum energy yield is obtained by direct backward scat-
tering where the cut-off energies agree with the one-dimensional case. Indeed, the intensity of
high-energy electrons is significantly decreased due to the additional possible scattering direc-
tions. An observed angle-dependent substructure in the spectra pointed at angular momentum
conservation during the MP process. We addressed several, especially for the experimentalist,
interesting aspects, such as detector resolutions and variation of the scattering parameter. The
results indicate that the fraction of fast electrons generated by single-ion collisions should be
detectable in measurements.

The last part of the thesis generalized the investigated correlated scattering processes in one
dimension to the two-dimensional case. As expected, the generation of high-energy electrons by
collision on two spatially correlated ions is not as efficient as in the 1D case. To overcome this
problem an additional external harmonic confinement was introduced which focuses the electrons
in the direction of the highest energy yield. Within TDSE simulations a significant increase in
the yield of high-energy electrons could be verified, promising that this method is a possible way
for the generation of fast electrons by correlated scattering processes on the nanometer scale.

Outlook

The work on the thesis at hand revealed several questions unanswered up to this point. As
mentioned in Chapter 6.2.3, the occurring angle-dependent fringe structure in the spectra of
scattered electrons needs a well-founded theoretical explanation. Furthermore, the influence
of the additional external confinement on the generation of high-energy electrons and the cor-
responding increase in intensity is not exhaustively investigated, cf. Chapter 6.2.5. Further
calculations with improved methods, e.g. parallelized algorithms in order to be able to use
larger grids, may be worthwhile to consider.

Additionally, the code already available allows for the investigation of two-color experiments
which gives the possibility for time-resolved analysis of electronic dynamics in laser fields. This
offers a wide range of further applications [7]. Finally, it is planned to explore correlated many-
body effects in strong laser fields based on other theoretical approaches, as e.g. outlined in [15].
Here, the results obtained within the thesis at hand offer profound benchmarks.
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As a final remark on the generation of fast electrons by scattering processes, can be mentioned
that the mechanism of acceleration due to correlated electron-ion collisions in laser fields is not
necessarily restricted to Coulomb or Coulomb-like potentials. Also the consideration of probably
more efficient quantum well and quantum dot structures may be worthwhile. Here, advantage
can be taken of the non-monotonous behavior of the transmission and reflection properties of
the potentials to increase the total fraction of optimally scattered electrons by filtering effects.
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A Conversion of atomic units
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Table A.1: Conversion between atomic units (a.u.), SI-units and cgs-units for several quantities. The
choice m = e = ~ = 1 generates the atomic system of units.
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B Frequently used abbreviations

ADI alternating direction implicit (method)
APT attosecond pulse train
ATI above threshold ionization
CE phase carrier envelope phase
c.m. center of mass
FFT fast Fourier transform
HHG higher harmonics generation
IR infrared (radiation)
ITP imaginary time propagation
KFR theory Keldysh-Faisal-Reiss theory (SFA)
KH-frame Kramers-Henneberger coordinate frame of reference
MP multi-photon
MPI multi-photon ionization
NEGF non-equilibrium Green’s function
OBI over barrier ionization
QED quantum electro dynamics
SFA strong field approximation
TDDFT time-dependent density functional theory
TDSE time-dependent Schrödinger equation
VUV vacuum ultraviolet
X-FEL X-ray free-electron laser
XUV extreme ultraviolet

Table B.1: List of frequently used abbreviations and notations (alphabetical order).
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B Frequently used abbreviations

ΨKH wave function in Kramers-Henneberger frame
Ψlab wave function in laboratory frame
A vector potential of electro-magnetic field
A? vector potential A multiplied by c

k0 initial momentum of wave packet
σ spatial width of wave packet
E0 electrical field strength of laser
ω photon energy of laser
v0 amplitude of quiver velocity
κ regularization parameter for Coulomb potential
ϕ scattering angle
K detector resolution (2π/K = ∆ϕ)

∆t time step size
∆x, ∆y spatial step size
Nt number of time steps
N and M number of spatial grid points (x, y)

Table B.2: notations and formula symbols
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C The Schrödinger equation in the
Kramers-Henneberger coordinate frame

In the following it is shown that ΨKH(r, t) satisfies

−1
2

∆ΨKH(r, t) + V [r +α(t)]ΨKH(r, t) = i
∂

∂t
ΨKH(r, t) (C.1)

By using the Kramers-Henneberger ansatz for the wave function ΨKH(r, t) = ÛΨlab(r, t) one
obtains:

i
∂

∂t
ΨKH(r, t) = i

∂

∂t
Û1 · Û2Ψlab(r, t)

= i

(
∂

∂t
Û1

)
Û2Ψlab(r, t) + iÛ1

(
∂

∂t
Û2

)
Ψlab(r, t) + iÛ1Û2

∂

∂t
Ψlab(r, t)

Inserting the relations ∂
∂t Û1 = −Û1 · 1

cA∇ and ∂
∂t Û2 = Û2 · i

2c2
A2, this evaluates to

i
∂

∂t
ΨKH(r, t) = Û1 · Û2

(
− i
c
A∇

)
Ψlab(r, t) + Û1 · Û2

(
1

2c2
A2

)
Ψlab(r, t) + Û1 · Û2 · i ∂

∂t
Ψlab(r, t)

(C.2)
The Schrödinger equation in the laboratory frame can be written as (within the dipole ap-

proximation [A,∇] = 0):

i
∂

∂t
Ψlab(r, t) = −

(
1
2

∆− 1
ic
A ·∇− 1

2c2
A2

)
Ψlab(r, t) + V (r)Ψ(r, t)lab (C.3)

Combining now Eq. (C.3) and Eq. (C.2) yields:

i
∂

∂t
ΨKH(r, t) = Û

(
− i
c
A∇ +

1
2c2
A2

)
Ψlab(r, t) + Û

[
−1

2
∆− 1

ic
A∇− 1

2c2
A2 + V (r)

]
Ψlab(r, t)

= Û

[
−1

2
∆ + V (r)

]
Ψlab(r, t)

= −1
2

∆ÛΨlab(r, t) + ÛV (r)Ψlab(r, t)

= −1
2

∆ΨKH(r, t) + Û1V (r)Û2Ψlab(r, t)

= −1
2

∆ΨKH(r, t) + V (r +α)ÛΨlab(r, t)

= −1
2

∆ΨKH(r, t) + V (r +α)ΨKH(r, t) (C.4)

where the commutator relations [Û ,∆] = 0 and [Û2, V (r)] = 0 have been used, since Û1 is a
translation operator and Û2 is independent of r. Finally, we have shown that the transformed
wave function ΨKH(r, t) satisfies Eq. (3.45) in Chapter 3 which is the TDSE in the Kramers-
Henneberger frame.
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D Strong field approximation for 1D Coulomb
ionization

In the following we present the calculation of the ionization spectrum for a bound state in the
one-dimensional Coulomb potential using the SFA. Starting point is Eq. (2.30). The initial state
(first bound odd wave function in the Coulomb potential with binding energy E = −0.5 a.u.) is
given by

φi =
√

2x exp(−|x|) . (D.1)

The final state is a Volkov state

φf =
1

2π
exp(ikx) exp

(
−ik

2

2
t

)
exp[iδ(k, x, t)] (D.2)

with the Volkov phase

δ(k, x, t) = −E0

ω
sinωt− E0

ω2
cosωtx− 1

2
E2

0

ω2

(
1
2
t− 1

4ω
sin 2ωt

)
. (D.3)

For the derivation of Eq. (D.3) a linearly polarized laser pulse with a vanishing amplitude for
t→ ±∞ of the form

E(t) = E0 cosωt (D.4)

is assumed. Hence the interaction part of the full Hamiltonian is given by

V (t) = xE0 cos(ωt) . (D.5)

The transition probability amplitude depending on the final state with momentum k [cf. Eq. (2.30)]

pi→f = −i
∫ ∞
−∞

dt〈φf |V (t)|φi〉 (D.6)

evaluates in spatial coordinate representation to

pi→f = − i√
2π

∫ ∞
−∞

dtΦ(t, k)
∫ ∞
−∞

dx exp
(
ikx+

E0

ω2
x cosωt

)
x2E0 exp(−|x|) (D.7)

with a function

Φ(t, k) = exp
[
i
k2

2
t+ i

E0

ω
sinωt+ i

E2
0

2ω2

(
1
2
t− 1

4ω
sin 2ωt

)]
cosωt (D.8)

being independent of x.
The spatial integration in Eq. (D.7) can be performed analytically:

E0

2π

∫ ∞
−∞

dx exp
(
−ikx+

E0

ω2
x cosωt− |x|

)
· x2

=
E0

2π

∫ ∞
0

dx exp(γ1x) · x2 +
∫ 0

−∞
exp(γ2x) · x2

=
E0

π

(
1
γ3

2

− 2
γ3

1

)
= Ξ(t, k) (D.9)
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with the functions

γ1 = −ik +
E0

ω2
cosωt− 1 γ2 = −ik +

E0

ω2
cosωt+ 1 . (D.10)

The whole expression simplifies to

pi→f = −i
∫ ∞
−∞

dt cosωt exp
{
i

[
k2

2
t+

E0

ω
sinωt+

E2
0

2ω2

(
1
2
t− 1

4ω
sin 2ωt

)]}
·Ξ(t, k) . (D.11)

Eq. (D.11) is computed numerically within the region t ∈ [0, tmax] where the laser pulse is
active. The absolute square of pi→f gives the total transition probability Pi→f = |pi→f |2.
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E Proof of the 1D-non-degeneracy theorem

Let E be a two-fold degenerate energy level in a potential V (x). Thus, there exist two wave
functions ψ1 and ψ2 which fulfill

−1
2

d2

dx2
ψ1 + V (x)ψ1 = Eψ1 and (E.1)

−1
2

d2

dx2
ψ2 + V (x)ψ2 = Eψ2 . (E.2)

By multiplying Eq. (E.1) with ψ2 and Eq. (E.2) with ψ1 one obtains

−ψ2
1
2

d2

dx2
ψ1 + ψ2V (x)ψ1 = ψ2Eψ1 and (E.3)

−ψ1
1
2

d2

dx2
ψ2 + ψ1V (x)ψ2 = ψ1Eψ2 . (E.4)

Subtracting Eq. (E.4) from Eq. (E.3) leads to

ψ1
d2

dx2
ψ2 − ψ2

d2

dx2
ψ1 = 0 . (E.5)

This can be written as
d

dx

(
ψ2

d
dx
ψ1 − ψ1

d
dx
ψ2

)
= 0 . (E.6)

By integrating this equation one trivially finds that ψ2
d

dxψ1 − ψ1
d

dxψ2 = constant.

Since limx→∞ ψ1 = 0 and limx→∞ ψ2 = 0 hold, this constant has to be zero. Therefore,
dividing by ψ1ψ2 in the non-zero region yields:

dψ1

ψ1
=

dψ2

ψ2
(E.7)

Finally, the integration of this equation leads to ψ1 = Cψ2, where C is a constant. Therefore
ψ1 and ψ2 are not independent and the 1D - system cannot be degenerate.

But for the 1D - Coulomb potential ψ1ψ2 is zero in the region of the singularity. Therefore
Eq. (E.7) can only be integrated in the regions between the roots of the wave function and the
proof is not valid for potentials with any singularity. Those systems can have degeneracies even
in the one-dimensional case.
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