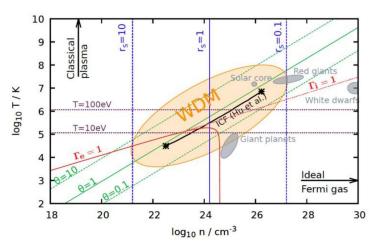
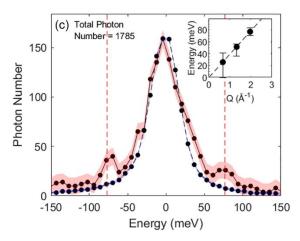


Variational principles for hydrodynamics of strongly coupled plasmas

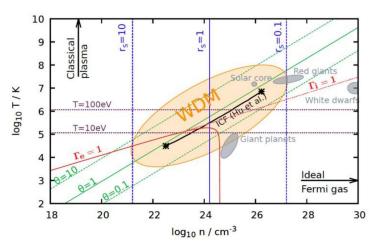

Daniels Krimans^{1,2} and Hanno Kählert¹

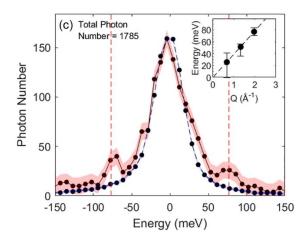
67th Annual Meeting of the APS DPP November 19th, 2025 ¹Kiel University ²University of California, Los Angeles


pdf of the talk at https://www.itap.uni-kiel.de//theophysik/bonitz/talks.html

Motivation

$$\Gamma_i = \frac{(Ze)^2}{4\pi\varepsilon_0 a} / k_B T \ge 1$$

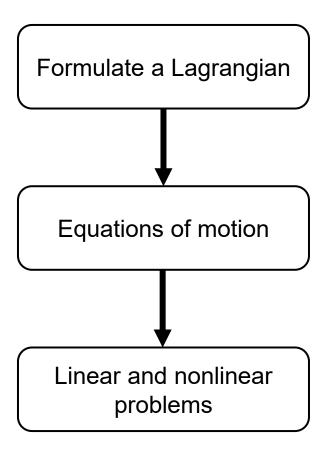

M. Bonitz *et al.*, Phys. Plasmas **31**, 110501 (2024) S. X. Hu *et al.*, Phys. Plasmas **22**, 056304 (2015)


T. G. White *et al.*, Phys. Rev. Research **6**, L022029 (2024)

Motivation

$$\Gamma_i = \frac{(Ze)^2}{4\pi\varepsilon_0 a} / k_B T \ge 1$$

M. Bonitz *et al.*, Phys. Plasmas **31**, 110501 (2024) S. X. Hu *et al.*, Phys. Plasmas **22**, 056304 (2015)

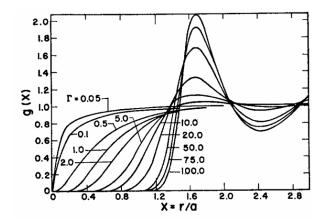

T. G. White *et al.*, Phys. Rev. Research **6**, L022029 (2024)

Hydrodynamics:

- · simple and physically clear,
- approximate but computationally efficient.

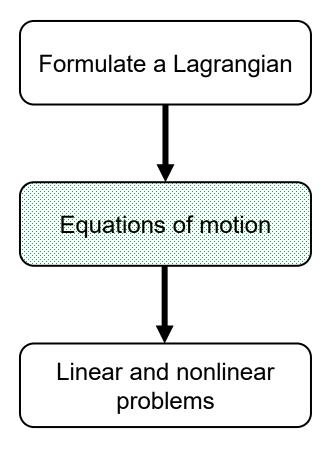
Strong coupling requires the effects of correlations!

Basics of the approach



Basics of the approach

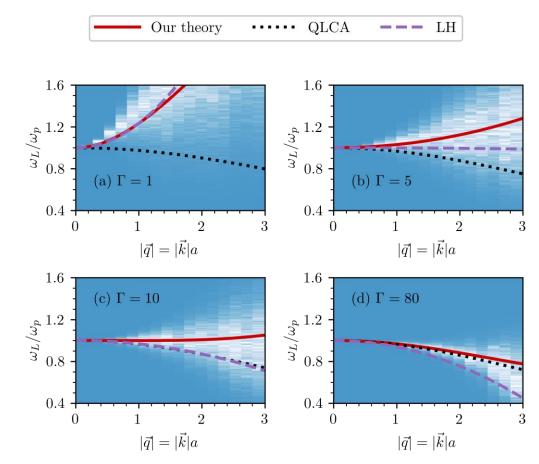
Formulate a Lagrangian **Equations of motion** Linear and nonlinear problems


Strong coupling hydrodynamics:

$$L = \underline{K} - \underline{U} \Rightarrow \int \frac{m}{2} \left(\frac{\partial \langle \vec{x} \rangle}{\partial t} \right)^2 n \, d\vec{a} - \int \left(\frac{3}{2} k_B T \right) n \, d\vec{a}$$
$$-\frac{1}{2} \iint \phi \left(|\langle \vec{x} \rangle - \langle \vec{x} \rangle'| \right) n n' g(n, T, |\vec{a} - \vec{a}'|) \, d\vec{a} d\vec{a}'$$

S. G. Brush et al., J. Chem. Phys. 45, 2102 (1966)

Basics of the approach

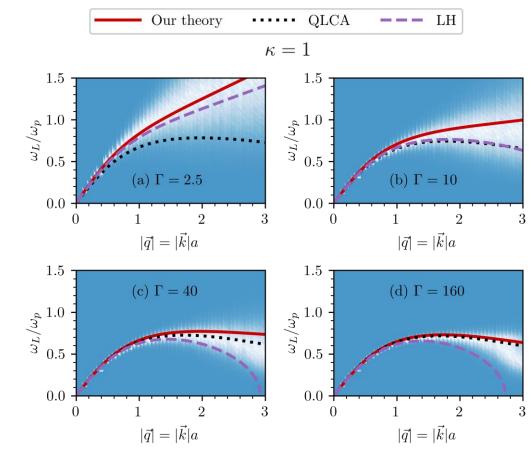


$$mn\left(\frac{\partial \vec{v}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right)\vec{v}\right) = -\vec{\nabla}p + \vec{f}_{\text{nonlocal}}$$

$$p = -\frac{\partial T}{\partial (1/n)} \bigg|_{s} \left(\frac{3}{2} k_{B} + \frac{1}{2} \int n_{\vec{a}'} \phi \frac{\partial g}{\partial T} \bigg|_{n,|\vec{a}-\vec{a}'|} d\vec{a}' \right)$$

$$\vec{f}_{\text{nonlocal}} = -n \int n_{\vec{a}'} \left(\frac{g + g^T}{2} \right) \vec{\nabla} \phi \, d\vec{a}'$$

Dispersion laws of the OCP



D. Krimans and S. Putterman, "Variational principles for the hydrodynamics of the classical one-component plasma," Phys. Fluids **36**, 037131 (2024), *MD data:* I. Korolov *et al.*, Contrib. Plasma Phys. **55**, 421-427 (2015).

$$\frac{\phi(r)}{k_B T} = \frac{\Gamma}{x}, \quad x = r/a$$

- Works for a wide range of coupling and $\lambda pprox a$.
- Correct $|\vec{k}| \to 0^+$ limit with transition at $\Gamma \approx 9.5$. (H. Kählert, Phys. Plasmas **31**, 092109 (2024))
- Computationally efficient.
- Better than typical theories:
 - linearized hydrodynamics (LH),
 (P. Vieillefosse et al., Phys. Rev. A 12, 1106 (1975))
 - quasilocalized charge approximation (QLCA).
 (K. I. Golden et al., Phys. Plasmas 7, 14 (2000))

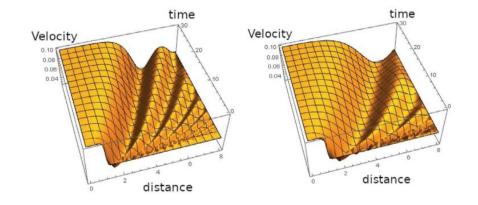
Dispersion laws of the YOCP

D. Krimans and H. Kählert, "Variational hydrodynamics of the classical Yukawa one-component plasma," arXiv:2506.23006 (2025)

$$\frac{\phi(r)}{k_B T} = \frac{\Gamma}{x} e^{-\kappa x}, \quad x = r/a, \quad \kappa = a/\lambda$$

- Works for a wide range of coupling and screening, and $\lambda \approx a$.
- · Computationally efficient.
- When looking at the entire range of coupling parameters, better than typical theories:
 - linearized hydrodynamics (LH),
 (G. Salin, Phys. Plasmas 14, 082316 (2007))
 - quasilocalized charge approximation (QLCA).
 (K. I. Golden et al., Phys. Plasmas 7, 14 (2000))

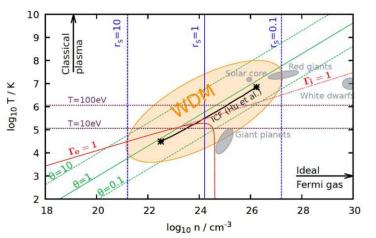
Conclusions and future directions


Our variational approach to hydrodynamics:

- · physically clear Lagrangian,
- explicitly includes nonlocal correlation effects,
- verified in the linear regime for OCP and YOCP.

Conclusions and future directions

Our variational approach to hydrodynamics:


- physically clear Lagrangian,
- · explicitly includes nonlocal correlation effects,
- verified in the linear regime for OCP and YOCP.

F. Graziani et al., Contrib. Plasma Phys. 62 (2022)

Next:

- nonlinear problems,
- including quantum electrons.

$$\Theta = \frac{T}{T_F} \lesssim 1$$

M. Bonitz *et al.*, Phys. Plasmas **31**, 110501 (2024) S. X. Hu *et al.*, Phys. Plasmas **22**, 056304 (2015)

Thank you!