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Motivation: Finite 2D quantum materials
Lattice models: Hubbard, PPP
Equilibrium GF: LDOS of quantum materials. Léwdin's “symmetry dilemma”

NEGF. Keldysh-Kadanoff~Baym equations. Selfenergies
Accelerating NEGF

= 1: Hartree-Fock-GKBA
= 2: G1-G2 scheme. Advanced selfenergies
= Scalings and problems of the G1-G2 scheme
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6. Nonequilibrium dynamics of 2D quantum materials

= dynamics following laser excitation
= charge transfer and ultrafast electron emission due to ion impact

7. Extended time-linear NEGF embedding schemes



Finite 2D quantum materials



Graphene Nanostructures: additional confinement of electrons

Graphene:

= lots of interesting electronic and transport properties 2
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= however, no bandgap si\;\:‘\‘\‘&“‘
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= therefore, not suitable for application in electronics,

e.g. transistors

= solution: quantum confinement in finite graphene nanostructures

e.g. clusters, flakes or nanoribbons
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Potential Applications of Graphene: towards petahertz electronics! w

Experiments by P. Hommelhoff et al.: logic gate for lightwave electronics, variation of carrier envelope

phase ¢c g of few cycle fs-laser pulse
a: momentum asymmetry (A(t)) creates f.(—k) # fc(k) and net current
b: real space asymmetry (E(t)) of density creates net polarization

momentum

carriers

/§ \ Virtual ’
carriers Net polarization

1Boolakee et al., Nature 605, 251 (2022)
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Potential of Graphene and TMDCs: Strong electronic correlations* w

= twisted bilayer graphene: Moiré lattices predicted, realization of strong correlation phenomena
(low density, s = 7/ap 2 35), including electron liquid, Wigner crystal, cf. Ref. 4

= even more flexibility: TMDC monoloyers, twisted bilayers?

= STM experiments on WSes /WS bilayers® confirm electron localization. Even crystal-like
behavior (“generalized Wigner crystal”) reported for certain fillings n:
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2A. MacDonald et al., Phys. Rev. Lett. 121, 026402 (2018)
3H. Li et al., Nature 597 650 (2021)
*M. Bonitz and J.-P. Joost, View point, Physik Journal 20 (12), 20-21 (2021)
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Challenges in Condensed Matter Physics and Quantum Chemistry w

= finite size systems
(molecules) of
~ 10-1000 atoms

= example: polycyclic
aromatic hydrocarbon
(PAH)

= going beyond a
mean-field treatment of
the electronic
interactions is
challenging

= exact solution (CI,
MCSCF, etc.) not
possible because

0 . y o i ke ; i ; . ). (2) azulene, (3) 2. 5. 8
Conflguratlon space Figure 1. PA 0 in this work: (1) ph and 14 va ), (2) azulene, (3)

trihydro-pher ) pentaheptafulvalene, (5) L (6 o[be kl]coronene (7) ) coronene and (9) o:

grows exponentially



Lattice Models



c|alu
Lattice Models w

= general Hamiltonian in second quantization (éT

- Zh(o)xw + = Zw”kzc lk

i ijkl

creation, é, annihilation operator)

= Pariser—Parr—Pople (PPP) Hamiltonian (J hopping, U on-site, V;; long-range interaction)

g:Z ,]Z MCJJJFUananr Z = 1) (00 — 1)

i,0 (4,4),0 i#j,0,0’

Hiickel / tight binding

Hubbard

PPP




Tight-Binding Model. Geometry-dependent density of states

Alu

E

= tight-binding Hamiltonian

IA{Z _J Z 671,",0'6j7”

(4,3),0

= single fit parameter J

= determined by fit to DFT band structure

= for pristine graphene J = 2.7¢eV
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bandwidth: 43
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Hubbard Model. Correlations. Band gap

= Hubbard Hamiltonian
H=-J ) & 0+UD iy
(4,3),0 i
= |ocal on-site interaction U

= band gap above critical U,
(depends on geometry)

= interaction for graphene strongly
depends on system geometry
= pristine graphene U ~ 1.6J
= nanoribbons U =~ 3.5J
= missing long-range interactions have to

be compensated by stronger local
interaction

Hubbard Gap/]

Bethe Ansatz
—&— SOA
—$— TPP
—&— TPH

GWA




c|alu
The Pariser—Parr—Pople Model w

= Pariser—Parr—Pople Hamiltonian

ﬁ:Zelc —JZ ,UcJU+UZm¢nZ¢+ Z Vij (fi,e — 1) (4,50 — 1)

i,0 i#£j,0,0’

= typical parameters for graphene systems less volatile

Parameter ‘ 3H-C13H9 ‘ C12H10 ‘ CGHG ‘ C2H4 ‘ C14H10

J/eV 2.34 239 | 254 | 292 2.4
€o/J —3.25 —3.41 - - -
U/J 3.54 3.62 | 3.96 | 3.61 | 4.69

—— Hubbard
PPP

= ground-state energy of the Hubbard and PPP dimer:

EHU:%ff U? +16J2
prer U=V 1 (U—-V)2+16J2

2 2
= U: on-site interation
V: nearest-neighbor interaction

10
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Long-Range Interactions w

= long-range interactions given by
parametrization (interpolation formula):

_1
vi=u[i+ (52)]

e

» Mataga-Nishimoto (n = 1):

—— Ohno
Mataga-Nishimoto

URij:|71

@

Vij:U[H

= Ohno (n =2):

1
N2 2
v=v 1+ (522)’]

= UineV, Ry in A, ke Coulomb constant

= lim V;; =U, lim Vi = fe

Rij—0 Ryj—00 Bij

18t 211(1 31'(1 RiJ /A

11



Equilibrium Green Functions
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Equilibrium Green Functions Approach to Graphene Nanostructures w

Dyson equation: Example: GW self-energy

R/A _ R/A R/A R/A R/A . . .
GT (W) = Go " (w) + G T (W)TT T (W)ET (W) Diagrammatic representation:

Selfconsistent scheme: g §+ § g + ...

0) Initialize G®/4 (w) = GOR/A(w)

Calculate G=(w) from G®/4(w)

Advantages:
Perform FFT for G2(w): w — t

)

) = summation of polarization-bubble
3) Calculate X2(t) and X®/A(¢)

)

)

diagrams

92Ua849AU0D
[13un 93eJal

Perform FFT for S®/A(t): t — w = moderate- to strong-coupling

Solve Dyson equation for G*/4 (w) gt deiien

= accurate around half filling

= scaling: O(Ng - Nulog(N.))

K. Balzer and M. Bonitz, Lecture Notes Phys. 867, (2013)
N. Schliinzen, J.-P. Joost et al., Phys. Rev. B 95, 165139 (2017)
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Local density of states of graphene nanoribbons: VS. w

experiment:

0.71eV

1.08eV

—0.5 0.0 0.5 . —0.5 0.0 0.5
(B~ Bp) /v (B~ Bp) /v

Experiments: Rizzo et al. Nature, 560, 204 (2018): topological states at the edges and at hetero-junctions
NEGF-GW-Hubbard simulations of 6 unit cells (768 atoms): Joost, Jauho, Bonitz, Nano Lett. 19, 9045 (2019)
Failure of tight binding and Hartree-Fock results. Electronic correlations crucial for topological states

13



Multiple ground state solutions. “Léwdin’s symmetry dilemma”®

Dyson equation:

G w) = 6o/ w) + GS/A(w>2R/A<w>GR/A<w>I .

Do NEGF simulations produce a Hubbard
gap (as Cl does)? Yes and No!

= SOA vyields (at least) 3 ground states
= 1 simulation: no gap, large F
= 2. : small gap, lower £
= 3. No restriction: accurate gap, best £

= Allowing symmetry violations improves
ground state energy and DOS

= Generalization of Léwdin's Hartree-Fock
result (P. Lykos, G. W. Pratt, RMP 1963)

uniform restricted spin

T SETET T

Figure 1: Ground-state properties of a periodic, half-filled
Hubbard chain of length L = 8 and U = 4 J, within SOA.
(a)—(d) Density matrix for a translationally invariant system
(red), without imposing homogeneity but spin symmetry
(blue), without both (green), and exact (Cl solution without
restrictions, black). (e)—(g) DOS, (h) Total ground-state
energy for the three cases, compared to the exact result

®J.-P. Joost, M. Bonitz, C. Verdozzi et al., Contrib. Plasma Phys. 62, €202000220 (2021)

14



Nonequilibrium Green Functions (NEGF)



Nonequilibrium Green Functions (NEGF)

Second quantization
= Fock space F 3 |ni1,n2...) , f:@NoelN]:No, FNo c #No
] c}éi creates/annihilates a particle in single-particle orbital ¢;
= spin accounted for by canonical (anti-)commutation relations

[égﬂv é§~”} =0, {éi, 5T~] =i
F ¥

J

A 1
= Hamiltonian: H(t) = Z R k- + 3 Z Witmn (t) €58} 8ném +
km

k,l,m,n
Ho w
Particle interaction wy;,,,, (t) Time-dependent excitation
= Coulomb interaction = single-particle type
= electronic correlations (adiabatic switch-on) = em field, quench, particle impact etc.

15



clalu
Nonequilibrium Green Functions (contd.) w

two times z, 2’ € C (“Keldysh contour”), arbitrary one-particle basis |¢;)

Gij(z,7) =1 <ch}(z)é;(z’)> average with pn (unperturbed)
pure or mixed state

Keldysh—-Kadanoff-Baym equations (KBE) on C (2 x 2 matrix):

0
> {ihéik - hik(z)} Grj(z,2') = bc(2,2')0i; — ih Y / dZ wikim 2+, 2) Gl (2, 7 2/, 2Y)
k 0z kim 7€ e
« wGP <—>fCZG7 Selfenergy ¥

= Nonequilibrium Diagram technique
Example: Hartree—Fock + Second Born

selfenergy

7~ [T

KBE: first equation of Martin—Schwinger hierarchy
for G,G® ...G™ [and adjoint equation]

16
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Nonequilibrium: Real-Time Keldysh—Kadanoff-Baym Equations (KBE) w

= Correlation functions G obey real-time KBE

S [insg8. - ) Gh ) = 1 w0,
1
d
2 Giwn) [ ih g0, — h??@/)] = 1Y),
with the effective single-particle Hartree—Fock Hamiltonian

RS (t) = hl; £ih > wi G ()

kl

and the collision integrals
13> (t,¢) Z/ dt Zf‘l (t, DG (E ) + 25 (t,E)Gﬁj({,t’)},
— 3
I2"<(t,t) Z/ dt GR, D=5 &t ) + G (tt)El]tt)} O<N )

= numerically demanding due to N scaling, but direct access to spectral observables

17



Conserving nonequilibrium selfenergy approximations®

Accuracy depends on coupling strength, density (filling)

Hartree—Fock (HF, mean field): ~ w'
Second Born (2B): ~ w?

GW: ' oo bubble summation,
dynamical screening effects

particle-particle T-matrix (TPP):
oo ladder sum in pp channel

particle-hole T-matrix (TPH/TEH):
oo ladder sum in ph channel

3rd order approx. (TOA): ~ w?

dynamically screened ladder (DSL)*:
~ 2B + GW + TPP + TPH

Stested against experiment, Cl, DMRG: Schliinzen et al., Phys. Rev. B 95, 165139 (2017)
Review: Schliinzen et al., J. Phys. Cond. Matt. 32, 103001 (2020); *Joost et al., PRB, 165155 (2022)

18



Conserving nonequilibrium selfenergy approximations’

Accuracy depends on coupling strength, density (filling)
Hartree—Fock (HF, mean field): ~ w'

Second Born (2B): ~ w? half

filling r
GW': oo bubble summation, GWA/TEH
dynamical screening effects

particle-particle T-matrix (TPP):
oo ladder sum in pp channel

density
S

particle-hole T-matrix (TPH/TEH):
oo ladder sum in ph channel

3rd order approx. (TOA): ~ w?

empty/ .
full” reak - lerat strong
q %. wea, moderate strong
dynamlcally screened ladder (DSL) : coupling coupling coupling

~ 2B + GW + TPP + TPH

"tested against experiment, Cl, DMRG: Schliinzen et al., Phys. Rev. B 95, 165139 (2017)
Review: Schliinzen et al., J. Phys. Cond. Matt. 32, 103001 (2020); *Joost et al., PRB, 165155 (2022)
19



Acceleration 1: the GKBA



clalu
Acceleration: Generalized Kadanoff-Baym Ansatz (GKBA)? w

= originally for uniform systems (k - momentum)

= full propagation on the time diagonal (I = I~):
d
1h&G,f(t) =[P, G5], @0+ [T+ 1], (1)

= reconstruct off-diagonal NEGF from time diagonal:

G (t,t') = £GR(t, t)p2(t /dtl/ dts

HF+Field

GR(t,t1) [EkR(tlyt2)Gf(t27t/) + B2 (t1, t2) G (L2, t/)}

for t >t, with pg(t) = HihGZ (L, t)

= applied to optically excited semiconductors [6], la-

I‘
g
\/(D8
E
S
N
©
E

ser plasmas, introducing gauge-invariant GKBA [7]
100 200 300 400 SO0

= quality of GKBA tested in [6], see figure ( (fs)

5P. Lipavsky, V. Spi¢ka, and B. Velicky, Phys. Rev. B 34, 6933 (1986);
[6] M. Bonitz et al., J. Phys. Cond. Matt. 8, 6057 (1996); N.H. Kwong et al., phys. stat. sol. (b) 206, 197 (1998)
[7] D. Kremp, Th. Bornath, M. Bonitz, and M. Schlanges, Phys. Rev. E 60, 4725 (1999)

20



Acceleration: Generalized Kadanoff-Baym Ansatz (contd.)®

= 2012: first application to inhomogeneous systems [7]

desw = [1¥,65], @)+ [T+11. (1)

lﬁa % oy

= reconstruct off-diagonal NEGF from time diagonal:
> = =
G (t,¢) = £ [GR(t. )05, (1) = PE(OGH (1,¢)]

5 > . >
with  p5(t) = £iRGH (¢, 1)

= HF-GKBA: use Hartree—Fock propagators for GZ/A
i t
GHA(t, 1) = Fi© (£[t — t']) exp (—ﬁ/ dt_hHF(ﬂ)
o >

17 l
= conserves total energy \
O(N?)

= applications to atoms, molecules, 2D quantum materials t

6P. Lipavsky, V. Spi¢ka, and B. Velicky, Phys. Rev. B 34, 6933 (1986);
[7] S. Hermanns, K. Balzer, and M. Bonitz, Phys. Scr. 2012, 014036 (2012); K. Balzer and M. Bonitz, Lecture Notes in Physics 867 (2013)

21



Application of the Generalized Kadanoff-Baym Ansatz

G. Stefanucci, R. van Leeuwen, Y. Pavlyukh, C. Verdozzi, A. Marini,
and co-workers and many others

atoms, molecules, quantum materials
memory truncation?

long-time limit, transition to Boltzmann-type equations, retardation
expansionb

transition from reversible to irreversible transport equations®

W.

Schafer and M. Wegener, Semiconductor Optics and Transport

Phenomena, Springer 2002, talk by M. Eckstein

bm.

Bonitz, Quantum Kinetic Theory, Teubner 1998

“Bonitz, Scharnke, Schliinzen, Contrib. Plasma Phys. 58, 1036 (2018)

22



Acceleration 2: the G1-G2 scheme



Reformulating the GKBA

» quadratic/cubic scaling is caused by the structure of the collision integral
¢
ITOEDY / dE [S3.(6 DG (] 1) — DR DG (5 )] = £k Y wikip(£)Gipse (t)
k “Yto kip

= example 2nd Born selfenergy:*°

23 (8,¢) = £ (ih)? Z winty () wihye (V) G (4,1) G5 (1,1) G5, (1)

klpgrs
= correlated part G(t) of 2-particle NEGF identified as

t
Gigna (1) =ih Y / dEwgyrs (1) |G (6 DTG E D — G5t DINRE 1)
to

pgrs

with the two-particle Hartree Green function

H,2 > >
Gisa(t,t') = G5 (t,t)G5(t,t)

10N Schliinzen, J.-P. Joost and M. Bonitz, Phys. Rev. Lett. 124, 076601 (2020)
23



Reformulating the GKBA (contd.)

= two-particle SOA-G in HF-GKBA with initial correlations
gijkl( ) g”kl tO - (lh Z/ dtuz(]?p)q t t \Il;tqrs t_)u'y(‘z])cl t t)
pqrs

with the single-time source term (no longer depends on the outer time)

iJpq

(iR) Zwmrs [ gl o (t, t)grskz(t t) — g:‘;p<q(t t)grskl(t t)}

== _
\Ilwkl -
pqrs

and the two-particle Hartree—Fock time-evolution operators obeying Schrédinger-type EOMs

d 2 = 2 HF 2

dt
d L@ 7 u® (2).HF
& [uijkl(t’t)} - 1h Z ijq t t hqul ( )

with the effective two-particle Hamiltonian
R () = S;uhli () + Suhl (1)

z]kl

24



Time-linear NEGF simulations: the G1-G2 Scheme!!

= full propagation on the time diagonal, as for ordinary HF-GKBA:

Ld <\ LHF A<
lhan‘j(t) = [h G ]Z-j (t) + [IWLIT]U- (t)

= but collision integral defined by correlated two-particle Green function

Iij(t) = +ih Z Wikip(t)Gipjk () \ O <N1 )
/ t

= which obeys an ordinary (time-local) differential equation
o d +
1hag¢jkl(t) = [h(2)’HF7 g] ijkl (t) + \Ilijkl(t)

= two initial values:

1 1
0,< _ . 0
Gij = iﬁnij(to) = :I:Enij,
1
g?jkl = o= n?jkl - n?k”?l + n?ln?k )
(in)

i.e. density matrix and pair correlations existing in the system at the initial time ¢t = to
Correlated initial state generated by adiabatic switching, starting from G = 0.

1N, Schliinzen, J.-P. Joost, and M. Bonitz, Phys. Rev. Lett. 124, 076601 (2020)
25



Extending the G1-G2 Scheme to T-matrix or/and GW selfenergies

= other selfenergy approximations can be reformulated in the G1-G2 scheme in similar fashion:*?

od

iz G ® = [AOM@0,60)]  + Ea(®) + Luu(®) + Pon®) £ P (®)

dt ijkl —_——— —— N —
TPP GW TPH

Lijki = Z {hiLququkl — Gijpg [bﬁlpq} } ) bf]’“l = (ih)Q Z [g:;’l?q - g:,;q] Wpgkl 5

rq pq
; I o |* oo (312 + F, F,
B = ) {qungm'qk — Gajpl [bqkm} } o bie = £ wii (G — G
rq praq

and the Hartree/Fock (H/F) two-particle Green functions
H,> . > > > ) > <
Gijn(t) =GR GRGY),  GyR(®) = G5t 1G5 (1)

= Dynamically-screened-ladder (DSL) approximation: TPP + GW + TPH diagrams. No explicit
selfenergy known.** Nonequilibrium generalization of ground state results (Bethe-Salpeter
equation, Wang-Cassing or Valdemoro approximation, G = 1)}

12) _P. Joost, N. Schliinzen, and M. Bonitz, PRB 101, 245101 (2020), Joost et al., PRB 105, 165155 (2022)
13) -P. Joost, PhD thesis, Kiel University 2023

26



Extending the G1-G2 Scheme to T-matrix or/and GW selfenergies

= G1-G2 scheme recovers conserving selfenergy approximations but contains more options®

= Exchange diagrams require special treatment (second lines)

4

approximation G1-G2 notation Selfenergy
SOA w0 PECL
\I/i ESOA + EQSCOA
TPP v0+ L0 PP
\Ili + L ETPP + EEPP
GW WO 4 11° e
ot 41t -
DSL 0O 4110 + O -
Ut 40+ 4+ L =
TOA U 4+ TG54+ nTOoA
A IL[CEOH

Table 1: Correspondence of many-body approximations of Green functions (correlation selfenergies)
and reduced density operators (terms in the Ga-equation) and their defining equations

14)-P. Joost, N. Schliinzen, and M. Bonitz, PRB 101, 245101 (2020), Joost et al., PRB 105, 165155 (2022)
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c|alu
Numerical Scaling of G1-G2 vs. Standard HF-GKBA w

= time-linear scaling achieved quickly. Dramatic gain compared to ordinary HF-GKBA

= Complex selfenergies: little overhead to SOA. Example: 10-site Hubbard chain

[=
k=
=
~
)
£
—-—
o0
g
B
3
Q
g
o}
Q

ordinary
HF-GKBA

G1-G2 - -

103
number of time steps N

28



CPU time of G1-G2:

dependence on Basis type and dimension N,

Basis SOA GW TPP DSL
general G1-G2 CPU time NEN: | NSN: | NEN:. | NN,
Wijki speedup vs HF-GKBA N N? N? -
Hubbard G1-G2 CPU time NEN: | NEN: | NEN: | NEV,
U speedup vs HF-GKBA | N:/N, | NZ/Ny | NZ/N, -
jellium G1-G2 CPU time NEN: | NEN: | NEN: | N3N
w(q) speedup vs HF-GKBA N; N2 NZ/Np -

largest speedup against HF-GKBA: general basis and jellium

Hubbard: basis size disadvantage, but still huge gain
DSL impossible with standard HF-GKBA or 2-time NEGF

29



CPU time of G1-G2:

dependence on Basis type and dimension N,

Basis SOA GW TPP DSL
general G1-G2 CPU time NEN: | NSN: | NEN:. | NEN,
Wikl speedup vs HF-GKBA N NZ NZ -

Gijnl G1-G2 RAM N N
Hubbard G1-G2 CPU time NdN: | NEN: | NEN: | N3V
U speedup vs HF-GKBA | N:/N, | NZ/Ny | NZ/N -
Gijhi G1-G2 RAM N;l
jellium G1-G2 CPU time N2N: | NZ2N: | NEN: | NEV,
w(q) speedup vs HF-GKBA A N2 NZ /Ny =
G51.52,d G1-G2 RAM N N

Drawbacks of G1-G2 scheme:

= large RAM for storage of instantaneous G (e.g. jellium only possible in 1D*°)

= propagation of two not fully independent equations (trace consistency between G1 and G2)
= possible way around: quantum fluctuations approach (talk of Erik Schroedter)16

= possible instabilities for long times and/or strong coupling (requires regularization)

e, Makait, F. Borges-Fajardo, and M. Bonitz, Contrib. Plasma Phys. €202300008 (2023)
18E Schroedter, J.-P. Joost, and M. Bonitz, Cond. Matt. Phys. 25, 23401 (2022)
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Instabilities and regularization (“purification”)

instability related to violation of
N-representability [Coleman,
Maziotti] and of trace consistency
[also discussed by Akbari, van
Leeuwen et al., PRB 2012]

formal source: positive eigenvalues,
0 < A < Amax, of two-particle

Green function

problem similar to positive
definiteness of spectral functions
[Stefanucci, van Leeuwen et al.]

“purification” procedure and trace
consistency restoration: Lackner et
al., PRA 2015, 2017 and J.-P.
Joost, PhD thesis, Kiel 2022

Open questions remain

density ni
- [ =] V]

V)

-
~

g
S

Eyin / J

N

Amax

time tJ/h

6-site Hubbard chain at half filling, U/J = 4, initially sites 1-3
doubly occupied, ¢ = 0: confinement quench [Joost et al., PRB

105, 165155 (2022)]
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Nonequilibrium dynamics of 2D quantum materials



Excitation of Topological Edge States!’

17)_P. Joost, A.-P. Jauho,

and M. Bonitz, Nano Lett. 19, 9045 (2019)

unit cell

32



Nonequilibrium G1-G2 simulations for GNR

= one unit cell with 96 lattice sites

= nonequilibrium dynamics using the G1-G2
scheme with DSL + purification

= 96 lattices sites just fit in the memory of a
V100 GPU on the CAU-NEC cluster (for now
largest system we can consider)

= propagation time not an issue due to linear
scaling

unit cell
33



DOS and Edge States of the Unit Cell using Equilibrium G118

18 _P. Joost, PhD thesis, Kiel University 2022
34



cialu
Laser Excitation in the G1-G2 Scheme w

Laser parameters
= dipole approx. (wavelength pm, system nm)

" Upot = —FEraser - T

s Elaser = Ep €Xp (_ (tQ_Cfg)Q)
L
= Ep=(6—-60)V/um
= wr=(0.1-3.0)J~(0.2-7.0)eV
» o =107 =~ 3fs
= fluence F = (0.9 — 122) mJ/cm?

= polarizations: ||, L, O

Idea: try site-selective excitation (topological states), even though laser field (nearly)
uniform across GNR [J.-P. Joost, PhD thesis, Kiel University 2022]

35



Short-Time Carrier Dynamics'® |, BEo =6V/um, wy = 1.2V (IR)

impact carrier

iexcitatio multiplication

9)_p. Joost, PhD thesis, Kiel University 2022
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Local Occupation of Excited Electrons®® ||, Ey =6V /um, wy = 1.2eV

local
occupation

0.01
0.02
0.03
0.04
0.05
0.06
0.07

20 -P. Joost, PhD thesis, Kiel University 2022
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Short-Time Carrier Dynamics |, Eo = 6V/um, wr, = 1.2eV (IR)

' RN

s O

—— low edge state ]
—— high edge state
—— bulk states

\}

occupied states above Ep
)

N

1 1 1 1
5 10 15 20 25 30

t/fs

o




Femtosecond response of quantum materials to ion impact?!

= of interest for plasma-surface interaction, e.g.
Kiel CRC initiative of J. Benedikt

= Extreme cases: experiments with highly
charged ions at TU Vienna (R. Wilhelm)

= XeZ" jon penetrates monolayers of graphene
and MoSs, Z =20...40

= ultrafast emission of slow electrons into
vacuum: ~ 20...80 electrons per ion!

= complex charge transfer: interatomic
Coulomb decay (Auger-type process)

2Ap. Niggas et al., Phys. Rev. Lett. 129, 086802 (2022), Editors’ Choice
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Electron emission as sensitive diagnostic of quantum materials??

= Experiment: same ion causes
emission of 7 times more electrons
from graphene (SLG) than from
MoS: (QF: target support)

= lon acts as sensitive probe of the
material with single-site resolution

counts (arb. u.)

= theoretical explanation requires
sub-femtosecond resolution of

electronic correlations ¢ 60 80 100 120
number of emitted electrons

227 Niggas et al., Phys. Rev. Lett. 129, 086802 (2022), Editors’ Choice
40



NEGF embedding scheme. Fast time-local formulation®

K. Balzer, N. Schliinzen, H. Ohldag, J.-P. Joost, and M. Bonitz, Phys. Rev. B 107, 155141 (2023)



NEGF-approach to open systems: embedding scheme

Idea: Physical system (s) embedded in (“large”) environment (e) that is treated in simplified manner

I. Standard Thermodynamic approach: Averaging over degrees of freedom of environment, loss of
information (Zubarev, Lindblad and others): ps = Trepste, No access to dynamics of “e”

Il. NEGF embedding idea: No averaging. Dynamical approach to system and environment plus

won

coupling. Typically, “e” is treated as non-interacting, e.g. Stefanucci, van Leeuwen book. Examples:

- electron transport between leads (= environment, €)
- ionization of atoms (continuum state = e), Covito et al.

- resonant charge transfer between ion (= e) impacting target,
Bonitz et al., Front. Chem. Sciences Engin. 13, 201-237 (2019);
model for highly charged ions: Balzer and Bonitz, CPP 62, €202100041 (2021)

NEGF formulation:
« « 1 « (%
Q = {37 e} 2 Htotal = Z Z hijﬂ(t)ci TC? + 5 Z Zwiﬁc?aci chTCZC? .
aBER ij By SEQ ijkl
9 g a . o o . a aF
NEGF, density matrix : Gijﬁ(t,t/) = —i(Tec; (t)cff(t/)% pif(t) = *lei (t,t"),
Short notation :  G§*(¢,t') — G§;(t,t)
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Standard 2-time NEGF embedding scheme

Approximations: neglect correlations in environment and s-e coupling: ¥¢ — 0, %°¢ — 0

Keldysh-Kadanoff-Baym equations of total system including coupling (se) terms:

{1060 — KEFS()} Gy (1,¢') = WIF=(0)G, (1,¢') + 81580 (t,1') + /dfzik(t,f) LED). Q)
C

{iat@ _ hff’e(t)} G5 () = BIP=() G, (1, 1), )

{iataE _ hsz’e(t)} a5 (1) = 3300 (t, ). (3)
Idea: rewrite effect of environment as additional selfenergy for G°: Eq. (3) defines inverse GF:
D Jodtay™ L, (t,8)gk; (t,t') = di;0c(t,t') , with the results:

6 (6,0 = {106 — W0 } st D), i(00) = | ATyt DG, @),
C
hi}g’se(t)stj(t,t/) = / dE XS (2, t")Gi;(t,t'), eliminate G* from (1)
a c
B = DHETORGORETE, 0= Jatr g @@ + P ).

= retain closed equation (1) for system NEGF with total selfenergy 3° + x°mP
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Application to ion impact: resonant charge transfer and charge buildupw

= NEGF simulations by Karsten
Balzer (216 sites)

= initially all lattice sites half filled
(uncharged, 4 bands)

= jon attracts electrons towards
impact point (center), depletion of
outer honeycombs

= resonant charge transfer from
innermost ring to ion (red arrow)

= strongly differing induced potential
in both materials

= emitted electrons (via ICD) will be

g
=
=}
=1
5
o

accelerated away from SLG, but

attracted back to MoSs, explaining ’ 3 03 40

initial kinetic energy Eyin (V)

findings in experiment

2. Niggas et al., Phys. Rev. Lett. 129, 086802 (2022), Editors’ Choice
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Nonequilibrium Electron energy spectrum during ion impact?

= G1-G2 simulations by Niclas
Schliinzen applying Koopmans'’
theorem (without charge transfer)

= significantly stronger excitation of

spectrum / a.u.

electrons in graphene than in MoS,
[—1fs: just before charge transfer]

= reproduces experimental trends of

groundstate

different number of ionized
electrons despite similar work
functions

= Reason for different material

spectrum / a.u.

behaviors: higher electron mobility
and larger bandwidth of SLG

= but: so far only TDHF simulations

B Niggas et al., Phys. Rev. Lett. 129, 086802 (2022), Editors’ Choice
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Acceleration: Time-local embedding scheme. G1-G2 equations®’ w

Equation for G°< on time diagonal:

iathf (t) - [hHRSv G<]jj,t = (I(t) + [T (t))ij ’ I (t) = ]fj(')r(t) + [fjnb(t) ) (4)
i
Li;i(t) = / dt {25t 0)Gay (1, 1) — S (t,D)Ghy (1)}, T2 =302 4 pomb2 (5)
to
Apply Hartree-Fock-GKBA:
G5 (t.¢) =1 [GR( #)GE, () - GROGH (8.1)] (6)

Time differentiation of I°°" yields equation for 2-particle NEGF 20 (example second Born approx.):

i0Gui(t) = [pOH 0,00 =W, )
i

RELT (1) = R @35 + B 0k, Gl (t) = GREDGH(¢,1), (8)

VEa(t) =12 wikea(B) { G — (309}, (9)

pqrs

2Schluenzen et al., Phys. Rev. Lett. 124, 076601 (2020)
"Balzer et al., Phys. Rev. B 107, 155141 (2023)

)



Time-local embedding scheme. G1-G2 equations (contd.)?®

Equation for G°< on time diagonal contains additional “embedding” collision integral:

= UOFITW),, L) = 1570 + 15, (10)

7

0,G5°) — [, 6],

17,

t
Lj(t) = / dE {25t DG (1) — X5t DG (1)}, £ =202 4 nomh2 (11)

to

Time differentiation of I°™P = pHF:5¢G5% < yields equation for charge transfer NEGF, G*<:

G0 = [ arni=® o7 (D00 - o (DG B 1)

to

d es, e ves, es s ,es S, s e, es) €
Ecif(t)—(h”F G <)U_ (G=<h"" )j’t (h*F=c <)m—(g <pHF )H’t.
q d e e € s,e

i i () = (A g ,<th ’ (AB)jj = ) Aw(t)Brs(t

keEs,e

2Balzer et al., Phys. Rev. B 107, 155141 (2023)
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Numerical test: charge transfer between a Hubbard chain + 1 site w

two-time NEGF ——
one-time G1-G2 (g°(¢) = const)
one-time extended G1-G2 (G(r)) ==

Hubbard chain (¢ = 1... L) with Hartree

interaction, (75)(t) = 71G5 < (t)
REFS(t) = —J8(i5) + 055 U <<ﬁ§>(t) _ %) 7

time-dependent charge transfer to site “0”

2 2
() = inyo - e T gy = g

K. Balzer and M. Bonitz, Contrib. Plasma Phys. 62 (2021)

Figure for L = 6 and three s-e couplings o

black line: charge transfer pulse

full lines: two-time embedding scheme
dotted lines: present G1-G2 scheme
unexpected failure for large ~o!
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What is wrong with the time-local embedding scheme? w

= for large charge transfer amplitude 7o, simulations yield negative site occupations, occupation of
target site (“environment”) exceeds 1

= occurs already for the simplest case (correlations turned off)

= the original NEGF simulations have built in conservation laws (energy, particle number) and spin
statistics (Pauli principle)

= the HF-GKBA (and the G1-G2 scheme) do not violate conservation laws

= no problems observed in two-time embedding equations for arbitrary o,
exact agreement with KBE for full system

= Need to reconsider treatment of charge transfer in time-local G1-G2 equations.

48



Extended time-local NEGF embedding scheme?’

Need to extend the environment equation and the Hartree-Fock-GKBA:

{i0u6 — WEF ()} GL,(1,) = 8igbe(t,#) + = (G (1,¢) )
GFt¢) =1 @R G (E) — GEOGH ¢, ¢)]
|:GseR( /)Ge&sf (t/) 7 Gse<( )GesA( /):| : (13)

Result: extended time-local embedding equations:

&Ges <( ) (hHF,esGS,<)2j7t . (Ge,<hHF,es)zj7t + (hHF,eGes,<)2th . (Ges <hHF s)zj . (14)
I%G?l<( ) [hHF e G <] zl + (hHF,esGse,<);]’7t (Ges <hHF se) s (15)

Comments:

= Eq. (14) remains unchanged, with substitution g — G°
= Main change: yellow terms in Eq. (15), this restores conservation laws

= Advantage of two-time version of embedding: G not needed at all, only ¢°.
2Balzer et al., Phys. Rev. B 107, 155141 (2023)
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Test of the extended time-local embedding scheme

cialu

Hubbard chain (L = 6) with Hartree
interaction, (A3)(t) = —isz @)
1

Wi (t) = —Jb g + 65 U ((fﬁ)(t) = 5) :

time-dependent charge transfer to site “0”

j?)(t) _ 6i1 Yo - 67(157157)2/27—;2{ : tO _ J71

black line: charge transfer pulse

full lines: two-time embedding scheme
dots: standard G1-G2 embedding scheme
extended scheme: dashes

correct? for arbitrary o

“Balzer et al., Phys. Rev. B 107, 155141 (2023)

two-time NEGF ——
one-time G1-G2 (g°(¢) = const)
one-time extended G1-G2 (G(r)) ==
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Hubbard chain (¢ = 1... L) with Hartree
interaction, (A5)(t) = —iG3<(t)

s ”S 1
W) = T8 + 8 U (DO — 3

time-dependent charge transfer to site “0”

2 2
() = inyo- e FTAY gy = gt

Figure for L = 50, vo = 2J

black line: charge transfer pulse
line styles: different U?
€i: energy of site 0, colors: cases

= Extended embedding scheme preserves all
conservation laws and time-linear scaling of
the G1-G2 scheme

“Balzer et al., Phys. Rev. B 107, 155141 (2023)




Summary and outlook



Summary: Acceleration of NEGF simulations for correlated systems

1. Finite systems

= 2-time NEGF and HF-GKBA3® have comparable accuracy, each with pros and cons
= G1-G2 scheme: exact time-local reformulation of HF-GKBA, speedup O(V;) to

O(N?). Full access to pp and ph T-matrix, GW, DSL and 3-particle diagrams>!

= long-time stability issues: contraction consistency, “purification”3?

2. Macroscopic systems

= 2-time simulations more accurate and stable than GKBA
» HF-GKBA suffers from aliasing effects. Correlated propagators needed33

3. G1-G2 bottleneck: dimension of G ~ O(N3) — massive parallelization and

» Quantum fluctuations approach — reduction to O(N3) scaling for GW34

= _embedding schemes — heterogeneous optimized basis, minimal correlations3>

30g, Hermanns, K. Balzer, and M. Bonitz, Phys. Scr. 2012, 014036 (2012)

31Karlsson, Pavlyukh, Perfetto, Stefanucci, Tuovinen, van Leeuwen,...

32)_P. Joost et al., PRB (2022), Joost, PhD thesis (2022), |. Brezinova et al.

3Mm. Bonitz, Quantum Kinetic Theory, 2nd ed. Springer 2016

3*E. Schroedter et al., Cond. Matt. Phys. 25 (2), 23401 (2022)

%K. Balzer et al., Phys. Rev. B 107, 155141 (2023-04-15), Tuovinen et al.; PRL 130, 246301 (2023-06-16)
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Outlook 1: NEGF embedding scheme with correlated selfenergies®® w

{i0u0ix — byl *()} Giy (t,8) = hiy *=()Gr;(t, ') + 05 + /dt’zzk(t, )Gy, (5, ) + /

dt 353 (¢, 8) G (£, 1)
C JC

{iat% _ h?;*e(t)} %5 () — /de?i(t, DGy, (5 ) = 65 + WF=()GE; (t,t) + /dfxfi(ff)('}ii({ )
JC JC

{iat% . h?;*e(t)} gy (t,t) — /dfz,ik(t, Dgis (E) = 8500(,).

B ©]

{iataﬁ—hf;vea)} egj(t,t')—/dt’za(t,{) =6 ¢) = bl =(6)Ghs(t,t) + /df s (DG )

@ Je
Solution for G** and embedding selfenergy, using inverse GF:
o0 = [iat@—hyje(t)] Sc(t, ) — S5(4,9),

Esj(t,t’):/d{gfi(t,{)hgf’es(f) Z]-({,t')—i—/df/dfglei(t,f) S5 1) Gy (5 t).
C C

zemb (g F) — / i / i {h?,f =(3) 6o (t,8) + S35 (1, 7)} gh(E D) {h?,f =@ e, ?) + 55 (0
@ le] - B

36\, Bonitz, K. Balzer, H. Ohldag, to be published
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Outlook 2: Multi-layer NEGF embedding scheme®: f — ¢ — s w

{i0edir — b3 (8)} Giy (¢, 1) = Bl S (t)G;(t,t') + 05 + /dfzzk(t, 0G5, t) + /df 5.t DGE ()
- le} @

{i@t@&fh?;*e(t)}Gzl(t,t')f/d{Ezk(t,f)sz(f,t') — 6, + BIFS(0)GE, () + /mfi (DG 1)

e} n C

+ 0t HF, ef( )sz,(t ') + /dEEzL(t,E)GSi(E, t)

C
{ia@ﬁ - h?;‘e(t gi; /dtzik (t,D)gk; (1) = bi560(t,1).
{iatéﬁ—h?;’e(t) vt 1) /d )G, 1) = hiy =G, (t,t) +/d£z§;(t,£) 5 (1)
C C

(1046 — BEES(0)} G (1, 1) /

{1000 — hay'(t) } o5 (£, 1) /d D gl s (E ) = dapdo(t,t).

dE S, (6, D) Gha(6t) = 05s + hyy “Gia(t,t) +/dEZ§E(t,E)G§5({,t’)
C

Q

Q

{10:0ap — hiyg (1)} G; (¢, ) /dt Shs(t, DG (5 1) = hEL ()G (¢, t) +/d£2i§k(t,f)G;,(E, )
k i . i

Q

3T\, Bonitz, K. Balzer, H. Ohldag, to be published
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Three-layer NEGF embedding scheme: final equations®® f — ¢ — s w

{100k — hiy (8)} Gy, t)) = 8100 (t, ') + /dfiik(t,i)(;ij(f, t),  S%i=¥S 4 yembs
C

semb(y 7) /dt /dt REF(8) So(t,8) + 255 (6, D)] 6545, ) {hHF “@ dc( ?) + =5, i)} ,

{iatdﬁ - hf;e(t)} gi; (t,) = 8i500(t,t') + [AEE5 (¢, D)gk; (F,1) 3 = 3¢ 4 yembe

=

SEmoe (s, ) = /Cdf /Cd% (B 80(t,D) + 556, D] 95 @ {HT @ 60 (.0 + 5G|
{1000y — b () } g5 (t,t') — /dEEfw(t, Dl st 1) = dapdo(t,t).
C

= Closed equation for G* for arbitrary (e.g. hierarchical) environment. Consistent. Conserving
= Advantage: use increasingly simpler selfenergies and optimized basis sets for s, e, f.3
= For non-local selfenergies 2-time computation of g scales as N7, and of G° as N°

= GI1-G2 scheme remains at N}, but contains increased set of equations (G°#, G*#7?)

38Analogous to TD-RASCI, D. Hochstuhl, C. Hinz, and M. Bonitz, EPJ-Special Topics 223, 177-336 (2014)
39\, Bonitz, K. Balzer, H. Ohldag, to be published
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