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Abstract [Results

The Hubbard model is a key system in the theory of strongly corre- exact (ex) uniform (uni) restricted spin (IS)
lated electrons in solids, and it is realized with atoms in optical lat- , |

tices. In the well-studied one-dimensional case, exact solutions are
provided by analytic methods and density-matrix-renormalization-
group (DMRG) simulations. In 2D and 3D, Green functions com-

bined with many body approximations (GFMBA) present a reliable ..
approach!ll. Here we present results demonstrating the capability of
GFMBA to produce reliable data for the Hubbard gap energy despite ' . ..

Its approximate character. We observed an improvement to the gap
m

energy when lifting restrictions on spin symmetry and spatial ho-
mogeneity coupled with a spontaneous breaking of symmetry. This
"symmetry dilemma" was described by Lowdin!?! for Hartree Fock
wave function calculations, and is extended here to GFMBA beyond
Hartree-Fock!?!.

Hubbard Model

e Simplified model of correlated lattice systems
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Green Function Theory

FIG. 1: Comparison of density matrix structures
All calculations used a half-filled, one-dimensional Hubbard chain with 8-sites, periodic boundary conditions and employed the SOA approxi-
mation with U = 4J.
. The uniform approach (top center) reproduces the structure of the exact density matrix (top left), but exhibits no Hubbard gap (see FIG.
Gl (2,7 = 1 <T ¢ (2 )AT (z’)> 2.) and has a significantly higher energy (bottom right). The restricted spin method (top right) keeps the uniform structure only on the
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diagonal, but improves on both the energy and the Hubbard gap. Lifting the restrictions on spin (bottom left) produces a broken-symmetry

state improving even further on the groundstate energy and the density of states while exhibiting a spin-density wave. From these broken

symmetry states a spatially homogeneous density matrix (bottom center) can be recovered by resymmentrization!®

e The one-particle nonequilibrium Green function is defined by

with the time-ordering operator T'c on the Keldysh contour C.

e The equations of motion are given by the Keldysh-Kadanoff-Baym
equations!* (KBE), where all correlations are included in the self-
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and the adjoint equation, respectively. J l e Giving up the spatial uniformity constraint while still restricting the

. . . spin improves the energy and opens the Hubbard gap.
e 27.(2,20) includes the time-diagonal Hartree—Fock (HF) self-

. . unrestricted
energy as well as the tlme. nor.1—|oca| corr.elatlon part. Here the 100 L l L i e The unrestricted approach produces broken-symmetry states even
second-order (Born) approximation (SOA) s used. beyond Hartree-Fock and shows good agreement with the exact

=0 - Uk l ) l i density of states and a better groundstate energy than restricted
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calculations.
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Same setup as in FIG. 1. The gap is non-existent for the uniform
results, appears for the spin restricted calculation and closely
matches the exact one when a”owing unrestricted Spins_ e First calculations for higher order approximations (GW, T—matrix,
: etc.) have shown similar results but need to be studied further.
Groundstate Generation
2 e Extend the calculations to two-dimensional lattices.
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e lterative approach:

------- 2] e |nvestigations whether symmetry broken states persist in non-

— In equilibrium the KBE depend only on the time difference Stige
equilibrium circumstances.

and can be rewritten in frequency space in form of the Dyson-
equation:
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spin populations.
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— Starting with G(w) = Gy(w) the solution can be improved by
iterating until G(w) no longer changes between iterations.
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FIG. 3: Correlation gap size

Correlation gap energies for one-dimensional, half-filled Hubbard
chains of different lengths L and U = 4.J. Solid lines indicate open
and dashed lines periodic boundary conditions. One the right the
extrapolations for the limit L — oo are given by the dotted lines.
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