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Abstract

The Hubbard model is a key system in the theory of strongly corre-
lated electrons in solids, and it is realized with atoms in optical lat-
tices. In the well-studied one-dimensional case, exact solutions are
provided by analytic methods and density-matrix-renormalization-
group (DMRG) simulations. In 2D and 3D, Green functions com-
bined with many body approximations (GFMBA) present a reliable
approach[1]. Here we present results demonstrating the capability of
GFMBA to produce reliable data for the Hubbard gap energy despite
its approximate character. We observed an improvement to the gap
energy when lifting restrictions on spin symmetry and spatial ho-
mogeneity coupled with a spontaneous breaking of symmetry. This
"symmetry dilemma" was described by Löwdin[2] for Hartree Fock
wave function calculations, and is extended here to GFMBA beyond
Hartree-Fock[3].

Hubbard Model

• Simplified model of correlated lattice systems

• Hubbard Hamiltonian:

Ĥ = Ĥhop + Ĥ int

• Nearest-neighbor hopping • Constant on-site interaction

Ĥhop = −J
∑
〈s,s′〉

∑
σ=↑,↓

ĉ†i,σ ĉj,σ Ĥ int = U
∑
i

n̂↑i n̂
↓
i

with 〈i, j〉 nearest-neighbor sites, ĉ†i,σ, ĉi,σ creation and annihilation
operator on site i with spin σ and n̂σi = ĉ†i,σ ĉi,σ.

• Hubbard interaction U and hopping amplitude J specify the system
state

Results

FIG. 1: Comparison of density matrix structures
All calculations used a half-filled, one-dimensional Hubbard chain with 8-sites, periodic boundary conditions and employed the SOA approxi-
mation with U = 4J .
The uniform approach (top center) reproduces the structure of the exact density matrix (top left), but exhibits no Hubbard gap (see FIG.
2.) and has a significantly higher energy (bottom right). The restricted spin method (top right) keeps the uniform structure only on the
diagonal, but improves on both the energy and the Hubbard gap. Lifting the restrictions on spin (bottom left) produces a broken-symmetry
state improving even further on the groundstate energy and the density of states while exhibiting a spin-density wave. From these broken
symmetry states a spatially homogeneous density matrix (bottom center) can be recovered by resymmentrization[5].

Green Function Theory

• The one-particle nonequilibrium Green function is defined by

Gσij(z, z′) = − i

~

〈
TC ĉi,σ(z)ĉ†j,σ(z′)

〉
with the time-ordering operator T̂ C on the Keldysh contour C.

• The equations of motion are given by the Keldysh-Kadanoff-Baym
equations[4] (KBE), where all correlations are included in the self-
energy Σ:(

i~
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σ
il

)
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and the adjoint equation, respectively.

• Σσi,j(z, z0) includes the time-diagonal Hartree–Fock (HF) self-
energy as well as the time non-local correlation part. Here the
second-order (Born) approximation (SOA) is used.

Σσij(z, z′) = ΣHF,σ
ij (z, z′) + ΣSOA,σ
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Groundstate Generation

• Iterative approach:

– In equilibrium the KBE depend only on the time difference
and can be rewritten in frequency space in form of the Dyson-
equation:

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω)

– Starting with G(ω) = G0(ω) the solution can be improved by
iterating until G(ω) no longer changes between iterations.

• Adiabatic switching:

– Time propagation starts from non-interacting state.
– Interaction strength U(t) is switched on adiabatically.
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FIG. 2: Density of states for the different approaches
Same setup as in FIG. 1. The gap is non-existent for the uniform
results, appears for the spin restricted calculation and closely
matches the exact one when allowing unrestricted spins.
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FIG. 3: Correlation gap size
Correlation gap energies for one-dimensional, half-filled Hubbard
chains of different lengths L and U = 4J . Solid lines indicate open
and dashed lines periodic boundary conditions. One the right the
extrapolations for the limit L→∞ are given by the dotted lines.

Conclusion

• Forcing the uniformity of the density matrix does not reproduce the
exact solution and shows worse results in spectral information and
groundstate energy.

• Giving up the spatial uniformity constraint while still restricting the
spin improves the energy and opens the Hubbard gap.

• The unrestricted approach produces broken-symmetry states even
beyond Hartree-Fock and shows good agreement with the exact
density of states and a better groundstate energy than restricted
calculations.

• The reconstructed state from both possible unrestricted states re-
produces the spacial uniformity of the exact density matrix.

Outlook

• First calculations for higher order approximations (GW, T-matrix,
etc.) have shown similar results but need to be studied further.

• Extend the calculations to two-dimensional lattices.

• Investigations whether symmetry broken states persist in non-
equilibrium circumstances.

• Calculating both spin directions allows for systems with unbalanced
spin populations.
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