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Abstract

The plasmon dispersion ω(q) and damping γ(q) contain important in-
formation on the state of warm dense matter. On the other hand, x-ray
Thomson scattering (XRTS) experiments provide accurate data for the
dynamic structure factor S(q, ω) that is directly linked to the plasmon
spectrum [1]. However, details of this link depend on the quality of the
theoretical model for the dielectric function. Here we present the first
ab initio data for the dielectric function that is obtained by quantum
Monte Carlo simulations [2]. This allows us to obtain high quality re-
sults for ω(q) and γ(q) of the electron component at warm dense matter
conditions that differ significantly from previous models. Second, we
critically analyze the commonly used weak damping approximation for
the dispersion and improve it by performing the analytic continuation
of the retarded dielectric function. This yields results that apply at
strong damping and large wave numbers as well, which is the basis for
a more accurate comparison with XRTS experiments [3].

PIMC approach to the dielectric function

• Evaluate imaginary-time density autocorrelation function

F (q, τ) =
1

N
〈ρ̂(q, τ)ρ̂(−q, 0)〉 . (1)

• Obtain dynamic structure factor

F (q, τ) =

∞
∫

−∞

dω S(q, ω)e−τω (2)

by stochastically sampling dynamic local field correction G(q, ω):

χ(q, ω) =
χ0(q, ω)

1− vq [1−G(q, ω)]χ0(q, ω)
, (3)

where

S(q, ω) = −
Imχ(q, ω)

πn (1− e−βω)
, (4)

incorporating additional constraints on G(q, ω). [2]

• Limit ω → 0 can be obtained directly:

χ(q) = −n

β
∫

0

dτ F (q, τ). (5)

Static LFC G(q) = G(q, 0) sufficient description for rs . 4.

• Calculate related quantities, e.g. dielectric function. [4]

FIG. 1: Dielectric function for rs = 2 and θ = 1. Green: RPA,
black (red): PIMC results using static (dynamic) LFC.

Collective excitations (Plasmons)

• In an isotropic medium, existence of longitudinal collective plasma
oscillation follows from the roots of the longitudinal dielectric func-
tion:

ǫ[ω̂(q), q] = 0 , (6)

where ω̂(q) is the plasmon frequency for wavenumber q which is, in
general, a complex function. [5]

• Undampened solutions exist only at zero temperature, in thermody-
namic equilibrium, solutions E(q, t) ∼ e−iω̂(q)t vanish in long time
limit, Im ω̂(q) < 0.

• Weak damping: approximate solution by roots of the real part,
damping γ(q) = − Im ω̂ follows in perturbation theory,

0 = Re ǫ[ω(q), q], (7)

γ(q) =
Im ǫ[ω(q), q]
∂
∂ωRe ǫ[ω(q), q]

, |γ(q)| ≪ ω(q) . (8)

Results can be extended to higher order terms, approximation still
limited to q-range where roots of Re ǫ(q, ω) exist.

Analytic continuation of ǫ(q,ω)

• On the real frequency axis, solutions of Re ǫ = 0 vanish at rela-
tively small wave numbers, making it impossible to apply the weak
damping approximation.

• Instead, look for full solutions of Eq. (6) at complex frequencies
z = ω(q)− iγ(q):

E(q, t) ∼ eiω(q)te−γ(q)t (9)

• Retarded/advanced RPA polarization function:

ΠR/A(q, z) =

∫

dp

(2π)3
f(Ep)− f(Ep+q)

Ep − Ep+q + z
, (10)

• Retarded function in lower half-plane:

Π̃R(q, z) = ΠA(q, z)− 2πi Π̂(q, z) . (11)

where

Π̂(q, ω) =
1

i

{

ΠR(q, ω + iδ)−ΠA(q, ω − iδ)
}

=

∫

dp

(2π)3
{f (Ep)− f (Ep+q)}

× δ [ω + Ep − Ep+q] , (12)

• Dielectric function including correlations via static LFC G(q),

ǫR(q, z) = 1−
vqΠ̃

R(q, z)

1 + vqG(q)Π̃R(q, z)
(13)

Choosing G(q) = 0 recovers the RPA.

• Collective modes can still be identified at higher wave numbers
(Fig. 2, Fig. 3).

• Obtain results for plasmon dispersion and damping
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FIG. 2: Real and imaginary part of the dielectric function

for rs = 2 and θ = 1. Left: peak in -Im ǫ−1 (resembling DSF)
in vicinity of root where Im ǫ is small. Solutions of Re ǫ(q, ω) = 0
vanish at higher wave-numbers (right).

FIG. 3: Dielectric function in the complex plane. θ = 1
Solid lines: Re ǫ = 0, dotted: Im ǫ = 0. Plasmon frequency and
damping can be identified from the intersections (red arrows).

Results

FIG. 5: Plasmon dis-

persion and damping at

different densities and

temperatures The results
obtained from the complex
continuation of the dielec-
tric function are compared
to the weak damping ap-
proximation and peak po-
sition/width of -Im ǫ−1.
The grey shaded area is
pair continuum. The ver-
tical lines denote q = λ−1

s .

Conclusion and Outlook

• Weak damping approximation is only accurate for very small wave
numbers.

• Location and width of peak in spectral function S ∼ -Im ǫ−1 start
to deviate from complex dispersion relation with increasing q.

• Considering the true plasmon dispersion in the complex plane al-
lows to distinguish collective and single-particle contributions to
the dynamic structure factor.
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