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Abstract 

A quantum kinetic theory for correlated charged-particle systems in strong time-dependent 
electromagnetic fields is developed. Our approach is based on a systematic gauge-invariant 
nonequilibrium Green's functions formulation. Extending our previous analysis [I] we con- 
centrate on the selfconsistent treatment of dynamical screening and electromagnetic fields 
which is applicable to arbitrary nonequilibrium situations. The resulting kinetic equation 
generalizes previous results to quantum plasmas with full dynamical screening and includes 
many-body effects. It is, in particular, applicable to the interaction of dense plasmas with 
strong electromagnetic fields, including laser fields and x-rays. Furthermore, results for the 
modification .of the plasma screening and the longitudinal field fluctuations due to the elec- 
tromagnetic field are presented. 

1 Introduction 

With the progress in short-pulse laser technology [2] high intensity electromagnetic 
fields are becoming broadly available. In particular, they make it possible to  create 
strongly correlated quantum plasmas under extreme nonequilibrium conditions which 
opens a broad range of applications, e.g. [3]. At the same time, optical techniques for 
time-resolved diagnostics are improving remarkably [4]. These developments create 
the need for a quantum kinetic theory of dense nonideal plasmas in intense laser fields. 

Nonequilibrium properties of dense plasmas in which collisions are important are 
usually studied on the basis of kinetic equations of the Boltzmann type. However, in 
spite of their fundamental character, Boltzmann-like kinetic equations have a number 
of shortcomings, in particular in view of their application to  dense plasmas in intense 
laser fields: 

i) they are valid only for times larger than the correlation (or collision) time T,,,, - 
W p l l ,  

ii) they conserve only the mean kinetic energy instead of the sum of kinetic and 

iii) they are valid only in the weak field limit since the corresponding collision integrals 

iv) they are not applicable to high-frequency processes (fields), where w > w,~, cf. i).  

potential energy, 

are independent of the electromagnetic field, 

'Dedicated to Youri L. Klimontovich on the occasion of his 75th birthday. 
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Obviously, in the case of strong correlations, high-frequency electromagnetic fields 
and/or short-time phenomena generalizations are necessary. 

Generalized kinetic equations f o r  correlated plasmas have been derived already in 
the 60ies by Prigogine [5 ] ,  Zwanzig [6], Kadanoff and Baym [7, 81, Balescu [9, 101, Silin 
[ll], Klimontovich [12, 13, 141 and others. 

In recent years, the increasing interest in ultrafast processes has revived the theo- 
retical activities, e.g. [15, 16, 17, 181, acompanied by progress in numerical solutions, 
e.g. [15, 19, 201; for textbook overviews, see [21, 221. Furthermore, kinetic equations 
for classical plasmas in high-frequency fields have been derived for the first time in 
papers of Silin [23, 24, 251. Among other problems, he computed the high-frequency 
conductivity of a plasma. We mention that, for the weak-field limit, this problem 
has been studied by many authors, including Oberman et al. [26, 271 and DuBois et 
al. [28]. An essential further development of the theory has been given by Klimon- 
tovich and co-workers [29, 141. Klimontovich used his powerful technique of second 
quantization in phase space [30, 121 to investigate the density-density and microfield 
fluctuations in low and high-frequency fields. This allowed him to derive collision inte- 
grals for classical plasmas in strong fields which take into account dynamical screening 
and to derive a complete theory of transport processes [29, 311. A result of central 
importance is an expression for the collisional heating rate and the electron-ion colli- 
sion frequency in strong fields in terms of the imaginary part of the inverse dielectric 
function Ime-’ [14]. Recently, expressions of the same form were derived again [32]. 
For a recent; overview on the collision frequency in laser plasmas, we refer to Mulser 
et al. [33, 341. 

The above kinetic theories for plasmas in electromagnetic fields were limited to 
classical plasmas. A first extension to quantum plasmas was given by Silin and Uryupin 
[35). More recently, a kinetic equation for dense quantum plasmas in strong static fields 
has been derived [36, 371, whereas a systematic quantum kinetic theory for plasmas in 
strong fields of arbitrary time dependence was presented in ref. [l]. There, electron- 
electron and electron-ion quantum collision integrals were derived within the static 
Born approximation (Landau collision integrals). 

In this paper, we extend this theory to the case of full dynamical screening for dense 
quantum plasmas under arbitrary nonequilibrium conditions by using the random 
phase approximation (polarization approximation) for the particle-particle scattering 
processes. Our approach is based on the nonequilibrium Green’s functions formalism 
which allows for the most straightforward derivation and for an explicit solution of 
the gauge problem. We derive a kinetic equation which is a generalization of Klimon- 
tovich’s classical result [29] and, on the other hand, generalizes previous quantum 
results for the case of zero field [38, 391 and static field [40]. Furthermore, we derive 
results for the polarization and screening properties and longitudinal field fluctuations 
in a strong field of arbitrary time-dependence. 

2 Basic Physical Problems and Definitions 

We consider the time evolution of a dense charged particle system under the influence 
of a strong time-dependent electromagnetic field and inter-particle correlations. 
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2.1 Ree Particle Motion 

It is instructive to recall first the motion of classical free charges in an external field. 
iFrom integrating Newton’s equation, madva/dt = eaE( t ) ,  we obtain the velocity 
change of a particle with charge e, and mass ma in the field E ( t )  during a time 
interval [t’, t ] ,  

and the field induced displacement 

In the equations above, we have dropped contributions from the acceleration and 
velocity at the initial moment t’ since they are not related to the field. A further 
important quantityris the average kinetic energy 

where, in case of a periodic field, T is the oscillation period. Below we will also need 
the change of the relative velocity of a particle pair a, b gained in the field E ( t )  

and the change of the inter-particle distance Arab 

The most important special case is that of a harmonic time dependence 

E ( t )  = EocosRtt, (6)  

Ava(t, t’) = vx [sin Rt - sin at‘] , (7) 
Ara(t, t ’ )  rx [n(t - t’) sin Rt + cos R t  - cos nt’] . (8) 

which leads to the following explicit results for the quantities introduced above 

= 

Here, we introduced two important quantities, the “quiver” velocity 

and the so-called excursion amplitude 
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Furthermore, the cycle averaged (T = 27r/R) kinetic energy gain of a charged particle 
(3) is the so-called ponderomotive energy 

Obviously, the above results may be extended to electromagnetic fields with ar- 
bitrary time dependence, for example by expanding the field in terms of harmonic 
components. Nevertheless, it is useful to explicitly consider a second situation fre- 
quently encountered in modern applications: pulsed fields, e.g. those produced by 
femtosecond lasers. We will consider pulses of the following form 

E ( t )  = Ep(t)  cosRt, Ep( t )  = 2EosinRPt, 0 5 Opt  5 T ,  (12) 

and Ep = 0 otherwise. Typically, Rp << 0, although modern femtosecond laser pulses 
may be as short as a few periods of the main frequency R. For the field (12), we obtain 
the velocity change and displacement 

Ara(t, t ') = r r  [-Rs(t - t') cos R't + sin R't - sin R't'] , 
S=* 

with rg* = eaEo/maRf2, whereas the change of relative velocity and two-particle 
distance, A v , ~  and Arab follow from Ava and Ar, by replacing v? by v:* - v!* and 
r:* by rz* - rt*, respectively. 

The above results trivially include the case of a time-independent electric field 
which is recovered by letting in Eq. ( 6 )  R + 0. The corresponding results are 

It is instructive to consider a number of parameters which characterize the state 

1. The field strength can be characterized by the ratio a = v:/vth,, of the amplitude 
of the oscillation velocity (quiver velocity) v,O, Eq. (7), to the thermal velocity 
'uth,a = (kT/ma)'/2. 

2. The relative importance of the field and of particleparticle interaction is charac- 
terized by ,O = T g / T D ,  where T: is the amplitude of the field induced displacement 
(8), and T D  is the Debye radius (interaction range). 

3. The frequency of the field has to be compared to the eigenfrequencies of the 
plasma, most importrantly, the electron Langmuir (plasma) frequency, 7 = 
R/w,l, which reflects competition between field frequency and plasma density 
effects. 

4. The relevance of collisional processes depends on the ratio 6 = v/R, where u is 

of the plasma, field strength, quantum properties etc: 

the total collision frequency of electrons in the plasma. 
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5.  The photon energy is characterized by its ratio to the thermal energy, tiRlkT. 

Modern lasers easily produce strong fields which satisfy the inequalities a >> 1 and 
p >> 1. In high-frequency fields and/or plasmas of moderate density, 6 << 1, which 
allows to treat collisions perturbatively, see below. 

2.2 Two-Particle Scattering 

Coulomb interaction between the charged carriers as well as quantum effects, obviously, 
may drastically modify the free particle behavior. Scattering of two particles with 
charges e,, eb  in quantum states Ikl) and lk2) on the Coulomb potential 

leads to a transfer of momentum q between them, so after the collision time t - tcoll 
the particles are in momentum states Ikl + q) and Ikz - 9). While conventional 
kinetic approaches treat collision as instantaneous, tcoll + 0, this is not appropriate 
for correlated plasmas as well as in the presence of rapidly varying fields with R . tcoll 
not being small. In this case, during the collision time, the scattering partners will 
be accelerated by the external field which is called intra-collisional f ie ld  effect, which 
essentially modifies the scattering process. Using a quantum language, during the 
collision time, the particles may absorb photons of the electromagnetic field which is 
the familiar inverse bremsstrahlung, or re-emit them (bremsstrahlung). 

The kinetic treatment of two-particle scattering on the Coulomb potential (13) 
leads to the well-known divergencies at  short and long wavelengths. While the first is 
naturally cured by a quantum theoretical approach, the origin of the latter is the long 
range of the Coulomb interaction. The familiar solution lies in the replacement of the 
bare Coulomb potential (13) by a screened one 

where cR is the retarded dielectric function. This is not only of fundamental in- 
terest but has also practical relevance. The dielectric function includes collective 
plasma oscillations and instabilities which, especially in nonequilibrium situations, 
may strongly enhance scattering, transport and energy exchange with the electromag- 
netic field (anomalous transport). 

The simplest approximation for the dielectric function is the random phase approx- 
imation (RPA) being the quantum generalization of the Vlasov dielectric function 

a 

where E ,  denotes the single-particle energy. Interestingly, this result was derived by 
Klimontovich and Silin [41, 421 two years before Lindhard [43]. While this approxi- 
mation is applicable to nonequilibrium situations in which the Wigner distributions 
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fa are weakly time-dependent (when the time scale t is much longer than 27r/u), on 
short times or for fast processes, such as in high frequency fields, generalizations are 
necessary. Such generalizations avoid the assumption of separation of the two time 
scales and lead to an explicit dependence of the functions II,E and V s  on two times. 
Moreover, the presence of an electromagnetic field may be expected to modify the 
dielectric and screening properties, leading to a very complex problem of coupled par- 
ticle, screening and field dynamics. The appropriate theoretical concept to tackle this 
problem is provided by quantum field theory. 

3 Quantum Field Theoretical Approach to the Dynamics of 
Plasmas in Electromagnetic Fields 

Numerous concepts have been developed to describe the mentioned above dynamics of 
particles and fields. Among them, the most systematic and powerful is the theory of 
nonequilibrium Green's functions. It is based on the method of relativistic quantum 
field theory, where charged particles and the longitudinal and transverse electromag- 
netic field are described on equal footing by field operators [44,45]. From the equations 
of motion for the field operators - the Dirac equation and Maxwell's equations, one 
can derive equations of motion for all quantities of interest. Among them, the most 
important are two-time correlation functions (Green's functions) which allow for sys- 
tematic and far-reaching generalizations of traditional kinetic theory. In this paper, 
we focus on nonrelativistic particle dynamics and start our derivations from the fa- 
miliar equations of motion for the particle correlation functions g' and g< while the 
electromagnetic field is treated classically. 

3.1 Kadanoff-Baym Equations 

The field theoretical description of plasmas is based on the creation and annihilation 
operators $t and $ [46] which are defined to guarantee the spin statistics theorem, 

$a(I)$b(2) $b(2)$a(1) = $d(l)$l(2) 7 $:(2)$;(1) = 01 
$a(1)$!(2) $:(2)$a(1) = 6(1 - 2) da.6, 

where t l  = t 2  has been assumed. The upper (lower) sign refers to bosons (fermions), 
1 G ( r l , t l , . s ~ ) ,  and a labels the particle species. Below, we will drop the spin index 
and assume fermions. The nonequilibrium state of a correlated plasma is described 
by the two-time correlation functions which are statistical averages (with the initial 
density operator of the system) of field operator products 

where 9,' and 9,' are, in nonequilibrium, independent from one another. They contain 
the complete dynamical and statistical information. The latter follows from their ele- 
ments along the t i m e  diagonal  the one-particle density matrix is immediately obtained 
from the function g< according to 
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whereas the dynamical information (e.g. the singleparticle spectrum and the corre- 
lations) follows from the function values across the diagonal in the tl - ti-plane, in 
particular, from the spectral function a(1, l’), 

a(1,l’)  = iti{g,>(l, 1‘) - g:(l, 1’)) = iFi {g,“(1, 1’) - &I, I/)} , (19) 

where gRIA are the retarded and advanced Green’s functions, defined below in Eq. 
(25). In the following, it will often be convenient to use microscopic and macroscopic 
time and space variables being defined as 

r = rl - rl,, 
7 = tl - t i ,  

R = (II + r 3 / 2 ,  
t = ( t l  + tl,)/2. 

(20) 
(21) 

In particular, in  cases where the microscopic variables vary on much smaller scales 
than the macroscopic ones, it is advantageous to perform a Fourier transformation 
with respect to r and/or r which leads to the frequency and momentum variables w 
and p, respectively. In particular, Eq. (18) then yields the familiar Wigner distribution 
function I 

fa(P, R, t )  = -ifLg,<(~, R; t l ,  t i) l t l=t;=t.  (22) 

The time evolution of the correlation functions in an electromagnetic field is deter- 
mined by the Kadanoff-Baym equations [7, 471 

d i  [c,’(i, i) - c,<(i, i)] &<i, 1’) - d i @ ( i ,  i) [g,’(i, 1’) - &(i, i’)], (23 
= Lot‘ Lot{ 

which have to be fulfilled together with the adjoint equations. Here, t o  denotes the 
initial time where the system is assumed to be uncorrelated (otherwise, the equations 
have to be supplemented with an initial correlation contribution to C,, cf. [48]). ZFF 
is the Hartree-Fock selfenergy (mean-field energy with exchange), 

CfF(ll’)  = -ihb(tl - tit) { /dr2Vab(rl - r2)9:(22+) - Sa,bVab(rl - r;)g:(ll’) 
b 

and C$ are the correlation selfenergies which will be discussed below. 

and advanced Green’s functions 
For the following derivations, it is useful to introduce, in addition, the retarded 

which obey the simpler equations 

- J d2 C,RIA(l12)9,RIA(2, 1’) = 6(1 - 1’). 
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In equations (23) and ( 2 6 ) ,  the electromagnetic field is given by the vector and scalar 
potentials A and 4 and will be treated classically. A is the full vector potential 
(external plus induced) which obeys Maxwell's equations, whereas 4 is understood as 
to be due to external sources only, the induced longitudinal field is fully accounted for 
in the screened Coulomb potential V s  which enters the selfenergies C: and C,<, see 
below. 

Although one can directly analyze and solve the two-time Kadanoff-Baym equa- 
tions (23), e.g. (191, for an overview, see [22], it is easier to consider the kinetic equation 
for the Wigner distribution function (22), which we will be concerned with here. This 
equation is immediately obtained from the equal time limit, tl = ti = t ,  of Eq. (23) 
plus its adjoint. Introducing further the variables R and r, Eqs. (20) and (21), we 
obtain, after Fourier transformation with respect to r, for the spatially homogeneous 
case, 

This is an exact equation and, therefore, well suited for deriving generalized kinetic 
equations. However, this equation is not closed yet since it contains under the collision 
integral functions depending on two times. Therefore, to obtain explicit expressions 
for the collision integral, one has: 

1. to find appropriate approximations for the self energy. For this, the Green's 
functions approach provides powerful approximation schemes based on Feynman 
diagrams which allow for a very systematic development of the theory. Here, we 
are interested in the plasma dynamics with screening effects properly included. 
Therefore, the appropriate choice for the selfenergy will be the random phase 
approximation (RPA); 

2. to express the correlation functions gs as functionals of the Wigner functions 
fa (reconstruction problem). This problem can be solved approximately on the 
basis of the generalized Kadanoff-Baym ansatz (GKBA) of LipavskJ; et al. [49], 
see Sec. 3.3. 

3.2 Gauge-Invariant Green's Functions 

It is well known that the electromagnetic field can be introduced in various ways 
(gauges) which may lead to essentially different explicit forms of the resulting kinetic 
equations. Although alternative derivations are successfully applied too, gauge in- 
variance becomes a particular problem if the resulting kinetic equations are treated by 
means of approximations, such as retardation or gradient expansions. A critical issue is 
that the result of these approximations maybe essentially different in different gauges, 
see e.g. [21] for examples. To avoid these difficulties, we will formulate the theory in 
terms of correlation functions which are made explicitly gaugeinvariant. While the 
main results have been presented in Ref. (111 here we provide some additional details. 

In this section, we use a co-variant 4-vector notation as it makes the following 
transformations more compact and symmetric. The corresponding definitions are 

A ,  = (c4,A), z,, = (cT,~), X, = (ct,R), 

and the convention a# = aobo - ab is being used. 
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One readily proofs that the Kadanoff-Baym equations (23) remain covariant under 
gauge transformations, i.e., under the following transformations of the potentials and 
field operators 

The corresponding gauge transform of the Green’s functions leads to 

Following an idea of Fujita [50], we now introduce a gauge-invariant Green’s function 
g(k, X )  which is given by the modified Fourier transform 

ga(z, X), (29) 

where use has been made of the identity 

Indeed, one readily confirms that under any gauge transform (28), the phase factors 
cancel, and g’(k, X) K g(k, X), [21]. 

In the following, we focus on spatially homogeneous electric fields and use the 
vector potential gauge 

t 

A,-, = q5 = 0; A = - c L m d f E ( q .  (30) 

In this case, relation (29) simplifies to 

what means that the gauge-invariant Green’s function g(k) follows from the Wigner 
’ transformed function ga(p) by replacing the canonical momentum p by the gauge- 

invariant kinematic momentum k according to 

t + I  

Let us illustrate this for the examples studied in Sec. 2. For a harmonic electric field 
given by Eq. (6), the vector potential and the momentum relation become, according 
to Eq. (30), 

Rr 
2 

Eo sin nt sin -. p = k + -- 
r 0 2  

CEO . mot, A(t)  = -- 0 (33) 
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Similarly, for a pulsed field of the form Eq. (12), the result for the vector potential and 
the momenta is 

cos flat 2EO 1 RUT n.2 cos R’t sin - 
2 .  p = k + - A ( t )  = CEO C - 

flu ’ 
6 s=* S=* 

Finally, for a static field we obtain, 

A ( t )  = -cE& p = k + eaEot. 

For the derivations below, we will need the gauge invariant Fourier transform of 
the convolution of two functions which, in the homogeneous case, is given by 

I(rl - r;; t l ,  t i )  = d fd?  B(rl  - f ;  t l ,  0 C(F - r;; f, t:). (34) J 
After straightforward manipulations which involve the back transform of (31), we 
arrive at 

In particular, the derivation of the collision integral in the kinetic equation for the 
Wigner function, requires the equal-time limit of this expression, t l  = t i  = t ,  

I(k; t )  = I d t B  [. + e“A(t)  - ; ea h’ dt“ 3, t ,  f] 
C 

x C [k + % A ( t )  - e. dt” 
C C 

where B and C will be replaced by g3 and E3. Notice that in this case the momentum 
arguments of B and C are equal. To simplify the-notation below, we introduce the 
field induced momentum shift 

A ( t )  - A(t’’) 
K,A(t,t’) 3 - > 

C (37) 

which has the important property 
t 

K;(t, t ’ )  - K:(t‘, t )  = 5 {A(;) - A( t ‘ ) }  = -e, 1 dt”E(t”) 3 Q,(t, t‘), (38) 

where Q, is nothing but minus the momentum gain of a free particle in the field, 
Q,(t, t’) = -m4Av,(tI t‘), cf. Eq. (1). Another important relation follows from multi- 
plication by the time interval: 

C t’ 

(39) 
1 -K,A(t, t‘) * ( t  - t’) ZE -R4(tI t’)l 

ma 
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where R, is just the field induced displacement of a free particle, Eq. (2), i.e. R,(t, t') = 
Ar,(t, t'). 

Definition (37) allows us to rewrite Eq. (36)  as 

I(k; t )  = 1 d f B  [k + K:(t, 9; t ,  fl C [k + K:(t, 0; t ,  fl . (40) 

3.3 Gauge  Invariant Propagator .  Generalized Kadanoff-Baym 

As noted in Sec. 3.1, for the derivation of the collision integral in the kinetic equation, 
we need to express the functions g' and g< in terms of the Wigner function. In 
addition, such a reconstruction ansatz involves the retarded and advanced Green's 
functions g R I A ( t ,  t ') for which suitable expressions have to be found. We first determine 

Ansa tz  

these quantities for free particles in an electromagnetic field which allows to simplify 
Eq. (26) to 

a,' 1 
["hat, - 2m, 

which is solved immediately by 

t+; 

2 
g,R(p; T ,  t )  = -xe(T) exp 

C 

and 9," is obtained from the symmetry relation g,"(p;r,t) = [gf(p; -r,t)]*. iFrom 
this result, we can calculate the spectral function a(t ,  t'), Eq. (19), 

1 t + f  

aa(p;  7, t )  = exp [ -- / dt' [p - e"A(t')l2/2m, 
C 

t -z 

Obviously, the results (41) and (42) are gauge-dependent since $IA and a, are func- 
tions of the canonic momentum p. But one can easily obtain the corresponding gauge- 
invariant results by applying the transform (29), with the result 

where S , ( A ; T , ~ )  = - dt'A2(t') + 1 7 ([' t - Z  dt'A(t')) '1 . (44) 

This result has a simple physical interpretation. For a free particle without field, the 
spectral function shows free undamped oscillations along r (i.e. perpendicular to the 
time diagonal) with the one-particle energy e,(k)  = k2/2m,, and its Fourier transform 
is 

a p ( k ;  W ,  t )  = S [ h w  - ~ , ( k ) ] .  (45) 
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This clearly underlines the meaning of the functions gRIA and, in particular, the spec- 
tral function a - they contain the full information on the single-particle energy spec- 
trum. Furthermore, in a correlated system, the single-particle spectrum is affected by 
interactions with other particles. This leads to a shift of the oscillation frequency and 
to damping of the oscillations, i.e. to finite life time effects, and it is reasonable to call 
the corresponding single-particle excitations quasi-particles. On the other hand, the 
result (43) reflects the influence of an electromagnetic field on the particle spectrum, 
while correlation effects have been neglected. Eq. (43) shows that the field causes a 
time-dependent shift of the single-particle energy which, obviously, reflects the well- 
known fact that the proper eigenstates of the system contain the electromagnetic field 
and are given by Volkov states [51]. The spectrum may even contain additional peaks 
which becomes particularly transparent in the limiting case of a harmonic time de- 
pendence: For the field (6), the time integrations in S can be performed, and simple 
trigonometric relations lead to [52] 

where &,pond is the ponderomotive potential which was introduced in Eq. (11). The first 
term in the brackets leads to a shift of the single-particle energy, the average kinetic 
energy of the particles increased by &,pond. The remaining terms modify the spectrum 
qualitatively giving rise to additional peaks which are related to photon sidebands [52]. 

Now we turn to the solution of the reconstruction problem. The simplest solution 
is the common Kadanoff-Baym ansatz, 

f i ~ g $ ( p ;  w ,  t )  = a p ( p ; w ,  t ) f P ( p ;  t ) ,  (47) 

where fc = f and f' = 1 - f ,  and the upper (lower) sign refers to 9' ( g < ) .  Indeed, 
the two-time functions g,'(tl,  t i )  and g,'(tl, t i )  are now expressed in terms of one t ime 
Wigner distribution functions and a known spectral function. However, due to the 
expected retardation effects, this ansatz is not applicable here. As mentioned above, a 
more general solution which properly takes into account retardation (memory) effects 
is the generalized Kadanoff-Baym ansatz proposed by Lipavski et al. [49] which reads 

g$(p;  t l ,  ti) = i h 9 3 p ;  t l ,  t ; )g$(P; t i ,  ti) - i h 9 3 p ;  t l ,  t l )g ,A(P; t l ,  t i ) ,  (48) 

where for the functions on the time diagonal k i h g s ( p ;  t l ,  tl) = f t ( p ;  t l ) ,  cf. Eq. (22). 
Within the quasiparticle approximation and with static selfenergies, Eq. (48) is exact. 
In more complex situations, it is an approximation to the exact reconstruction solution, 
which has prooved extremely successful in many applications. In particular, it has been 
used for more general selfenergies and also with more general propagators g?IA, e.g. 
[21]. We, therefore will use this ansatz below. 

Eq. (48) is written in terms of the momentum p and is, therefore, gaugedependent. 
To transform this relation into a gauge-invariant form, we use its coordinate represen- 
tation, 
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and apply the gaugeinvariant Fourier transform (31) together with the back trans- 
forms of g f f A  and f? which leads to the gauge-invariant generalization of the GKBA 

fg$ (k ;  t i ,  t i )  = g,R(k; t i ,  t i )  fz [k - K,A(t’, t ) ;  ti] - fa’ [k - K,A(t, t ’); ti] g,A(k; t ~ ,  t‘,),(50) 

where the definition (37) for K t  has been used. As in the field-free case, the first term 
is nonzero only for t l  2 ti and the second in the opposite case. Notice the difference 
of the time arguments in the two distribution functions. 

4 General Kinetic Equation for Quantum Particles Including 
Screening and Electromagnetic Fields 

We now come back to  the time-diagonal limit of the Kadanoff-Baym equations, cf. 
Eqs. (23) and (27), and derive the quantum kinetic equation for a plasma in a laser 
field thereby fully taking into account dynamical screening. Again, it  is advantageous 
to  derive this equa;ion for the gauge-invariant Wigner distribution. To this end, we 
take the Fourier transform (31) of the time-diagonal Kadanoff-Baym equation 

a 
zf.(k,,  t )  + eaE(t) * Vkfa(ka, t )  = -2Reia t  d t { x z g :  - c:g,>} = ~a(k5,  t>,  (51) 

where the full arguments are, according to the convolution relation (40), given by 

C$g? E$ [k. + Kt(t,  f ) ;  t ,  q g? [k5 + Kt( t ,  f ) ;  f, t ]  . 

This expression is valid for arbitrary approximations for the selfenergies C’ and C‘. 
In our previous paper [l], we used the simple static Born approximation. Here, we are 
interested in a fully selfconsistent inclusion of dynamical screening, so the  appropriate 
choice is the random phase approximation (RPA). 

4.1 Random Phase Approximation 

Starting from the familiar expression in coordinate representation, application of the 
gauge-invariant Fourier transform (31) straightforwardly leads to the following gauge- 
invariant result 

C:(k; t ,  t’) = ih - q; t ,  t ‘ )  V,3(q; t ,  t’), (52) 

which transforms the collision integral of Eq.(51) into 

x ihV,.,>(q;t,gg,< [k. +K:(t,q;f,t] - [ > t--+ < ] }  (53) 

In Eq. (52) we introduced the correlation functions of the screened potential (plas- 
mon correlation functions) V,>, K<, which contain the whole screening problem and 
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are directly related to the correlation function of the longitudinal field fluctuations 
(microfield fluctuations) [53] 

While in the classical case, the contributions from V' and V <  are equal, in the quan- 
tum case a symmetrization is useful which is indicated by the bar over the fluctuation 
term. V s >  and V"< can be related to the retarded and advanced screened potentials 
via the optical theorem 

where V: and v;" obey the following equation of motion (Dyson equation) 

and V" R I A  are relaied to the nonequilibrium inverse dielectric function according to  

vaSbRIA(q; t ,  t ' )  = Kb(q) [ c R I A ( q ;  t ,  t')]-l . (57) 
In the above equations, I / a b ( q )  is the bare Coulomb potential (13) and llIRlA the re- 
tarded and advanced longitudinal polarization functions (plasmon selfenergies). To 
close this system of equations, the polarization functions have to be expressed in terms 
of the particle correlation functions for which the simplest approximation is provided 
by the RPA, 

m q ;  t ,  t') = @(t - t ') {n,>,(q; t ,  t ' )  - n,',(q; t ,  t ' ) }  , (59) 
and nA follows from the relation ll$(q; t ,  t') = [n,",(q; t', t)]'. This set of equations 
completely defines the non-Markovian polarization approximation (RPA) for a quan- 
tum plasma in a strong transverse field. 

4.2 Application of the Gauge-Invariant GKBA 

What is left to obtain a closed expression for the collision integral in equation (51) is to  
apply the gauge-invariant GKBA (50) together with the free-particle approximation 
(43) to all two-time functions. This leads to the following results for the optical 
theorem: 
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Similarly, the result for IIR can be transformed to 

x {.fa [k  + Qa(t1 t‘); t‘I - f a  [k  + + Qa(t,  t’); 4 )  , (61) 
where the momentum shift Qa and field-induced displacement R, were defined above 
in Eqs. (38) and Eqs. (39), respectively. In the absence of the electromagnetic 
field, ( Q a  -+ O,Ra -+ 0), Eq. (61) reduces to the well-known nonequilibrium RPA- 
polarization function. The effect of the field is two-fold: first, it introduces an addi- 
tional retardation Qa in the distributions (intra-collisional field effect) and second, it 
leads to a modification of the one-particle energies in the exponent given by R, which 
we discussed in detail in ref. [l]. 

We now can transform the collision integral Eq. (53) by applying the GKBA (50) 
to g’,g<, and using the result for V s >  and V s < ,  Eq. (60). After straightforward 
calculations, we obtain the final result 

This is the general non-Markovian collision integral for a homogeneous weakly cou- 
pled dynamically screened plasma in an electromagnetic field. It is a generalization 
of numerous results which were previously obtained by various authors, including our 
static screening result for strong time-dependent fields 111 and the result of Silin and 
Uryupin [35], the RPA result for a static field of Morawetz [40] and the field-free RPA 
results of Kuznetsov [38] and Haug and Ell [39]. Furthermore, it generalizes previ- 
ous results obtained for classical plasmas by Silin, Oberman et al., Klimontovich and 
others [23, 27, 141. In particular, as we will see below, the classical dynamical screen- 
ing result of Klimontovich and Puchkov [29] is straightforwardly recovered from the 
collision integral (62). This collision integral is the basis for computing electron-ion 
collision frequencies, plasma heating inverse bremsstrahlung effects etc., thereby fully 
taking into account dynamical screening, plasma instabilities and anomalous transport 

Despite the complicated structure of the integral (62), a direct numerical integra- 
tion of the kinetic equation (51) appears to be within reach, as recently solutions of 
non-Markovian RPA-type equations (without longitudinal field) for semiconductors 
have been reported [20, 54, 551. On the other hand, to gain deeper insight in the phys- 
ical processes contained in the collision term (62), it is useful to consider analytical 
simplifications. 
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4.3 High Frequency Fields. Silin Ansatz 

If the collision frequency is low compared to the oscillation frequency of the field, i.e. 
if the parameter 6 << 1, one may follow an idea of Silin [25 and solve the kinetic 
equation (51) with a perturbation ansatz fa = f: + fj where fa obeys the collisionless 
equation 

b 

with the solution f:(k, t )  = fao [k + s A ( t ) ]  , (63) 
C 

where jao is an arbitrary function depending on the initial conditions. The equation 
for j: reads 

d 
at -f,(k, t )  + eaE(t) . vkf,(k, t )  = ~ : ( k ,  t )  

where I;(k, t )  = I ,  {fa -+ fao [k + % A ( t ) ] }  C . (64) 

With this scheme, there follow essential simplifications of the above results because it 
effectively eliminates the time retardation of the distribution functions in the collision 
integrals [56]. Indeed, one easily verifies that the arguments of the distributions which 
appear in the formulas above, now become 

and do not depend on the time t' anymore. This simplification allows to compute the 
transport, screening and fluctuation properties quite efficiently. 

We first consider the modification of the longitudinal polarization IIR.  Straight- 
forward transformations of Eq. (61) including a change of the momentum integration 
variable lead to 

i 
whith nfa,,(q;7) = --@(r) 1 e-$(';+q-';)' {fa(k) - f,(k + q)} 167) 

Using this result and the adiabatic approximation (neglecting the ion contribution 
to the polarization), we obtain from the Dyson equation, Eq. (56), for the retarded 
screened potential 

f i  ( 2 4 3  

where again, V:,,, denotes the screened potential in the zero field limit and without 
retardation in the distribution functions. Simplifications are possible also for the 
collision integrals. In particular, we obtain for the electron-ion scattering term, 
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where 1/e:IA are the field-free inverse dielectric functions. Eq. (69) is the generaliza- 
tion of Klimontovich's result [14] to quantum plasmas and. 

Finally, we consider the simplifications introduced by the ansatz (64) to the field 
fluctuations. The quantity of central importance is the correlation function of the 
temporal and spatial microfield fluctuations (bEbE),  Eq. (54). A lengthy but straight- 
forward calculation leads to the following result 

where the first term in parantheses (second line) is the electron contribution, and the 
second (third and fourth line) results from the ions. Again, this is a generalization of 
Klimontovich's remarkable result [14] who considered the classical limit and the equal 
time fluctuations, tl = t 2 .  Our result fully includes the two-time fluctuations which 
are directly measurable quantities. iFrom the above fluctuation spectrum, all major 
observables of dense quantum plasmas in a strong laser field can be computed. The 
corresponding analysis will be presented in a forthcoming paper. 

5 Discussion 

In this paper, we have presented a gauge-invariant derivation of the quantum kinetic 
equation for dense plasmas in a laser field. Our main result, Eq. (62), generalizes 
previous work to quantum systems. This equation can be used to calculate the trans- 
port properties of a dense plasma in a laser field on arbitrary time scales, i.e., over 
the whole frequency range. The use of the random phase approximation allows for a 
highly consistent treatment of the combined effect of internal longitudinal fields (dy- 
namical screening) and transverse electromagnetic fields, including intense laser pulses. 
In particular, it allows to investigate the influence of the electromagnetic field on the 
two-particle scattering process and the screening properties of the plasma and on the 
screening buildup in the presence of a strong field. 

Besides, the presented gauge-invariant approach is completely general and can 
be extended straightforwardly to more complex situations, including strong coupling 
effects, bound states, impact and field ionization. Moreover, it can be directly gener- 
alized to relativistic systems und ultra-intense fields. 
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