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Green’s function description of momentum-orientation relaxation
of photoexcited electron plasmas in semiconductors
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We present numerical results for the momentum-orientation relaxation of optically excited electron plasmas
in bulk semiconductors. Our results are based on the full two-time Green’s function approach for carrier-carrier
scattering and are compared to the results obtained within the conventional quantum Boltzmann equation.
Defining ‘‘memory effects’’ by this comparison, we find memory effects mainly to be differences in the
time-scale of the relaxation process rather than distinct qualitative features. Within the limitations of our
isotropic static screening model, we find that, in both approaches, an initial anisotropic and nonmonotonic
distribution function relaxes in a three-stage process in which the distribution becomes monotonic before it
loses its anisotropy.@S0163-1829~97!11307-8#
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I. INTRODUCTION

Optical excitation of electron-hole plasmas in semico
ductors yields, in general, anisotropic momentum distri
tions of the excited charge carriers.1–3 It is well known that
even in bulk III-V semiconductors, such as GaAs, opti
excitation creates anisotropic plasmas. This is mainly du
the specific optical transition matrix elements involving t
heavy-hole~hh! and light-hole~lh! valence bands, respec
tively. A comprehensive discussion of the anisotropic
pects of optical excitation can be found in Ref. 4. This a
isotropy will be the focus of this paper. Further contributio
are due to the anisotropy of the effective mass~warping!
which is discussed, for example, in Refs. 5 and 6, and, in
case of excitation very high into the interband continuu
where intervalley scattering becomes important due to
strong cubic anisotropy related to the lattice structure
GaAs. This cubic anisotropy is also present in two-pho
transition, in which higher lying conduction bands a
involved.7,8 In the following, we restrict ourselves to the a
isotropy related to the optical transition matrix elements.

The initial anisotropy of the excited conduction band ele
trons results from the interplay between linear polarized li
pulses and the specifics of the optical dipole matrix eleme
It comprises two different contributions, one due to exci
tion from the heavy-hole valence band and one due to
light-hole valence band. The subsequent momentum orie
tion relaxation, i.e., the scattering processes that make
distribution of carriers essentially isotropic, is believed to
among the fastest scattering mechanisms in semicondu
and, in the high density regime, is dominated by carri
carrier scattering.
550163-1829/97/55~8!/5110~7!/$10.00
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Recently, the issue of so-called memory effects, i.e.,
deviation of relaxation processes from simple Markov p
cesses, has drawn considerable attention, e.g., Refs. 9
One might expect that such memory effects, if at all, sho
be most important in the fastest relaxation processes. For
reason, we present in this paper a study of memory effect
the momentum-orientation relaxation. The theoretical fram
work for charge-carrier relaxation is already well establish
One of the most powerful techniques, which not only co
tains a proper description of memory effects but also
cludes incoherent carrier correlation effects self-consisten
is the nonequilibrium Green’s function technique. This tec
nique, which is based on the evolution of two-time corre
tion functions of one-particle expectation values, is usua
used as a starting point in the derivation of the simp
equations-of-motion for one-time distribution functions~i.e.,
conventional Boltzmann scattering integrals, generaliz
Kadanoff-Baym equations, etc.!. The investigation of relax-
ation processes in semiconductors based on the full two-t
Kadanoff-Baym equations is still in an initial stage.15–17 To
the best of our knowledge, all previously reported two-tim
calculations addressing semiconductor properties are b
on the additional assumption of isotropic distribution fun
tions.

Whereas the main motivation of this study are effe
which are formally beyond the Markov approximation, i.e
beyond the approximation in which the time-derivative
the carrier distribution at given time depends only on t
distribution at that time, the most striking result to be d
cussed in the following is present even within the Mark
approximation. It turns out that the system reaches isotr
in three stages. The initial fast orientation relaxation s
5110 © 1997 The American Physical Society
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55 5111GREEN’S FUNCTION DESCRIPTION OF MOMENTUM- . . .
preserves the initial ellipsoidlike shape of the distributi
function. It only evens out the distribution on the initial e
lipsoidlike surface. Only on a distinctly slower time sca
does the distribution become spherically isotropic~third
stage!. In between these two time scales is the relaxation
drives the distribution into a monotonically decaying fun
tion ~i.e., monotonically decaying as a function ofukW u).

The theoretical basis of our analysis are the equation
motion for the the full two-time one-particle Green’s fun
tion g,(kW ,t1 ,t2) within the screened-Hartree-Fock approx
mation. This Green’s function reduces to the distributi
function of the charge carriers as function of momentumkW

and timet in the equal time limit:f (kW ,t)52 i\g,(kW ,t,t).
The most important advantage of the two-time Gree

function approach is related to the fact that a self-consis
treatment of carrier kinetics~i.e., the temporal change of th
distribution function! and carrier correlations~i.e., self-
energy effects, damping, and ‘‘dephasing’’! is inherent to
this approach. In many other theoretical approaches ca
correlation effects are accounted for by explicit energy ren
malization of one-particle states, i.e., the renormalization
the one-particle electron energy«kW

e by the complex self-

energySkW
e. The strength of non-Markovian effects in the r

laxation process is then crucially determined by the ima
nary part ofS, which is often referred to as damping o
dephasing function. The requirement to treat kinetics a
self-energy effects self-consistently often poses a diffic
problem, which is completely avoided in the two-tim
Green’s function approach. This is especially advantage
if the lead focus of the investigation is the prediction of t
importance of memory effects.

Of course, from a practical point of view, there is still on
significant disadvantage in the two-time Green’s function
proach: the numerical solution requires more cpu time.
this reason we restrict our investigations to the followi
situation. Instead of treating the optical excitation proc
dynamically, we solve only the initial value problem for th
electron distribution. Also, we consider only electro
electron scattering and completely neglect the holes. Scr
ing of the Coulomb potential is treated within a simple qu
sistatic model. Although the restriction to a one-band mo
makes a full simulation of the optical excitation and, mo
importantly, of the optical measurement process impossi
it still allows us to address the important and basic issue
non-Markovian relaxation characteristics in a high dens
plasma. This issue is independent of the specific opt
pump-and-probe scenario. The understanding of the basi
laxation dynamics is actually a necessary prerequisite for
understanding of the more complex dynamical behavior
the coupled light-semiconductor system.

II. INITIAL DISTRIBUTION FUNCTION

In order to obtain a suitable initial distribution functio
for optically created conduction-band electrons, we follo
Zakharchenyaet al.18 and use an angle dependence of
two electron components~one due to hh-c excitation and the
other due to lh-c excitation! that results from perturbation
theory of the optical excitation process with linearly pola
ized light. We denote the angle between a given momen
at
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statekW and the polarization vector of the light asu. As shown
in Ref. 18 the momentum dependent squared dipole ma
elements z^c,kW urW•EW uv,kW & z2 between the conduction ban
‘‘ c’’ and the valence band ‘‘v,’’ where v stands either for hh
or lh denoting heavy-hole and light-hole, respectively, is p
portional to 17P2(cosu), where ‘‘2 ’’ gives the contribution
due to the hh-c transition and ‘‘1’’ that of the lh-c transi-
tion. P2 is the second degree Legendre polynomial. N
given in Ref. 18 are the proportionality factors which depe
only on the modulus ofkW and the details of the optical exc
tation such as the amplitude, duration, and center-freque
of the optical excitation fieldEW . In the following analysis we
proceed quasiphenomenologically and use prefactors w
correspond to an optical excitation process in which the d
tribution function reflects the spectral shape of the opti
pulse which we take to be Gaussian. In the context o
third-order approximation of the semiconductor Bloch equ
tions without Coulomb interaction this can be achieved in
approximate way, if, in the time derivative of the distributio
function, the interband polarization function is always tak
at times long after the pulse. This procedure yields Gaus
distribution functions centered at the carrier momentum t
corresponds to the resonance condition of the excita
field: \v05«k

e1«k
a with a5hh,lh. Here,v0 is the center

frequency of the light pulse,«kW
e
5\2k2/2me1EG is the elec-

tron energy with effective massme , EG is the band-gap
energy, «kW

hh
5(\2k2/2m0)(g122g2) is the heavy-hole en-

ergy with Luttinger parametersg1 andg2 (m0 is the electron
mass in vacuum!, and «kW

lh
5(\2k2/2m0)(g112g2) is the

light-hole energy. Our initial distribution therefore contain
two contributions with slightly different center-momen
~due to the mass difference of hh and lh! and different angle
characteristics~because the hh has an angular moment
quantum number ofj563/2 with respect to the quantizatio
axis given bykW , whereas the lh hasj561/2!:

f ~kW ,0!5Ahh~k!
1

2
@12cos2u#1Alh~k!

1

6
@113cos2u#,

~1!

with

Aa~k!5A0exp~2~\v02«k
e2«k

a!2/~2g2!!, ~2!

whereA05(m0E0)2p/2g2, m0 is the angle-independent pa
of the interband dipole moment,E0 is the peak light-field
amplitude, and the width of the distribution is related to t
pulse duration t ~FWHM of intensity! through
g25\22ln2/t2. This appoach, in which the light-field param
eters enter only into the shape of the initial distribution,
strictly justified only if the relaxation processes are mu
slower than the light-pulse durationt.

III. THEORETICAL APPROACHES

The temporal evolution of the one-particle Green’s fun
tionsg:(kW ,t,t8) is determined by the Kadanoff-Baym equ
tions ~for a derivation see, for example, Ref. 19!
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S i\ ]

]t
2«kW

eDg:~kW ,t,t8!

5E
t0

t

d t̄ $S.~kW ,t, t̄ !2S,~kW ,t, t̄ !%g:~kW , t̄,t8!

2E
t0

t

d t̄S:~kW ,t, t̄ !$g.~kW , t̄,t8!2g,~kW , t̄,t8!%. ~3!

Within the screened-Hartree-Fock approximation and
additional approximation of quasistatic screening, the s
energyS:(kW ,t,t8) is given by

S:~kW ,t,t8!5(
kW8,qW

2W~q,t !W~q,t8!g:~kW1qW ,t,t8!

3g:~kW82qW ,t,t8!g:~kW8,t8,t !, ~4!

where W(q,t)54pe2/@q21k2(t)# is the quasistatically
screened Coulomb potential in Gauss units. He
e25e0

2/eb is the effective charge squared (e0 is the electron
charge in vacuum andeb is the background dielectric con
stant of the semiconductor! and k is the screening wave
number. As for the initial condition, we assume that at
initial time t0 all correlations vanish and that the equal-tim
Green’s function2 i\g,(kW ,t0 ,t0) is the initial distribution
discussed above. Due to the specific retardation describe
Eqs.~3! and ~4! the initial condition at a single point in th
t-t8 plane is sufficient to obtain the solution for a
t,t8.t0.

The static screening approximation is a significant rest
tion concerning the quantitative reliability of the theoretic
model. The importance of dynamical screening models w
pointed out, for example, in Ref. 20 and it was shown~see,
for example, Ref. 21! that for Markovian Boltzmann equa
tions the static screening model yields smaller scatte
rates than dynamic screening models~in this case the Boltz-
mann equation is known as the Lenard-Balescu equati!.
Since, for the time being, a general two-time screened po
tial within the two-time Green’s function formalism is no
feasible, we solve the Kadanoff-Baym equations twice: o
with a screening wave number that underestimates
screening and once with one that overestimates the scr
ing. For the interpretation of our results we consider o
those features that are common to both results.

In order to interpret the results based on the two-ti
formalism and to extract features which could be ascribe
memory effects, we compare and contrast that theore
approach with the conventional Boltzmann equation. Th
are several ways to obtain the conventional Boltzmann eq
tion from the two-time formalism~see, for example, Refs. 1
and 22!. The principle characteristic of non-Markovian rela
ation equations is, of course, the dependence of the
derivative of the distribution function,ḟ (t), on the distribu-
tion function f (t8) at earlier timest8,t. In the Markov ap-
proximation, the scattering integral determiningḟ (t) depends
only on f (t). There exist, however, many different versio
of Markovian scattering integrals. The differences betwe
the various Markovian scattering integrals are related to
ferent screening functions and different one-particle s
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energies. In the simplest version, the one-particle s
energies are neglected and, in particular, do not con
imaginary parts~damping or dephasing constants!. In that
limit, and under the additional assumption of large tim
~i.e.,\/@ t2t0#! typical energy transfers!, the kinetic energy
becomes a constant of motion~i.e., the scattering integra
contains a kinetic energy conservingd function!. In a recent
study15 we have investigated carrier relaxation in isotrop
plasmas and compared various approximation schemes
the following we will restrict ourselves to the comparison
the two-time Kadanoff-Baym equations with the simple
conventional Boltzmann equation,

]

]t
f ~kW ,t !5G in@ f ;kW ,t#@12 f ~kW ,t !#2Gout@ f ;kW ,t# f ~kW ,t !,

~5!

whereG in is the in-scattering rate,

G in@ f ;kW ,t#5
2p

\ (
kW8,qW

2uW~q,t !u2f ~kW1qW ,t ! f ~kW82qW ,t !

3@12 f ~kW8,t !# ~6!

3d~«kW1«kW82«kW1qW2«kW82qW !

andGout is the out-scattering rate which can be obtained fr
G in by replacingf by 12 f .

The numerical procedures for solving both the Kadano
Baym equations and the conventional Boltzmann equa
are the same as used in Ref. 16. That reference also con
a discussion of the more technical aspects of modifying
algorithm for solving the Kadanoff-Baym equations to al
solve the conventional Boltzmann equation@see Eq.~2.16! of
Ref. 16#.

IV. RESULTS AND DISCUSSION

For the numerical evaluations we chose material para
eters appropriate for GaAs: the effective electron mass
me50.067m0, and the excitonic Rydberg energy
ER54.2 meV, correponding to a background dielectric co
stanteb512.998 and an exciton Bohr radiusaB5132 Å. The
Luttinger parameters areg156.85 andg252.1. The light-
pulse polarization is chosen to be in thez-direction. The
initial conditions are\v05EG150 meV, t540 fs, and
A51.2. The electron density is 6.131017 cm23. The maxi-
mum k-value~in each Cartesian direction! was chosen to be
between 6.3 and 8.7 in units ofaB

21 and the number ofk
points in each direction was between 43 and 59. Within t
parameter range, the results were found to be insensitiv
the parameters.

In the following we present contour plots for the distrib
tion function atky50. The distribution forkyÞ0 can be
obtained from the results shown by rotating them around
z axis.

Figure 1 shows the initial electron distribution which co
sists of the two components from the hh and lh transitio
shown separately in Figs. 2 and 3. The initial distributi
differs from a quasiequilibrium distribution, to which it re
laxes by means ofc-c scattering, in three aspects:~i! in
radial direction, the function is nonmonotonic, due to carr
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55 5113GREEN’S FUNCTION DESCRIPTION OF MOMENTUM- . . .
excitation high in the band;~ii ! due to the mass~or, equiva-
lently, density-of-states! difference between the heavy- an
the light-hole band, the location of the distribution maximu
depends on the direction ofkW ~peak in kx direction from
heavy-hole contribution, peak inkz direction from light-hole
contribution!; ~iii ! also due to the mass difference, the heig
of the maximum distribution is anisotropic.

If, instead of a quasiphenomenological initial conditio
we would fully simulate the optical excitation process, w
should still expect these three qualitative features. The qu
titative details might, of course, differ from our model. Als
different from our model would be the fact that during t
optical excitation charge-carrier correlations build up. O
model of vanishing initial correlations is likely to underes
mate the speed of initial scattering processes since in a t
retical model containing memory effects the time derivat
ḟ is zero att5t0. This point is discussed in more detail
Ref. 15.

We will present two different sets of results: one for

FIG. 2. The contribution to Fig. 1 from the heavy-hole~hh! band
excitation.

FIG. 1. Initial charge-carrier distribution of conduction ban
electrons excited from the heavy-hole and light-hole bands a

function of momentum vectorkW . The distribution is shown for
ky50. The distribution in three-dimensional momentum space
obtained from this figure by rotation about thez axis. The units of
the wave numberskx andkz in this and all other contour plots ar
inverse Bohr radii (aB

21). The parameters are given in the text. T
contour lines show equally spaced levels with the value of the
tribution indicated on selected contour lines. The tick marks on
contour lines point in the ‘‘down-hill’’ direction.
t

n-

r

o-

weakly screened potential and one for a strongly scree
potential. In the case of the strongly screened poten
we choose the~time-dependent! screening wave numbe
to correspond to the full density,k2(t)5(4e2me/
p\2)*0

`dk f̄(k,t), where f̄ (k,t) is the angle-averaged distr
bution. In other words,k(t) is computed self-consistentl
with the time-dependent distribution functions. The value
k for our parameters is between 1.5aB

21 ~initially ! and
1.8aB

21 at t5160 fs. Because of the nonzero build-up time
static screening this is likely to overestimate the screen
Therefore we investigate also the relaxation in the limit o
weakly screened potential, where we chose a cons
k50.4aB

21 . This is, of course, an arbitrary choice, but it
still reasonable to believe that the results for the wea
screening potential are more realistic than those obtai
with the self-consistentk(t).

We begin the discussion of the time evolution of the d
tribution function on the basis of the two-time Kadano
Baym equations with a weakly screened potential. Figure
and 5 show that the fastest process is the relaxation towa
quasi-isotropic distribution, i.e., a distribution in which th
different peak heights in thekx andky direction, respectively,
are evened out, but the oval shape of the distribution s
persists~Fig. 4!. It is followed by the relaxation toward a

FIG. 3. The contribution to Fig. 1 from the light-hole~lh! band
excitation.

FIG. 4. Relaxation of electron distribution~sum of hh1lh con-
tributions! calculated with the two-time Kadanoff-Baym equatio
with a strong interaction potential (k50.4aB

21). The other param-
eters are given in the text. The time is 40 fs.
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5114 55R. BINDER, H. S. KÖHLER, M. BONITZ, AND N. KWONG
completely monotonically decreasing function in all dire
tions which, however, is still not spherically isotropic~Fig.
5!. During the final and third stage, the oval and monoto
distribution will eventually become a spherically isotrop
and monotonic quasiequilibrium function. This function w
be essentially a Fermi function, except for the minor mo
fications due to charge-carrier correlations built up dur
the relaxation process.

To compare these results with the case of a stron
screened Coulomb potential, in which the relaxation rates
likely to be underestimated, we show in Fig. 6 the distrib
tion at t5120 fs. As expected, the relaxation is now mu
slower, but other than that no qualitative differences app
~instead of proving this statement by showing more cont
plots, we will come back to this point in the discussion of t
quadrupole moments below!.

One of the goals of this investigation is the identificati
of memory effects. To this end we have solved the conv
tional Boltzmann equation. In Figs. 7 and 8 we see that c
ventional Boltzmann relaxation is faster than the one co
puted with the full two-time formalism~compare Figs. 4 and
5!. The main reason is, similar to the case of isotropic rel
ation, the presence of initial nonzero relaxation rates
conservation of kinetic energy in the conventional Bol
mann equation. These differences are most pronounce
early times~see the results for 40 fs!. Other than the quanti

FIG. 5. Same as Fig. 4, but for timet5120 fs.

FIG. 6. Same as Fig. 5, but calculated with a weak interac
potential@self-consistentk(t)#.
c
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tative difference regarding the speed of the relaxation,
have not found any strong and qualitative memory effec
This, again, agrees with our findings for the isotrop
relaxation,15 where qualitative memory effects were obtain
only within the so-called ‘‘free generalized Kadanoff-Bay
ansatz,’’ an approximation which completely neglects dam
ing effects. Figure 8 also shows that the relaxation te
indeed towards a spherical isotropic final distribution. As
the fast initial relaxation dynamics illustrated in Fig. 7, w
see that the nonequilibrium peak of the hh contribution h
broadened more than that of the lh contribution which, in
figure, leads to an almost circular shape of the inner cir
representing the low-momentum boundary of the nonequi
rium distribution. The faster hh relaxation can be attribut
to the larger density of the hh contribution. Although th
maximun occupation is higher, by a factor 4/3, for the
contribution than for the hh contribution@see Eq.~1!#, the
initial hh-contribution density contains more charge carrie
This is due to the larger joint density-of-states of the hh-
conduction-band transition compared to that of the lig
holes. Since, within our model, the joint density-of-states
proportional tomred,a

3/2 ~where a5hh,lh and the inverse re
duced mass ismred,a

21 5me
211ma

21), the density of the hh
contribution is larger, by a factor of 1.79, compared to that
the light holes. Of course, there is no strict separation
terms of scattering within the hh contribution versus scat

n

FIG. 7. Relaxation of electron distribution~sum of hh1lh con-
tributions! calculated with the anisotropic single time Boltzman
equation with a strong interaction potential (k50.4aB

21). The time
is 40 fs.

FIG. 8. Same as Fig. 7, but for timet5120 fs.
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55 5115GREEN’S FUNCTION DESCRIPTION OF MOMENTUM- . . .
ing within the lh contribution, but to the extent that sma
momentum transfer scattering processes dominate the r
ation this concept is applicable at least in an approxim
way.

For the case of the weak interaction potential, the rel
ation process without memory is similar to that with memo
and, therefore, leads to a similar contour plot~not shown!.
The absence of any clear memory effects in this case is
unexpected, because we found this in our earlier study
isotropic relaxation.15

Although we do not believe it to be very likely, we pre
ently cannot rule out that the full inclusion of nonequilibriu
plasmon and screening dynamics10,12,23 would yield more
pronounced memory effects in the orientation relaxation p
cess.

To further analyze the relaxation processes and, in p
ticular, to address the question whether the loss of anisotr
or the loss of nonmonotonicity is faster, we present in Figs
and 10 the quadrupole moment of the distribution and
distribution at kW50 in logarithmic form as a function o
time. The quadrupole moment is defined as

Q~ t !5(
kW
Y0
2~u,f! f ~kW ,t !, ~7!

whereY0
2 is the spherical harmonic,u is the polar angle, and

f is the azimuth angle ofkW . Contrary to our earlier expecta
tion, the numerical results show that the loss of anisotrop
slower than what is sometimes called ‘‘energy relaxation
i.e., the scattering process in which the individual carri
~but not the total charge carrier system! change their kinetic
energy. To extract an exponential decay rate from these
ures one has to read off the time at which the logarit
drops to21.

FIG. 9. Logarithm of the quadrupole momentQ(t) ~solid
curves! and distribution difference at zero momentumd f (0,t)
~dash-dotted curves! for the case of the strong interaction potenti
The distribution difference is defined asd f (0,t)5 f (0,t)2 f (0,̀ ).
Shown are results computed with the two-time Kadanoff-Ba
equations~upper solid and upper dash-dotted curve! and the single-
time Boltzmann equation~lower solid and lower dash-dotte
curve!.
x-
te
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One can also compare the results shown so far with d
obtained within a fully isotropic model. To this end we u
the angle-averaged initial distribution

f̄ ~k,0!5@Ahh~k!1Alh~k!#/3. ~8!

We have solved the corresponding fully isotropic Boltzma
equation fork50.4aB

21 ~strong potential! in order to com-
pare this case with the anisotropic case shown in Figs. 7
8 and Fig. 9. The distribution for the fully isotropic case
shown in Fig. 11. The comparison shows that, if one is o
interested in the overall relaxation speed and not in the
tails of the anisotropic character of the distribution, the is
tropic calculation is sufficient because it yields very go
agreement with the relaxation time found in the anisotro
case. The temporal behavior of the logarithm of the distrib
tion atk50 is almost identical to the corresponding result
Fig. 9.

Although there exist experimental investigations of m
mentum orientation relaxation in GaAs, we believe that
details of the three-stage process of electron relaxation
cussed above has not been observed. The pioneering ex
ment of Oudaret al.1 was performed at a time when temp

FIG. 10. Same as Fig. 9, but for the weak interaction potentia

FIG. 11. Distribution function at various times for the fully iso
tropic case calculated with the single-time Boltzmann equation w
the strong interaction potential.
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ral resolution of ultrashort pulses was still in the 100
regime. Portellaet al.2 were able to use 9 fs pulses, but d
not discuss the relative speed of orientation vs one-par
energy relaxation. It should also be noted that the meas
optically induced dichroism and birefringence is a comp
cated function of the two theoretically observed anisotro
aspects, namely the anisotropic peak height and the
shape, respectively, and also depends on how the nonm
tonicity affects the measurement of the anisotropy. A f
microscopic theory for the specific experimental measu
ment process would be needed to identify these aspec
the measured signal. This applies in particular to the issu
memory effects, which, within the isotropic static screen
approximation, and based on a fully self-consistent rel
ation approach with damping, we have found to be only
quantitative rather than qualitative nature.

In summary, we have discussed various aspects
electron-electron scattering induced relaxation processe
A.

n

e

a

ys

B.

en
le
ed
-
y
al
no-
l
-
in
of

-
f

of
in

optically created non-equilibrium electron plasmas in GaA
We have found that the anisotropy decays slower than
non-monotonicity. The details depend on the exact form
the interaction potential. Furthermore, we have fou
memory effects to be appreciable only in the case of a str
~i.e., weakly screened! potential.

Note added.A related study of carrier-carrier scattering
semiconductors utilizing the two-time formalism for isotr
pic distributions has been published by W. Scha¨fer @J. Opt.
Soc. Am. B13, 1291~1996!#.
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