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We present numerical results for the momentum-orientation relaxation of optically excited electron plasmas
in bulk semiconductors. Our results are based on the full two-time Green’s function approach for carrier-carrier
scattering and are compared to the results obtained within the conventional quantum Boltzmann equation.
Defining “memory effects” by this comparison, we find memory effects mainly to be differences in the
time-scale of the relaxation process rather than distinct qualitative features. Within the limitations of our
isotropic static screening model, we find that, in both approaches, an initial anisotropic and nonmonotonic
distribution function relaxes in a three-stage process in which the distribution becomes monotonic before it
loses its anisotropy.S0163-18207)11307-9

I. INTRODUCTION Recently, the issue of so-called memory effects, i.e., the
deviation of relaxation processes from simple Markov pro-
Optical excitation of electron-hole plasmas in semicon-cesses, has drawn considerable attention, e.g., Refs. 9-16.
ductors yields, in general, anisotropic momentum distribu-One might expect that such memory effects, if at all, should
tions of the excited charge carriérs It is well known that  be most important in the fastest relaxation processes. For this
even in bulk IlI-V semiconductors, such as GaAs, opticalreason, we present in this paper a study of memory effects in
excitation creates anisotropic plasmas. This is mainly due tthe momentum-orientation relaxation. The theoretical frame-
the specific optical transition matrix elements involving thework for charge-carrier relaxation is already well established.
heavy-hole(hh) and light-hole(lh) valence bands, respec- One of the most powerful techniques, which not only con-
tively. A comprehensive discussion of the anisotropic astains a proper description of memory effects but also in-
pects of optical excitation can be found in Ref. 4. This an-cludes incoherent carrier correlation effects self-consistently,
isotropy will be the focus of this paper. Further contributionsis the nonequilibrium Green’s function technique. This tech-
are due to the anisotropy of the effective massrping nique, which is based on the evolution of two-time correla-
which is discussed, for example, in Refs. 5 and 6, and, in th&on functions of one-particle expectation values, is usually
case of excitation very high into the interband continuumused as a starting point in the derivation of the simpler
where intervalley scattering becomes important due to thequations-of-maotion for one-time distribution functiofie.,
strong cubic anisotropy related to the lattice structure oftonventional Boltzmann scattering integrals, generalized
GaAs. This cubic anisotropy is also present in two-photorKadanoff-Baym equations, eic.The investigation of relax-
transition, in which higher lying conduction bands areation processes in semiconductors based on the full two-time
involved.® In the following, we restrict ourselves to the an- Kadanoff-Baym equations is still in an initial statfe!’ To
isotropy related to the optical transition matrix elements. the best of our knowledge, all previously reported two-time
The initial anisotropy of the excited conduction band elec-calculations addressing semiconductor properties are based
trons results from the interplay between linear polarized lighton the additional assumption of isotropic distribution func-
pulses and the specifics of the optical dipole matrix elementgions.
It comprises two different contributions, one due to excita- Whereas the main motivation of this study are effects
tion from the heavy-hole valence band and one due to thahich are formally beyond the Markov approximation, i.e.,
light-hole valence band. The subsequent momentum orientdeyond the approximation in which the time-derivative of
tion relaxation, i.e., the scattering processes that make thie carrier distribution at given time depends only on the
distribution of carriers essentially isotropic, is believed to bedistribution at that time, the most striking result to be dis-
among the fastest scattering mechanisms in semiconductoesissed in the following is present even within the Markov
and, in the high density regime, is dominated by carrier-approximation. It turns out that the system reaches isotropy
carrier scattering. in three stages. The initial fast orientation relaxation still
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preserves the initial ellipsoidlike shape of the distributionstatek and the polarization vector of the light &sAs shown
function. It Only evens out the distribution on the initial el- in Ref. 18 the momentum dependent Squared d|po|e matrix

lipsoidlike surface. Only on a distinctly slower time scale CIC Bl RV]2 ;
A ! . : elements|(c,k|r-E|v,k)|> between the conduction band
does the distribution become spherically isotrogthird ek vl o

tage. In bet h wo ti les is the relaxation th ‘¢ and the valence bandd',” where v stands either for hh
stage. In between these two time scales Is the relaxation thag denoting heavy-hole and light-hole, respectively, is pro-
drives the distribution into a monotonically decaying func

T . ) R " portional to 1+ P,(cos), where “—" gives the contribution

tion (i.e., monotonically decaying as a function |éf). due to the hre transition and *+” that of the Ih- transi-
The theoretical basis of our analysis are the equations gfon. p, is the second degree Legendre polynomial. Not

motion for the the full two-time one-particle Green's func- given in Ref. 18 are the proportionality factors which depend

tion_g<(lz,t1_,t2) within the screened-Hartree-Fock approxi- only on the modulus ok and the details of the optical exci-

function of the charge carriers as function of momentim  of the optical excitation fiel&. In the following analysis we
and timet in the equal time limit:f (k,t)=—ifag=(k,t,t). proceed quasiphenomenologically and use prefactors which
The most important advantage of the two-time Green’'scorrespond to an optical excitation process in which the dis-
function approach is related to the fact that a self-consisterttibution function reflects the spectral shape of the optical
treatment of carrier kinetic§.e., the temporal change of the pulse which we take to be Gaussian. In the context of a
distribution function and carrier correlationdi.e., self-  third-order approximation of the semiconductor Bloch equa-
energy effects, damping, and “dephasing’s inherent to tions without Coulomb interaction this can be achieved in an
this approach. In many other theoretical approaches carriegpproximate way, if, in the time derivative of the distribution
correlation effects are accounted for by explicit energy renorfunction, the interband polarization function is always taken
malization of one-particle states, i.e., the renormalization okt times long after the pulse. This procedure yields Gaussian
the one-particle electron enerwﬁ by the complex self- distribution functions centered at the carrier momentum that

energyEE. The strength of non-Markovian effects in the re- gorrgsponds eto t?e resonance condition Qf the excitation
laxation process is then crucially determined by the imagil€/d- 7:@o= &+ &) with a:Qh"h- Here, ay is the center
nary part ofS, which is often referred to as damping or frequency of the light pulses;=7%2k?/2me+Eg is the elec-
dephasing function. The requirement to treat kinetics andron energy with effective massy,, Eg is the band-gap
self-energy effects self-consistently often poses a difficultanergy,sEh:(hszIZmO)(yl—Zyz) is the heavy-hole en-
problem, which is completely avoided in the two-time ergy with Luttinger parameterg; andy, (mj is the electron
Green’s function approach. This is especially advantageoug,sss in vacuum and 8:;h=(ﬁ2k2/2mo)(y1+2y2) is the

!f the :ead fo?us of the |nf}/estt|gat|on is the prediction of theIight—hole energy. Our initial distribution therefore contains
Importance of memory etfects. . L two contributions with slightly different center-momenta
Of course, from a practical point of view, there is still one (due to the mass difference of hh andl #md different angle
significant disadvantage in the two-time Green’s function ap'characteristics(because the hh has an angular momentum

pr_oach: the numerica_ll SOIUtiQ” req_uire_s more cpu time. .Fo{quantum number of= = 3/2 with respect to the quantization
this reason we restrict our investigations to the following ' .~ - N )
xis given byk, whereas the |h hajs= = 1/2):

situation. Instead of treating the optical excitation proces&
dynamically, we solve only the initial value problem for the
electron distribution. Also, we consider only electron- . 1 1

electron scattering and completely neglect the holes. Screen- | (K.0)=Anr(K) 5[1—00529]+A|h(k) gl 3cos 6],
ing of the Coulomb potential is treated within a simple qua- (D)
sistatic model. Although the restriction to a one-band model

makes a full simulation of the optical excitation and, morewith

importantly, of the optical measurement process impossible,

it still allows us to address the important and basic issue of _ _ _e_ a2 2
non-Markovian relaxation characteristics in a high density AaK)=AgeXH ~ (Riwo—ei—#i)(279)), 2
plasma. This issue is independent of the specific optical

_ 2 2 : K
pump-and-probe scenario. The understanding of the basic r(\é\fherer_(“og") m/2y", po IS the angle-independent part

laxation dynamics is actually a necessary prerequisite for thglc the interband dipole moment, is the peak light-field

understanding of the more comolex dvnamical behavior 01amplitude, an_d the width of the distrit_)ution_is related to the
the coupled I%ht-semiconductorpsyster% pulse duration 7 (FWHM of intensity through
' y?>=h22In2/7%. This appoach, in which the light-field param-

eters enter only into the shape of the initial distribution, is
[l INITIAL DISTRIBUTION FUNCTION strictly justified only if the relaxation processes are much

In order to obtain a suitable initial distribution function slower than the light-pulse duration

for optically created conduction-band electrons, we follow

Zakharchenyaet al!® and use an angle dependence of the IIl. THEORETICAL APPROACHES

two electron component®ne due to hie excitation and the ] .

other due to Ihe excitation that results from perturbation ~ The temporal evolution of the one-particle Green's func-
theory of the optical excitation process with linearly polar-tionsg=(k,t,t") is determined by the Kadanoff-Baym equa-
ized light. We denote the angle between a given momenturtions (for a derivation see, for example, Ref.)19
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o d ol o - energies. In the simplest version, the one-particle self-
('ﬁﬁ—glz)gﬂk.t,t') energies are neglected and, in particular, do not contain
imaginary parts(damping or dephasing constantén that
b o T S R limit, and under the additional assumption of large times
:ft dt{Z7(k,t,t) - Z=(k,t,)}g=(k,t,t") (i.e.,hl[t—ty]< typical energy transfeysthe kinetic energy
0 becomes a constant of motidne., the scattering integral
t o L o contains a kinetic energy conserviagunction). In a recent
— thz(IZ,t,t){g>(IZ,t,t’)—g<(IZ,t,t’)}_ (3) study”® we have investigated carrier relaxation in isotropic
to plasmas and compared various approximation schemes. In

the following we will restrict ourselves to the comparison of

Wi.thin the scrgeneq-Hartree-Fgck f”‘ppfOX‘m?‘“O” and thepe rwo-time Kadanoff-Baym equations with the simplest
additional approximation of quasistatic screening, the Self'conventional Boltzmann equation

energy> =(k,t,t') is given by

. . R =Tl R T~ FR O]~ Toul ;K (o0,
SEK )= 2W(g,t)W(g,t')g=(k+q,t,t") Jt
k’,q

5
ng(IZ’—ﬁ t t’)gz(lZ’ t' 1) (4) wherel';, is the in-scattering rate,

where W(q,t)=4me?/[q?+ k?(t)] is the quasistatically o 2m e i = -, =
screened Coulomb potential in Gauss units. Here, Tinl f1k,t]= o kzq 2|W(a,D*f(k+a,Hf (k" —q.t)
e2=e§/ €p is the effective charge square€y(is the electron ’ R
charge in vacuum and, is the background dielectric con- X[1—f(k',t)] (6)
stant of the semiconductorand « is the screening wave
number. As for the initial condition, we assume that at the X 6(egtep—ekrg— ek —q)

initial time ty all correlations vanish and that the equal-time . . . .
s f 0 0= (K is the initial di cg . andI',; is the out-scattering rate which can be obtained from
Green’s function—ifag=~(k,tq,tg) is the initial distribution T, by replacingf by 1—f.

. e . . n
discussed above. Due to the specific retardation described by The numerical procedures for solving both the Kadanoff-

Egs.(3) and (4) the initial condition at a single point in the g,y equations and the conventional Boltzmann equation
) \ o ! )
:—:’;t)lane is sufficient to obtain the solution for all 5r¢ the same as used in Ref. 16. That reference also contains
' o . S o __a discussion of the more technical aspects of modifying an
The static screening approximation is a significant restrics qorithm for solving the Kadanoff-Baym equations to also

tion concerning the quantitative reliability of the theoretical 5}e the conventional Boltzmann equatsee Eq(2.16 of
model. The importance of dynamical screening models wag ¢ 16,

pointed out, for example, in Ref. 20 and it was shoisae,

for example, Ref. 2Lthat for Markovian Boltzmann equa-
tions the static screening model yields smaller scattering
rates than dynamic screening modetsthis case the Boltz- For the numerical evaluations we chose material param-
mann equation is known as the Lenard-Balescu equationeters appropriate for GaAs: the effective electron mass is
Since, for the time being, a general two-time screened potern,=0.067n,, and the excitonic Rydberg energy is
tial within the two-time Green'’s function formalism is not ER: 4.2 meV, Correponding to a background dielectric con-
feasible, we solve the Kadanoff-Baym equations twice: onC&tante, = 12.998 and an exciton Bohr radiag= 132 A. The
with a screening wave number that underestimates theyttinger parameters arg,=6.85 andy,=2.1. The light-
screening and once with one that overestimates the screepyise polarization is chosen to be in taedirection. The
ing. For the interpretation of our results we consider onlyjnitial conditions arefwy,=Eg+50 meV, =40 fs, and
those features that are common to both results. A=1.2. The electron density is 611017 cm~3. The maxi-

In order to interpret the results based on the two-timey m k-value (in each Cartesian directipmvas chosen to be
formalism and to extract features which could be ascribed tQetween 6.3 and 8.7 in units agl and the number ok

memory effects, we compare and contrast that theoretic
approach with the conventional Boltzmann equation. Ther
are several ways to obtain the conventional Boltzmann equ
tion from the two-time fOfma"SfTﬁS‘?e' for example, _REfS' 19 In the following we present contour plots for the distribu-
and 23. The_prlnc_|ple characteristic of non-Markovian rela>_<- tion function atk,=0. The distribution fork,#0 can be
ation equations is, of course, the erendence of the UM&htained from the results shown by rotating them around the
derivative of the distribution functiorf,(t), on the distribu- 7 axis.

tion functionf(t') at earlier timeg’ <t. In the Markov ap- Figure 1 shows the initial electron distribution which con-
proximation, the scattering integral determinif{g) depends sists of the two components from the hh and lh transitions
only on f(t). There exist, however, many different versions shown separately in Figs. 2 and 3. The initial distribution
of Markovian scattering integrals. The differences betweerdiffers from a quasiequilibrium distribution, to which it re-
the various Markovian scattering integrals are related to diffaxes by means o€-c scattering, in three aspect§) in
ferent screening functions and different one-particle selfradial direction, the function is honmonotonic, due to carrier

IV. RESULTS AND DISCUSSION

oints in each direction was between 43 and 59. Within this
arameter range, the results were found to be insensitive to
he parameters.
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f(k,,0,k,) at t=0fs f(k,,0,k,) (lh—contribution)
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FIG. 3. The contribution to Fig. 1 from the light-ho{th) band

. . T : excitation.
FIG. 1. Initial charge-carrier distribution of conduction band

electrons excited from the heavy-hole and light-hole bands as a )

function of momentum vectok. The distribution is shown for Weak'Y screened potential and one for a strongly Screen_ed
k,=0. The distribution in three-dimensional momentum space ipotential. In the case of the strongly screened potential
obtained from this figure by rotation about ta@xis. The units of W€ choose the(time-dependent screening wave number
the wave numberk, andk, in this and all other contour plots are 0 correspond to the full density, x*(t) = (4e’m/
inverse Bohr radii 45 ). The parameters are given in the text. The 7#2) [5dkf(k,t), wheref(k,t) is the angle-averaged distri-
contour lines show equally spaced levels with the value of the disbution. In other wordsx(t) is computed self-consistently
tribution indicated on selected contour lines. The tick marks on theyith the time-dependent distribution functions. The value of
contour lines point in the “down-hill” direction. x for our parameters is between aésl (initially) and
1.8a5* att=160 fs. Because of the nonzero build-up time of

lently. densitv-of Sdiff b he h d static screening this is likely to overestimate the screening.
ently, density-o -statgsdi erence petween the heavy- and rpqrefore we investigate also the relaxation in the limit of a
the light-hole band, the location of the distribution maxmumweak'y screened potential, where we chose a constant

depends on the direction &f (peak ink, direction from . —04a . This is, of course, an arbitrary choice, but it is
heavy-hole contribution, peak ky, direction from light-hole  stjj| reasonable to believe that the results for the weakly
contribution; (iii) also due to the mass difference, the heightscreening potential are more realistic than those obtained
of the maximum distribution is anisotropic. with the self-consistenk(t).

If, instead of a quasiphenomenological initial condition \ye begin the discussion of the time evolution of the dis-
we would fully simulate the optical excitation process, Weyripution function on the basis of the two-time Kadanoff-
should still expect these three qualitative features. The quarsaym equations with a weakly screened potential. Figures 4
titative details might, of course, differ from our model. Also 54 5 show that the fastest process is the relaxation toward a
different from our model would be the fact that during the qyasi-isotropic distribution, i.e., a distribution in which the
optical excitation charge-carrier correlations build up. Ourgitferent peak heights in the, andk, direction, respectively,
model of vanishing initial correlations is likely to underesti- 5re evened out, but the oval sh;pe of the distribution still

mate the speed of initial scattering processes since in a thegesists(Fig. 4). It is followed by the relaxation toward a
retical model containing memory effects the time derivative

f is zero att=t,. This point is discussed in more detail in
Ref. 15. ’ | 05,0k at t=40fs

excitation high in the bandji) due to the maséor, equiva-

We will present two different sets of results: one for a
o~ 4T ]
f(k,,0,k,) (hh—contribution) ‘=
6 i T T T T & 21 ]
al [}
T 2 o ]
< L
s 0r vy
.E _4_ . 4
B -2f
\-: 75 -6 ! L ) . !
4 ] -6 -4 -2 0 2 4 6
_6 L k, (units of ag™")
-6 -4 -2 0 2 4 6
k, (units of ag™") FIG. 4. Relaxation of electron distributigisum of hhtlh con-

tributions calculated with the two-time Kadanoff-Baym equations
FIG. 2. The contribution to Fig. 1 from the heavy-h@hd) band  with a strong interaction potentiakE 0.4ag 1. The other param-
excitation. eters are given in the text. The time is 40 fs.
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f(k,,0,k,) at t=120fs

o f(k,,0,k,) at t=40fs
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FIG. 7. Relaxation of electron distributidgum of hh+lh con-
tributionsg calculated with the anisotropic single time Boltzmann
equation with a strong interaction potential=¢ 0.4ag 1. The time
completely monotonically decreasing function in all direc-is 40 fs.
tions which, however, is still not spherically isotrogi€ig.

5). During the final and third stage, the oval and monotonictative difference regarding the speed of the relaxation, we
distribution will eventually become a spherically isotropic have not found any strong and qualitative memory effects.
and monotonic quasiequilibrium function. This function will This, again, agrees with our findings for the isotropic
be essentially a Fermi function, except for the minor modi-relaxationt® where qualitative memory effects were obtained
fications due to charge-carrier correlations built up duringonly within the so-called “free generalized Kadanoff-Baym
the relaxation process. ansatz,” an approximation which completely neglects damp-

To compare these results with the case of a stronglyng effects. Figure 8 also shows that the relaxation tends
screened Coulomb potential, in which the relaxation rates arideed towards a spherical isotropic final distribution. As for
likely to be underestimated, we show in Fig. 6 the distribu-the fast initial relaxation dynamics illustrated in Fig. 7, we
tion att=120 fs. As expected, the relaxation is now muchsee that the nonequilibrium peak of the hh contribution has
slower, but other than that no qualitative differences appeabroadened more than that of the Ih contribution which, in the
(instead of proving this statement by showing more contoufigure, leads to an almost circular shape of the inner circle
plots, we will come back to this point in the discussion of therepresenting the low-momentum boundary of the nonequilib-
quadrupole moments belgw rium distribution. The faster hh relaxation can be attributed

One of the goals of this investigation is the identificationto the larger density of the hh contribution. Although the
of memory effects. To this end we have solved the convenmaximun occupation is higher, by a factor 4/3, for the l|h
tional Boltzmann equation. In Figs. 7 and 8 we see that coneontribution than for the hh contributigsee Eq.(1)], the
ventional Boltzmann relaxation is faster than the one cominitial hh-contribution density contains more charge carriers.
puted with the full two-time formalisnicompare Figs. 4 and This is due to the larger joint density-of-states of the hh-to-
5). The main reason is, similar to the case of isotropic relaxconduction-band transition compared to that of the light
ation, the presence of initial nonzero relaxation rates antholes. Since, within our model, the joint density-of-states is
conservation of kinetic energy in the conventional Boltz-proportional tomféﬁya (wherea=hh,Ih and the inverse re-
mann equation. These differences are most pronounced gticed mass ismr*eéa:me*hr mgl), the density of the hh
early times(see the results for 40)fsOther than the quanti- contribution is larger, by a factor of 1.79, compared to that of

the light holes. Of course, there is no strict separation in

FIG. 5. Same as Fig. 4, but for time=120 fs.

f(k_,0,k,) at t=120fs terms of scattering within the hh contribution versus scatter-
x? g —_
~ 4} ] f(k,0,k,) at t=120fs
'ﬁm . 6
‘ls 2 I 7 ‘I:\ 4+
@ Or ] f 2t :
o— o
E —Rr ) s or 1
~N 'E
-M _4 L n 3 _2 L
] < 4
-6 -4 -2 0 2 4 6 -6 \ . . . .
k, (units of az™") -6 -4 -2 0 2 4 6

k, (units of ag™")
FIG. 6. Same as Fig. 5, but calculated with a weak interaction
potential[self-consisteni(t)]. FIG. 8. Same as Fig. 7, but for time=120 fs.
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FIG. 9. Logarithm of the quadrupole momefi(t) (solid
curves and distribution difference at zero momentusf(0,t)
(dash-dotted curvedor the case of the strong interaction potential.
The distribution difference is defined & (0t)=f(0t)—f(0,0).
Shown are results computed with the two-time Kadanoff-Baym
equationgupper solid and upper dash-dotted cyraad the single-
time Boltzmann equation(lower solid and lower dash-dotted
curve.

FIG. 10. Same as Fig. 9, but for the weak interaction potential.

One can also compare the results shown so far with data
obtained within a fully isotropic model. To this end we use
the angle-averaged initial distribution

1(k,0)=[ An(K) + Ap(K)1/3. ®

We have solved the corresponding fully isotropic Boltzmann
ing within the Ih contribution, but to the extent that small- equation forK:o_4a§1 (strong potentialin order to com-
momentum transfer scattering processes dominate the relagare this case with the anisotropic case shown in Figs. 7 and
ation this concept is applicable at least in an approximat® and Fig. 9. The distribution for the fully isotropic case is
way. shown in Fig. 11. The comparison shows that, if one is only

For the case of the weak interaction potential, the relaxinterested in the overall relaxation speed and not in the de-
ation process without memory is similar to that with memorytails of the anisotropic character of the distribution, the iso-
and, therefore, leads to a similar contour ploot shown.  tropic calculation is sufficient because it yields very good
The absence of any clear memory effects in this case is n@igreement with the relaxation time found in the anisotropic
unexpected, because we found this in our earlier study ofase. The temporal behavior of the logarithm of the distribu-
isotropic relaxatiort? tion atk=0 is almost identical to the corresponding result of

Although we do not believe it to be very likely, we pres- Fig. 9
ently cannot rule out that the full inclusion of nonequilibrium  Ajthough there exist experimental investigations of mo-
plasmon and screening dynamft¥** would yield more  mentum orientation relaxation in GaAs, we believe that the
pronounced memory effects in the orientation relaxation progetails of the three-stage process of electron relaxation dis-
cess. cussed above has not been observed. The pioneering experi-

To further analyze the relaxation processes and, in pafment of Oudaret al! was performed at a time when tempo-
ticular, to address the question whether the loss of anisotropy
or the loss of nonmonotonicity is faster, we present in Figs. 9

and 10 the quadrupole moment of the distribution and the 10 0 f
distribution atk=0 in logarithmic form as a function of - t;4()sfs
time. The quadrupole moment is defined as Z — =120 fs

o

[

H

- D - N
Q=2 Y3(8,4)F (K1), Y =l R
‘ N

= e

%

Y a
WhereYS is the spherical harmonid, is the polar angle, and = . “
¢ is the azimuth angle df. Contrary to our earlier expecta- "'a.'::\
tion, the numerical results show that the loss of anisotropy is 0.0 " 5 3 7 s 6
slower than what is sometimes called “energy relaxation,” 1
i.e., the scattering process in which the individual carriers wavenumber k ag

(but not the total charge carrier systeahange their kinetic

energy. To extract an exponential decay rate from these fig- FIG. 11. Distribution function at various times for the fully iso-
ures one has to read off the time at which the logarithmropic case calculated with the single-time Boltzmann equation with
drops to—1. the strong interaction potential.
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ral resolution of ultrashort pulses was still in the 100 fsoptically created non-equilibrium electron plasmas in GaAs.
regime. Portellaet al” were able to use 9 fs pulses, but did We have found that the anisotropy decays slower than the
not discuss the relative speed of orientation vs one-particlaon-monotonicity. The details depend on the exact form of
energy relaxation. It should also be noted that the measuragle interaction potential. Furthermore, we have found
optically induced dichroism and birefringence is a compli-memory effects to be appreciable only in the case of a strong
cated function of the two theoretically observed anisotropyj.e., weakly screen@gotential.

aspects, namely the anisotropic peak height and the oval Note addedA related study of carrier-carrier scattering in
shape, respectively, and also depends on how the nonmongemiconductors utilizing the two-time formalism for isotro-

tonicity affects the measurement of the anisotropy. A fullpic distributions has been published by W. endJ. Opt.
microscopic theory for the specific experimental measuregoc, Am. B13, 1291(1996)].

ment process would be needed to identify these aspects in
the measured signal. This applies in particular to the issue of
memory effects, which, within the isotropic static screening
approximation, and based on a fully self-consistent relax-
ation approach with damping, we have found to be only of This work is supported by grants from JSOP, NSF,
guantitative rather than qualitative nature. COEDIP (University of Arizong, DFG (Germany, DAAD

In summary, we have discussed various aspects ofGermany, and grants for CPU time at CCIT, University of
electron-electron scattering induced relaxation processes rizona, and HLRZ Jlich (Germany.
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