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In his Comment, Ref. 1, Nieves gives a useful summary 
of analytic properties of the dielectric function (DF), cf. Eqs. 
(2)-(5). These properties are valid also for generalized sus­
ceptibilities. In the case of anisotropic media, the quantities 
Ed and Ea , cf. Eq. (1) of Ref. 1, have to be replaced by the 
Hermitian !i and anti-Hermitian I' parts of the dielectric 
tensor, respectively. In Ref. 2 it was proved, that a quantum 
plasma with isotropic momentum distribution cannot have 
unstable longitudinal plasmon modes, just as its classical 
counterpart. This was shown by proving that the imaginary 
part of the analytic continuation of the dielectric function 
[i.e., v(x,y) in Ref. 1] is always positive in the upper fre­
quency half-plane. In his Comment, Nieves demonstrates 
that for this to be true, it is sufficient, that the imaginary part 
of the DF €a is always positive on the real frequency axis, for 
w>O. This brings us back to the well-known general state­
ment: if Ea(w,k»O, for Im w=O, Re w>O, then there are no 
longitudinal plasma instabilities possible. Indeed, the energy 
W exchanged between the oscillation and the plasma is pro­
portional to €a (or e4

). In particular, in eqUilibrium Ea>D 
always (we consider in the following only positive frequen­
cies), corresponding to dissipation of wave energy in the 
plasma. 

However, for a plasma in nonequilibrium, e.g., in the 
presence of particle beams, the imaginary part of the DF, of 
course, can be negative. This essentially depends on the dis­
tribution function of the carriers. For instance, distribution 
functions with a second maximum permit plasma instabilities 
(e.g., bump-on-tail instability). The simplified explanation in 
terms of resonant particle-wave interaction is the following: 
A plasma wave with the phase velocity v ph on the in~reasing 
part of the distribution [df( v ph)ldv >0] will meet more par­
ticles with v> v ph than slower ones. Hence, the wave will 
gain energy and be amplified.3 In view of this standard ex­
planation, the general stability of any spherically symmetric 
distribution of a quantum plasma (within the random phase 
approximation, RPA),2 must sound rather surprising. An ex­
tension of these stability investigations is indeed desirable. 
Generalizations are necessary in three directions: 

(1) Better approximations in the interaction or density, that 
go beyond the RPA; 

(2) lower symmetries (no isotropy) of the momentum distri­
bution; 

(3) reduced dimensionality of the plasma, e.g., two­
dimensional (2-D) or one-dimensional (I-D) quantum 
plasmas. 

In particular the last point is currently of high interes~ for 
quantum plasmas in solids. Therefore, it deserves a remark. 

Influence of the dimensionality on instabilities in quan­
tum plasmas. Consider a wave with frequency n and wave 
number ko. Electrons interacting with the wave will change 
their momentum ko. The net energy balance of the wave is 
then determined by the difference ofthe number f1N of elec­
trons emitting a plasmon minus those that absorb a plasmon, 

AN(n,ko)-f dq o( :~ -q cos 8 ){f( q+ ~o) 

(1) 

The terms in brackets give the probability of scattering an 
electron out of state q + koI2 into state q - kof2 and vice 
versa. Obviously, the Pauli blocking terms cancel. This for­
mula corresponds to the level of the random phase approxi­
mation. The delta function takes into account only resonant 
interactions, i.e., those involving electrons with v cos 8=Vph' 

with 8 being the angle between ko and q, (n= 1). Notice that 
f1N is related to the imaginary part of the DF by 
f1N - - 1m E. (One immediately sees that the resonance of the 
velocities is, up to a factor q, equivalent to energy conserva­
tion Eq+kol2-Eq-kol2=n, with E k=k2I2m.) 

In the following we will assume f(q)=f(q), but other­
wise consider arbitrary nonequilibrium distribution func­
tions. 

(i) In the case of quasi-l-D electron gas (organic chains, 
quantum wires, etc.) or homogeneous three-dimensional 
(3-D) plasmas (homogeneity in the plane perpendicular to 
ko), Eq. (1) yields 

(2) 

In the long wavelength limit (ko-+O) we recover the well­
known result for classical plasmas. 

(ii) In a quasi-2-D plasma (electrons on liquid helium, 
thin films, quantum wells, etc.), the vectors ko and q lie in 
one plane. Carrying out in Eq. (1) the integration over 8 from 
- 71"/2 to 71"/2, one finds 

(3) 

with f ± = fe ~q2+k~::!:mn) and qo=mHlko. 
(iii) For 3-D plasmas, i.e., the situation considered in 

Ref. 2, the angle integrations in Eq. (1) can be carried out 
again: 
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LlN3D( n ,1<0) - foo dq qU + - f _]. 
qo 

(4) 

One sees that phase space effects change the situation 
drastically. With increasing dimensionality d the number of 
nonequilibrium carriers increases with the dth power. How­
ever, the fraction of fast carriers that is able to transfer its 
energy resonantly to the wave, drops even stronger. In 3D, 
the phase space factor mUltiplying the difference f + - f _ is a 
growing function of q, whereas in 2D, it decreases mono­
tonically. Thus, one readily sees that LlN3D is negative for 
arbitrary distribution functions. Waves are always damped. 
The situation in 2D and ID is qualitatively different. Here, 
nonequilibrium distributions can lead to positive LlN and, 
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therefore to negative 1m E. Waves with vph-vO and 
ko<mLlv, with Vo and Llv being, respectively, the center of 
the increasing part of the distribution and the widths of its 
minimum, may become unstable. 
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31n fact, for an instability to occur, the minimum has to be of sufficient 
depth. given, e.g .. by the Penrose criterion. 
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