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An analysis of collective longitudinal electrostatic plasma excitations in quasi-one-dimensional degen-
erate plasmas is presented using the dielectric function in the random phase approximation. Analytical
continuation of the dielectric function into the lower energy half plane allows us to compute the com-
plete spectrum of the collective excitations, including frequencies and damping or growth rates. In con-
trast to two- and three-dimensional plasmas, a multicomponent quasi-one-dimensional system at zero
temperature is found to exhibit one undamped plasmon mode for each component. The conditions for
the occurrence of unstable modes are investigated and the influence of temperature and collisions on the

results is discussed.
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I. INTRODUCTION

The experimental and theoretical study of nonideal
plasmas is an area of substantial current interest [1]. De-
viations from the ideal behavior dominate the plasma
properties in a certain region of the density-temperature
plane [2,3] (the so-called corner of correlations). Situa-
tions where strong correlations are present (i.e., where
the Coulomb interaction between the carriers is not small
compared to their kinetic energy) are encountered for low
temperatures and/or high pressures. These conditions
can be realized in freezing experiments on ionized gases,
in astrophysical objects (e.g., inner layers of the giant
planets), or ion-beam and laser compression experiments.
Here, many-particle effects, such as degeneracy, screen-
ing, self-energy, bound states, lowering of ionization ener-
gy, and Pauli blocking have to be taken into account.
The consequences of this include changes in both the
thermodynamic and, more importantly, the nonequilibri-
um (transport) properties [4].

Collective excitations, which are another type of
many-body behavior exhibited by plasmas, are of particu-
lar importance in nonequilibrium situations, because they
can lead to instabilities and turbulence. Since the
pioneering work of Vlasov and Landau [5-7] the ques-
tions of plasmons and instabilities have been extensively
studied [8—11]. The Vlasov dielectric function is the ap-
propriate starting point for an analysis of high-
temperature gaseous plasmas as well as for low density
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plasmas (like in the atmosphere of the earth). It can also
be used to study long wavelength excitations in solid-
state plasmas. However, analyzing plasma instabilities
using the Vlasov dielectric function restricts one to al-
most ideal and nondegenerate plasmas.

Traditionally, plasmons in degenerate charged-particle
systems have been investigated only rarely in plasma
physics ([12,13] and also [2], and references therein).
After the pioneering work of Bohm, Pines, and Schrieffer
[14,15] collective excitations in quantum plasmas have
been primarily the subject of solid-state physics. Howev-
er, most of these studies focused on the equilibrium situa-
tion. Only a considerably smaller number of papers has
been devoted to nonequilibrium properties of quantum
plasmas, focusing mainly on the problem of negative
resistance [16]. Investigations of plasmon dispersions in
nonequilibrium degenerate two-dimensional (2D) and 3D
plasmas have been carried out recently [17]. In a number
of papers Bakshi, Kempa, and co-workers systematically
investigated the possibility of current-driven instabilities
in a variety of layered solid-state systems (e.g., [18,19]).
In a previous publication [20] we reported on the
plasmon excitations in equilibrium and nonequilibrium
quasi-1D quantum systems including the possibility of a
carrier-acoustic instability, which was predicted also in
[21] and further investigated in [19]. A 1D model is
reasonable for quantum wires, narrow metal wires, and
some types of conducting organic chains ([22-24], for re-
views see, e.g., [25]). Moreover, many situations in plas-
ma physics (e.g., homogeneous 3D plasmas) can be de-
scribed by 1D models (after integrating the distribution
function over the momentum components perpendicular
to the excitation). In the rapidly growing field of
electron-hole plasmas in semiconductor quantum wires,
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low-temperature equilibrium plasmon spectra have been
intensively investigated experimentally [26—28] and
theoretically [29-33].

In the present paper we present more details of the pre-
vious calculations [20] and extend them to more general
nonequilibrium situations. In order to point out the par-
ticular properties of collective excitations in quantum
systems we compare our results to those for classical sys-
tems. Therefore we first summarize a few relevant results
of the theory of Vlasov and Landau concerning longitudi-
nal plasma oscillations in unmagnetized plasmas and dis-
cuss the theory’s limitations (Sec. II). In the third section
we derive the plasmon dispersion relation for 1D quan-
tum plasmas by analytically continuing the retarded
dielectric function (DF) within the random-phase approx-
imation (RPA). We then calculate the plasmon disper-
sion for one- and two-component plasmas in equilibrium
(Secs. IV and V, respectively), and for several nonequili-
brium situations (Sec. VI). Finally we discuss the limita-
tions of the RPA polarization (Sec. VII). By studying the
influence of collisions on the plasmon spectrum within
the Mermin approximation [34] we show that these
effects are small in 1D. In order to check the validity of
our analytic results we solve the nonlinear collisionless
Boltzmann equation (Hartree equation) numerically. We
show that for small amplitude plasma oscillations the
RPA results agree very well with the solutions of the
nonlinear kinetic equation.

II. VLASOV-LANDAU THEORY
OF LONGITUDINAL ELECTROSTATIC
PLASMA OSCILLATIONS

The longitudinal electrostatic plasmon spectrum is de-
rived from the Vlasov equation [6] which yields, after
linearization, the following complex DF of a 1D plasma:

a ® dav)/dv

qv —(w—iy) "’
where the index a denotes the charged-particle species. @
and y denote, respectively, the real part and the negative
of the imaginary part of the frequency (@=w—iy). We
used the normalization 2 f fa(w)dv=1. o, is the plasma
frequency, cf. Eq. (3). The DF can also be written in the
form

€w,7,9)=1—-3 V,(g)ll,(o,7,9) . 2)

e(a),'y,q)=l—

Here, Va(q)=w[2,ama /q*n, is the Fourier transform of
the Coulomb potential. II,(w,y,q) is the polarization
function [essentially the integral in Eq. (1)].

The plasmon dispersion follows from the condition
€(w,y,9)=0. An important advantage of the Vlasov
dispersion is that one may treat a many-component plas-
ma like an effective one-component system. The sum
over the integrals in Eq. (1) can be reduced to one in-
tegral by introducing an effective (velocity dependent)
distribution function F(u) with a new plasma frequency

@y,
2F(u)=2w12,,,f,,(u) , wf,a=41re2na/ma . (3)
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As we shall see below this is not possible for degenerate
plasmas.

In order to highlight the main differences between the
Vlasov and RPA dispersion we calculate the 1D Vlasov
DF at T=0 K. To be as general as possible it is useful to
consider the one-dimensional model distribution function
[10]

=3 A4,;6(u,,—u)O(u—uy;) 4)
for #>0 and for u<0, F(—u)=F(u). Here,
0=u,; <u,; and O denotes the Heaviside step function.
We will consider the cases of (i) a one-component equilib-
rium plasma, (ii) a two-component equilibrium plasma,
and (iii) a one-component nonequilibrium plasma. Distri-
bution function (4) has the advantage that it can well ap-
proximate real distributions and at the same time allows
us to find the plasmon spectrum analytically. For the po-
larization function, the integral in Eq. (1), we obtain

2nq? 2uy, 2uy,
Rell(g,0)=—""— A; — ,
9 m ; o*—q*ul  o*—q*ui;
(5)
ImIl(g,0)= 2" 8(0—quy)] .

2 A;[do—qu,;)—

(6)

(i) For a one-component plasma at T=0 K we set i =1,
u;=0, u,=uy (Fermi velocity), and 4 =1/4uy. In this
case Re(e) as a function of w has only one zero (at posi-
tive frequencies)

=\/a),2,+q2u§ ) (7

Since at this frequency Im(e) also vanishes, (q) is an ex-
act zero of the complex Vlasov dispersion relation. It
corresponds to the optical plasmon of a one-component
equilibrium quantum plasma which is undamped at 7=0
K (Fig. 2).

(ii) For an electron-ion plasma at T=0 K we set i =2
and consider equal Fermi momenta yielding for the ve-
locities u;,=u,; =0, u,, =u,;/a=ur, where a denotes
the mass ratio m,/m;,,. There are now two undamped
plasmons, given by

2 2,2
wpe +q Up

2 =
Q1 ,(q) 2

1 P —
i—z\/w;e-%—q“u}'
+2 1202, +V 0 +

4 (’)pe— w q uF

4 4.4 2,,2. 2
@, —q ur—4q° urw
+ 2 q__f__q_F | 10(a?) . )
V oh +qtuf

Since Im(€)=0 at these frequencies, {1 ,(q) are the well-
known optical (+) and acoustic (—) plasmons of a two-
component plasma. It is interesting to note that the un-
damping of the acoustic plasmon at zero temperature
holds beyond the limits of the Vlasov theory.

(iii) The simplest model for a nonequilibrium distribu-
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tion function is to set i =2, u; =0, 4, =ug, uy; =uj, and
Uy =Uy, Uup<uy3<u, in (4). This corresponds to none-
quilibrium charge carriers with a background of equilib-
rium carriers at 7=0 K. More realistic functions with
smooth carrier distributions will be considered in Sec. VI.
Avoiding here the lengthy analytic results for the
plasmon dispersion, we mention only that there are three
modes. The high frequency mode is undamped and cor-
responds again to the optical plasmon (mainly due to the
nonequilibrium carriers). In addition, there are two com-
plex conjugate solutions, corresponding to one damped
(y > 0) and one growing (y <0) mode.

Summarizing the dispersion results for distributions of
the type (4), we find that the number of plasmon modes
equals the number of boxes in the distribution function
(including those at negative velocities). The modes are ei-
ther exactly undamped or complex conjugate pairs. The
real part of € as a function of w has zeros only at the
plasmon modes. Due to the 8 function shape of the imag-
inary part of € the Vlasov theory yields no continua of
pair excitations. These continua simply shrink to
straight lines w;;(q)=qu;;, along which also the real part
of € diverges, jumping from plus to minus infinity.
Hence, even in the long wavelength limit all quantum
properties of the plasma are lost.

Generalized plasmon pole approximations for 1D plasmas
Besides the DF itself, we consider the spectral function
®(q,0)=—Im[1/e(g,»)] 9)

(cf. Sec. III), which is important because it can be mea-
sured, for example, in inelastic polarized light scattering
(Raman scattering) experiments (see, e.g., Ref. [35] for
3D systems, [36] for 2D quantum wells, and Ref. [27] for
quantum wires). Calculating the spectral function for the
systems under consideration first for finite temperatures
and then for T—0 we find 8 peaks at the positions of the
plasmons. This implies that the Vlasov polarization (5)
and (6) for the distribution functions (4) naturally gen-
erates plasmon pole approximations (cf. [2]). These are
quite general, since we do not have to restrict the
Coulomb potential to the 3D form (see Sec. III). For a
one-component plasma, Eq. (5) can be written as a
single-pole approximation,

q*V(gq)n/m
0*— Qg +q*Vign/m ’

elg,w)=1— (10)

where (q) is given by (7). This formula can be applied
to quantum wires also if the corresponding Coulomb po-
tential and plasmon dispersion €(q) are used. Substitut-
ing V(q)—»wlz,m /nq? we get the result for 1D plasmas
without quantum confinement.

The generalization to an s component plasma
(s=2,3,...)is straightforward.

III. DISPERSION RELATION
FOR DEGENERATE PLASMAS

For the statistical description of collective excitations
in quantum plasmas we have to use a quantum mechani-
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cal kinetic equation. The generalization of the Vlasov
equation leads to the Hartree equation (collisionless
Boltzmann equation) [37]. Linearizing this equation
yields the RPA of the dielectric function which was given
above by Eq. (2).

In the quantum case II, is the Lindhard polarization
function [38] which in 1D is

_ dk S k)= f,(k+q)
II"(“”7"")_?‘fc 27 E,(k)—E,(k +q@)+(w—iy)+ib ’
(11

where § is an infinitesimal small positive number. Here
the normalization condition is 2 [ (dk/2m)f,(k)=n,
where n is the average 1D density, and
E,(q)=#*q*/2m,. V(q) again is the matrix element of
the Coulomb potential which depends on properties like
band structure, dimensionality, and, in particular, on pos-
sible confinement effects. For example, in the case of
quantum wires, where the carrier movement is confined
to one direction, the Coulomb potential can be approxi-
mated by ¥V (q)=2eK(qd) /€, [22,29]. Here K, denotes
the Bessel function of second kind, €, is the background
dielectric constant of the semiconductor material, and d
is the width in the case of a plane wire. This Coulomb
potential corresponds to the real space potential
V(x)=e%/€,(x2+d?)~1/2 [39]. To model a system of in-
teracting quantum wires as well as for plasmas without
quantum confinement one can use the 3D Coulomb po-
tential ¥ (q)=4me?/q%

Considering the Lindhard polarization (11), one can
easily see that it reduces to the Vlasov polarization, (1), if
q goes to zero, i.e., in the long wavelength limit. The
Vlasov approach is not applicable if the wave vector is of
the order of the characteristic width of the unperturbed
distribution function (e.g., the Fermi momentum in low-
temperature equilibrium plasmas). However, as we will
show, even for small wave numbers the Vlasov theory
yields only the “classical” properties of the plasma.
Quantum effects, in particular the existence of a pair con-
tinuum and its properties, cannot be described by this ap-
proximation. Therefore a detailed investigation of the
RPA dispersion relation is necessary. Generally, this is
more difficult than the analysis of nondegenerate plasmas.
First, because the derivative [in the numerator of Eq.
(11)] is replaced by the difference of distribution func-
tions, the integral becomes explicitly wave vector depen-
dent. Therefore a multicomponent plasma cannot be re-
duced to a single-component one. Second, there are no
such general and simple instability conditions such as, for
example, the Penrose criterion [40].

An approximate solution of the RPA dispersion rela-
tion is possible if the damping [Im(e)] is small. Then one
can obtain the plasmon spectrum from Re(e)=0 only
[Im(w)=0]. This is, however justified only at low tem-
peratures, and may, moreover, lead to wrong results for
the damping rates. The correct procedure is to carry out
the analytic continuation of the retarded DF into the
lower energy half plane. Therefore we calculate the in-
tegral in (11) according to Landau’s prescription [7]. The
result for the polarization function of a quasi-one-
dimensional degenerate plasma is
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fw falk+q)—f (k) k—p, ] .
(k—p, P+8] 7
filk+q) fa(k
_ma _pa
Relllor @)= o Utk +q)—fo(b ]k —p; ] (12
7 ak
— o (k —p, )2+82
—27Im[f,(p, —i8,)— f.(ps —i8,)], 7>0
[falk +q)—fo(k
-8, dk <0
UL —pe )2+52 4
ma
Imll (0,7,9)= p— [ folpa —f,, pa )], v=0 (13)
w falk+q)—f,(k)] = ) _ .
-3, f k—p 7t +27Relf,(p —i8,)—F.(ps —i8,)], y>0

where we use p;-
bution function into the lower half plane [41].

=(m,/q)w*+E,(q)] and §,=ym, /q. f, denotes the analytic continuation of the unperturbed distri-

IV. PLASMONS IN ONE-COMPONENT EQUILIBRIUM PLASMAS

Let us consider first the case T=0 K. With the distribution function

fk)y=O(kp—|k|)

(14)

the Landau integration in (12) and (13) can be carried out analytically. For the analytical continuation of (14) we use

)= lim Fy(k) ,

arctan —arctan

1

(15)

For complex k, the arctan is a complex function. However, the imaginary part vanishes if A goes to zero and we can
therefore drop it. The exact result for the real part of the equilibrium polarization function is

m . 0*—wyg)?P+2y e’ +o,y(g)?]+y*

Ry, 0) = g ™ (o — o @P Pt 2y (ot (@ P 1 7 e
Fs(p™)—Fs(p™), y<0
ImH(w,y,q)=% Falpt)—F,lp7), y=0 (17)
Fs(p™)—Fs(p " )+2Re[Fy(pt—i8)—F,(p~—i8)], y>0
r
where we  have  used =(m/q)[wotE(q)], Peierls instability [45]. For nonzero y all singularities

wy,(q)=gkp/m+tE(q), 8=ym/q, and the limit A—0
has to be taken. The A—0 terms arise from the residia of
the polarization function’s denominator (11). This
guarantees that ImII will be continuous when it crosses
the real frequency axis (notice F_,=—F,).

Using Egs. (16) and (17) we can now simultaneously
solve the equations Re(€)=0 and Im(e)=0 for the
plasmon dispersion Q(q) and damping I'(gq). We will
summarize the main results. First we find that Re(€) has
singularities on the real frequency axis at the values
w,(q)=|w, 5(q)|, which are the boundaries of the pair
continuum. These lines include, for example, the @ =0
divergencies at ¢ =0 and 2k, which are related to the

disappear, showing that plasmons are either damped or
have a frequency different from w,. This can be seen in
Fig. 1(a), where the zeros of the real part and the imagi-
nary part of the DF in the complex frequency plane are
shown. In our approach, collective plasma excitations
are given by the crossing points of these lines. We see
that the one-component equilibrium plasma has at zero
temperature two clearly separated plasmons existing for
all values of q. For a quantum confined plasma in a quan-
tum wire both plasmon modes start at zero frequency
[Figs. 1(c) and 1(d)]. In a 1D plasma without quantum
confinement (3D Coulomb potential) the high frequency
(optical) plasmon starts at the plasma frequency [line a in
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Fig. 1(c)]. At zero temperature the (optical) plasmon is
undamped, whereas the acoustic plasmon follows the
upper edge of the continuum Q,.(q) = w,(q) and is always
damped. An important peculiarity of one-dimensional
systems is the undamping region (ImII=0) which is en-
closed by the line w,(q) and the momentum axis [Fig.
1(b)] which occurs in 2D or 3D only in nonequilibrium.
From the DF we can now calculate the spectral func-
tion (9). It has a 8 shaped peak at the frequency of the
optical plasmon and a broader peak in the pair continu-
um with the maximum at the low frequency zero of Re(e),
(Imw=0), cf. Fig. 3(a). Inelastic polarized light scatter-
ing experiments on quantum wire structures by Gofii
et al. [27] have reproduced this result rather well. Their
explanation of this continuum peak as “predominantly
single-particle excitation” is based on similar Raman
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scattering results for 3D [35] and 2D [36]. For these sys-
tems this low frequency peak is usually assigned to
single-particle excitations. Our results show that in the
alternative description which uses the analytically contin-
ued DF this peak manifests itself in a zero of the DF with
finite damping (even at 7=0 K). Thus in the density
response of the plasma both zeros of the DF lead to mac-
roscopic oscillations with their respectively frequency.
There is no qualitative difference between them, they are
distinguished only by the value of their damping [47].
However, for elevated temperatures or with carrier
scattering taken into account, the damping rates become
comparable (see below).

Let us now turn to equilibrium plasmas at finite tem-
perature. The distribution function is the Fermi-Dirac
function f(k)=1/{exp[B(k?/2m —p)]+1}, with B and
pu=u(n,B) denoting the inverse temperature and the
chemical potential, respectively. Due to the smooth edge
of the Fermi function there is no undamping region at
finite temperature, and the optical plasmon becomes
damped as well. In Fig. 1(a) the zeros of the real and
imaginary parts of the dielectric function are shown for
T'=100 K. There are essential changes compared with
the T=0 K result, showing up as additional zeros of
Im(e) and Re(e) which, however, lie at higher damping
rates. The reason is the complicated pole structure of the
analytic continuation of the Fermi function [41]. These
poles are located at the Matsubara frequencies. In their
vicinity they perturb the surface of the polarization func-
tion in the complex frequency plane. While these distur-
bances vanish at zero temperature, for increasing T the
poles depart from the real frequency axis and their
influence grows. The effect of temperature on the
plasmon dispersion is shown in Fig. 2, where the two
complex zeros of the DF, corresponding to the T=0 K
result, are shown for different temperatures. With in-
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FIG. 1. Collective excitations of an electron plasma in equi-
librium (GaAs: €,=12.7, az =135 A, Er=4.2 meV). (a) Zeros
of the analytic continuation of the retarded RPA dielectric
function (DF) for k=1/ap. Plasmons (marked by thick dots)
correspond to the crossing of the lines Re(€)=0 (R1 for T=0
K and R2 for T=100 K, respectively) and Im(e)=0 (I1 and I2
for T=0 and 100 K, respectively). (b) Pair continuum and un-
damping  regions  (“0”) (y=0 and T=0 K),
©,,=q/2m(2kptq). (c) Plasmon dispersion at T=0 K,
n=10° cm™'. The optical mode is shown for the 3D Coulomb
potential (a) and the case of a quantum wire (b) of thickness
d=2/3ap, respectively. c is the acoustic mode (both cases), d
and e are extrapolations from the Vlasov DF. (d) Damping rate
of the acoustic plasmon for the 3D Coulomb potential and the
quantum wire potential (QW).
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FIG. 2. Plasmons in the quantum wire of Fig. 1 at T=10 K
(full line), T=100 K (long-dashed line), and T=300 K (short-
dashed line). (a) Plasmon dispersion, (b) damping rates.
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FIG. 3. Real (1) and imaginary (2) part of the DF, and spec-
tral function (3) for an electron plasma at 7=0 K (a) and
T=100 K (b), corresponding to the quantum wire in Fig. 1.
y=0,k=1/ag,n =10°cm™ .

creasing temperature the frequencies of all plasmons shift
upwards. This is due to the fact that plasma oscillations
are now excited in a medium of faster moving particles.
This leads to an increase of the screening length . Simi-
lar results have been found in 2D and 3D plasmas, which
can be seen, e.g., from the small g limit. There one can
write for the frequency of the optical plasmon
Qz(q)=a)‘2,[1+a(q,n,T)], with  a’P=¢%3, and
a2D=qr2D, e.g., [3]. However, there is an even stronger
increase of the Landau damping of the oscillations.

Notice that, as in 3D, there exists a critical momentum
q..(T), beyond which Re(e) no longer has zeros at y =0
[Fig. 3(b)]. Nevertheless, there are still complex zeros of
the dielectric function at positive y [see Fig. 1(a)], which
can be resolved in the spectral function. Their associa-
tion with resonances [2] or with damped collective excita-
tions is a question of interpretation.

V. PLASMONS IN TWO-COMPONENT
EQUILIBRIUM PLASMAS

We now consider the case of two species of charge car-
riers, electrons (e) and positive charges (p: holes, protons,
or positively charged ions). Electroneutrality is assumed,
therefore, in the case of single charged ions, the densities
are equal, n,=n,. Let us again start with the case T=0
K. The distribution function for both species is given by
(14) where we choose the same values for the Fermi mo-
menta. The result for the polarization function is Eqgs.
(16) and (17). The only difference is that the mass m has
to be replaced by m, or m,. Correspondingly, the DF is
given by Eq. (2). Figure 4 shows the overlapping pair
continua for the case of an electron-hole plasma. Consid-
ering the plasmons, one finds that at 7=0 K both com-
ponents behave nearly independently, each component
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FIG. 4. Same as Fig. 1(b), but for a two-component plasma at
T=0 K. Indexes e and p correspond to electrons and positive
carriers, respectively.

exhibiting two plasmons. Compared with the single-
component case we observe a minor increase (decrease) of
the frequency of the optical plasmon as well as slightly
stronger (weaker) damping of the acoustical one for the
lighter (heavier) species. The unexpected result is that
even the heavy component has an undamped plasmon
[46] which is due to the overlap of the undamping regions
of both components. (In the case of the Vlasov dispersion
this was not surprising due to the vanishing of the pair
continuum.) Only for momenta between
2kp(m,—m,)/(m,+m,) and 2kp(m,+m,)/(m,—m,),
where both continua overlap, are there no collective exci-
tations of the heavy species. For ionized gases where the
positive carriers are at least three orders of magnitude
heavier than the electrons this overlap region is negligibly
small. However, if the mass of the positive carriers ap-
proaches that of the electrons, the overlap region covers
the whole interval [0,2k;], so that in the limit of equal
masses (such as, e.g., for electron-positron plasmas) only
one undamped plasmon remains (which is twofold degen-
erate). Figure 5 illustrates the scaling of frequencies and
wave numbers of the two undamped plasmons for
different two-component quasi-1D plasmas: An
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FIG. 5. Dispersion of the undamped plasmons in a two-
component 1D quantum plasma at T=0 K. The case of an
electron-hole (eh) plasma with (QW) and without (3D, dotted
lines) quantum confinement as well as an electron-proton (ep,
dashed lines) plasma are shown. T=0 K, n=10° cm™!. o
denotes the optical and a the acoustic plasmon. E,,=13.6 eV

and E,, =4.2 meV are the binding energies.
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electron-hole plasma (GaAs) with and without quantum
confinement and an electron-proton plasma [48].

For the case of finite temperatures, with Fermi distri-
butions of both components, the interesting point is that
with increasing temperature the overlap of both continua
is getting stronger, and both components lose their in-
dependent character. The undamped oscillation of the
heavy species (T'=0 K) becomes damped too. But this
damping is only of the same order as that of the corre-
sponding optical electron mode.

VI. PLASMONS IN NONEQUILIBRIUM PLASMAS

We will now consider nonequilibrium situations, where
in addition to thermal carriers the system contains a por-
tion of nonequilibrium (fast) carriers. In the limit where
the momentum of both fractions has sharp boundaries,
we can expect that the fast carriers act like an indepen-
dent second component. The opposite situation corre-
sponds to distribution functions with two overlapping
maxima. Let us start with the first case, which is de-
scribed by the distribution function (4) and for which the
polarization function can be found analytically. For the
analytic continuation we consider the generalization of
(15):

_J

fo(k)=1im 3 A, F&(k),

A—0"
F@ (k)y=F@* (k)+F@~ (k) , (18)
. 1 ktk{®
(ai)x _ _——r
F=(k) :t,,- arctan A
k+k5
arctan A .

The exact result for the real part of the polarization func-
tion is

m
Rell, (w,y,q9)= 2

I

i

ooy | Sel@7 a3k Aa
mq S,(@,7,q:k) |
P2_(a%,y%q;k)

5 5, (19)
Paz-l-(wz’yzrq;k)

Sa(w,7,9;k)=

PL (0% v q;k)=[0*—w?; , P+2p [0 +0k ,]+7*,

where ©,, =gk /m,tE,(q). The imaginary part of the
polarization is

FE 0~ FE ), <0
ImIl, (@ ):& A F(ai)( +)_F(ai)( -) =0 20
al®,Y,q q 2 ai Y A '\Pa)>s ¥ (20)

il

The dispersion analysis shows that the number of solu-
tions (modes) with positive frequency equals 2K N, where
K is the number of components and N the number of
maxima of the distribution function (4), including those
at negative momenta. Unstable modes are always accom-
panied by a complex conjugate (damped) mode. This re-
sult agrees with that for the corresponding Vlasov disper-
sion relation (Sec. II), except that there are now twice as
many solutions. Each “Vlasov plasmon” is here accom-
panied by an acoustic mode of the same type as the one-
component equilibrium case (Sec. IV).

For the distribution (4), case (iii), the dispersion rela-
tion yields six collective modes, as can be seen from the
behavior of the DF [Fig. 6(b)]. The high frequency pair
(I,II) is similar to equilibrium plasmons having frequen-
cies close to the upper edge of the continuum
[Q(g)=E(q)+gk,/m]. Modes IV,V are the unstable
plasmon and its complex conjugate counterpart. These
modes are surrounded by two damped plasmons (IIL,VI)
which follow the edges of the undamping (ImIT=0) re-
gion with the dispersions Qv,(q)=E(q)+qkr/m and
Qlg)=gk;/m —E(q). The corresponding wave vector
dispersion of the modes for the quantum wire was given
in [20].

The determination of the necessary and sufficient con-

F@ (p)—F(p; ) +2[ReF & (pt —i8,)—ReF & (p; —i8,)], 7>0.

r

ditions for unstable plasmons in degenerate plasmas is
more complicated than for classical systems, since, e.g.,
the Penrose criterion [40] is not applicable. One useful
tool to check for the existence of unstable modes is the
Nyquist diagram [49]. The necessary condition for the
existence of an instability is a minimum of the distribu-
tion function leading to a damping inversion region
[ImIT>O0, see Fig. 6(a)]. But this allows an instability
only if the interaction between the thermal and the fast
carriers is strong enough so that an energy transfer can
occur. In Fig. 6(b) one can see that a complex zero at the
DF at negative “damping” (point IV) exists only if there
is an overlap of the lines Re(€)=0 corresponding to the
thermal and the hot carriers, respectively. Otherwise the
real part of the DF has two zeros on the real frequency
axis between Qy(g) and Qyy(q), leading to a pair of un-
damped plasmons instead of the complex conjugate pair.
These plasmons cause a pair of 8 shaped peaks in the
spectral function.

Above a critical value g, the instability disappears. In
[20] it was pointed out that the following factors act in
favor of the instability: high density of the fast carriers, a
small gap between the equilibrium and the nonequilibri-
um peak, and a strong Coulomb potential. Large growth
rates should occur for the 3D Coulomb potential. For
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FIG. 6. Dispersion analysis for a nonequilibrium electron
plasma with the distribution function Eq. (4), case (iii),
kp=2.12, k;=3.5, ky=k;+ k. (a) Pair continua, undamping
and inversion (ImI1>0) regions (signs indicate the signs of
ImIl, y=0, ¢=0.5/ag). ,=q/2m(2kptq), o\,=q/
2m(2k;tq), w),=q/2m(2k,£q). (b) Zeros of the real part
(full lines) and of the imaginary part (dotted lines) of the DF for
a quantum wire of width (in Bohr radii) 0.5, 1, 1.5, and 2 (from
large to small ellipses) and the 3D Coulomb potential, respec-
tively. Plasmons are marked with dots (for the first case only).

quantum confined systems the Coulomb potential is
weaker, in particular, the instability will disappear above
a critical wire width. Figure 7 shows the dispersion and
growth rate of the unstable mode for both cases of the
Coulomb potential. The most interesting result is the al-
most linear dispersion of the unstable mode which can be

9 —
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¢4 undamped,
E [Elr.'l 6 | modes
e
S
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damped pair
0 + + ——
(b) a0
=
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o4 Lﬂm '
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FIG. 7. Dispersion of the complex conjugate mode pair of
the system of Fig. 6 for a quantum wire potential. (a) Disper-
sion of the unstable-stable pair for a wire of d=0.5a5. Above a
critical wave number these modes are replaced by a pair of un-
damped modes. (b) Growth rate of the unstable mode. (1) and
(2) correspond to a quantum wire of thickness 0.5a5 and lag,
respectively, and 3D corresponds to the 3D Coulomb potential.
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well approximated by
Qinlg)=(kp+k3)g/m , (21

allowing us to speak about a carrier-acoustic instability
[20,21].

There are other factors which will decrease the growth
rates or limit the instability to lower g values: carrier-
carrier and carrier-phonon scattering, which will be dis-
cussed in Sec. VII. Since temperature increase leads to
increased damping of plasmons in equilibrium, cf. Figs.
1(a) and 2, we have to expect the same effect in nonequili-
brium. The result is shown in Fig. 8.

In order to answer the question of how the instability
depends on the shape of the distribution of the nonequili-
brium carriers we consider a Gaussian with the same par-
ticle number, centered at the same momentum as the
above box function:

Falk)=Ay{exp[ —(k —ky)?/2A]
+exp[ —(k +ko)2/2A1] . (22)

The results for the unstable mode for temperatures be-
tween O and 200 K are shown in Fig. 8. Increasing the
temperature causes a less pronounced minimum of the
distribution function which limits the instability to small-
er values of the wave number and decreases the growth
rate. Therefore it is plausible that the best developed in-
stability occurs if the carrier distribution has sharp boun-
daries as in the case of Eq. (4). Variation of the parame-
ters, in particular the wire width, should allow one to in-
crease the critical momentum and the growth rates fur-
ther. It is interesting to note that although the growth
rate of the unstable mode strongly depends on the shape
of the nonequilibrium distribution function, the disper-
sion remains nearly the same as in the model case of two
boxes, given by (4).

In the case of a two-component nonequilibrium plasma
the analysis can be done in the same way. One finds pos-
sibly two unstable modes, one for each component.

0.6 —r

0.4 t

GROWTH RATE
~hT'/E,

02} / "

5
0.0 = -
0.0 0.4 0.8

WAVE NUMBER kag

1.2 1.6

FIG. 8. Growth rates for the unstable mode for different
nonequilibrium distributions and different temperatures. The
dotted (1) line corresponds to a nonequilibrium box (k;=3.5,
k4=5.62) with a background plasma at 7=0 K. Solid lines
show the result for a Gaussian distribution, Eq. (22) (4y=1,
xo=4.56, A=0.72), with a background plasma at T=0 K (2),
T=50K (3), T=100 K (4), and T=200 K (5). The equilibrium
and nonequilibrium densities are in all cases both equal to 10°
cm™ L



49 THEORY OF PLASMONS IN QUASI-ONE-DIMENSIONAL . .. 5543

VII. LIMITATIONS OF THE RPA

Assuming the Coulomb interaction is small compared
to the kinetic energy, the RPA is valid only outside the
“corner of correlations™ mentioned in Sec. I. For degen-
erate plasmas this implies electron densities nag > 1. For
gaseous plasmas this condition can be satisfied only under
high pressure conditions like those mentioned in Sec. I
[56], whereas for plasmas in solids it leads to reasonable
parameters. For quasi-one-dimensional semiconductor
quantum wires it was shown that the RPA does not lead
to intrinsic contradictions if the electron density exceeds
the inverse exciton Bohr radius at least by a factor of 1.5
[33]. (This corresponds to densities above 10° cm™!).
Our calculations are close to these values. In general, one
has to check the importance of effects beyond the RPA,
in particular carrier-carrier and carrier-phonon scatter-
ing. As long as the characteristic scattering times exceed
the inverse damping or growth rates, these effects can
usually be neglected. This condition is fulfilled in quasi-
1D systems much better than in 2D or even 3D, especial-
ly in quantum confined plasmas. Due to energy and
momentum conservation electron-electron scattering
does not contribute to the relaxation to equilibrium.
Even if the spin splitting of the conduction band is taken
into consideration, the scattering rates remain very low
[52]. The influence of carrier-carrier and carrier-phonon
scattering on the behavior of 1D plasmas was investigat-
ed recently in time resolved luminescence experiments
[26]. Furthermore, Monte Carlo simulations have been
carried out [53]. Both suggest that the scattering rates
are reduced essentially in comparison to the bulk case
[54], leading to relaxation times 7T exceeding one pi-
cosecond. Based on these results one can use a relaxation
time approximation to include collision effects into the
DF [34]:

(1+i/0r)1%g,0+i/T)

l(g,»)=11%4g,0) )
e 9,00+ /o q0+i /1)

(23)

Here I1° is the RPA polarization calculated without tak-
ing collisions into account. The total damping is, in this
approximation, given by the sum of Landau damping and
collisional damping. In the case of instabilities the col-
lision effects tend to lower the growth rates (i.e., suppress
the instability). The result will be a shift of the critical
wave number q_.(T; V(q)) to lower values, or, in the case
of quantum wires, the limitation of the instability to
thinner structures.

The second problem with the RPA is that it yields only
exponentially (Landau) damped or growing modes. Espe-
cially in the case of instabilities this theory can therefore
be used only on short time scales (i.e., as long as the
plasmon energy remains small compared to the thermal
energy). Based on our calculated growth rates, one can
easily calculate the time after which the field energy will
reach the order of the mean kinetic energy. The
minimum of this time and the relaxation time defines
then the time interval for which the RPA result is ap-
propriate. In the systems under consideration this time is
expected to be of the order of several picoseconds. How-
ever, the validity of the RPA for small amplitude oscilla-
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FIG. 9. Local carrier density calculated using the nonlinear
collisionless kinetic equation (full line) compared with the ex-
ponential growth rate determined from the complex zeros of the
RPA DF (dashed line). After the optical plasmon’s decay,
growth of the unstable mode closely matches that predicted by
the RPA. The distribution of the nonequilibrium carriers is a
Gaussian, cf. Eq. (22), 4y =0.7, k,=1.5, A=0.101, the temper-
ature and the density of the background plasma are T=5 K,
and n=0.44/ap.

tions is also not trivial. In particular, for nonequilibrium
distributions with several extrema not all assumptions
necessary for the linearization are fulfilled (|0f,/dp| is
not everywhere small compared to |3f,/dp|). Therefore
we solved the full nonlinear collisionless Boltzmann equa-
tion numerically. The result for the density evolution
corresponding to an unstable situation with the distribu-
tion function of Eq. (22) added to a Fermi function is
shown in Fig. 9. One can see that for small amplitude os-
cillations the agreement with the RPA result is very
good. Also, the frequency of the unstable mode derived
from the RPA was reproduced with an error of less than
1%. Details of the numerical solution and additional re-
sults will be given in [55].

VIII. CONCLUSIONS

The equilibrium and nonequilibrium plasmons in de-
generate quasi-1D plasmas have been studied within the
random-phase approximation, generalizing the classical
results from the Vlasov theory. Our analysis focused on
the common features of 1D quantum plasmas, including
gases, metals, organics, and plasmas in quantum wires.
The main differences between these systems are different
forms of the Coulomb potential. Nevertheless, the results
obtained for one particular system can easily be
transferred to another one, by rescaling the frequencies,
the wave number (i.e., the Rydberg energy and the Bohr
radius, respectively), and the effective mass (Fig. 5). We
have shown that the Vlasov theory applied to zero-
temperature distribution functions directly yields general-
ized plasmon pole approximations, which can be useful in
complex calculations. The results of the Vlasov disper-
sion are of interest for classical plasmas but also for de-
generate systems in the long wavelength limit. However,
it was shown that generally the Vlasov dispersion
neglects all specific quantum effects (such as the pair con-



5544

tinuum, single-particle excitations, and corresponding de-
tails of the spectral function).

For this reason it was necessary to consider the quan-
tum generalization of the Vlasov DF, given by Lindhard
(RPA). Applying the complex integration method pro-
posed by Landau we calculated the 1D DF for arbitrary
distribution functions and for arbitrary damping. For
zero temperature and for several limiting cases of the
nonequilibrium distributions the results could be ob-
tained analytically. This allowed us to calculate the com-
plete excitation spectrum and the correct damping of the
plasmons. For many-component plasmas at T=0 K we
found an undamped plasmon mode for each of the
species.

Considering nonequilibrium plasmas we specified con-
ditions for the existence of unstable modes in 1D plas-
mas. Of special interest for plasmas in semiconductor
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quantum wires is the dependence of the instability on the
wire width. In order to verify that our results are not
only a special feature of the RPA at zero temperature, we
performed calculations for temperatures up to room tem-
perature and we studied the influence of collisions and of
the nonlinear terms in the Hartree equation.
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