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Within the random-phase approximation, we demonstrate the existence of multiple undamped
acoustic plasmons in a two-component three-dimensional plasma with an isotropic momentum dis-

tribution.

I. INTRODUCTION

The collective modes of electron-hole plasmas in ex-
cited semiconductors play an important role in many-
body processes such as carrier-carrier scattering, screen-
ing of the Coulomb interaction potential, and optical de-
phasing. These plasma excitations are well understood
for equilibrium and near-equilibrium conditions where
the so-called optical plasmon is essentially the only un-
damped mode. Recently we discussed the possibility of
an undamped acoustic mode that can exist (along with
an optical mode) for a highly nonequilibrium distribution
with unoccupied low-momentum states (Refs. 1 and 2).
Such distributions can be created, for example, by in-
tense femtosecond optical pulses with a center frequency
well above the band edge.

Generally, plasmas with distributions that are non-
monotonic as functions of wave number can exhibit in-
stabilities. These instabilities can be viewed in terms
of energy transfer between collective excitations and the
single-particle excitations. If there are more particles
with velocities just above the phase velocity of the plas-
mon than just below, then, under certain conditions, the
plasmon grows because more energy is gained from the
faster particles than is lost to the slower ones.

In this paper we present results along the lines of
Ref. 2, where we studied dielectric properties of plasmas
on the basis of the random-phase approximation (RPA).
We show that there are four undamped collective modes
for a two-component three-dimensional isotropic plasma
with a specific distribution consisting of two nonequilib-
rium boxes. Three of these modes can be called acoustic
(in other words they have vanishing frequency at zero
momentum) and one is optical. We also present a plot
of the real versus imaginary part of the longitudinal di-
electric function (i.e., a Nyquist diagram, Ref. 3) showing
that these modes are stable (within the RPA theory).
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II. THEORETICAL DESCRIPTION
OF LONGITUDINAL PLASMA OSCILLATIONS

For our calculations, we deal with the retarded longi-
tudinal polarization function P(gq,w) and the dielectric
(or screening) function €(g,w) =1 — VyP(q,w). Here, V,
is the unscreened Coulomb potential given by
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where e is the free electron charge, €g is the background
dielectric constant, and L3 is the volume. Within the
random-phase approximation (RPA) the polarization is
given by

(2)
where a = e or h and E,(k) is the single particle ki-
netic energy given by E,(k) = h?k?/2m,. The effective
particle mass, which is defined by the curvature of the
band dispersion, is used for m, (for our calculations,
me = 1.284 and mj; = 4.522 in units of the reduced
mass). The total polarization is the sum of the electron
and hole polarization (i.e., P = P, + Pj). Because we
limit our discussion to isotropic distributions, all func-
tions depend only on the magnitude of k.

If we approximate optically generated distribution
functions by boxlike functions [e.g., f(k) = AO(k2 —
k)O©(k—k;)], the integration in Eq. (2) is easily performed
to yield

Pa(q,w) = P(q,~hva,ef(a)) + P(g, hva, €5 (q))
+p(q’ h’Ua, 8: (q)) + P(qv —hvou E; (Q))v (3)

where
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For numerical reasons § is chosen to be very small
rather than zero (for these calculations § = 0.000 005wy,
where wp is the plasma frequency). Further discussion
and physical interpretation of the RPA polarization in
nonequilibrium situations can be found in our previous
paper (Ref. 2).

III. DYNAMICAL STRUCTURE FACTOR
FOR ONE- AND TWO-COMPONENT PLASMAS

In Ref. 2, we demonstrated the interesting result that
it is possible to have two undamped collective modes in a
one-component plasma for a suitable distribution (in this
case one consisting of a zero temperature part plus a sep-
arate higher-momentum “box”). For a two-component
plasma using this same distribution for both components,
we found that there still were only two undamped col-
lective modes. This occurs because the undamped hole
modes (modes of the heavier species) from the single
component plasma occur within the pair continuum of
the electrons (the lighter species). Therefore these two
modes are damped in the two-component plasma.

By choosing a distribution consisting of two boxes
(like that above), but with neither box occupying the
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FIG. 1. Density plots showing the logarithm of the dy-
namical structure factor for (a) a single component electron
plasma, (b) a single component hole plasma, and (c) a two-
component electron-hole plasma. Darker regions correspond
to higher values. The frequency w is plotted in units of the
exciton Rydberg energy Er and the wave number g is plotted
in inverse Bohr radii ax;:m (Er = 4.2 meV for these calcula-
tions).
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low k states, it is possible for these modes to be un-
damped in the two-component plasma. In Fig. 1 we
show plots of the dynamical structure factor, S(q,w) =
—Im[e~!(q,w)]/nV, (where n is the plasma density),
which demonstrate this situation. The distribution func-
tion used for both electrons and holes is (k is in units of
agihr)
f(k) = 0.20(3.5 — k)O(k — 2.8)
+0.20(5.71 — k)O(k — 5.5). (7

The structure factor clearly exhibits two undamped
modes for both the electron [Fig. 1(a)] and hole [Fig.
1(b)] single-component plasmas. The difference occurs
when the electrons and holes are combined to produce
a two-component plasma [Fig. 1(c)] which now has four
undamped collective modes (three acoustic and one op-
tical). In fact, it is possible to produce an arbitrary
number of undamped acoustic modes by simply adding
enough carefully-chosen peaked-structures to the distri-
bution functions.

IV. STABILITY OF COLLECTIVE MODES

The stability of collective modes in classical plasmas
(including those with model distributions like the ones
used in this paper) has been extensively investigated
(Refs. 3 and 4). In a classical isotropic three-dimensional
plasma all collective modes have been shown to be sta-
ble against small external fluctuations (Ref. 4, p. 113).
While, in general, the results for classical plasmas cannot
be extended to quantum systems, we would still expect
the collective modes found in our calculation to be stable.

(@)

Im{e]
(-]

25 0 25
Refe]

®)

10

5
Rele]

FIG. 2. (a) Nyquist diagram for two-component electron-
hole plasma. In (b) we zoom in on the origin to illustrate that
it is not enclosed by the curve.
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In order to verify the stability of the modes we plot in
Fig. 2 the imaginary part of the dielectric function ver-
sus the real part, for ¢ = 0'4"'1;;}“’ letting w vary between
positive and negative infinity (apon: is the exciton Bohr
radius, taken to be 140 A for these calculations). This
type of plot is known as a Nyquist diagram, and is appli-
cable to both quantum and classical plasmas (Refs. 3, 5,
and 6). Since €(g, |w| = o0) — 1 a closed curve is formed.
If there is an unstable mode then we expect that the ori-
gin (e = 0) will be enclosed within the curve. We notice
from Fig. 2(b) that the origin is not enclosed by any loop,
indicating that there are no unstable modes for this sit-
uation.

V. CONCLUSIONS

In this paper we have built on ideas presented in our
previous paper (Ref. 2) to show the existence of multiple
undamped acoustic modes in a two-component quantum
plasma. Using plots of the dynamical structure factor
we demonstrate the existence of three undamped acous-
tic modes and one undamped optical mode for a two-
component plasma whose distribution function consists
of separate “boxes.” In principle, it would be possible
to generate an arbitrary number of undamped acoustic
modes by using a suitable distribution function. While
for simplicity of analysis we limit our calculations to dis-
tributions consisting of boxes, these results are not ar-
tifacts of the distribution’s discrete nature and qualita-
tively similiar results can be expected if the boxes are
replaced with smooth, sufficiently separated Gaussians

BRIEF REPORTS 49

(for example). It should be noted that these calculations
are done using the random-phase approximation and, as
such, are probably valid only for weak external distur-
bances in the high density limit. Further, the effects of
collisions are excluded from the calculation and would
tend to broaden the collective modes and pair continua
borders.

While difficult, experimental observation of the multi-
ple acoustic modes should be possible. Similar, double-
peaked distributions can be generated in a semiconductor
by optical excitation (e.g., for a system which has two si-
multaneously dipole coupled valence bands, such as the
heavy- and light-hole bands in GaAs). Using a backscat-
tering technique similar to that used in Ref. 7, the collec-
tive modes may be observable. Further, the undamped
plasmons, through their influence on the screening, can
lead to ultrafast carrier scattering rates (as shown in
Ref. 1 as a single lightly-damped acoustic mode).
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FIG. 1. Density plots showing the logarithm of the dy-
namical structure factor for (a) a single component electron
plasma, (b) a single component hole plasma, and (c) a two-
component electron-hole plasma. Darker regions correspond
to higher values. The frequency w is plotted in units of the
exciton Rydberg energy Er and the wave number g is plotted
in inverse Bohr radii ag;hr (Er = 4.2 meV for these calcula-
tions).



