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Carrier-Acoustic Plasmon Instability in Semiconductor Quantum Wires
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A novel carrier-acoustic instability is predicted for quasi-one-dimensional plasmas in semiconductor
quantum wires with nonequilibrium carrier distributions. The complete collective excitation spectrum of
the one-dimensional quantum plasma is obtained solving the complex dispersion relation in the random-

phase approximation.
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Since the experimental realization of quasi-one-di-
mensional (1D) semiconductor quantum wires [1] the un-
derstanding of collective plasma waves in 1D systems has
become an issue of considerable current interest [2-10].
ID plasmons are well established experimentally and
even the dispersion of the modes could be measured re-
cently [11]. Random-phase-approximation (RPA) calcu-
lations of the intraband and interband excitation spectra
in equilibrium (7°=0) have been carried out including de-
tails of the electronic structure, such as coupling between
bands, impurities, carrier-carrier scattering, and doping
[9,10]. However, the dispersion relations have been ob-
tained only in the limit of vanishing damping, yielding
just that part of the collective excitation spectrum which
consists of the undamped (usually the optical) modes.

In this Letter we show that a proper analytic continua-
tion of the dielectric function into the lower energy half
plane [12] reveals additional collective modes, which are
Landau damped. As a surprising result, we find for 1D
plasmas in low temperature equilibrium a second intra-
band excitation for each plasma component. This agrees
well with recent experiments, where two such intraband
excitation peaks have been observed [11].

Optically generated plasmas in quantum wires are
composed of electrons and holes, requiring the study of
plasmons in a two-component system. For such a system
we find that the particular properties of the 1D pair con-
tinuum allow the undamping of collective excitations of
the heavy particles, even in equilibrium.

The study of 1D plasmons is by no means restricted to

du Salu+q) —fa(u)

quantum wires, but is also of interest to other physical
systems like ionized gases, metallic wires [13], organic
conductors, and metallic polymers. However, in contrast
to the model of a single quasi-1D metal, organics and po-
lymers have to be thought of as arrays of 1D filaments
[14] or, in the corresponding continuum limit, as strongly
anisotropic 3D systems [15]. As a consequence of the
interfilament Coulomb interaction, the physical proper-
ties, and in particular the zero wavelength limit of the op-
tical plasmon frequency exhibit a quasi-3D character
(i.e., a nonzero value) [16].

1D plasma instabilities have been analyzed also for ion-
ized gases, where nonequilibrium electron and ion distri-
butions are generated through application of external
fields or through highly energetic particle beams. Furth-
ermore, the system’s response for nonequilibrium situa-
tions has been studied in metallic wires in recent heating
experiments [13]. Investigations of this kind lead to the
interesting question of plasma instabilities in quantum
wires as well as in 1D organics and polymers. The main
purpose of this Letter is to predict a novel carrier-
acoustic instability in such systems and to identify condi-
tions for its occurrence.

Plasmon dispersions are computed from the zeros of
the complex dielectric function, which within the RPA is
[171
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Here, w is the complex frequency w =w,+iw; =w, —iy,
where 7y is not restricted to infinitesimal small values.
The 1D intraband polarization function I, in (1) is
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where s, is the spin, E,(k) =k?2/2m,, and A =1. In Eq. I
(1) V(g) is the Coulomb potential and f, the 1D carrier
distribution function normalized to the average 1D densi-
ty. In our numerical calculations we used V(g)=2e?
xKo(gd)/€ep, for a one-band quantum wire. Here Ko
denotes the modified Bessel function of the second kind, d
is the wire width, and ¢, is the background dielectric con-
stant [5]. This potential corresponds to the real space po-
tential ¥ (x) ~(x2+d?) 72 [17]. In the case of 1D sys-
tems without quantum confinement, like ionized gases,
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metal wires, or organics we would have to use V(g)
~1/¢%, but our analysis reveals that this difference in
Coulomb potentials leads only to minor modifications of
the results.

Figure 1(a) shows the result of the analytic continua-
tion of the polarization (2) into the lower half plane of
complex energy (frequency) for an electron-hole plasma
at T=0. The two pair continua are bounded by the lines
012(q) =gkr/m,+E,(q) and wy,(q) =qkr/m,— E,(q),
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FIG. 1. Collective intraband excitations and pair continua in

an electron-hole plasma at 7=0. (a) Analysis of the dielectric
function (analytic continuation) in the complex energy plane
and spectral function —Im(1/¢) for a fixed wave number (qual-
itative picture, arbitrary units). Curves ae and ah are the loca-
tion of the zeros of Re(¢), essentially corresponding to the elec-
trons and the holes, respectively. The rectangular lines corre-
spond to Im(e) =Im(IT) =0, separating the areas of positive
and negative signs of Im(IT) (indicated by “+ and “—,” re-
spectively). Collective excitations are associated with zeros of
the dielectric function, i.e., with the points Ie, Ile (optical and
acoustic plasmon of the electrons), and 1A, I1h (undamped and
damped plasmons of the holes). The pair continua of the elec-
trons and the holes correspond to the gaps between wye, w2, and
14,024, respectively. (b) Plasmon frequencies (I, optical and
I1, acoustic plasmons) vs wave vector. (c) Landau damping co-
efficients of the acoustic plasmons. The modes Ie and 14 are
undamped. The parameters are chosen for GaAs (Rydberg
units, A=1): e =12.7, Er=4.2 meV, m./mwqa=1.284, my/
Mea=4.522,ap =135 A, d =100 A, kr=1.9/ap, n=1.2/as.

a=e,h. Collective excitations correspond to the complex
zeros, Q(q) —il(g), of the dielectric function, i.e., to the
crossing points of the lines Re(e)=0 (ae,ah) and
Im(e) =0 (rectangular lines). In addition to the optical
plasmon of the electrons (point Ie), we find an undamped
plasmon of the holes (I1#). This result is a peculiarity of
1D systems where a nonzero lower boundary of the pair
continuum wy;(q) exists. (In 2D and 3D equilibrium
plasmas the low momentum part of the pair continuum of
the heavy species is always embedded in the pair continu-
um of the lighter particles.) In a two-component 1D plas-
ma the overlap of both pair continua opens a “window”
[between lines w,(g) and w2 (g) in Fig. 1(a)] for the os-

cillations of the heavier species. The existence of a gap in
the 1D intersubband pair continua, leading to plasmons
not being Landau damped, has already been pointed out
in [11]. This result is quite general and can be extended
to plasmas consisting of more than two components or to
other 1D systems. Especially for fully ionized gases with
degenerate ions the possibility of undamped oscillations
of the ions, even in equilibrium, is an important new re-
sult.

In addition to the two undamped plasmons there are
two more zeros of the dielectric function in Fig. 1(a):
points Ile and IlA, lying at the upper edge of the con-
tinua. Since these modes are obtained as solutions of the
complex dispersion relation they have to be interpreted as
collective excitations, i.e., as damped acoustic plasmons
of the electrons and holes, respectively. These modes
cause well pronounced peaks of the spectral function
—Imle " "(w,,y=0,g)] that lie inside the pair continuum
[18]. The two plasmons of the electrons, which occur al-
ready in a one-component system, closely resemble the
peaks measured by Goiii et al. [11]1. The wave vector
dispersion and the Landau damping rates of the modes
are given in Figs. 1(b) and 1(c).

To analyze nonequilibrium two-component plasmas in
1D we study the solution of Eq. (1) graphically, as shown
in Fig. 2(a) for the case of an electron plasma. Neces-
sary for the occurrence of an instability is a minimum of
the distribution function which can be realized, e.g., by
adding carriers in high momentum states to a thermal
plasma. This minimum causes a ‘“‘damping inversion,”
i.e., positive values of Im(IT) at y=0, and, hence, zeros of
Im(e) at negative y [line b in Fig. 2(a)l. However, this is
not a sufficient condition for a plasmon instability. An
unstable mode arises only if the energy provided by the
nonequilibrium carriers is high enough and can be
transferred to growing oscillations of the thermal carriers.
In Fig. 2(a) this corresponds to a crossing of line b with
the lines Re(e) =0 in the y <0 half plane (elliptic lines a’
or a, respectively). Such a crossing happens only if there
is an overlap of the lines corresponding to the thermal
carriers (the line @' at low frequency) and the nonthermal
carriers [point IV in Fig. 2(a)]. The highest efficiency of
the interaction between thermal and nonequilibrium
carriers is observed if the average momentum of the
nonequilibrium carriers approaches the Fermi edge and if
the Coulomb interaction is strong. Quantum wires pro-
vide the unique feature to allow control of this interaction
by changing the width of the wire. An even stronger in-
stability should occur in 1D plasmas without quantum
confinement, i.e., different form of the Coulomb potential.

In order to obtain a qualitative picture of the instabili-
ty we consider the limiting case fnpq(k)=0(kr—k)
xOk)+0(ks—k)O(k —k3),k=0, f(—k)=f(k), kf
< k3<ks [19,20). The results are shown in Figs. 2(b)
and 2(c). The generalization to many-component plas-
mas yields the possibility of one unstable mode for each
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FIG. 2. Plasmon dispersion for a nonequilibrium electron
plasma with the distribution function fNeq. The parameters are
kr=19/ap, k3=1.84kr, ka=ks+kr. (a) Analysis of the
dielectric function (analytic continuation) in the complex ener-
gy plane for a constant wave vector (qualitative picture). The
pair continua correspond to the gaps between i, w; and w;,w,,
respectively, with i 2=gkr/m*t E(g) and wi2=gksm
+ E(g). The signs of Im(IT) are indicated by “+" and “—,”
respectively. The inversion region [between wi,w5, with
i 2=gk3s/m * E(g)] causes a deformation of the rectangular
lines Im(¢e) =0 into the left half plane (line ). Re(e) =0 along
the ellipses which are shown for a thin wire (a: d ~100 A) and
a thicker one (a': d~200 A). Plasmons are labeled I-VI for
the case of the thin wire. The unstable mode IV occurs only for
the thin wire. (b) Dispersion of the six plasmon modes (thin
wire). The unstable (stable) pair IV (V) has the same frequen-
cy. (c) Landau damping rates of the plasmons (thin wire). The
unstable mode IV has a negative “damping” rate; the optical
plasmon I is undamped.

component. Analyzing the nature of the instability, we
find that the frequency can be well approximated by
Qinst(q) = (Quu+ Qv)/2=(kr+k3)g/m yielding a con-
stant phase and group velocity vinst = (kp+k3)/m =const.
These conditions describe a carrier-acoustic instability
causing a plasma wave which initially propagates without
dispersion. Driven by the fast nonequilibrium charge car-
riers the amplitude of the wave is growing until it be-
comes damped and possibly stabilized by other nonlinear
mechanisms beyond the RPA, like, e.g., carrier-carrier or
carrier-phonon scattering. Such an instability should be
observable, e.g., for optically generated nonequilibrium
carrier distributions in quantum wires.
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At this point it is interesting to investigate to which de-
gree our results are a special feature of the RPA dielec-
tric function at T=0. Benner and Haug [7] have shown
that the RPA does not lead to intrinsic contradictions if
the electron density exceeds the inverse bulk exciton Bohr
radius by a factor of 1.5. Our parameters are close to
this value. Checking the influence of finite temperature
we find with growing temperature a continuous deforma-
tion of the lines Re(e) =0 and Im(e) =0. All plasmons
survive, only their damping increases [21].

We furthermore considered the influence of carrier-
carrier and carrier-phonon scattering. Recent time re-
solved luminescence measurements [22] as well as Monte
Carlo simulations [23] suggest that the scattering rates
are reduced compared to the bulk case, yielding relaxa-
tion times 7 g exceeding 1 ps. Based on these results we
used a relaxation time approximation according to Mer-
min [24] in order to account for collisions in the dielectric
function. For 7z up to 0.5 ps the result was mainly a
shift of the lines Re(e) =0 and Im(e) =0 toward higher
damping. The damping coefficients of all plasmons were
increased approximately by 1/7x.

In conclusion, we have investigated the collective exci-
tation spectrum of quasi-one-dimensional one-band quan-
tum plasmas on the basis of the analytic continuation
of the RPA polarization. Our new result for many-
component plasmas in equilibrium (7=0) is the predic-
tion of one undamped oscillation for each one of the
heavy species (one mode per different mass), which is in
contrast to 2D and 3D systems. Furthermore, we find
that in addition to the undamped plasmon, each plasma
component has a second, damped plasmon mode. The
origin of this mode is the particular properties of 1D sys-
tems, which lead to a sharp peak of the spectral function
close to the upper edge of the pair continuum (at y=0).
For nonequilibrium carrier distributions we predict grow-
ing acoustic plasmon modes in quantum wires. The
strongest effect is expected for thin wires. Frequency and
growth rates of the unstable plasma excitations depend
strongly on the shape of the distribution function and,
hence, can be influenced experimentally.
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