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Abstract
Correlated classical and quantum many-particle systems out of equilibrium are
of high interest in many fields, including dense plasmas, correlated solids, and
ultracold atoms. Accurate theoretical description of these systems is challeng-
ing both, conceptionally and with respect to computational resources. While
for classical systems, in principle, exact simulations are possible via molecular
dynamics, this is not the case for quantum systems. Alternatively, one can use
many-particle approaches such as hydrodynamics, kinetic theory, or nonequi-
librium Green functions (NEGF). However, NEGF exhibit a very unfavorable
cubic scaling of the CPU time with the number of time steps. An alternative
is the G1–G2 scheme [N. Schlünzen et al., Phys. Rev. Lett. 124, 076601 (2020)]
which allows for NEGF simulations with time linear scaling, however, at the cost
of large memory consumption. The reason is the need to store the two-particle
correlation function. This problem can be overcome for a number of approx-
imations by reformulating the kinetic equations in terms of fluctuations – an
approach that was developed, for classical systems, by Yu.L. Klimontovich [JETP
33, 982 (1957)]. Here, we present an overview of his ideas and extend them
to quantum systems. In particular, we demonstrate that this quantum fluc-
tuations approach can reproduce the nonequilibrium GW approximation [E.
Schroedter et al., Cond. Matt. Phys. 25, 23401 (2022)] promising high accuracy
at low computational cost which arises from an effective semiclassical stochas-
tic sampling procedure. We also demonstrate how to extend the approach to the
two-time exchange-correlation functions and the density response properties.
[E. Schroedter et al., Phys. Rev. B 108, 205109 (2023)]. The results are equivalent
to the Bethe–Salpeter equation for the two-time exchange-correlation function
when the generalized Kadanoff-Baym ansatz with Hartree-Fock propagators is
applied [E. Schroedter and M. Bonitz, phys. stat. sol. (b) 2024, 2300564].
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1 INTRODUCTION

Classical many-particle systems have been actively studied theoretically for more than one century with the main interest
arising in dense gases, liquids and plasmas. The main methods have been kinetic theory, starting from Boltzmann’s kinetic
equation for the distribution function f (r, p, t) and various generalizations such as the equilibrium and nonequilibrium
hierarchy of reduced probability densities, f1, f2, … (BBGKY-hierarchy). An independent direction of development was
concerned with the dynamics of fluctuations, 𝛿A = A − A, the deviations of random variables, A from their mean value,
A. This classical fluctuations approach was pioneered in the Soviet Union by M.A. Leontovich,[1] The most sophisticated
theory is due to Yu. L. Klimontovich,[2] Klimontovich was born 100 years ago, and, as we will show in this article, his
theory even today provides an extensive sets of “tools” and ideas that can be applied to modern developments; for a
historical overview, see the article by Bonitz and Zagorodny in this volume.[3]

The main focus of the present paper is quantum many-body systems following an external excitation. This is a topic of
high current interest in a variety of fields, which include dense plasmas, nuclear matter, ultracold atoms, and correlated
solids. Multiple methods are available for simulating such systems, including real-time quantum Monte Carlo, density
matrix renormalization group techniques, time-dependent density functional theory, and quantum kinetic theory. In
addition to equilibrium simulations, a range of nonequilibrium approaches is available, such as nonequilibrium Green
functions (NEGF), cf.[4–7] and references therein, dynamical mean-field theory (DMFT),[8,9] and time-dependent density
matrix renormalization group (DMRG),[10] Here, we focus on the NEGF approach, which offers a rigorous description of
the quantum dynamics of correlated systems in multiple dimensions.[11,12] However, direct two-time NEGF simulations
exhibit an unfavorable cubic scaling with simulation time Nt (number of time steps). Recently linear scaling with Nt has
become feasible within the G1–G2 scheme,[13,14] which could be demonstrated even for advanced self-energy approxima-
tions like GW and the particle–particle and particle–hole T-matrix approximations. Moreover, the full nonequilibrium
version of the dynamically screened ladder approximation could be implemented, for lattice models,[15,16] for details of
the scheme, see Reference [17]. The advantage of the linear scaling in the G1–G2 scheme comes with a cost: the simul-
taneous propagation of the time-diagonal single-particle and correlated two-particle Green functions, G1(t) and 2(t),
demands a substantial computational effort for computing and storing all matrix elements of 2. For instance, the CPU
time of GW -G1–G2 simulations scales with N6

b , where Nb denotes the size of the basis.
For these reasons, it is of high interest to explore alternative concepts that provide the same accuracy of many-body

simulations but at a significantly lower cost. Here the situation is similar to classical many-body systems for which
many equivalent formulations of the nonequilibrium dynamics exist, as was discussed above. In Reference [18], the
present authors introduced an alternative formulation of the quantum many-body problem that is based on a stochastic
approach to the dynamics of quantum fluctuations. Building upon earlier stochastic concepts in classical kinetic theory
by Klimontovich, that were mentioned above,[2,19,20] and the work of Ayik, Lacroix,[21–23] and others,[24,25] on stochastic
approaches to describing the dynamics of quantum systems, an equation of motion for single-particle fluctuations, 𝛿

̂G,
was derived that constitutes the basis of the quantum polarization approximation (QPA). It was shown that, in the weak
coupling limit, the QPA is equivalent to the nonequilibrium GW approximation of the G1–G2 scheme with additional
exchange contributions.

An advantage of the quantum fluctuations approach is that it allows for a straightforward extension from a time local to
a two-time description of the many-body system which is the basis for studying dynamic (frequency-dependent) response
properties of correlated systems. Furthermore, in Reference [26], an extension of the stochastic approach to the so-called
multiple ensembles (ME) approach was presented, which allows for the computation of commutators of operators and,
thus, density response functions and their dynamic structure factors, both in the ground state and for systems far from
equilibrium following an external excitation. Most importantly, this extension is applicable to large systems and long sim-
ulation times. Finally, in Reference [26] it was proven that the equivalence of the two-time quantum polarization approxi-
mation is equivalent to the Bethe–Salpeter equation of NEGF theory when the Hartree-Fock-GKBA is applied. This allows
one to compute density and spin response properties and the dynamic structure factors on the GW-Bethe-Salpeter level
much more efficiently, using a stochastic implementation of the quantum polarization approximation.

This paper is structured as follows. In Section 2, we present an overview of Klimontovich’s classical fluctuations
approach focusing on the polarization approximation. There we demonstrate the strength of the approach by deriving
the Balescu-Lenard kinetic equation (BLE) and discuss its quantum generalizations. The discussion of the limitations of
the BLE leads over to the derivation of a generalized quantum kinetic theory that is discussed in the remainder of the
paper. In Section 3, we set up the necessary theoretical framework of our quantum fluctuations approach. We introduce
nonequilibrium Green functions G(s) and the exchange-correlation functions L(s) and outline their relation to the quantum

 15213986, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctpp.202400015, W

iley O
nline L

ibrary on [29/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SCHROEDTER and BONITZ 3 of 38

fluctuations approach. The central approximation is the quantum polarization approximation. In Section 4, we demon-
strate how to practically evaluate the single-particle fluctuations equations using a stochastic approach and its dependence
on the sampling probability. Next, in Section 5, we present numerical illustrations of our quantum fluctuations approach
by applying it to lattice models. Finally, we conclude with a summary and outlook in Section 6.

2 CLASSICAL FLUCTUATIONS APPROACH

2.1 Fluctuations, moments, and distributions

We consider a nonrelativistic system of N identical particles with mass m and denote the phase space coordinate of the
i-th particle with xi ≔

(
ri, pi

)
, where ri and pi denote its position and momentum, respectively. Further, the many-body

system shall be described by a Hamiltonian of the form

H ≔
N∑

i=1

[
p2

i

2m
+ Vext(ri)

]

+ 1
2

N∑

i,j=1
i≠j

W
(
ri, rj

)
, (1)

where Vext denotes an external potential, for example, an external electromagnetic field, and W is the pair interaction
between two particles.

The microscopic state of the many-body system at time t can be described using the so-called microscopic phase space
density defined as

N(x, t) ≔
N∑

i=1
𝛿[x − xi(t)], (2)

with x ≔ (r, p) and xi(t) denoting the trajectory of particle “i.”
The quantity N(x, t)was introduced by Klimontovich[2] and generalizes the concept of the charge density of a system

of point charges, that is used in electromagnetism and field theory, to the phase space. Using the microscopic phase space
density, we can rewrite the Hamiltonian of the system, cf. Equation (1), as

H =
∫

[
p2

2m
+ Vext(r)

]
N(x, t)dx + 1

2 ∫
W
(
r, r′

)
N(x, t)N

(
x′, t
)

d
(

x, x′
)
−Hself,

where Hself denotes the contribution due to the self-interaction which has to be subtracted to eliminate double counting
of terms included in the second term on the r.h.s. In the following we neglect all contributions that arise due to the
self-interaction. This representation of the classical Hamiltonian can be considered the analogue of the Hamiltonian
(Hamilton operator) that is being used in quantum field theory, cf. Equation (51). For this reason, this approach is referred
to as second quantization in phase space.[2]

As the exact microscopic state of the system is generally unknown it useful to introduce a probabilistic description
where the points in 6N-dimensional phase space are considered random variables that are associated with a probability
density (N-particle distribution function) PN that is normalized to 1. Moreover, PN is assumed to be symmetric, that is,

PN(x1, … , xN , t) ≡ PN
(

x
𝜎(1), … x

𝜎(N), t
)

,

where 𝜎 ∶ {1, … , N}→ {1, … , N} denotes an arbitrary permutation.
Being a phase space function, PN obeys the Liouville equation where, on the r.h.s., we introduced the Poisson

bracket1 :

𝜕tPN(x1, … , xN , t) = {H, PN}(x1, … , xN , t). (3)

1 We define the Poisson bracket {⋅, ⋅} for two functions f , g depending on x1, … , xs as {f , g} ≔
∑s

i=1
[
∇ri

f ⋅ ∇pi
g − ∇pi

f ⋅ ∇ri
g
]
.
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4 of 38 SCHROEDTER and BONITZ

In most cases, the full probability of an N-particle state is not needed, and it is sufficient to have information about
lower dimensional states associated with a subset of s particles. The corresponding s-particle distribution function is then
defined as

fs(x1, … , xs, t) ≔ N!
(N − s)! ∫

PN(x1, … , xs, xs+1, … , xN , t)d(xs+1, … , xN), (4)

where the prefactor describes the number of possibilities to choose s particles out of N. Alternatively, the prefactor
can be chosen to be  s, where  denotes the volume of the considered system. The latter definition turns out to
be advantageous when considering macroscopic systems in the thermodynamic limit because then s ≪ N. Moreover,
we set f ≔ f1..

Further, it is useful to introduce correlation functions, gs, for s > 1, that are defined via the following relations (cluster
expansion)

f2(x1, x2, t) ≡ f (x1, t)f (x2, t) + g2(x1, x2, t), (5)

f3(x1, x2, x3, t) ≡ f (x1, t)f (x2, t)f (x3, t) + f (x1, t)g2(x2, x3, t) + f (x2, t)g2(x1, x3, t) + f (x3, t)g2(x1, x2, t) + g3(x1, x2, x3, t), (6)

where the definitions for higher-order correlation functions follow analogously.
Given an observable A that depends on the phase space coordinates of all the particles as well as x, t,its expectation

value is given by

A(x, t) =
∫

A(x1, … , xN ; x, t)PN(x1, … , xN , t)d(x1 … , xN).

This expression for the expectation value can be rewritten in terms of the s-particle distribution function given A is
an s-particle observable in the following way:

A(x, t) = 1
s! ∫

As(x1, … , xs; x, t)fs(x1, … , xs, t)d(x1, … , xs).

In most cases, it is sufficient to only consider the single- and two-particle distribution functions rather than PN to
calculate the observables of interest such as the kinetic and interaction energy of a system. In addition to the expectation
values of an observable A important information is contained in the fluctuation

𝛿A(x, t) ≔ A(x, t) − A(x, t), (7)

which will be studied in detail below.
We now establish the connection of the reduced distribution functions and correlation functions to Klimontovich’s

microscopic phase space density, cf. Equation (2). The first result is that the expectation of N coincides with the
single-particle distribution function:

N(x, t) = f (x, t).

The deviation of N from the distribution function is given by the (classical) single-particle fluctuations, cf.
Equation (7),

𝛿N(x, t) ≔ N(x, t) − N(x, t) = N(x, t) − f (x, t). (8)

These fluctuations are the cornerstone of the classical theory of fluctuations as developed by Klimontovich. The
next step of the theory is to consider products of fluctuations and their expectation values – correlation functions of
single-particle fluctuations:

Γs(x1, … , xs, t) ≔ 𝛿N(x1, t) … 𝛿N(xs, t).
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SCHROEDTER and BONITZ 5 of 38

These quantities will be denoted as (classical) s-particle fluctuations. For the special cases of two- and three-particle
fluctuations we will use separate notations, 𝛾 and Γ,

𝛾(x1, x2, t) ≡ Γ2(x1, x2, t) = 𝛿N(x1, t)𝛿N(x2, t), (9)

Γ(x1, x2, x3, t) ≡ Γ3(x1, x2, x3, t) = 𝛿N(x1, t)𝛿N(x2, t)𝛿N(x3, t).

The s-particle fluctuations, Γs, are closely related to the correlation functions defined in Equations (5) and (6), as can
be seen when considering the second and third moments of the microscopic phase space density and using Equation (8):

N(x1, t)N(x2, t) = f (x1, t)f (x2, t) + 𝛾(x1, x2, t), (10)

N(x1, t)N(x2, t)N(x3, t) = f (x1, t)f (x2, t)f (x3, t) + f (x1, t)𝛾(x2, x3, t) + f (x2, t)𝛾(x1, x3, t)

+f (x3, t)𝛾(x1, x2, t) + Γ(x1, x2, x3, t), (11)

and we will establish the connections to g2 and g3 in the following.

2.2 Properties of classical fluctuations

As already mentioned, the first moment of the microscopic phase space density corresponds to the single-particle dis-
tribution function, that is, N(x, t) = f (x, t). Similarly, the higher moments are connected to the higher-order distribution
functions. For the second moment, it holds

N(x1, t)N(x2, t) = f2(x1, x2, t) + 𝛿(x1 − x2)f (x1, t). (12)

Thus, it follows for two-particle fluctuations, Equation (9), that they are related to two-particle correlations in the
following way:

𝛾(x1, x2, t) = 𝛿(x1 − x2)f (x1, t) + g2(x1, x2, t). (13)

The first term on the r.h.s. of Equation (13) gives rise to so-called (classical) two-particle “source fluctuations” (using
the term introduced by Klimontovich):

𝛾

S(x1, x2, t) ≔ 𝛿(x1 − x2)f (x1, t), (14)

that are always present, even in an uncorrelated systems, where gs = 0, for all s. Hence, they can be interpreted as the
source of two-particle fluctuations. Equation (13) can then be rewritten as

𝛾(x1, x2, t) = 𝛾

S(x1, x2, t) + g2(x1, x2, t). (15)

Analogously, it is possible to find the relation of higher moments of the microscopic phase space density and
higher-order distribution functions or, equivalently, the relation between s-particle fluctuations and correlation functions.
For the third moment, we have

N(x1, t)N(x2, t)N(x3, t) = f3(x1, x2, x3, t) + 𝛿(x1 − x2)f2(x2, x3, t) + 𝛿(x2 − x3)f2(x1, x3, t) + 𝛿(x1 − x3)f2(x1, x2, t)

+ 𝛿(x1 − x2)𝛿(x2 − x3)f (x1, t).

Thus, the relation between three-particle fluctuations and the three-particle correlation function is given by

Γ(x1, x2, x3, t) ≔ 𝛿(x1 − x2)g2(x2, x3, t) + 𝛿(x2 − x3)g2(x1, x3, t) + 𝛿(x1 − x3)g2(x1, x2, t)

+ 𝛿(x1 − x2)𝛿(x2 − x3)f (x3, t) + g3(x1, x2, x3, t).

 15213986, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctpp.202400015, W

iley O
nline L

ibrary on [29/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 38 SCHROEDTER and BONITZ

Here, we see that for an uncorrelated system, three-particle fluctuations also only depend on the single-particle
distribution function. Analogous results hold for all higher-order quantities, but will not be explicitly stated here.

Another important property of fluctuations is their vanishing trace, that is, it holds for all s-particle fluctuations that

∫
Γs(x1, … , xs, t)dxi = 0, (16)

for i = 1, … , s, due to the conservation of the total particle number.

2.3 Dynamics of classical many-body systems in terms of N

The equation of motion for the microscopic phase space density directly follows from Hamilton’s equations and the
conservation of the total particle number in phase space and is given by

[
𝜕t + v ⋅ ∇r + FM(r, t) ⋅ ∇p

]
N(x, t) = 0, (17)

where we introduced the microscopic force, FM ≔ −∇r
[
V + UM], defined in terms of the gradient of the external potential

V and the microscopic mean-field potential UM given by

UM(r, t) ≔
∫

W
(
r, r′

)
N
(

x′, t
)

dx′. (18)

Alternatively, it is possible to express Equation (17) using the Poisson bracket and a microscopic Hamiltonian defined
as

HM(x, t) ≔
p2

2m
+ V(r) + UM(r, t).

allowing us to rewrite Equation (17) in form of a Liouville equation,

𝜕tN(x, t) =
{

HM
, N
}
(x, t). (19)

Taking the expectation value of Equation (19) and using the bi-linearity of the Poisson bracket we find, for the
single-particle distribution function, the following EOM:

𝜕tf (x, t) =
{

HMF
, f1
}
(x, t) + {𝛿UM

, 𝛿N}(x, t), (20)

where HMF ≔ HM denotes the classical mean-field Hamiltonian. The last term on the r.h.s. of Equation (20) defines the
so-called collision integral I and depends on two-particle fluctuations, 𝛾 . It is explicitly given by

I(x, t) ≔
{

𝛿UM
, 𝛿N

}
(x, t) ≡

∫
∇rW

(
r, r′

)
⋅ ∇p𝛾

(
x, x′, t

)
dx′, (21)

and it describes the average of fluctuations interacting with the fluctuations mean-field 𝛿UM .
Moreover, the EOM for single-particle fluctuations directly follows from the difference of Equations (19) and (20) and

the properties of the Poisson bracket, that is, we find

𝜕t𝛿N(x, t) =
{

HMF
, 𝛿N

}
(x, t) +

{
𝛿UM

, f
}
(x, t) + 𝛿

[{
𝛿UM

, 𝛿N
}]
(x, t), (22)

where the last term on the r.h.s. describes fluctuations of the interaction between fluctuations and the mean field induced
by fluctuations, that is, it includes so-called second-order fluctuations defined as

𝛿𝛾(x1, x2, t) ≔ 𝛿N(x1, t)𝛿N(x2, t) − 𝛾(x1, x2, t).
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SCHROEDTER and BONITZ 7 of 38

Using Equation (22), the EOMs for all fluctuations directly follow. For two-particle fluctuations, it follows

𝜕t𝛾(x1, x2, t) =
{

H(2),MF
, 𝛾

}
(x1, x2, t) + 𝜋(x1, x2, t) + C(x1, x2, t), (23)

where we introduced the classical two-particle mean-field Hamiltonian defined as

H(2),MF(x1, x2, t) ≔ HMF(x1, t) +HMF(x2, t),

and the (classical) polarization contribution given by

𝜋(x1, x2, t) ≔
∫

{
𝛾(x, x2, t)∇r1 W (r, r1) ⋅ ∇p1 f (x1, t) + 𝛾 (x, x1, t) ∇r2 W (r, r2) ⋅ ∇p2 f (x2, t)

}
dx, (24)

and a term containing the coupling to three-particle fluctuations of the form

C(x1, x2, t) ≔
∫

[
∇r1 W(r, r1) ⋅ ∇p1 + ∇r1 W(r, r2) ⋅ ∇p2

]
Γ(x, x1, x2, t)dx. (25)

2.4 Approximations for classical fluctuations

2.4.1 Approximations of moments

The simplest type of approximations, within the hierarchy of classical fluctuations, is given by the “approximations of
moments.” Here, only fluctuations up to a certain order are considered, whereas higher-order contributions are neglected.
Within the approximation of first moments all contributions due to two-particle fluctuations are neglected which leads to
the following EOM for the single-particle distribution function

𝜕tf (x, t) =
{

HMF
, f
}
(x, t),

that is, the collision term is neglected, and one recovers the standard (nonlinear) Vlasov equation. At the level of
single-particle fluctuations, this is equivalent to

𝛿N(x, t) ≡ 0.

Although fluctuations are always present, even for uncorrelated systems, cf. Equation (15), source fluctuations do not
contribute to the collision integral, cf. Equation (21). Thus, fluctuations do not always need to significantly impact the
single-particle dynamics of a system.

The next simplest approximation of this form is given by the approximation of second moments where all contribu-
tions due to three-particle fluctuations are assumed to be vanishing, that is, we have C ≈ 0. The EOM for two-particle
fluctuations, Equation (23), is then

𝜕t𝛾(x1, x2, t) =
{

H(2),MF
, 𝛾

}
(x1, x2, t) + 𝜋(x1, x2, t).

In the equation of single-particle fluctuations this is equivalent to neglecting all terms that are quadratic in 𝛿N, that
is, we have

𝜕t𝛿N(x, t) =
{

HMF
, 𝛿N

}
(x, t) +

{
𝛿UM

, f
}
(x, t).

While the approximations of moments have a clear mathematical definition, their physical relevance is limited.
More important is the polarization approximation as it allows to describe dynamical screening effects and leads to the
Balescu-Lenard kinetic equation as we will show in Section 2.5.1.
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8 of 38 SCHROEDTER and BONITZ

2.4.2 Polarization approximation

In the polarization approximation (PA), three-particle fluctuations are not entirely neglected. Here, it is assumed that
three-particle correlations are negligible and two-particle correlations are much smaller than two-particle fluctuations,
that is, g3 ≈ 0 and |g2| ≪ |𝛾| (weak coupling). This then leads to the following approximation for the three-particle
fluctuations

Γ(x1, x2, x3, t) ≈ 𝛿(x1 − x2)𝛾(x2, x3, t),

which in turn leads to the following approximation for the three-particle coupling term, Equation (25),

C(x1, x2, t) ≈ R(x1, x2, t) ≔ 𝛿(x1 − x2)I(x1, t).

It is now helpful to consider the EOM for two-particle source fluctuations, Equation (14), which is given by

𝜕t𝛾
S(x1, x2, t) =

{
H(2),MF

, 𝛾

S}(x1, x2, t) + R(x1, x2, t).

Hence, the EOM for the two-particle correlation function, within the polarization approximation, g2 = 𝛾 − 𝛾

S, is
given by

𝜕tg2(x1, x2, t) =
{

H(2),MF
, g2
}
(x1, x2, t) + Ψ(x1, x2, t) + ̃Π(x1, x2, t), (26)

where ̃Π denotes the (classical) correlations polarization contribution, which follows from 𝜋, cf. Equation (24), by the
replacement 𝛾 → g2, whereas Ψ denotes second-order scattering contributions and is defined as

Ψ(x1, x2, t) ≔ ∇r1 W(r1, r2) ⋅
[
∇p1 + ∇p2

][
f (x1t)f (x2, t)

]
.

This contribution is an inhomogeneity that drives the build-up of correlations, that is, given that a system is an
uncorrelated initial state, Ψ leads to non-vanishing the dynamics of g2.

In the following, it is advantageous to represent the source fluctuations, 𝛾

S, given by Equation (14) as a product of
single-particle source fluctuations, 𝛿NS, which are defined such that

𝛿NS(x, t) = 0,

𝛿N(x, t)𝛿NS(x′, t) = 0,

𝛿NS(x, t)𝛿NS(x′, t) = 𝛾

S(x, x′, t
)
= 𝛿(x1 − x2)f (x1, t).

Thus, by construction, 𝛿N − 𝛿NS obeys an EOM that is equivalent to the EOM for g2, cf. Equation (26),

𝜕t
[
𝛿N(x, t) − 𝛿NS(x, t)

]
=
{

HMF
, 𝛿N − 𝛿NS}(x, t) +

{
𝛿UM

, f
}
(x, t), (27)

where 𝛿NS obeys the homogeneous equation.

2.5 Applications of the classical fluctuations approach. Balescu-Lenard equation

The most important and impactful applications of Klimontovich’s fluctuations approach were the derivation of a large
variety of kinetic equations for gases and plasmas. As an example we consider his elegant derivation of the kinetic
equation with a dynamically screened Coulomb potential which is commonly known as Balescu-Lenard equation.[27,28]

This equation plays a fundamental role in the theory of collisional plasmas. It takes into account the long-range nature of
the Coulomb interaction as well as the dynamical character (spectral or frequency dependence) of the field fluctuations
and of collective plasma excitations which are described by a dynamic dielectric function, ϵ(q, 𝜔).

 15213986, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctpp.202400015, W

iley O
nline L

ibrary on [29/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SCHROEDTER and BONITZ 9 of 38

2.5.1 Derivation of the Balescu-Lenard equation

We now consider a plasma of particles with charges qa interacting via the Coulomb interaction, that is, W → Vab,
where Vab

(
r, r′

)
≔ qaqb∕|r − r′| denotes the Coulomb potential. Consequently, the microscopic electric field follows from

Equation (18) and is given by

EM(r, t) = Eext(r, t) +
∑

b
qb
∫

r − r′

|r − r′|3
Nb
(

x′, t
)

dx′,

where Eext denotes the external electric field. Further, the collision integral, Equation (21), can then be expressed in terms
of the fluctuations of the electric field, that is, 𝛿E(r, t) ≔ EM(r, t) − EM(r, t),

Ia(x, t) = −
∑

b
qaqb

∫

r − r′

|r − r′|3
∇p𝛾ab

(
x, x′, t

)
dx′ = −qa∇p ⋅ 𝛿Na(x, t)𝛿E(r, t).

In order to capture dynamic (frequency-dependent) properties of the plasma, it is necessary to consider the
correlations of density and field fluctuations with a finite time delay. We, therefore, consider the more general case
of different time arguments 𝛿Na(x1, t1)𝛿E(r2, t2) ≡ 𝛿Na𝛿E

(
r1, p1, r2, t1, t2

)
and introduce relative and center-of-mass

coordinates in space and time:

r̃ ≔ r1 − r2, 𝜏 ≔ t1 − t2,

R ≔ r1 + r2

2
, T ≔ t1 + t2

2
.

Thus, we can equivalently express any function depending on ri and ti in terms of these new coordinates:

𝛿Na𝛿E
(
r1, p1, t1, r2, t2

)
→ 𝛿Na𝛿E

(
r̃, R, p1, 𝜏, T

)
.

Additionally, we use the convention that, in the case of equal times, t1 = t2 = t, or equal positions, r1 = r2 = r, we drop
the relative coordinate.

By Fourier transforming the product of density and field fluctuations with respect to the relative position,

𝛿Na𝛿E(r̃, R, p, 𝜏, T) =
∫

𝛿Na𝛿E(k, R, p, 𝜏, T)e−ik⋅r̃ dk,

and using that this product is a real function, i.e., we have 𝛿Na𝛿E(k, R, p, 𝜏, T) =
[

𝛿Na𝛿E(−k, R, p, 𝜏, T)
]∗

, we get the
following expression for the collision integral:

Ia(x, t) = −
qa

(2𝜋)3
∇p ⋅

∫
Re
[

𝛿Na𝛿E(k, r, p, t)
]

dk. (28)

In the following, we consider the polarization approximation where, the EOM for single-particle fluctuations, cf.
Equation (27), takes the form

(
𝜕t + v ⋅ ∇r + Fa(r, t) ⋅ ∇p

)[
𝛿Na(x, t) − 𝛿NS

a(x, t)
]
= −qa𝛿E ⋅ ∇pfa(x, t), (29)

where we have, for the average force (Lorentz force),

Fa(r, t) = qaEM(r, t) +
qa

c
v × Bext(r, t),

and Bext denotes the external magnetic field. Further, we consider two-time two-particle fluctuations defined as

𝛾ab(x1, x2, t1, t2) ≔ 𝛿Na(x1, t1)𝛿Nb(x2, t2),

𝛾

S
ab(x1, x2, t1, t2) ≔ 𝛿NS

a(x1, t1)𝛿NS
a(x2, t2),
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10 of 38 SCHROEDTER and BONITZ

where the equal-time limit (initial condition) of the two-time source fluctuations is given by

𝛾

S
ab(x1, x2, t1, t1) = 𝛿ab𝛿(x1 − x2)fa(x1, t1). (30)

Two-particle source fluctuations then obey the following EOM

[
𝜕t1 + v1 ⋅ ∇r1 + Fa(r1, t1) ⋅ ∇p1

]
𝛾

S
ab(x1, x2, t1, t2) = 0, (31)

where 𝛾

S
ab(t1, t2) evolves toward t1 > t2 (i.e., 𝜏 > 0), starting from the initial condition (30). This means, in the following,

we consider a retarded function, 𝛾

S+
ab (𝜏) ∼ 𝜃(𝜏). Further, it is assumed that the electric and magnetic fields are weak, so

the contributions of the mean Lorentz force to Equations (29) and (31) can be neglected, and we obtain

(𝜕t + v ⋅ ∇r)
[
𝛿Na(x, t) − 𝛿NS

a(x, t)
]
= −qa𝛿E ⋅ ∇pfa(x, t), (32)

(
𝜕t1 + v1 ⋅ ∇r1

)
𝛾

S+
ab (x1, x2, t1, t2) = 0, t1 > t2. (33)

Now we compute the spectral density of the source fluctuations, that is, the Fourier transform of 𝛾

S+
ab with respect to

the relative time and position. While the equal-time limit of the source fluctuations is finite, cf. Equation (30), we expect
that the correlations of the fluctuations will decay to zero when 𝜏 = t1 − t2 →∞ (this excludes long-lived and large-scale
correlations in the plasma that are, e.g., due to bound states or turbulence and that require a separate discussion). The
simplest way to achieve this is to introduce a small dissipative correction, 𝛿, which obeys 𝜔p ≫ 𝛿 > 0, into Equation (33).
This means that correlations in the plasma vanish for times larger than the correlation time[29]

𝜏cor ∼ 2𝜋∕𝜔p, and
Equation (33) becomes

(
𝜕t1 + v1 ⋅ ∇r1 + 𝛿

)
𝛾

S+
ab (x1, x2, t1, t2) = 0, (34)

where, in the final expressions, we will take the limit 𝛿 → +0.
The solution of Equation (34) is given by

𝛾

S+
ab (x1, x2, t1, t2) = 𝛿ab𝛿[r1 − r2 − v1(t1 − t2)]𝛿

(
p1 − p2

)
e−𝛿(t1−t2)fb(x2, t2),

→ 𝛾

S+
ab

(
r̃, R, p1, p2, 𝜏, T

)
= 𝛿ab𝛿(r̃ − v1𝜏)𝛿

(
p1 − p2

)
e−𝛿𝜏 fb

(
R − r̃∕2, p2, T − 𝜏∕2

)
.

Analogously, we can treat the advanced function 𝛾

S−(x1, x2, t1, t2) ∼ 𝜃(−𝜏), which obeys the following EOM

(
𝜕t2 + v2 ⋅ ∇r2 + 𝛿

)
𝛾

S−
ab (x1, x2, t1, t2) = 0, t2 > t1,

and thus has a solution given by

𝛾

S−
ab (x1, x2, t1, t2) = 𝛿ab𝛿[r1 − r2 − v1(t1 − t2)]𝛿

(
p1 − p2

)
e−𝛿(t2−t1)fb(x1, t1),

→ 𝛾

S−
ab

(
r̃, R, p1, p2, 𝜏, T

)
= 𝛿ab𝛿(r̃ − v1𝜏)𝛿

(
p1 − p2

)
e𝛿𝜏 fb

(
R + r̃∕2, p1, T + 𝜏∕2

)
.

Two-time source fluctuations are then given by a combination of the retarded and advanced function, that is,

𝛾

S
ab(x1, x2, t1, t2) =

⎧
⎪
⎨
⎪
⎩

𝛾

S+(x1, x2, t1, t2), t1 > t2,

𝛿ab𝛿(x1 − x2)fa(x1, t1), t1 = t2,

𝛾

S−
ab (x1, x2, t1, t2), t1 < t2.

In the following, we assume that the fluctuations are stationary and uniform in space, that is, there is no dependence
on the center-of-mass coordinate R and on the macroscopic time T. Then, source fluctuations are of the form

𝛾

S
ab

(
r̃, p1, p2, 𝜏

)
= 𝛿ab𝛿[r̃ − v1𝜏]𝛿

(
p1 − p2

)
e−𝛿|𝜏|fa

(
p1
)

,
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SCHROEDTER and BONITZ 11 of 38

and their Fourier transform is given by

𝛾

S
ab

(
k, p1, p2, 𝜔

)
= 𝛿ab𝛿

(
p1 − p2

) 2𝛿

(𝜔 − k ⋅ v1)2 + 𝛿
2

fa
(
p1
)

.

In the limit 𝛿 → +0, the spectral density becomes

𝛾

S
ab

(
k, p1, p2, 𝜔

)
= 2𝜋𝛿ab𝛿

(
p1 − p2

)
𝛿(𝜔 − k ⋅ v1)fa

(
p1
)

, (35)

and exhibits the familiar resonance behavior that couples the particle velocity with the phase velocity 𝜔∕k of an excitation.
We now apply this result to obtain the spectral functions of particle-field and field fluctuations. Consider first the

Fourier transform of the (source) fluctuations of the electric field:

𝛿E(k, 𝜔) = −4𝜋ik
k2

∑

a
qa
∫

𝛿Na(k, p, 𝜔)dp, (36)

𝛿ES(k, 𝜔) = −4𝜋ik
k2

∑

a
qa
∫

𝛿NS
a(k, p, 𝜔)dp, (37)

which, upon using Equation (35), yields the following expressions:

𝛿NS
a 𝛿ES(k, p, 𝜔) =

8𝜋

2iqak
k2 𝛿(𝜔 − k ⋅ v)fa(p), (38)

𝛿ES ⋅ 𝛿ES(k, 𝜔) =
∑

a

(
4𝜋qa

k

)2

∫
𝛿(𝜔 − k ⋅ v)fa(p)dp. (39)

Next, we consider Equation (32) and introduce a dissipative term, similar to our previous considerations, that is,

(𝜕t + v ⋅ ∇r + 𝛿)
[
𝛿Na(x, t) − 𝛿NS

a (x, t)
]
= −qa𝛿E ⋅ ∇pfa(p). (40)

For the computation of the particle-field correlations which proceed on the time scale 𝜏cor, we may assume that fa is
time independent because it changes significantly only on the scale of the relaxation time where trel ≫ 𝜏cor. Similarly, fa
may be considered nearly uniform on spatial scales of the plasmas oscillations (wavelength). Then, the Fourier transform
of the solution of Equation (40) is easily computed:

𝛿Na(k, p, 𝜔) = 𝛿NS(k, p, 𝜔) −
iqa

𝜔 − k ⋅ v + i𝛿
𝛿E(k, 𝜔) ⋅ ∇pfa(p). (41)

We now eliminate from Equation (41) the fluctuations 𝛿Na and 𝛿NS
a in favor of the corresponding field fluctuations. To

this end, we integrate Equation (41) over the momentum and use Equations (36) and (37), which yields a linear relation
between the fluctuations of the electric field and its source fluctuations

ϵ(k, 𝜔)𝛿E(k, 𝜔) = 𝛿ES(k, 𝜔), (42)

with the proportionality coefficient ϵwhich is nothing but the (retarded) dielectric function familiar from electrodynamics
and plasma theory. Its result is given by

ϵ(k, 𝜔) ≔ 1 +
∑

a
Vaa(k)Πa(k, 𝜔) ≡ 1 + V(k)Π(k, 𝜔), (43)

Πa(k, 𝜔) ≔
∫

k ⋅ ∇pfa(p)
𝜔 − k ⋅ v + i𝛿

dp, (44)

where Vab(k) = 4𝜋qaqb∕k2 is the Fourier transform of the Coulomb potential andΠa(k, 𝜔) denotes the (retarded) polariza-
tion function of an ideal plasma (which implies that 𝛿 → +0). Obviously, with Equations (44) and (43), we have recovered
the familiar Vlasov polarization and longitudinal dielectric function of a classical ideal plasma.
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12 of 38 SCHROEDTER and BONITZ

With these results for the spectral function of the fluctuations we now return to the kinetic equation and its collision
integral, Equation (28). Combining our results, that is, Equations (38), (39), (41) as well as (42), and using that 𝛿E and k
are parallel, we find

Re[𝛿N𝛿E(k, p)] = −
16𝜋

3qa

k4 k
∑

b
q2

b ∫

𝛿

[
k ⋅
(
v − v′

)]

|ϵ(k, k ⋅ v)|2
k ⋅
[
∇pfa(p)fb

(
p′
)
− ∇p′fb

(
p′
)

fa(p)
]

dp′, (45)

where we integrated over 𝜔, that is, we set Re[𝛿N𝛿E(k, p)] ≡ ∫ Re[𝛿N𝛿E(k, p, 𝜔)] d𝜔. Since the kinetic equation describes
the evolution of the single-particle distribution function which proceeds on times much larger than the correlation time
and lengths larger than the wavelength, we may restore time and space dependence in the single-particle distribution
functions and the collision integral. Inserting the result (45) into Equation (28), we find the following result for the
collision integral:

Ia(x, t) = 1
8𝜋

2

∑

b
∫ ∫

[
V s

ab(k, k ⋅ v)
]2

𝛿

[
k ⋅
(
v − v′

)]
⋅
(
k ⋅ ∇p

)
k ⋅
[
∇pfa(p)fb

(
p′
)
− ∇p′ fb

(
p′
)

fa(p)
]

dp′dk. (46)

where the delta function reflects kinetic energy conservation and the distribution functions are to be understood as
nonequilibrium functions, fa(t). This is the collision integral that was first derived by Lenard and Balescu[27,28] and
describes charged particle scattering in a plasma medium. Scattering is treated perturbatively and involves the square
of the pair potential (second Born approximation). However, screening and collective effects (including plasmons and
instabilities) in the plasma lead to a replacement of the Coulomb potential V(k) by the dynamically screened Coulomb
potential V s(k, 𝜔),

V s
ab(k, 𝜔) = Vab(k)

|ϵ(k, 𝜔)|
, (47)

𝛿E(k, 𝜔) = 𝛿ES(k, 𝜔)
ϵ(k, 𝜔)

, (48)

Simpler versions of collision integrals in plasmas or condensed matter, such as the Landau collision integral, follow
as a special case from Equation (46). In fact, use of the bare Coulomb potential, V(k), in the collision integral leads to
divergent results—the k-integration diverges logarithmically at small and large k giving rise to the “Coulomb logarithm,”
Λ = ln(kmax∕kmin). The small-k divergency is due to the long range of the interaction, and this problem is “fixed” in
the Landau equation by replacing V(k) by a phenomenologically statically screened potential. With the Balescu-Lenard
result (46), no phenomenological corrections are required and screening appears automatically. The Landau equation
then follows as the static long wavelength limit of the Vlasov dielectric function (43), limq→0 𝜀(q, 𝜔 = 0), giving rise
to a Debye-screened Coulomb potential, so that kmin → 1∕rD. At the same time, the divergence of the k-integration
at large k remains also in the case of the collision integral (46) and is removed by a phenomenological cutoff, kmax.
This problem is naturally “fixed” by taking into account quantum effects that appear at small distances, as we show
in Section 2.5.2.

Furthermore, with Equation (48), we reformulated our previous result, Equation (42) in a physically more intuitive
relation: collective plasma effects that are condensed in the dielectric function lead to a replacement of the electric source
field fluctuations (which are generated by 𝛿NS and are always present in the system) by the fluctuations 𝛿E. Finally,
relations (47) and (48) are rather general and not restricted to the case of the Vlasov dielectric function. Deriving improved
results that take into account quantum effects, cf. Section 2.5.2 or correlations allows for further improvement of kinetic
theory. For example, strong coupling effects (large angle and multiple scattering) can be treated within the dynamically
screened ladder approximation,[15] or with quantum Monte Carlo methods,[30] see also Section 6.

2.5.2 Extension of the Balescu-Lenard equation to quantum systems

The quantum analogue of the Balescu-Lenard equation has been broadly studied in semiconductor optics where this
equation has been known as “quantum Boltzmann equation” that has been derived by many authors; see, for example,
the text book of Kadanoff and Baym.[31] This equation for the single-particle distributions of electrons and holes contains
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SCHROEDTER and BONITZ 13 of 38

the collision integral (a, b = e, h):

Ia(k1) = Γa
in(k1)fa(k1) − Γa

out(k1)f >

a (k1), f >

a (k) ≡ 1 − fa(k), (49)

Γb
in(k1) =

4𝜋

ℏ

∑

a,k2,k3,k4

|||V
s
ab

[
k2 − k1, Eb(k2) − Eb(k1)

]|||
2
fb(k2)f >

𝛼
(k3)f𝛼

(k4)𝛿k1+k3,k2+k4 𝛿

[
Ea(k1) − Eb(k2) + Ea(k3) − Eb(k4)

]
,

V s
ab(q, 𝜔) =

Vab(q)
|ϵ(q, 𝜔)|

, ϵ(q, 𝜔) = 1 − V(q)Π(q, 𝜔), Vab(q) =
4𝜋eaeb

q2 , Π(q, 𝜔) = 2
∑

𝛼k

f
𝛼
(k) − f

𝛼
(|q + k|)

E𝛼(k) − E𝛼(|q + k|) + ℏ𝜔 + i𝛿
,

where Γin,out are scattering rates and Γout follows from Γin by exchanging f ↔ f >. Carrier scattering is treated in perturba-
tion theory (second Born approximation, SOA) where the Coulomb potential with the Fourier transform V(q) is screened
by the dielectric function ϵ(q, 𝜔) exactly like in the classical case, cf. Equation (46). The main difference are quantum
effects. They lead to the appearance of Pauli blocking in the scattering rates (the factors f >) which prevent the diver-
gence of the integral at large momenta (in the present notation, this corresponds to large differences k1 − k2). The second
main difference is in the longitudinal retarded polarization (𝛿 → +0) which is now that of an ideal Fermi gas Π (Lind-
hard or RPA polarization). It is easily verified that the classical (long wavelength) limits of the collision integral and of
the polarization coincide with the classical expressions (46) and (44), respectively.

2.5.3 Extension of the Balescu-Lenard equation to short time scales: Dynamics of correlations

The coupled quantum kinetic equations for electrons and holes with the collision integral (49) were solved numerically by
Binder et al.[32,33] They observed that the dynamically screened Coulomb potential may give rise to extremely high scatter-
ing rates, Γ, and consequently to surprisingly fast (within a few femtoseconds) dephasing and thermalization of optically
excited semiconductors. This was explained by plasmon undamping resulting from zeroes of the dielectric function
which was further analzyed in Reference [34]. The key is that, in the collision integral and also in the dielectric func-
tion, the nonequilibrium distribution functions appear which give rise to additional weakly damped plasmons—zeroes of
Reϵ(q, 𝜔)—which act as additional scattering channels. Indeed, an accelerated relaxation, in case of undamped nonequi-
librium plasmons, was confirmed experimentally in References [35, 36]. However, the experimental time scales of the
dephasing and relaxation in semiconductors turned out to be much longer than predicted in Reference 32 which stimu-
lated investigations of the validity range of the quantum Balescu-Lenard equation and similar quantum kinetic equations.

The analysis revealed that, in case of rapid dynamics of the distribution function fa(k, t), the use of the standard
RPA (or Vlasov) dielectric function with the current distribution function, ϵ[q, 𝜔; f (t)] violates the time scale separation,
𝜏cor ≪ trel. If this inequality does not hold, the dielectric function has to be generalized such that it includes corre-
lation dynamics and time-dependent build-up of dynamical screening. This has led to generalized quantum kinetic
equations that include non-Markovian (time retardation or memory) effects,[29,37] This was achieved by the development
of nonequilibrium Green functions (NEGF) and reduced density operator methods. One result was the theoretical sim-
ulation of the build-up of screening by Banyai et al.[38] which could be confirmed experimentally for optically excited
semiconductors by Leitenstorfer et al.[39]

This example also shows that, for times scales shorter than the correlation time, t ≲ 𝜏cor, the Balescu-Lenard equation
is not applicable. Such time scales are easily accessible experimentally, for example, in semiconductors. Moreover, this
equation will also fail for strongly correlated systems because there the separation trel ≫ 𝜏cor may be violated as well.
As a consequence, the single-particle distribution and the pair correlation function may evolve on similar time scales.
Mathematically, this means that Equation (40) will break down because it implies that

𝛿Na(x, t) − 𝛿NS
a(x, t) ∼ e−𝛿(t−t0)

,

where t0 is the initial time. This expression vanishes if the initial time is shifted to the remote past, t0 → −∞, which
corresponds to Bogolyubov’s condition of weakening of initial correlations and introduces irreversibility into the
equations.[29,40]

For physical processes at short time scales, on the order of the correlation time, t − t0 ∼ 𝜏cor, in contrast, the time
t0 has to remain finite. The dynamics of the system then is a coupled time evolution of single-particle and two-particle
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14 of 38 SCHROEDTER and BONITZ

quantities which must be complemented by initial conditions for both at the time t0. In particular, one has to provide
initial correlations. This regime is properly captured by the G1–G2 scheme[13] and also by the quantum fluctuations
approach of the present authors—a systematic generalization of Klimontovich’s method to quantum systems that will
be discussed in Section 3.

2.6 Further results and extensions of the classical fluctuations approach

Similar as with the derivation of the Balescu-Lenard equation, Section 2.5.1, Klimontovich applied his approach to derive
a large variety of other kinetic equations, including equations for chemically reacting systems, relativistic equations,
and non-Markovian equations for nonideal gases and plasmas. Moreover, he derived coarse grained equations such as
hydrodynamic and gasdynamic equations and their generalizations to nonideal systems. A comprehensive overview has
been given in his text book.[41]

2.6.1 Selection of further applications

Klimontovich’s method has been picked up by various communities and applied to diverse problems. One example are
dilute astrophysical plasmas such as the interstellar medium. There particle collisions are rare, and electromagnetic field
fluctuations play an important role. Here, Klimontovich’s approach allowed for the derivation of kinetic equations that
take into account the noise that is spontaneously emitted, for example, from magnetic field fluctuations as well as thermal
noise. An overview can be found in Reference [42]. Another application of the formalism led V. Belyi to an extension
of the Balescu-Lenard kinetic equation, and the involved dielectric function, cf. Section 2.5.1, to strongly nonuniform
systems where spatial gradients are important.[43] Another field where Klimontovich’s method turned out to be very
effective is dusty plasmas. These are low-temperature and low-density plasmas that are dominated by neutrals and that
contain micrometer size (“dust”) particles that charge up to thousands of elementary charges. Correspondingly, the dust
particles may be strongly correlated,[44] and exhibit liquid-like and even crystalline behavior, for a recent overview, see
Reference [45]. The behavior of these systems is significantly influenced by fluctuations of the charge of the microparticles
and by charging processes. Zagorodny et al. applied Klimontovich’s approach to derive generalized kinetic equations for
dusty plasmas.[46,47] A similar approach is due to Tsytovich and coworkers who extended Klimontovich’s phase space
distribution by including the dust charge as an additional independent variable which led them to a generalization of
the Balescu-Lenard equation.[48] Finally, Tolias et al. computed the spectra of ion density and field fluctuations under
the effect of dusty plasmas,[49] and Tolias recently also presented a detailed methodological analysis of Klimontovich’s
method in applications to dusty plasmas.[50] More information on the application of Klimontovich’s method can be found
in the overview by Bonitz and Zagorodny.[3]

2.6.2 Fluctuation ensembles. Averaging procedure. Reversible vs. irreversible dynamics

It is a bit surprising that, as far as we know, Klimontovich’s fluctuations approach has, aside from formal derivations of
approximations, practically not been applied to numerical solutions. In fact, the equations of motion of the fluctuations
𝛿N or the correlation functions 𝛾ab are well suited for numerical evaluation. We will show below, in Sections 3 and 4,
for the case of quantum systems, how such an approach can be straightforwardly developed that is capable to achieve
results that are competitive with other methods. A crucial basis for such a computational approach is physically based
input about the underlying random process, that is, about the ensemble of realizations of the fluctuations (of microstates).
Even though Klimontovich has not explicitly specified the ensemble of fluctuations, in most applications, the derivations
imply a thermodynamic equilibrium situation. The only assumption that enters in the derivation of kinetic equation is
Bogolyubov’s condition of weakening of initial correlations. This is realized in the approach by introducing a small posi-
tive frequency correction 𝛿 in Equation (40). This transforms the resulting kinetic equation (such as the Balescu-Lenard
equation) into a dissipative one that is time irreversible. This means that pair correlations in the system have always
achieved an equilibrium shape that may change slowly via the time-dependent single-particle distributions.[29]

There are multiple ways to improve this result:

• Instead of considering the limit t0 → −∞ corresponding to Bogolyubov’s weakening of initial correlations, it is possible
to utilize Zubarev’s method of the nonequilibrium statistical operator and consider an average.[51–53] By performing

 15213986, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctpp.202400015, W

iley O
nline L

ibrary on [29/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SCHROEDTER and BONITZ 15 of 38

this average, possible long-living oscillations, which are determined by the initial state, are damped out. The arising
equation of motion for the averaged quantity then includes an additional sourve term that leads to relaxation of the
dynamics.

• Avoid the complete neglect of initial correlations but neglect only small-scale correlations. Examples for long-lived
or/and large-scale fluctuations are chemical bound states, collective quantum states (e.g., quantum coherence), meso-
scopic vortices, for example, in the presence of turbulence and so on. Klimontovich has developed a heuristic concept
of a subdivision of correlations into small-scale and large-scale correlations by introducing “physically infinitesimal”
length and time scales lp ≫ lcor and 𝜏p ≫ 𝜏cor. For the correlation length he uses a length scale r0 which is the extension
of an atom (or interaction range of a particle), whereas in a plasma, the length scale is the Debye screening length, rD.
He uses the small parameter lcor∕lp = ϵ ≔

√
nr3

0 ≪ 1. This means that the mean interparticle distance is much smaller
than the correlation length or that a sphere with radius r0 contains a large number, Np ∼ 1∕ϵ ≫ 1, of particles. Finally,
all quantities are now averaged over a time scale 𝜏p and a length scale lp, giving rise to smoothened functions ̃N, �̃� ,
̃f 1, g̃2 and so on. As a result, one recovers the previous kinetic equation (e.g., the Balescu-Lenard equation) where f1
is replaced by ̃f 1 which do not contain information about the small scales, that is, the atomic or molecular structure
of the system anymore. In addition, however, the equation will contain an additional collision integral that is due to
large-scale correlations, g̃2.[54]

• Another way to improve the kinetic equations that were discussed above is to drop the Bogolyubov condition of
weakening of initial conditions entirely. While this condition appears to be natural for “normal” plasmas, where
two-particle and single-particle time scales are well separated, 𝜏cor ≪ trel, one often recovers different situations. One
case are strongly correlated systems. Another one are short time scales, t ≲ 𝜏cor, see our discussion in Section 2.5.3.
Such situations have recently attracted high interest in strongly correlated solids or cold atoms in optical lattices. These
systems, at short times, behave as isolated systems without dissipative coupling to the environment. In that case, it is
not justified to introduce a frequency correction 𝛿 in Equation (40). Instead, this equation has to be solved with an
initial condition for the fluctuations and correlations at a finite initial time t0. As a result, there appears a coupled sys-
tem of equations for f1(t) and g2(t).[29,55] This system is time-reversible and contains collision effects. Such a system of
equations was recently derived from nonequilibrium Green functions and was called G1–G2 scheme.[13,14] An equiva-
lent system can be derived using a quantum generalization of Klimontovich’s fluctuations approach. This is explained
in the next section.

3 QUANTUM FLUCTUATIONS APPROACH

3.1 Fluctuations of nonequilibrium Green functions

Generalizations of the classical theory of distribution functions for the description of quantum systems are given, for
example, by the theories of reduced density matrices (RDM) and nonequilibrium Green functions (NEGF). Both can be
described using the formalism of second quantization, which is characterized by the bosonic/fermionic creation

(
ĉ†i
)

and annihilation
(

ĉi
)

operators on the so-called Fock space  . More specifically, the Hilbert space  is induced by a
single-particle Hilbert space, which has an orthonormal basis (𝜓i)i. The creation operator ĉ†i then creates a particle in
the orbital 𝜓i, whereas the annihilation operator ĉi annihilates a particle in said orbital. These operators obey the following
(anti)commutation relations:

[
ĉi, ĉ†j

]

∓
= 𝛿ij,

[
ĉi, ĉj

]
∓ =

[
ĉ†i , ĉ†j

]

∓
= 0, (50)

where the upper (lower) sign corresponds to bosons (fermions).
In this work, we consider a generic Hamiltonian of the following form:

̂H ≔
∑

ij
hijĉ†i ĉj +

1
2
∑

ijkl
wijklĉ†i ĉ†j ĉlĉk, (51)

where hij describes the single-particle contributions due to the kinetic energy and an external potential, and wijkl describes
two-particle interactions. Both contributions can, in general, be time-dependent, for example, to describe time-dependent
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16 of 38 SCHROEDTER and BONITZ

excitations due to lasers or the creation of a correlated initial state from an uncorrelated state by adiabatically switching
on the interaction.

A general quantum many-body system is determined by an ensemble of quantum states
(
Ψ(k)

)

k
which form a

complete orthonormal basis of the N-particle Hilbert space. Further, each of these states describing the microscopic con-
figuration of the system is realized with a certain probability pk, that is, we have pk ≥ 0 and

∑
k pk = 1. Analogously to the

classical distribution function PN , the quantum system can then be described using the N-particle density operator given
by the sum of projections onto the vectors of the basis weighted by the probabilities, that is,

𝜌N ≔
∑

k
pk|Ψ(k)⟩⟨Ψ(k)|.

As its classical analogue, the probability PN , the N-particle density operator contains the full information about the
quantum system and is invariant under the permutation of particles. Further, following from the Schrödinger equation
of the N-particle states, the dynamics of the density operator is determined by the von Neumann equation, the quantum
analogue of the Liouville equation, cf. Equation (3),

iℏ𝜕t𝜌N(t) =
[

̂H(t), 𝜌N(t)
]

,

with initial condition given by the initial states of the underlying quantum statesΨ(k)(t0). It is important to highlight that
it is assumed that the probabilities pk are time-independent. This is justified if, for example, the “bath,” in which the
system is embedded, is significantly larger than the subsystem.

Moreover, given an observable A described by an operator ̂A, its expectation value is given by

⟨̂A⟩ ≔ Tr
[

̂A𝜌N

]
.

In general, however, a description of a quantum system by means of the N-particle density operator is out of reach and,
similar to the classical case, it is possible to instead consider reduced quantities that contain the information of interest.
These are given by the RDMs, defined in analogy to the s-particle distribution function fs, cf. Equation (4), as

F(s)i1 … isj1 … js
(t) ≔ N!

(N − s)!
∑

is+1,… ,iN ,js+1,… ,jN

𝜌i1 … isis+1 … iN j1 … jsjs+1 … jN (t),

where 𝜌 on the r.h.s. denotes the density matrix associated with 𝜌 and the basis (𝜓i)i. Equivalently, the s-particle RDM
can be expressed in the framework of second quantization in terms of the creation and annihilation operators, that is,

F(s)i1 … isj1 … js
(t) =

⟨
ĉ†j1
(t) … ĉ†js

(t)̂cis (t) … ĉi1(t)
⟩
= Tr

[
𝜌c†j1

(t) … ĉ†js
(t)̂cis (t) … ĉi1(t)

]
.

Analogously to the classical case, given an s-particle observable A, its expectation value is expressed via the s-particle
RDM rather than the full N-particle density operator, that is,

⟨̂A⟩ = 1
s!

Tr
[
AF(s)

]
≔

1
s!

∑

i1,… ,is,j1,… ,js

Ai1 … isj1 … js F
(s)
j1 … jsi1 … is

.

The close correspondence to the classical theory can be further highlighted when considering the RDMs in the coordi-
nate representation, i.e., F(s)i1 … isj1 … js

(t) → F(s)(r1, … , rs, r′1, … , r′s, t). Applying the Wigner transform leads to the so-called
Wigner representation.[56] The resulting Wigner functions are very similar to the classical distribution functions as they
are also functions in phase space and play an analogous role in the descritption of the quantum system, A key difference,
however, is that the Wigner functions are only quasi-distribution functions because they can assume negative values. It
can turn out to be useful to consider a generalization of the theory of RDM in the form of NEGF. Here, the central quantity
is given by the s-particle Green function on the Keldysh contour  defined as

G(s)
i1 … isj1 … js

(
z1, … , zs, z′1, … z′s

)
≔

( 1
iℏ

)s⟨


[
ĉi1(z1) … ĉis (zs )̂c†js

(
z′s
)
… ĉ†js

(
z′s
)]⟩

where  denotes the time-ordering operator on the contour. Moreover, we write for the single-particle NEGF simply
G ≔ G(1). The s-particle RDM can thus be considered a special equal-times limit of the s-particle NEGF that we denote as
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SCHROEDTER and BONITZ 17 of 38

lesser component given by

G(s),<
i1 … isj1 … js

(
t1, … , ts, t′1, … , t′s

)
≔

(
± 1

iℏ

)s⟨
ĉ†j1
(t1′ ) … ĉ†js

(
t′s
)

ĉis(ts) … ĉi1(t1)
⟩

G(s),<
i1 … isj1 … js

(t) ≔ G(s),<
i1 … isj1 … js

(t, … , t),

G(s),<
i1 … isj1 … js

(t) =
(
± 1

iℏ

)s
F(s)i1 … isj1 … js

(t).

Analogously, it is possible to define greater components G(s),> by inverting the order of the operators and using a
prefactor of 1∕(iℏ)s instead.

Hence, although reduced density matrices represent can be considered a more immediate generalization of the
classical theory, the extension by means of the contour formalism proves to be particularly useful as it allows for the
systematic derivation of approximations using, for example, Feynman’s diagram approaches. However, many of these
approximations can then in turn be translated to the framework of RDM, for example, using the G1–G2 scheme.[13–15]

It is therefore useful for many theoretical considerations to set the framework of NEGF as a starting point, even when
working within the context of RDM.

The quantum analogue of the classical fluctuations theory can then be constructed by considering the operator
associated with the lesser component of the single-particle Green function and its fluctuations given by2

̂G<

ij (t) ≔ ± 1
iℏ

ĉ†j (t)̂ci(t).

𝛿
̂Gij(t) ≔ ̂G<

ij (t) − G<

ij (t).

Notice that due to the properties of the creation and annihilation operators, cf. (50), fluctuations of the lesser and
greater component coincide, thus justifying not differentiating between the two components in this situation. Further,
we define s-particle fluctuations as correlation functions of single-particle fluctuations 𝛿

̂G

L(s)i1 … isj1 … js
(t1, … , ts) ≔

⟨
𝛿

̂Gi1j1(t1) … 𝛿
̂Gisjs(ts)

⟩
,

L(s)i1 … isj1 … js
(t) ≔ L(s)i1 … isj1 … js

(t, … , t),

where we further denote two-particle fluctuations as L ≔ L(2). Two-particle fluctuations can be considered a special case
of the exchange-correlation (XC) function within the general framework of NEGF defined as

Lijkl
(

z1, z2, z′1, z′2
)
≔ G(2)

ijkl

(
z1, z2, z′1, z′2

)
− Gik

(
z1, z′1

)
Gjl
(

z2, z′2
)

, (52)

which describes all exchange and correlation contributions to the two-particle NEGF. Within the equal-times limit of
NEGF corresponding to RDM, we introduce the correlated part of the two-particle NEGF analogously to the classical
two-particle correlation function gs, cf. Equation (5), via

G(2),<
ijkl (t) ≡ G<

ik(t)G
<

jl (t) ± G<

il (t)G
<

jk(t) + ijkl(t), (53)

where exchange contributions are present that are not included in the classical expression. The mean-field contributions,
that is, the first term on the r.h.s. of Equation (53), correspond to the two-particle RDM of a system that is described
by the superposition of uncorrelated particles. Combining the exchange and correlation contributions on the r.h.s. of
Equation (53) illustrates a picture that resembles the classical case much more closely and leads to another special case
of the XC function, cf. Equation (52). Analogously, it is possible to define all correlated parts of all other s-particle NEGF
on the time diagonal. For the three-particle correlated part, (3), we have the relation

G(3),<
ijklmn(t) = G<

il (t)G
<

jm(t)G
<

kn(t) + G<

imG<

jn(t)G
<

kl(t) + G<

in(t)G
<

jl (t)G
<

km(t)

± G<

im(t)G
<

jl (t)G
<

kn(t) ± G<

in(t)G
<

jm(t)G
<

kl(t) ± G<

il (t)G
<

jn(t)G
<

km(t)

+ G<

il (t)jkmn(t) ± G<

im(t)jkln(t) ± G<

in(t)jkml(t)

2 We define fluctuations of observables A of quantum systems as 𝛿
̂A ≔ ̂A − ⟨̂A⟩.
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18 of 38 SCHROEDTER and BONITZ

+ G<

jm(t)ikln(t) ± G<

jl (t)ikmn(t) ± G<

jn(t)iklm(t)

+ G<

kn(t)ijlm(t) ± G<

kl(t)ijmn(t) ± G<

km(t)ijln(t)

+ (3)ijklmn(t). (54)

However, if we now consider the second and third moment of the lesser component of the single-particle Green
function operator, we find

⟨
̂G<

ik(t)̂G
<

jl (t)
⟩
= G<

ik(t)G
<

jl (t) + Lijkl(t),
⟨

̂G<

il (t)̂G
<

jm(t)̂G
<

kn(t)
⟩
= G<

il (t)G
<

jm(t)G
<

kn(t) + G<

il (t)Ljkmn(t) + G<

jm(t)Likln(t) + G<

kn(t)Lijlm(t) + L(3)ijklmn(t)

which has the same structure as in the classical case, cf Equations (10) and (11), and does not explicitly include any
exchange contributions as in Equations (53) and (54). In this sense, quantum fluctuations show a similar behavior as in
the classical case.

3.2 Properties of quantum fluctuations

A key difference between classical and quantum fluctuations is that the latter do not obey certain exchange symme-
tries, that is, we have Lijkl(t) ≠ Ljilk(t), whereas in the classical case, it holds 𝛾

(
x, x′, t

)
= 𝛾

(
x′, x, t

)
. Instead we find in the

quantum case that

Lijkl(t) − Ljilk(t) = ±
1
iℏ

[
𝛿ilG<

jk(t) − 𝛿jkG<

il (t)
]

.

Similarly, other exchange properties that the NEGF naturally possess, i.e., ijkl(t) = ±jikl(t), are not satisfied by
fluctuations.

Using the properties of the creation and annihilation operators, cf. Equation (50), the following relation holds:

⟨
̂G<

ik(t)̂G
<

jl (t)
⟩
= G(2),<

ijkl (t) ±
1
iℏ

𝛿ilG<

jk(t),

similar to the classical case, cf. Equation (12). However, for the relation between quantum correlations and fluctuations,
we find

Lijkl(t) = ±G>

il (t)G
<

jk(t) + ijkl(t),

which differs from the classical expression, cf. Equation (13). It follows that quantum source fluctuations are defined as

L0
ijkl(t) ≔ ±G>

il (t)G
<

jk(t),

and describe particle-hole pair fluctuations. In the classical limit, G> → 1, and we recover the classical source fluctua-
tions, 𝛾

S.
For three-particle fluctuations and connected to the correlated part (3) by the following relation

L(3)ijklmn(t) = ±G<

jl (t)ikmn(t) ± G<

km(t)ijln(t) + G<

kl(t)ijmn(t)

± G>

im(t)jkln(t) ± G>

jn(t)iklm(t) + G>

in(t)jklm

+ G>

im(t)G
>

jn(t)G
<

kl(t) + G>

in(t)G
<

jl (t)G
<

km(t) + 
(3)
ijklmn(t). (55)

Lastly, it holds for quantum fluctuations that their partial traces vanish like in the classical case, cf. Equation (16):

∑

ik

L(s)i1 … ik … isj1 … ik … js
(t) = 0
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SCHROEDTER and BONITZ 19 of 38

for all k = 1, … , s. Additionally, it is possible to consider other tensor contraction of s-particle fluctuations, which do not
vanish. For example, for two-particle fluctuations, it follows that

∑

k
Likkj(t) =

1
iℏ

NG>

ij (t) −
(

G>G<

)
ij(t).

Furthermore, if the single-particle Hilbert space is finite dimensional, that is, K ≔ dim() < ∞, we have

∑

k
Lkijk(t) =

1
iℏ
(N ± K)G<

ij (t) −
(

G>G<

)
ij(t).

These latter two contractions do not have an immediate classical analogue and constitute important conditions that
approximations have to satisfy in order to enhance stability of time propagation in numerical solutions.

3.3 Dynamics of quantum many-body systems in terms of fluctuations

The EOM for ̂G<(t) directly follows from the Heisenberg equation for the creation and annihilation operators and is given
by3

iℏ𝜕t ̂G<

ij (t) =
[

̂hH
,

̂G<

]

ij
(t), (56)

where we introduced the Hartree Hamiltonian and selfenergy (operator)

̂hH
ij (t) ≔ hij + ̂Σ

H
ij (t),

̂Σ
H
ij (t) ≔ ±iℏ

∑

kl
wikjl ̂G<

lk(t).

Analogously to the classical case, Equation (20), the EOM for the lesser component of the single-particle NEGF in the
equal-times limit is given by

iℏ𝜕tG<

ij (t) =
[
hH

, G<

]
ij(t) +

⟨[
𝛿

̂Σ
H

, 𝛿
̂G
]

ij
(t)
⟩

, (57)

where the last term on the r.h.s. defines the (quantum) collision term, explicitly given by

Iij(t) ≔ ±iℏ
∑

klp
wiklpLplkj(t), (58)

[
I + I†

]
ij(t) ≡

⟨[
𝛿

̂Σ
H

, 𝛿
̂G
]

ij
(t)
⟩

.

The EOM for single-particle fluctuations then immediately follows

iℏ𝜕t𝛿̂Gij(t) =
[

hH
, 𝛿

̂G
]

ij
(t) +

[
𝛿

̂Σ
H

, G<

]

ij
(t) + 𝛿

{[
𝛿

̂Σ
H

, 𝛿
̂G
]

ij

}
(t). (59)

The EOM for 𝛿
̂G can now be used to derive the EOMs for all s-particle fluctuations. For two-particle fluctuations, it

follows

iℏ𝜕tLijkl(t) =
[
h(2),H, L

]
ijkl(t) + 𝜋ijkl(t) + Cijkl(t), (60)

3 We define the commutator of two s-particle quantities A, B as [A, B]i1 … is j1 … js
≔
∑

k1 ,… ,ks

[
Ai1 … isk1 … ks

Bk1 … ksj1 … js
− Bi1 … isk1 … ks

Ak1 … ksj1 … js

]
.
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20 of 38 SCHROEDTER and BONITZ

where we introduced the two-particle Hartree Hamiltonian defined as

h(2),Hijkl (t) ≔ hH
ik(t)𝛿jl + hH

jl (t)𝛿ik

and the (quantum) polarization contribution 𝜋 given by

𝜋ijkl(t) ≔ ±iℏ
∑

pqr

{
Lrjpl(t)

[
wipqrG<

qk(t) − wpqkrG<

iq(t)
]
− Liqkp(t)

[
wpjqrG<

rl(t) − wprqlG<

jr(t)
]}

= −ℏ

2
∑

pqrs
wpqrs

[
Liskq(t)Ljrlp(t) − Lrjpl(t)Lsiqk(t)

]
.

The last term on the r.h.s. of Equation (60) describes the coupling to three-particle fluctuations and is of the form

Cijkl(t) ≔ ±iℏ
∑

pqr

[
wipqrL(3)rqjpkl(t) + wpjqrL(3)iqrkpl(t) − wpqkrL(3)irjpql(t) − wpqrlL(3)ijrkqp(t)

]
. (61)

3.4 Approximations for quantum fluctuations

All approximations of reduced density matrix theory or of the equal-times limit of NEGF can be directly reformulated in
terms of fluctuations as well. In addition, it is possible to construct new approximations that are derived from the classical
theory of fluctuations, thereby extending the arsenal of available many-body approximations. Of particular importance
are those approximations that can be expressed in terms of single-particle fluctuations, 𝛿

̂G, because for them one can
apply the highly efficient stochastic mean-field theory (SMF) without the need to solve the equations of the two-particle
fluctuations, details will be discussed in Section 4.1.

3.4.1 Approximations of moments

Analogous to the classical case, the simplest approximations one can consider are given by the approximations of
moments. For the (quantum) approximation of first moments, it is again assumed all contributions due to fluctuations
are negligible, that is, the EOM for the single-particle Green function is given by

iℏ𝜕tG<

ij (t) =
[
hH

, G<

]
ij(t),

thus recovering the standard (quantum) Vlasov or Hartree equation. As this equation does not include any exchange
effects, it is only applicable if those effects are negligible, for example, for systems that are weakly degenerate. Moreover,
it has to be noted that fluctuations are always present, even for ideal systems as fluctuations are then solely determined by
source fluctuations. In turn, the Hartree–Fock approximation can be recovered by said assumption, that is, L ≈ L0, thus
leading to

iℏ𝜕tG<

ij (t) =
[
hHF

, G<

]
ij(t),

where we introduced the single-particle Hartree–Fock Hamiltonian given by

hHF
ij (t) ≔ hij + ΣHF

ij (t),

ΣHF
ij (t) ≔ ±iℏ

∑

kl
w±

ikjlG
<

lk(t),

where w±
ijkl ≔ wijkl ± wijlk and ΣHF denotes the Hartree–Fock selfenergy.

The (quantum) approximation of second moments is given by neglecting all contributions to the EOM for L due to
three-particle fluctuations, i.e., we have

iℏ𝜕tLijkl(t) =
[
h(2),H, L

]
ijkl(t) + 𝜋ijkl(t).
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SCHROEDTER and BONITZ 21 of 38

Similarly to approximation of first moments, important effects are not properly taken into account as three-particle
fluctuations are generally not negligible as can be seen when considering the relation between L(3) and (3), cf.
Equation (55), by setting all correlation contributions to zero. Then, contributions due to the appearing single-particle
Green functions lead to non-vanishing three-particle fluctuations. Nonetheless, quantum effects are not entirely
neglected as Pauli blocking is partially accounted for within the polarization contribution 𝜋 that includes second-order
Born scattering terms.

At the level of single-particle fluctuations the approximation of second moments follows by neglecting all terms in
the EOM, cf. Equation (59) that are quadratic in 𝛿

̂G, that is, we have

iℏ𝜕t𝛿̂Gij(t) =
[

hH
, 𝛿

̂G
]

ij
(t) +

[
𝛿

̂Σ
H

, G<

]

ij
(t).

Thus, it can be easily seen that only the first two approximations of moments can be expressed at the level of
single-particle fluctuations.

3.4.2 Quantum polarization approximation

The quantum polarization approximation (QPA) is the natural extension of the (classical) polarization approximation, cf.
Section 2.4.2. Analogously to the classical case, here not all contributions due to thee-particle fluctuations are neglected.
Instead, weak coupling is assumed. In this case, two-particle correlations are significantly smaller than two-particle
fluctuations and three-particle correlations are negligible, that is, we have

|ijkl(t)| ≪ |Lijkl(t)|,
|ijkl(t)| ≪ |L0

ijkl(t)|,

|(3)ijklmn(t)| ≈ 0.

Applying this approximation to the term describing the coupling to three-particle fluctuations, cf. Equation (61), by
using the relation between three-particle fluctuations and correlations, leads to the following EOM

iℏ𝜕tLijkl(t) =
[
h(2),HF

, L
]

ijkl(t) + 𝜋

±
ijkl(t), (62)

where h(2),HF denotes the effective two-particle Hartree–Fock Hamiltonian defined as

h(2),HF
ijkl (t) ≔ hHF

ik (t)𝛿jl + hHF
jl (t)𝛿ik,

and 𝜋

± the (anti)symmetric (quantum) polarization contribution given by

𝜋

±
ijkl(t) ≔ ±iℏ

∑

pqr

{
Lrjpl(t)

[
w±

ipqrG
<

qk(t) − w±
pqkrG

<

iq(t)
]
− Liqkp(t)

[
w±

pjqrG
<

rl(t) − w±
prqlG

<

jr(t)
]}

.

Essentially, the polarization approximation leads to the inclusion of further exchange contributions by using the
(anti)symmetrized interaction w± instead of the pair interaction w. In contrast to the Hartree–Fock approximation at the
one-particle level; however, this does not correspond to a description of all exchange effects at the level of two-particle
fluctuations. For this, it would also be necessary to consider a contribution of the form Pijkl(t) ≔ 𝜋

±
ijkl(t) ± 𝜋

±
ijlk(t) instead

of the (anti)symmetric (quantum) polarization contribution.
Additionally, it is also necessary to consider the EOM for source fluctuations that follows from the EOM for the

single-particle Green function, cf. Equation (57), and is given by

iℏ𝜕tL0
ijkl(t) =

[
h(2),H, L0]

ijkl(t) + Rijkl(t),

Rijkl(t) ≔ ±
{

G>

il (t)
[
I + I†

]
jk(t) +

[
I + I†

]
il(t)G

<

jk(t)
}

.
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22 of 38 SCHROEDTER and BONITZ

Applying the QPA to the EOM for source fluctuations leads to

iℏ𝜕tL0,P
ijkl(t) =

[
h(2),HF

, L0,P]
ijkl(t). (63)

Using the EOMs for L and L0,P, cf. Equations (62) and (63), it can then be shown that the QPA is equivalent to the GW
approximation within the G1–G2 scheme with additional exchange contributions included in the weak coupling limit,4

cf. Reference [18].
At the level of single-particle fluctuations, the QPA follows from the approximation 𝛿

̂Gik(t)𝛿̂Gjl(t) −
⟨

𝛿
̂Gik(t)𝛿̂Gjl(t)

⟩
≈

±
[

G>

il (t)𝛿̂Gjk(t) + 𝛿
̂Gil(t)G<

jk(t)
]

.

While the l.h.s. of the equation describes fluctuations of two-particle fluctuations, the r.h.s. can be considered the
equivalent of fluctuations of source fluctuations. Hence, at the level of single-particle fluctuations, the QPA can be con-
sidered the analogue of the Hartree–Fock approximation for G<. Consequently, the EOM for single-particle fluctuations
is given by

iℏ𝜕t𝛿̂Gij(t) =
[

hHF
, 𝛿

̂G
]

ij
(t) +

[
𝛿

̂Σ
HF

, G<

]

ij
(t). (64)

3.4.3 Exchange-correlation function depending on two times

In the following, we will also be interested in dynamic (frequency-dependent) observables. This is achieved as in the
classical case by considering exchange-correlation functions depending on two times. Their equations of motion follow
from Equations (64) and (62),

iℏ𝜕tm Lijkl(t1, t2) =
[
hHF

, L
](m)

ijkl (t1, t2) + 𝜋

(m),±
ijkl (t1, t2),

for m = 1, 2. Due to the symmetry 𝛿
̂Gij(t) = −

[
𝛿

̂Gji(t)
]†

and thus Lijkl(t1, t2) =
[
Llkji(t2, t1)

]∗, it is sufficient to only consider
the EOM for m = 1 as the EOM for m = 2 follows analogously as the contributions obey the symmetries:

[
hHF

, L
](1)

ijkl(t1, t2) = −
{[

hHF
, L
](2)

lkji(t1, t1)
}∗

,

𝜋

(1),±
ijkl (t1, t2) = −

{
𝜋

(2),±
lkji (t2, t1)

}∗
.

The two-time Hartree–Fock and polarization contributions are given by

[
hHF

, L
](1)

ijkl(t1, t2) ≔
∑

p

[
hHF

ip (t1)Lpjkl (t1, t2) − hHF
pk (t1)Lijpl (t1, t2)

]
,

𝜋

(1),±
ijkl (t1, t2) ≔ ±iℏ

∑

pqr
Lrjpl(t1, t2)

[
w±

ipqrG
<

qk(t1) − w±
qpkrG

<

iq(t1)
]

.

Most importantly, the relation of the QPA and the GW approximation extends from the single-time case to the
corresponding two-time version of both approximations.

A two-time formulation turns out to be particularly useful as a variety of observables, that are experimentally acces-
sible, depend on two-time fluctuations such as the response functions and their corresponding structure factors, for
example, the retarded component of the density response function is given by

𝜒

R
ij (t1, t2) ≔ iℏ𝛩(t1 − t2)

⟨[
𝛿

̂Gii(t1), 𝛿
̂Gjj(t2)

]⟩
. (65)

4 These additional exchange contributions corresponds to those arising from the replacement w → w± in the polarization term 𝜋. Thus, equivalence to
the GW approximation can be obtained by considering 𝜋 instead of 𝜋

± in Equation (62).
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SCHROEDTER and BONITZ 23 of 38

4 STOCHASTIC APPROACH TO QUANTUM FLUCTUATIONS

4.1 Stochastic mean-field theory

Within the quantum theory of fluctuations, single-particle fluctuations are operators on a Fock space and, thus, their
EOMs, cf. Equation (59), and even approximations, for example, Equation (64), are rarely solvable. A possibility to
circumvent this issue is given in the form of stochastic mean-field (SMF) theory as developed by Ayik[21] and later
extended by Lacroix and many others, see, References [22,23,57,58]. Here, similar to other semiclassical approaches like
the truncated Wigner approximation (TWA), operators are replaced by random variables, that is, 𝛿

̂Gij(t) → ΔG𝜆

ij(t),
5 and

the quantum-mechanical expectation value by its stochastic semiclassical counterpart, that is, ⟨⋅⟩→ (⋅). More precisely,
this means that is assumed that there exists a probability distribution N , similar to the classical case with its distribu-
tion PN , which describes the statistical properties of the fluctuations in the quantum system. The microstate ΔG𝜆 is then
associated with a random realization of the system. Furthermore, since our considerations are done within the Heisen-
berg picture, the distribution N itself has no time dependence and instead the dynamical properties of the system are
determined by the propagation of the realizations of the ensemble of fluctuations.

In practical application, it is generally necessary to approximate the stochastic expectation value by the arithmetic
mean instead of using the probability distribution N . Then, the superscript “𝜆” denotes a random realization of the
ensemble. Within SMF theory, this ensemble is generated such that it corresponds to the initial state of the quantum sys-
tem. Each realization is then propagated in time using the EOM for single-particle fluctuations, e.g., Equation (59). Here,
however, it has to be underlined that, replacing non-commuting operators with random variables, requires special care,
as random classical variables commute. An attempted solution to this problem is given by replacing only symmetrized
products of operators with random variables, that is,

1
2

[
𝛿

̂Gij(t)𝛿̂Gkl(t) + 𝛿
̂Gkl(t)𝛿̂Gij(t)

]
→ ΔG𝜆

ij(t)ΔG𝜆

kl(t).

Consequently, the ensemble of random realizations is constructed such that all symmetrized moments of the ideal
quantum initial state are correctly reproduced, that is, we have for the first two moments

ΔG𝜆

ij(t0) = 0, (66)

ΔG𝜆

ij(t0)ΔG𝜆

kl(t0) = −
1

2ℏ

2 𝛿il𝛿jk
[
nj(1 ± ni) + ni

(
1 ± nj

)]
, (67)

where ni ≔ F(1)ii (t0). Only considering an ideal initial state does not constitute a restriction of this approach as a correlated
initial state can be generated from an ideal state using the adiabatic switching method.[59] Knowledge of all moments
should, in theory, uniquely determine the probability distribution N describing the initial configuration of the system.
However, this is not the case as it is, in general, impossible for such a probability distribution to exist.[60] This will be
discussed in more detail in Section 4.2.

Within the SMF framework, the dynamics of the quantum system is described in terms of the single-particle Green
function and the ensemble of microstates given by the fluctuations. Then, the following set of equations describes the
evolution of the system:

iℏ𝜕tG<

ij (t) =
[
hH

, G<

]
ij(t) +

[
S + S†

]
ij(t) +

[
𝛥𝛴

H,𝜆

,ΔG𝜆

]
ij(t), (68)

iℏ𝜕tΔG𝜆

ij(t) =
[
hH

,ΔG𝜆

]
ij(t) +

[
𝛥𝛴

H,𝜆

, G<

]
ij(t) +

[
𝛥𝛴

H,𝜆

,ΔG𝜆

]
ij(t) −

[
𝛥𝛴

H,𝜆

,ΔG𝜆

]
ij(t), (69)

where 𝛥𝛴

H,𝜆 denotes the realization of the fluctuations Hartree self-energy 𝛿
̂Σ

H
and S describes a contribution that arises

due to the symmetrization of the collision term, cf. Equation (58), and is given by

Sij(t) ≔
1
2
∑

kl
wkljkG<

il (t). (70)

5 Only replacing the single-particle fluctuations operator with an ensemble of realizations turns out to be sufficient to describe the fluctuations of any
relevant operator since, in second quantization, they can be expressed in terms of single-particle Green functions and fluctuations.
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24 of 38 SCHROEDTER and BONITZ

The dynamics of the single-particle Green function or the single-particle density is determined on the one hand by the
interaction with the mean field of the particles and the ensemble averaged interaction of the mean field of the fluctuations
with themselves. The dynamics of each realization of a microstate of the ensemble is then determined by a combination of
the interaction of the state with the mean field of the particles and the interaction of the mean field of the microstate with
the particles. In addition, there are contributions describing the fluctuations of the interaction between the individual
realization of the fluctuations’ mean field and the fluctuations.

Usually, within SMF theory, instead of considering the set of coupled equations given by Equations (68) and (69),
the SMF version of the EOM for the single-particle Green function operator ̂G<, cf. Equation (56), is used, as the
arising equations are simple mean-field equations that can be propagated independently. Since equations of this kind
are reversible, it follows that, applying the SMF approach in this form preserves the reversibility of the equations of
motion which is similar to the reversibility of the G1–G2 scheme. Furthermore, it has to be mentioned that, although
Equations (68) and (69) provide a closed set of equations, their solution corresponds to the solution of an entire hierar-
chy of equations, similar to the fluctuations hierarchy.[61] This is, however, associated with several obstacles that will be
discussed in more detail in the following section, cf. Section 4.2.

4.2 Probability distributions and sampling

The underlying assumption of SMF theory is the existence of a probability distribution N that can reproduce the initial
quantum state. Hence, it should reproduce all moments of single-particle fluctuations. For aforementioned reasons, only
symmetric moments can be considered. However, the questions remains whether such a distribution function exists. In
principle, knowledge of all moments allows the corresponding probability distribution to be reconstructed. Therefore,
one might assume that, given an initial state described by 𝜌(t0), the associated moments would give rise to a unique
probability distribution. However, this is, in general, not the case. Following the derivation given in Reference [60], we
consider a system of fermions at zero temperature, that is, we have ni ∈ {0, 1}. For simplicity, we set Δn𝜆

ij ± iℏ𝛥G𝜆

ij(t0).

Then, the second moment, cf. Equation (67), implies |||Δn𝜆

ii
|||
2
= 0, and thus,Δn𝜆

ii = 0. Further, it follows from Equation (67)
all matrix entries are uncorrelated.

Let us now consider the third and fourth symmetric moment that are given by

Δn𝜆

ijΔn𝜆

klΔn𝜆

mn = 𝛿il𝛿jm𝛿knΛ(3)jik , (71)

Δn𝜆

ijΔn𝜆

klΔn𝜆

mnΔn𝜆

pq = 𝛿il𝛿kn𝛿qm𝛿jpΛ(4,1)
jikq + 𝛿il𝛿jk𝛿qm𝛿pn3Λ(4,2)

jipq , (72)

where we introduced

𝛬

(3)
ijk

1
3
≔
[
ni
(
1 − 3nj

)(
1 − njnk

)
+ nk(1 − 3ni)

(
1 − ninj

)
+ nj(1 − 3nk)(1 − nink)

]
,

𝛬

(4,1)
ijkl ≔

1
4
[
ni
(
1 − 4nj

)
(1 − 3nk)

(
1 − njnknl

)
+ nk(1 − 4ni)

(
1 − 3nj

)(
1 − ninjnk

)

+ nk(1 − 4nl)(1 − 3ni)
(
1 − ninjnl

)
+ nj(1 − 4nk)(1 − 3nl)(1 − ninknl)

]
,

𝛬

(4,2)
ijkl ≔

1
4
[
nink

(
1 − njnl

)(
1 − nj − nl

)
+ njnk(1 − ninl)(1 − ni − nl)

+ ninl
(
1 − njnk

)(
1 − nj − nk

)
+ njnl(1 − nink)(1 − ni − nk)

]
.

Let 𝒫 ≔ {i|ni = 1} denote the set of occupied states and ℋ
{

i|nj = 0
}

the set of unoccupied states. Then, using the
Kronecker deltas in Equation (71), we have

Δn𝜆

ijΔn𝜆

kiΔn𝜆

jk =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1
3

, if (i, j, k) ∈
(
𝒫 ×ℋ 2) ∪ (ℋ ×𝒫 ×ℋ ) ∪

(
ℋ 2 ×𝒫

)

− 1
3

, if (i, j, k) ∈
(
ℋ ×𝒫 2) ∪ (𝒫 ×ℋ ×𝒫 ) ∪

(
𝒫 2 ×ℋ

)

0, else,

(73)
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SCHROEDTER and BONITZ 25 of 38

that is, the third moment is only nonzero if two of the involved states are either occupied and the other one empty or two
of them are empty and the other one occupied. Further, we have for the fourth moment (again only considering a subset
of indices due to the Kronecker deltas in Equation (72))

Δn𝜆

ijΔn𝜆

jiΔn𝜆

qpΔn𝜆

pq =

{
3
4

, if (i, j, p, q) ∈
(
𝒫 ×ℋ 2 ×𝒫

)
∪ (𝒫 ×ℋ ×𝒫 ×ℋ ) ∪ (𝒫 ↔ℋ )

0, else,

(74)

Δn𝜆

ijΔn𝜆

kiΔn𝜆

qkΔn𝜆

jq =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1
4

, if (i, j, k, q) ∈
(
𝒫 3 ×ℋ

)
∪
(
𝒫 2 ×ℋ ×𝒫

)
∪
(
𝒫 ×ℋ ×𝒫 2) ∪

(
ℋ ×𝒫 3) ∪ (𝒫 ↔ℋ )

− 1
2

, if (i, j, k, q) ∈
(
𝒫 2 ×ℋ 2) ∪ (𝒫 ×ℋ ×𝒫 ×ℋ ) ∪ (𝒫 ↔ℋ ),

−1, if (i, j, k, q) ∈
(
𝒫 ×ℋ 2 ×𝒫

)
∪ (𝒫 ↔ℋ ),

0, else.

(75)
Equations (73)–(75) imply that the entries are correlated. Moreover, these equations also admit nonzero contributions

involvingΔn𝜆

ii, that is, we haveΔn𝜆

ijΔn𝜆

jiΔn𝜆

jj = Λ
(3)
jij ≠ 0 andΔn𝜆

ijΔn𝜆

iiΔn𝜆

jiΔn𝜆

jj = Λ
(4,1)
jiij ≠ 0. Thus, in general, it is not possible

for a probability distribution N to exist that satisfies the given constraints.
As stated before, the set of equations given by Equations (68) and (69) corresponds to a hierarchy of equations

that closely resembles the fluctuations hierarchy, cf. Section 3.3. Although the full hierarchy is being solved within the
framework of the SMF approach, the initial conditions are given by all moments. Hence, due to the nonexistence of a
probability distribution that exactly reproduces all quantum moments, the propagation differs from the exact dynamics
due to deviations in the initial conditions. Within SMF theory, it is therefore of interest to consider suitable probability
distributions that minimize the deviations for higher moments. A different option, however, is given by considering
further approximations within the SMF framework to mitigate the effect of higher moments on the propagation.

4.2.1 Stochastic sampling

The standard approach within SMF theory for the construction of the ensemble is given by stochastic sampling, that is,
random realizations of the initial state are generated according to a known probability distribution. Due to the appearing

Kronecker deltas in Equation (67), the second moment for i = k ≠ j = l vanishes, that is,
(
Δn𝜆

ij

)2
= 0. Thus, in order to

fulfill this condition, it is necessary to consider probability distributions of complex random variables. Further, as only
the first two moments are considered, it is possible to sample a subset of matrix entries of Δn independently as for any
entry Δn𝜆

ij the entry Δn𝜆

ji is given by Δn𝜆

ji =
[
Δn𝜆

ij

]∗
for each random sample. In order to ensure that the arithmetic mean

corresponding to the first moment of fluctuations vanishes, for every sample Δn𝜆

ij a sample −Δn𝜆

ij is generated. Moreover,
corresponding to the second moment of fluctuations, cf. Equation (67), the variance of the each entry is given by

𝜎

2
ij ≔

1
2
[
ni
(
1 ± nj

)
+ nj(1 ± ni)

]
≥ 0.

The most common choice for a probability distribution is given by a complex Gaussian distribution of the following
form:

PN
ij (x, y) ≔ 1

𝜋𝜎

2
ij

exp

(

−
x2 + y2

𝜎

2
ij

)

,

that is, the real and imaginary part of Δnij are sampled independently. Alternatively, it is possible to use a complex
generalization of a two-point distribution, i.e., a four-point distribution, given by

P4P
ij (x, y) ≔ 1

4
{

𝛿(y)
[
𝛿

(
x + 𝜎ij

)
+ 𝛿

(
x − 𝜎ij

)]
+ 𝛿(x)

[
𝛿

(
y + 𝜎ij

)
+ 𝛿

(
y − 𝜎ij

)]}
.

Both distributions reproduce the first and second moments, cf. Equations (66) and (67); however, they fail to
correctly reproduce higher moments. Further, higher moments of the complex two-point distribution deviate less
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26 of 38 SCHROEDTER and BONITZ

from the exact moments compared with the complex Gaussian distribution. There have been extensive tests for the
Lipkin–Meshkov–Glick model within the SMF approach.[60] Here, it was observed what effects the choice of distribu-
tion has on the dynamics of the system, and it has been shown that the complex two-point distribution leads to the best
agreement with the exact solution. Additionally, quasiprobability distributions have been investigated within the context
of the SMF approach and have been shown to further increase the accuracy of the results as it is then possible to further
minimize the error with respect to the higher moments.[57]

Stochastic sampling of the initial state requires a sufficiently large number of samples to guarantee converged results.
Numerical experiments, however, have shown that the number of required does not increase for larger systems and can
thus be chosen constant.6 [18] Consequently, this approach to sampling turns out to particularly efficient for very large
systems. Numerical illustrations will be presented in Section 5.

4.2.2 Deterministic sampling

As the numerical scaling of simulations depends linearly on the number of samples, it is of great interest to develop
other methods that require a small number of samples and, at the same time, guarantee converged results. The idea of
deterministic sampling is to interpret the equations for the different moments as a system of nonlinear equations, that is,

M∑

𝜆=1
Δn𝜆

ij = 0, (76)

M∑

𝜆=1
Δn𝜆

ijΔn𝜆

kl = M𝜎

2
ij𝛿il𝛿jk, (77)

where M is a parameter that has to be chosen such that a solution exists. It is therefore easily seen that this parameter
generally depends on the number of basis states of the single-particle Hilbert space.

Here, we present an algorithm for the solution of this problem that was proposed in Ref. 18 for the special case of elec-
trons at zero temperature, that is, we have n𝜎

i ∈ {0, 1} and 𝜎

𝜎𝜎

′

ij = 1
2

(
1 − 𝛿n𝜎

i n𝜎
′

j

)
. Further, we assume a spin-symmetric

initial state, that is, n↑i = n↓i . Let Np denote the number of particles with spin ↑. Without loss of generality, we have n𝜎

i = 1
for i = 1, … , Np and n𝜎

i = 0 for i = Np + 1, … , N′
b, where N′

b denotes the size of the single-particle basis for one spin
component. Further, we set Nh ≔ N′

b − Np, that is, Nh denotes the number of holes for one spin component in the system.
The solution of the system of nonlinear equations, cf. Equations (76) and (77), can thus be expressed by a set of matrices
of the form

Δn𝜆,𝜎 =

(
0 A𝜆,𝜎

A𝜆,𝜎† 0

)

,

where A𝜆,𝜎 ∈ C
Nh×Np . If we now set M = 8NpNh, a solution can be constructed in the following way. Let

𝜑 ∶ {1, … , Nh} ×
{

1, … , Np
}
→
{

1, … , NpNh
}

be one-to-one. Then, by identifying {1, … , M} ∍ 𝜆 ↔ (𝛼, 𝛽) ∈{
1, … , NpNh

}
× {1, … , 8}, we have a solution of the form

A(𝛼,𝛽),𝜎
ij =

{
i𝛽

√
NpNh, if either (𝛼, 𝛽) ∈ {𝜑(i, j)} × {1, … , 4}, 𝜎 =↑ or (𝛼, 𝛽) ∈ {𝜑(i, j)} × {5, … , 8}, 𝜎 =↓,

0, else.

Here, it is important to highlight that, although the constraints given by first two moments, cf. Equations (66) and
(67), are, by construction, exactly fulfilled, higher moments deviate heavily. More specifically, the n-th moment is of the
order of M(n−2)∕2 for n > 2. Thus, a solution of this form is not useful within the context of the standard SMF approach.
However, as the solution of the system of nonlinear equations given by Equations (76) and (77) does admit multiple
solutions, it is possible to find other solutions that minimize the deviations for higher moments. Further, this approach
can be extended to include moments of higher order or systems with finite temperature or other spin configurations. In

6 Generally, a number of about 104 samples is required.
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SCHROEDTER and BONITZ 27 of 38

the context of approximations within the SMF approach and their applications, however, it is sufficient to consider the
solution presented here.

4.3 Stochastic polarization approximation (SPA)

It is now possible to combine the SMF approach with the approximations in the fluctuation approach. On the one hand,
this has the advantage that a treatment of two-particle approximations at the one-particle level becomes possible; on the
other hand, the neglect of three-particle fluctuations leads to an inaccurate description of higher moments, which signif-
icantly influences the dynamics. In fact, it can be observed here that in the framework of two-particle approximations, all
ensembles reproducing the first two moments are equivalent.[18] Equivalent in the sense that the dynamics of the system
is the same. Therefore, it is no longer necessary to explicitly specify how the initial state was generated. The combination
of SMF theory and QPA leads to the so-called stochastic polarization approximation (SPA).[18] Here, the set of coupled
equations is given by

iℏ𝜕tG<

ij (t) =
[
hH

, G<

]
ij(t) +

[
S + S†

]
ij(t) +

[
𝛥𝛴

H,𝜆

,ΔG𝜆

]
ij(t), (78)

iℏ𝜕tΔG𝜆

ij(t) =
[
hHF

,ΔG𝜆

]
ij(t) +

[
𝛥𝛴

HF,𝜆

, G<

]
ij(t), (79)

where 𝛥𝛴

HF,𝜆 denotes the random realization of the fluctuations Hartree–Fock self-energy 𝛿
̂Σ

HF
.

Comparing the equations of the QPA, cf. Equations (57) and (62), and SPA, cf. Equations (78) and (79), shows that
the scaling of the CPU time is given by 

(
N6

b Nt
)

for QPA and by 
(

NsN4
b Nt
)

for SPA, where Nb denotes the number
of considered basis states of the underlying Hilbert space, Nt the number of time steps and Ns the number of random
realizations. Further, the scaling of the memory consumption is given by 

(
N4

b

)
for QPA and by 

(
NsN2

b

)
for SPA.

This shows that the application of the SMF approach reduces the polynomial scaling with the number of basis states
but introduces a linear dependence on the number of random realizations. This, however, turns out to be a significant
advantage of this approach. Within stochastic sampling, for example, the number of samples can be chosen constant
so that the numerical scaling is given by 

(
N4

b Nt
)

(CPU time) and 
(

N2
b

)
(memory) corresponding to the scaling of

mean-field calculations. As the number of samples has to be chosen to be about 104, this approach to the construction of
the initial state is mostly advantageous for large systems. Given a system of electrons at zero temperature, deterministic
sampling leads to Ns ∼ NpNh. Thus, the overall scaling using this approach is the of the QPA if Np ≈ Nh. For systems with
Np ≪ Nh or Nh ≪ Np, however, we have Ns ≪ N2

b , thus significantly reducing the computational scaling compared with
the QPA.

4.4 Multiple ensembles approach and SPA-ME

Although SMF theory allows to approximately solve operator equations and, thus, significantly reduces the computa-
tional effort, there are some shortcomings associated with replacing quantum-mechanical operators with an ensemble of
realizations. Due to the semiclassical nature of the approach it is, for example, not possible to capture quantum effects
like coherence. Hence, this approach is, by construction, restricted to weakly to moderately coupled systems. Moreover,
as the random realizations commute, whereas this is generally not the case for operators, it is not possible to compute
any observable that depends on the specific ordering of the underlying operators, for example, the retarded component of
the density response function 𝜒

R, cf. Equation (65), where we have 𝜒

R,SMF ≡ 0. This issue can be circumvented by instead
replacing operators with non-commuting quantities. Within the framework of the approximations of the quantum fluc-
tuations approach, this can be done using the so-called multiple ensembles (ME) approach.[26] Here, multiple ensembles
are introduced, that is,

𝛿
̂Gij →

(
ΔG(1),𝜆

ij ,ΔG(2),𝜆
ij

)
,

and products of operators are replaced according to their ordering, that is,

𝛿
̂Gij𝛿̂Gkl → ΔG(1),𝜆

ij ΔG(2),𝜆
kl .
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28 of 38 SCHROEDTER and BONITZ

This, however, directly implies that this approach can only be applied within the framework of any approximation
to the quantum fluctuations hierarchy where the considered equations are either linear or quadratic in the appearing
single-particle fluctuations, that is, it is not possible to apply this procedure to Equation (59).

The two ensembles are then constructed according to

ΔG(1),𝜆
ij (t0) = ΔG(2),𝜆

ij (t0) = 0, (80)

ΔG(1),𝜆
ij (t0)ΔG(2),𝜆

kl (t0) = −
1

ℏ

2 𝛿il𝛿jknj(1 ± ni). (81)

Additionally, as the single-particle fluctuations operator obeys the symmetry 𝛿
̂Gij = −

[
𝛿

̂Gji

]†
, the two ensembles have

to obey an analogous symmetry relation given by

ΔG(1),𝜆
ij = −

[
ΔG(2),𝜆

ji

]∗
.

Combining the ME approach and the SPA leads to the so-called SPA-ME. Here, the EOMs are given by

iℏ𝜕tG<

ij (t) =
[
hH

, G<

]
ij(t) +

[
S + S†

]
ij(t) +

1
2

{[
𝛥𝛴

H,(1),𝜆
,ΔG(2),𝜆

]
ij(t) +

[
𝛥𝛴

H,(2),𝜆
,ΔG(1),𝜆

]
ij(t)
}

, (82)

iℏ𝜕tΔG(m),𝜆
ij (t) =

[
hHF

,ΔG(m),𝜆]
ij(t) +

[
𝛥𝛴

HF,(m),𝜆
, G<

]
ij(t). (83)

Here, Equation (82) is still expressed in a symmetrized form. This is due to the breaking of exchange symmetries
within the polarization approximation that may lead to instabilities in the numerical solution of the equations. How-
ever, these instabilities can be avoided by considering a symmetrized form of the EOM for the single-particle Green
function.

Numerical calculations of the SPA-ME have the same scaling as calculations within the SPA as the underlying
equations, cf. Equations (78), (79), (82), and (83), do not differ in their complexity. Moreover, the same sampling methods
can be used in both approaches. This is straightforward for the random creation of the initial state; also optimized sam-
pling algorithms can be easily adapted to the framework of the ME approach. However, within the SPA-ME, it is possible
to meaningfully define quantities such as the retarded component of the density response function, that is,

𝜒

R,ME
ij (t1, t2) ≔ iℏ𝛩(t1 − t2)

[
ΔG(1),𝜆

ii (t1)ΔG(2),𝜆
jj (t2) − ΔG(1),𝜆

jj (t2)ΔG(2),𝜆
ii (t1)

]
.

In this sense, the SPA-ME constitutes an extension of the standard SPA while, at the same time, not increasing the
numerical cost of simulations. Most importantly, this approach provides access to (spectral) two-particle observables, for
example, 𝜒

R, while only having the structure of a set of mean-field equations. Additionally, it can be applied to describe
systems in equilibrium as well as systems far from it.

5 NUMERICAL ILLUSTRATIONS

The classical fluctuations approach discussed in Section 2 was primarily used to derive kinetic equations for gases and
plasmas, but not for direct numerical solutions for many-particle systems. At the same time, this approach has cer-
tain attractive features for numerical applications. In the following, we will discuss possible computational applications,
thereby focusing on the more general case of quantum systems. Most of the concepts can be applied in, similar form, also
to classical systems.

The quantum fluctuations approach discussed in this paper is completely general and applicable to any correlated
quantum system. The details depend on the chosen single-particle basis (𝜓i)i. Examples of interest would be atoms and
molecules – then one would use a basis of electronic orbitals. Another example are uniform systems such as the warm
dense uniform electron gas, for example,[62] electron–hole plasmas or dense quantum plasmas. A particular easy case to
apply the approach to are lattice systems, as those allow for simple numerical tests of the theory.
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SCHROEDTER and BONITZ 29 of 38

5.1 Lattice systems

Lattice models, such as the Fermi–Hubbard model or PPP model,[63] play an important role for the description of corre-
lated electrons in condensed matter. Moreover, they can be used to model cold atoms in optical lattices. Another key factor
is that an exact description, for example using exact diagonalization, is possible in special cases. Additionally, extensive
data from NEGF and G1–G2 calculations are available to allow for benchmarks.

Within the Fermi–Hubbard model, the second quantization Hamiltonian, cf. Equation (51), simplifies considerably:
the single-particle contribution and the pair interaction take the form

hij → −J𝛿⟨i,j⟩,

w𝜎1𝜎2𝜎

′
1𝜎

′
2

ijkl → U𝛿ij𝛿ik𝛿il𝛿𝜎1𝜎

′
1
𝛿

𝜎2𝜎

′
2

(
1 − 𝛿

𝜎1𝜎2

)
, (84)

where 𝛿⟨i,j⟩ = 1, if the sites i and j are adjacent, and 𝛿⟨i,j⟩ = 0, if they are not. Further, J denotes the hopping parameter
describing hopping between neighboring sites and U denotes the on-site interaction between electrons on the same site.
The Fermi–Hubbard Hamiltonian is then given by

̂HFH = −J
∑

⟨i,j⟩

∑

𝜎∈{↑,↓}
ĉ†i𝜎 ĉj𝜎 + U

∑

i
n̂↑i n̂↓i ,

where n̂𝜎

i ĉ†i𝜎 ĉi𝜎 .
Within the SPA, the set of EOMs, cf. Equations (78) and (79), take the form

iℏ𝜕tG<,𝜎

ij (t) =
[
h(1),𝜎 , G<,𝜎

]
ij(t) +

[
I + I†

]
𝜎

ij(t),

iℏ𝜕tΔG𝜆,𝜎

ij (t) =
[
h(1),𝜎 ,ΔG𝜆,𝜎

]
ij(t) +

[
𝛥𝛴

𝜆,𝜎

, G<,𝜎

]
ij(t),

where, due to the form of the pair interaction, cf. Equation (84), exchange contributions to the Hartree–Fock Hamiltonian
and self-energy vanish, that is, we have

h(1),𝜎ij (t) ≔ hH,𝜎

ij (t) ≡ hHF,𝜎

ij (t) = −J𝛿⟨i,j⟩ − iℏU𝛿ijG<,𝜎

ii (t),

𝛥𝛴

𝜆,𝜎

ij (t) ≔ 𝛥𝛴

H,𝜆,𝜎

ij (t) ≡ 𝛥𝛴

HF,𝜆,𝜎

ij (t) = −iℏU𝛿ijΔG𝜆,𝜎

,

where 𝜎 =↑ (↓) implies 𝜎 =↓ (↑). Further, the collision term is given by

I𝜎

ij (t) = −iℏU ̄ΔG𝜆,𝜎

ii (t)ΔG𝜆,𝜎

ij (t).

Within the Hubbard model, the symmetrization contributions, cf. Equation (70), vanish. Further, the initial state of
the system is (in the basis of natural orbitals) chosen such that

G<,𝜎

ij (t0) = −
1
iℏ

𝛿ijn𝜎

i ,

ΔG𝜆,𝜎

ij (t0) = 0,

ΔG𝜆,𝜎

ij (t0)ΔG𝜆,𝜎
′

kl (t0) = −
1

2ℏ

2 𝛿il𝛿jk𝛿
𝜎𝜎

′

(
1 − 𝛿n𝜎

i n𝜎
′

j

)
.

For the SPA-ME, we instead consider the corresponding expressions to Equations (80) and (81). Based on the system’s
configuration, a transformation is necessary from the basis of natural orbitals to the Hubbard basis. Furthermore, a non-
trivial ground state is generated using the so-called “adiabatic switching method.”[11] Here, the on-site interaction U is
replaced by a time-dependent interaction, U(t), which is chosen such that U(t) increases monotonically and sufficiently
slowly and satisfies U(ts) = 0 and U(t) = U for t ≥ t0, where ts denotes the time at which the simulations start with an
uncorrelated ideal ground state.

In the following, we consider one-dimensional Hubbard chains with periodic conditions (PBC). In particular, we
consider systems in the ground state as well as system after an excitation given by a so-called “confinment quench.”[11]
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30 of 38 SCHROEDTER and BONITZ

F I G U R E 1 Comparison of the density on the first site for different sampling methods within the SPA with the QPA for a half-filled
six-site chain at U = 0.1J and U = 1.0J following a confinement quench with the left-most three sites fully occupied. The uncorrelated initial
states for the SPA calculations were generated using deterministic (“det”) and stochastic sampling. For the latter, complex four-point (“4P”)
and Gaussian (“G”) distributions with 104 random realizations for each spin configuration were used. Deterministic sampling used 36
samples for each spin component. (a) and (b) The density on the first site for U = 0.1J and U = 1.0J, respectively. (c) and (d) The relative
deviation of the sampling approaches to the results from the QPA, which is given by 𝜀rel(t) ≔ |1 − nSPA

1 (t)∕nQPA
1 (t)|.

Here, the particles are confined to a set of connected sites so that these are fully occupied (given an even number of
particles), while the remaining are empty. At t0, the confinement is lifted, leading to a diffusion-type process in the
system.

Here, we extend the results presented in References [17, 18, 26, 64] and first discuss different sampling methods in
Section 5.2. In particular, we consider results for the density on the first site given by

n1(t) = −iℏ
[
G<,↑

11 (t) + G<,↓
11 (t)

]
,

following a confinement quench and compare SPA-data using different sampling methods (deterministic sampling and
stochastic sampling with Gaussian and four-point distributions) with results from the QPA for systems of different size
and with varying on-site interaction strength. This is followed by a comparison of the SPA with the nonequilibrium
GW approximation within the G1–G2 scheme and the RPA for a system in the ground state in Section 5.3. More specif-
ically, we again consider nonequilibrium systems following a confinement quench and discuss results for the density,
cf. Section 5.3.1 and, furthermore, test the SPA-ME for systems in the ground state, cf. Section 5.3.2, and nonequilib-
rium systems, cf. Section 5.3.3. For this, we consider the density response function, cf. Equation (65) [we additionally
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SCHROEDTER and BONITZ 31 of 38

F I G U R E 2 Same as Figure 1, but for a half-filled 10-site chain.

sum over all spin configurations, that is, 𝜒

R
ij

(
t, t′
)
=
∑

𝜎𝜎
′ 𝜒

R,𝜎𝜎

′

ij

(
t, t′
)
] and the (ground-state) dynamic structure factor

given by

S(q, 𝜔) = −4Im
[
𝜒

R(q, 𝜔)
]
,

where the Fourier-transformed density response function 𝜒

R(q, 𝜔) follows from identifying the lattice site i with the posi-
tion xi ≔ ia0, where a0 denotes the characteristic distance between two lattice sites, meaning the relative position is given
by rij ≔ (i − j)a0. Additionally, as we consider Fourier transforms over a finite time length, we introduce an additional
factor of e−𝜂t to mitigate some of the effects of not integrating over the real numbers. For information about the imple-
mentation of the (two-time) QPA and GW approximation we refer to Reference 64 and for the G1–G2 scheme we refer to
References [13, 14].

5.2 Comparison of sampling methods

As we discussed in Section 4.2, the standard SMF approach relies heavily on the appropriate construction of the quantum
initial state. However, it is impossible to exactly solve this problem within the framework of the standard approach and,
thus, one of the main tasks becomes finding the best approximate solution. It is therefore of great interest to analyze
the effects of combining SMF theory with the approximations within the quantum fluctuations approach to see whether
it is possible to mitigate some of the effects of semi-classically generating an initial state and whether it is possible to
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32 of 38 SCHROEDTER and BONITZ

F I G U R E 3 Evolution of the density on the first site of a half-filled 10-site Hubbard chain at U = 0.1J (a), U = 0.5J (b) and U = 1.0J (c)
following a confinement quench. In the uncorrelated initial state, the left-most five sites are fully occupied, whereas the remaining are empty.
The SPA using deterministic sampling is compared with the GW approximation within the G1–G2 scheme.

adequately solve operator equations, such as Equation (64), using the SMF approach. In 1, we first consider a half-filled
system with six sites following a confinement quench. For U = 0.1J, we see that there are only minor deviations of the
SPA to the QPA for all sampling methods. While the relative deviation for stochastic sampling remains within 10−3 to 10−1

in panel (c), the relative deviation for deterministic sampling is below 10−3. Both sampling approaches, however, do not
show a significant increase of deviations for longer times. For stronger coupling, that is, U = 1.0J, we find that deviations
between the QPA and the SPA increase more strongly compared with U = 0.1J and visible differences can be seen in (b)
for the stochastic sampling approaches when directly considering the density n1. Relative deviations, shown in panel (d),
increase in this case up to 10−1, while, for deterministic sampling, deviations remain smaller (∼10−2).

For a larger system with 10 sites, Figure 2 shows that deviations are smaller for U = 0.1J and U = 1.0J compared
with the six-site chain at the respective coupling strengths. At U = 0.1J, we see in panel (c) that the results from the SPA
using stochastic sampling are ∼ 10−3 for almost all times, whereas the results obtained using deterministic sampling are
∼ 10−4 in that range. For stronger on-site interaction strength, we see in panels (b) and (d) that there are again more
significant deviations compared with the former case, however, with respect to the smaller system, we find that deviations
for stochastic sampling are ∼ 10−2 while they are only ≲ 10−3 for deterministic sampling.

These results imply that the SPA and QPA are equivalent under the condition that the first two moments of the initial
state are exactly reproduced. In particular, this shows that all probability distributions with the correct first two moments
are equivalent (in the sense of leading to the same dynamics of the system). Moreover, the dynamics of a system given
randomly generated realizations of the initial state converges to the dynamics of a system with the exactly reproduced
initial state (within the setting of the QPA). This convergence, however, depends on the system size and the coupling
strength, that is, stronger coupling makes the dynamics more sensitive to deviations from the correct initial state, whereas
the rate of convergence improves for larger systems. This is further investigated in Reference [18] for larger systems. For
this reason, it is possible to choose a sufficiently large number of samples for the ensemble, which is independent of the
system size. In this case, SPA calculations have the same numerical scaling as simple mean-field calculations while still
corresponding to the QPA, thus making this approach perfectly suited for the description of large quantum systems that
are weakly coupled.

Furthermore, these results also illustrate that, although the standard SMF approach is only able to approximately
solve the operator equation given by Equation (56), that is, the full N-body problem, the SMF approach combined with the
quantum polarization approximation allows for an (almost) exact solution of the operator equation given by Equation (64).
Although applying the QPA to the fluctuations hierarchy itself constitutes an attempt to approximately solve the N-body
problem, this application of SMF theory can be considered more advantageous compared with the standard approach
because it eliminates the dependence on reproducing all moments of the initial state while retaining the favorable aspects
of SMF calculations in terms of numerical scaling.
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5.3 Comparison of approximations

As was mentioned in Section 3.4.2, the QPA is closely related to the GW approximation within the G1–G2 scheme
and is, in particular, equivalent to the GW approximation with additional exchange contributions in the weak cou-
pling limit. In the following, we will analyze this relation in more detail by comparing results obtained from the
SPA using deterministic sampling to GW results within the G1–G2 scheme. First, we consider the density dynam-
ics following a confinement quench. Then, we compare ground-state results for the dynamic structure for the
SPA-ME and the RPA and nonequilibrium results for the density response function using the QPA, SPA-ME, and
GW approximation.

5.3.1 Nonequilibrium density following a confinement quench

Figure 3 shows the density dynamics of a half-filled chain with 10 sites following a confinement quench at U∕J =
0.1,0.5,1.0. For U = 0.1J, we see in panel (a) that there is very good agreement between the SPA and GW approximation.
We see that for times t ≲ 40ℏ∕J, there are almost no visible deviations between the two approximations. Only for later
times, differences between the two approximations become more apparent. However, it is important to note that these dif-
ferences are mainly limited to the amplitudes of the oscillations, while their frequencies still agree very well. At U = 0.5J,
shown in panel (b), the SPA and GW approximation agree very well for times t ≲ 25ℏ∕J. Then, for times until t ∼ 60ℏ∕J,
there is still good agreement between the two approximations. However, after this point, the agreement is mostly of qual-
itative nature. Here, we see that, similar to the case of U = 0.1J, the SPA tends to overestimate the amplitude of the
oscillations compared with the GW approximation. Additionally, we observe that the frequencies are also significantly
larger for the SPA than for the GW approximation. The same behavior can be seen in panel (c) for the system at U = 1.0J.
Here, we find that there is very good agreement between the SPA and the GW approximation up to a time t ∼ 20ℏ∕J.
After this point, there is only qualitative agreement between the two approximations. However, as both approximations
are based on the assumption of weak coupling, neither of them are applicable for a nonequilibrium system at this cou-
pling strength. This is also illustrated in Reference 18 for a system with eight sites, where it is possible to exactly solve the
equations of motion using exact diagonalization. There it can be seen that both fail to accurately reproduce the density
dynamics following a confinement quench.

The extended analysis of the relation between the SPA and GW approximation, done here and in Reference [18],
shows that the two approximations can be considered equivalent in the weak coupling limit. However, a key difference
between the two approximations is given by their possible implementation and numerical scaling. The GW approxima-
tion has, within the G1–G2 scheme,[14] the same numerical scaling as the QPA, that is, 

(
N6

b Nt
)

for the CPU time and

(

N4
b

)
for the memory consumption (for a general basis). On the other hand, the SPA has a scaling given by 

(
NsN4

b Nt
)

and 
(

NsN2
b

)
for CPU time and memory consumption, respectively. As the number of samples Ns can be chosen con-

stant, the SPA effectively allows for calculations at the level of the GW approximation while having the numerical scaling
of simple mean-field equations.

5.3.2 Ground-state dynamic structure factor

Despite the significant advantages the SPA provides, it still suffers from a defect inherent to SMF theory: the inability
to compute two-particle observables depending on the ordering of the underlying operators. The proposed solution to
this problem in the form of the multiple ensembles approach has the advantage that it preserves all the advantages of
the SPA. However, from a theoretical point of view, it is not obvious why this approach should lead to any meaningful
results. To demonstrate the validity of this approach and to further extend the results presented in Reference [64], we
first consider ground-state results for the dynamic structure factor of a half-filled fifty-site chain for the SPA-ME and
RPA. Here we use a damping constant of 𝜂 = 0.2J∕ℏ for the exponential damping factor e−𝜂t multiplied with the density
response function 𝜒

R(t) for the SPA-ME. The same damping constant is used for the RPA expression for dynamic structure
factor. Figure 4 shows the ground-state dynamic structure factor for a half-filled chain with fifty sites at different coupling
strengths. Here, we see that the SPA-ME shows very good agreement with the RPA for weak coupling. Only for U = 2.0J
do deviations become visible. For q = 2𝜋∕(5a0), we see that the main peak is located at 𝜔 ≈ 2.5J∕ℏ with S ≈ 1.2a.u. for the
SPA-ME, whereas it is located at 𝜔 ≈ 2.6J∕ℏ for the RPA also with S ≈ 1.2a.u.. Similarly, we find for q = 4𝜋∕(5a0) that the
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34 of 38 SCHROEDTER and BONITZ

F I G U R E 4 Dynamic structure factor of a half-filled fifty-site chain for different on-site interaction strengths at q = 2𝜋∕(5a0) and
q = 4𝜋∕(5a0) using SPA-ME and RPA. A damping constant of 𝜂 = 0.2J∕ℏ was used.

main peak for the SPA-ME is located at 𝜔 ≈ 4.0J∕ℏ with S ≈ 1.6a.u. while it is shifted to higher frequencies for the RPA
(𝜔 ≈ 4.3J∕ℏ, S ≈ 1.7a.u.). Overall, we find that the main peaks shift for both wave numbers q to higher frequencies with
increasing coupling strength. For q = 4𝜋∕(5a0), we see that the main peak is located at 𝜔 ≈ 3.9J∕ℏ with S ≈ 1.0a.u. for the
noninteracting system and at 𝜔 ≈ 4J∕ℏ with S ≈ 1.2a.u. and 𝜔 ≈ 4J∕ℏ with S ≈ 1.4a.u.. Further, we find for q = 2𝜋∕(5a0)
that the main peaks are located at 𝜔 ≈ 2.2J∕ℏ with S ≈ 1.1a.u. for the noninteracting system at 𝜔 ≈ 2.35J∕ℏ for U = 0.5J
and 𝜔 ≈ 2.4J∕ℏ for U = 1.0J both with S ≈ 1.2a.u..

Due to the finite size of the system, instead of a single peak for each wave number like for the infinite chain, the
results for the dynamic structure factor show multiple peaks and a superposition of these leads to the main peaks. We
see that for q = 2𝜋∕(5a0) these peaks are positioned so that only a single peak is visible, whereas for q = 4𝜋∕(5a0), these
peaks are clearly distinguishable. Further, it is shown that for increasing coupling strength these peaks become less pro-
nounced, that is, for the noninteracting system, we find that the peaks have a height of S ≈ 0.5a.u., whereas for U = 2.0J,
the peaks are located at S ≈ 0.25a.u..

An important factor that leads to the visible differences between the SPA-ME and RPA results for moderate coupling
is due to the different levels of self-consistency of both approximations. While the SPA-ME considers correlated Green
functions, ideal Green functions are considered for the RPA. The excellent agreement between the two approximations for
weak coupling, however, shows that the multiple ensembles approach allows for the calculation of spectral two-particle
observables like response functions and their dynamic structure factors while preserving the equivalence of the QPA and
the GW approximation/RPA. A key difference between the two methods, however, is that the SPA-ME is not restricted to
the ground state and can also be applied to any nonequilibrium scenario.

5.3.3 Nonequilibrium density response following a confinement quench

One of the most important aspects of the SPA is its favorable numerical scaling. Extending the SPA by means of the
multiple ensembles approach preserves this aspect and allows for the calculation of nonequilibrium spectral two-particle
observables from single-time mean-field equations. To demonstrate that the applicability of the SPA-ME extends to
nonequilibrium scenarios and is not restricted to the ground state, we again consider a half-filled 10-site chain following a
confinement quench and compare the SPA-ME to the two-time QPA and GW approximation. Figure 5 shows the density
response function for the chain at U = 0.1J and U = 0.5J. For U = 0.1J, we see excellent agreement of the SPA-ME and the
QPA. However, for later times, that is, t ≳ 80ℏ∕J for all t′, the amplitudes of the oscillations are slightly larger for the SPA
compared with the QPA. Nonetheless, the frequencies perfectly agree. This is also seen when considering the GW approx-
imation compared with the polarization approximations. While for t′ = 5ℏ∕J, shown in panel (a), the amplitudes of the
oscillations are larger for times 60ℏ∕J ≲ t ≲ 85ℏ∕J, for all other times t and t′, the amplitudes for the GW are generally
smaller than for the polarization approximations. Nonetheless, we seen in panels (a)–(c) that there is very good agreement
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SCHROEDTER and BONITZ 35 of 38

F I G U R E 5 Retarded component of the density response function for a half-filled 10-site Hubbard chain at U∕J = 0.1,0.5 (rows),
following a confinement quench, for fixed t′J∕ℏ = 5,25,50 (columns). The initial state was uncorrelated and with the five left-most sites fully
occupied. The results for the QPA and SPA-ME are compared with data from the GW approximation.

between the approximations for almost all times. At stronger coupling, we see that deviations between the three approx-
imations increase. While for t′ = 5ℏ∕J, shown in panel (d), the agreement between the polarization approximations is
very good for all times, we see deviations arise compared with the GW approximation for times t ≳ 40ℏ∕J. However, we
again find that the frequencies agree very well and only deviations for the amplitudes of the oscillations are noticeable.
For t′ = 25ℏ∕J, shown in panel (e), there is mostly qualitative agreement of the GW approximation and the polarization
approximations. In panel (f), we see for t′ = 50ℏ∕J that the agreement improves compared with the results shown in
panel (e).

These results illustrate the capability of the SPA-ME to calculate dynamic response functions for systems far from
equilibrium. In particular, they show that the SPA-ME and QPA can be considered equivalent. Further, it is important
to highlight that the deviations between the SPA-ME and QPA that are visible for stronger coupling are only observable
for smaller systems, i.e. they are mainly caused by finite size effects. For a system with thirty sites following a confine-
ment quench, the SPA-ME and QPA perfectly agree for stronger coupling.[64] Moreover, these results show that the close
correspondence between the QPA and the GW also extends to the two-time case. Here, however, spectral two-particle
observables, like the density response function, are much more sensitive to correlations in the system (we have 𝜒 ∼ L),
so that deviations are more pronounced between the approximations compared with observables that depend on the
time-diagonal single-particle Green function, for example, the density n. Overall, we find that the SPA-ME provides easy
and cost-effective access to spectral two-particle observables for nonequilibrium systems while retaining its close relation
to the nonequilibrium GW approximation.
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6 CONCLUSIONS AND OUTLOOK

In this article, which was devoted to the 100th birthday of Yuri L. Klimontovich, we gave a brief summary of his classi-
cal fluctuations approach which is based on the microscopic phase space density N(x, t) and its fluctuations. There is a
one to one correspondence between correlation functions of fluctuations and pair and triple correlations, i.e., between
the hierarchy of equations for fluctuations and the BBGKY-hierarchy. This allows one to identify the approximations of
the fluctuations approach that lead to other known collision integrals.[42] As an important application of the fluctuations
approach, we demonstrated how the derivation of collision integrals of kinetic equations can be straightforwardly per-
formed which was illustrated on the example of the Balescu-Lenard integral, in Section 2.5.1. We also discussed limitations
and extensions of the fluctuations approach. In particular, we discussed the quantum generalization of the Balescu-Lenard
equation and how to extend it to short-time processes, cf. Section 2.5.3.

The main part of this article was devoted to the extension of the fluctuations approach to quantum systems. In
Section 3 we introduced the theoretical basis that builds on fluctuations of nonequilibrium Green functions opera-
tors, 𝛿

̂G, that is, field operator products, and introduced the correlation functions of fluctuations. The central role
is being played by the exchange-correlation function L, that is, the exchange and correlation contributions to the
two-particle NEGF. As in the classical case, this function contains induced fluctuations (due to correlations, ) and
spontaneous fluctuations, L0, which in quantum systems have the form of particle-hole pair excitations and take
over the role of the classical source fluctuation, 𝛿NS. We then turned to the equations of motion for the fluctuations
and discussed important approximations for decoupling of the resulting hierarchy. The most important approxima-
tion was shown to be the quantum polarization approximation (QPA)—coupled equations for the single-particle
Green function G, Equation (57), and the two-particle fluctuation L, Equation (62). On the one hand, it constitutes
the quantum generalization of the classical polarization approximation (that leads to the Balescu-Lenard equation,
Section 2.5.1) and is equivalent to an important approximation of quantum many-body physics—the GW approxi-
mation. On the other hand, the QPA equation for L has the interesting property that it can be re-expressed via an
equation of motion for the single-particle fluctuation, 𝛿

̂G, Equation (64). The existence of this equation was the basis
for eliminating two-particle quantities from the numerical propagation scheme the memory consumption of which
constitutes the main bottleneck in the G1–G2 scheme.[17] Instead, we developed a semiclassical stochastic approach
to sample random realizations of the single-particle quantity, 𝛿

̂G → ΔG𝜆, which lead to the stochastic polarization
approximation (SPA).

The ideas of this stochastic approach were outlined in Section 4. There we discussed the properties of the associated
random process and its moments and various concepts on how to sample realizations of non-commuting operators via the
extension of the scheme to two independent ensembles (“multiple ensembles approach.” ME, which was first introduced
in Reference [26]). We compared different sampling schemes and demonstrated that they agree very well with each other
if they correctly reproduce the first two moments. An important application of the ME approach was the computation of
the dynamic (frequency-dependent) density response function, 𝜒

R(t, t′
)
, and the dynamic structure factor S(q, 𝜔), which

requires the computation of two-time correlation functions, involving products of 𝛿
̂G taken at different times. These are

quantities that are not available in the time local G1–G2 scheme. In contrast, the quantum fluctuations approach allows
for a computation of these and similar observables not only in equilibrium but also in nonequilibrium, where the time
dependence is not only given by the difference t1 − t2, but involves also the center of mass time that reflects the dynamics
of single-particle properties. Finally, the concept of the quantum fluctuations approach and its stochastic realization were
numerically illustrated for lattice models, in Section 5. As a generic nonequilibrium excitation scenario, we considered
a confinement quench to which the system (a Hubbard chain with 10 … 50 lattice sites) responds with spatial diffusion
that is strongly affected by the interaction strength.[11,65] The tests demonstrated that the quantum fluctuations approach
and its stochastic implementation are indeed equivalent and also agree with the GW approximation within the G1–G2
scheme within their applicability range, that is, for weak coupling. This provides strong support for the validity of the
present quantum fluctuations approach.

Due to its advantageous scaling with respect to CPU time and memory, we expect that our quantum fluctuations
approach can be efficiently applied to large lattice systems in nonequilibrium that contain hundreds of sites. Moreover,
a promising application is to spatially uniform systems for which two-particle quantities require very large computer
memory which currently limits the G1–G2 scheme to one-dimensional models.[17,66] This includes the uniform electron
gas, electron–hole plasmas and dense quantum plasmas. Further, it will be of interest to compute additional quantities
such as spin response functions or the momentum distribution and to compare with benchmarks, such as quantum
Monte Carlo results.[67] An important question will be to find approximations that go beyond the applicability limits of
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SCHROEDTER and BONITZ 37 of 38

the QPA and allow one to access strong coupling situations. Finally, it will be interesting to compare the present quantum
fluctuations approach to other stochastic schemes such as the truncated Wigner approximation[25] or stochastic density
functional theory (sDFT).[68]
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