Physics and applications of dusty plasmas

Physics and applications of dusty plasmas: The perspectives 2023

1) Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
2) GREMI UMR 7344 CNRS & Université d’Orléans, 14 Rue d’Issoudun, 45067 Orleans Cedex 2, France
3) Institute of Experimental and Applied Physics, University of Kiel, Leibnitzstr. 19, 24098 Kiel, Germany
4) Institute for Theoretical Physics and Astrophysics. Kiel University, Leibnitzstrasse 15, 24098 Kiel, Germany
5) Department of Mechanical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
6) Physics and Engineering Physics Department, University of Saskatchewan, Saskatoon, SK S7N 5E2 Canada
7) CNRS, Aix-Marseille University, P5M UMR 7345, 13397 Marseille, France
8) T-5 Applied Mathematics and Plasma Physics, Los Alamos National Laboratory, Mail stop: K717, 87545 Los Alamos, NM, USA
9) Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
10) Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA
11) Kiel Nano, Surface and Interface Science KINSIS, University of Kiel, Leibnitzstr. 19, 24098 Kiel, Germany
12) Institute for Solid State Physics and Optics,Wigner Research Centre for Physics, 49, H-1525 Budapest, Hungary
13) Department of Physics, and Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA
14) Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany
15) Physics Department, Auburn University, Auburn, Alabama 36849, USA
16) University California San Diego, La Jolla, USA
17) UiT the Arctic University of Norway, Department of Physics and Technology, PO Box 6050 Langenes, N-9037, Tromsø, Norway
18) School of Engineering, Ulster University, BC-04-303 2-24 York Street, Belfast, UK
19) Center for Astrophysics, Space Physics, and Engineering Research, Baylor University, Waco, Texas 76798-7310, USA
20) Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), D-53147 Cologne, Germany
21) Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
22) Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
23) Department of Energy, Environmental and Chemical Engineering Institute for Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, MO 63130 USA
24) ASML Netherlands B.V., 5504 DR, Veldhoven, The Netherlands

(*Electronic mail: j.beckers@tue.nl)

(Dated: 20 October 2023)

Abstract

Dusty plasmas are electrically quasi-neutral media that, along with electrons, ions, neutral gas, radiation and electric and/or magnetic fields, also contain solid or liquid particles with sizes ranging from a few nanometers to a few micrometers. These media can be found in many natural environments as well as in various laboratory setups and industrial applications. As a separate branch of plasma physics, the field of dusty plasma physics was born in the beginning of 1990-s at the intersection of the interests of the communities investigating astrophysical and technological plasmas. An additional boost to the development of the field was given by the discovery of plasma crystals leading to a series of microgravity experiments of which the purpose was to investigate generic phenomena in condensed matter physics using strongly coupled complex (dusty) plasmas as model systems. Lately, the field has gained an increasing amount...
of attention due to its inevitable connection to the development of novel applications ranging from the synthesis of functional nanoparticles to nuclear fusion and from particle sensing and diagnostics to nano-contamination control. The purpose of the present perspectives paper is to identify promising new developments and research directions for the field. As such, dusty plasmas are considered in their entire variety: From classical low-pressure noble-gas dusty discharges to atmospheric pressure plasmas with aerosols and from rarefied astrophysical plasmas to dense plasmas in nuclear fusion devices. Both fundamental and application aspects are covered.

CONTENTS

Introduction (J. Beckers and M. Y. Pustylnik) 3

I. Theory of basic processes: charging, heating, forces (G. L. Delzanno, P. Toliason) 4
 A. Current status 4
 B. Perspectives 5

II. Modelling of dusty gas discharges (L. S. Matthews, P. Hartmann) 6
 A. Current status 6
 B. Perspectives 7

III. Diagnostics of dusty gas discharges (J. Berndt, F. Greiner) 8
 A. Current status 8
 B. Perspectives 9

IV. Voids and instabilities in dusty gas discharges (M. Y. Pustylnik, M. Mikikian) 10
 A. Current status 10
 B. Perspectives 11

V. (complex) Dusty plasmas as model systems (R. Gopalakrishnan, L. Couëdel, M. Bonitz) 12
 A. Current status 12
 B. Perspectives 13

VI. Growth of functional nanoparticles (U. Kortshagen, E. Kovačević, E. J. Thimsen) 14
 A. Current status 14
 B. Perspectives 15

VII. Dust in fusion devices (S. Ratynskaia, S. J. Krasheninnikov) 16
 A. Current status 16
 B. Perspectives 17

VIII. Microgravity complex plasma research (H. M. Thomas, U. Konopka, C. A. Knapek) 18
 A. Current status 18
 B. Perspectives 18

IX. Two-dimensional complex plasmas (V. Nosenko, Y. Feng) 19
 A. Current status 20

X. Atmospheric pressure plasmas with aerosols (P. J. Bruggeman, D. Mariotti, R. M. Sankaran) 21
 A. Current status 21
 B. Perspectives 22

XI. Magnetized dusty plasmas (E. Thomas, A. Melzer, E. G. Kostadinova) 23
 A. Current status 23
 B. Perspectives 24

XII. Space dusty plasmas (M. Horanyi, I. Mann) 25
 A. Current status 26
 B. Perspectives 26

XIII. Nano-contamination control (J. Beckers, M. van de Kerkhof) 27
 A. Current status 27
 B. Perspectives 29

XIV. Non-electric manipulation of particles (H. Kersten, V. Schneider, D. Block) 29
 A. Current status 30
 B. Perspectives 30

Acknowledgements 31

Bibliography 32

*Corresponding author
Physics and applications of dusty plasmas

INTRODUCTION (J.BECKERS AND M.Y. PUSTYLNIK)

With this Perspectives paper, the dusty plasma community for the first time identifies promising future directions for its development. It was prepared by 34 leading experts in the field, representing 10 countries. The intention of this paper is to highlight the current state-of-the-art and challenges in the field of dusty plasma physics and its technological applications, thereby serving as a guideline to colleagues in the field and fields connected to it. Moreover, the perspectives discussed may give direction to policymakers and (inter)-national funding agencies in terms of allocating resources. The paper consists of 14 topical sections. Each of them is co-authored by two to three experts who present their personal view on the state-of-the-art of the topic as well as on its perspectives. The authors are listed in the alphabetic order.

Dusty plasmas are electrically quasi-neutral media that, along with electrons, ions, neutral gas, radiation and electric and/or magnetic fields, also contain solid or liquid particles with sizes ranging from a few nanometers to a few micrometers. Once immersed in an ionized medium, dust particles unavoidably get charged due to incoming fluxes of electrons and ions on their surfaces. Therefore, the charge (as well as the surface temperature) of the dust is self-consistently coupled not only to electron and ion temperatures and densities, but also to parameters such as collisionality, magnetization, dust density, dust shape and surface conditions.

Under laboratory and microgravity conditions, dusty plasmas are usually investigated in low-pressure gas discharges in which the dust particles are either grown by chemical reactions or externally injected. The presence of dust in a plasma leads not only to quantitative changes of plasma parameters, but also to the appearance of new dust-induced phenomena like void formation and low-frequency instabilities. In general, the modeling of dusty gas discharges is considerably more complicated with respect to the modeling of dust-free discharges due to the very slow dynamics of dust compared to that of electrons and ions present in the plasma. Also, classical plasma diagnostic techniques need to be modified to take into account the presence of dust. Moreover, new diagnostic methods have been developed in recent years in order to measure typical dust parameters such as temporal and spatial distributions of dust size and/or number density and the charge that dust particles obtain in the plasma.

Micrometer-sized dust particles arrange themselves towards typical inter-particle distances of the order of fractions of millimeters in low-pressure discharges. This makes their suspensions accessible for observation at the level of single dust particles. In addition to that, strong coupling of the dust particles due to their Coulomb interaction often leads to the crystallization of their sub-system. This makes dusty plasmas interesting model systems for studying generic condensed matter phenomena at the level of atomistic dynamics such as phase transitions, lattice formation and density waves. Two-dimensional systems can be created, for instance, in the sheath of a radiofrequency discharge. Three-dimensional systems are studied in different discharge configurations and under microgravity conditions.

As mentioned below, dust particles can grow in low-pressure reactive discharges. Controlling this process allows to grow semiconductor particles of nan-size (i.e., so-called quantum dots), which have many applications in biological labeling or sensing. At the moment, they are mainly produced in wet chemistry processes which has certain disadvantages compared to plasma synthesis. Similarly, there are attempts to grow semiconductor nanoparticles in atmospheric pressure microdischarges either from gas phase or from aerosol precursors.

In spite of the presence of certain similarities between atmospheric pressure plasmas containing aerosols and dusty plasmas, both areas of research have mainly been developing separately from each other. Nevertheless, following the suggestion expressed in the dusty plasma section of the recent low-temperature plasma roadmap, it was decided to bring the two fields together in this Perspectives paper in order to promote possible collaborative efforts. Atmospheric pressure plasmas containing aerosols are important not only for the synthesis of functional nanoparticles, but also as reactive media for nitrogen fixation or, e.g., for deactivation of pathogens in bio-aerosols.

The oldest topic associated with the applications of dusty plasmas, dust contamination control of plasma processes, has recently got a new impulse due to the emergence of extreme ultraviolet lithography and other high-tech ultra-clean industrial processes. In such processes, the possible presence of pulsed plasma (either induced by inherent photoionization or by remote plasma sources) may provide charges on the particles and electric fields transporting them to (optical) elements which are highly vulnerable to contamination.

Recently, several dusty plasma setups with magnetic field in the Tesla range have been introduced. These setups allow to study basic processes in dusty plasmas of different degrees of magnetization. Those investigations are of importance in the scope of magnetic confinement fusion research where dust, emerging in the plasma volume due to different mechanisms, has long been recognized as a considerable problem. Ionospheric and space dusty plasmas also represent a traditional branch of dusty plasma research. Many of the current, as well as planned, space missions have investigation of dust in different regions of the Solar system as one of their major goals. The scope of this space dusty plasma research has been considerably broadened to, e.g., the heliosphere, space-debris-related problems or planetary debris disks of stars.

In spite of the diversity of the topics, the dusty plasma community will definitely benefit from more intense collaborations between experts performing experimental gas-discharge-based laboratory and large-scale-facility research (fusion, long-term microgravity laboratories, space missions, etc.), theory and modeling. Also, collaborations between groups conducting basic and application-oriented research should allow the former to better streamline their efforts and the latter to better understand the physical mechanisms underlying their applications. Establishing such frameworks would enable the community to tackle more efficiently the scientific and societal challenges ahead.

Throughout this Perspectives paper, we will use the
Dust charging dictates single grain dynamics and collective effects. The relevant spatial scales are the dust size r_d, Debye length λ_D, plasma gyroradii ρ_0, collision mean free paths λ_m and mean intergrain distance d. For isolated spherical dust, Orbital Motion (OM) theory applies in the non-emissive, collisionless, unmagnetized limit, i.e., $r_d, \lambda_D \ll \rho_0, \lambda_m, \lambda_a$. It is based on energy and angular momentum conservation, expressed in a non-linear Poisson equation supplemented by the floating potential condition. In the fusion community, the term “nanodust plasma” is used to emphasize the nanometer size of dust particles. In Sec. III, terms “dust” and “powder” are used equivalently. Sec. X introduces the terminology associated with atmospheric plasmas and aerons. Terms applied to astro- or geophysical media (e.g., “meteoric smoke” or “noctilucent clouds”) imply the presence of dusty plasmas (Sec XII).

I. THEORY OF BASIC PROCESSES: CHARGING, HEATING, FORCES (G.L. DELZANNO, P. TOLIAS)

Dust charging dictates single grain dynamics and collective effects. The relevant spatial scales are the dust size r_d, Debye length λ_D, plasma gyroradii ρ_0, collision mean free paths λ_m and mean intergrain distance d. For isolated spherical dust, Orbital Motion (OM) theory applies in the non-emissive, collisionless, unmagnetized limit, i.e., $r_d, \lambda_D \ll \rho_0, \lambda_m, \lambda_a$. It is based on energy and angular momentum conservation, expressed in a non-linear Poisson equation supplemented by the floating potential condition. The Orbital Motion Limited (OML) approach is an OM approximation that neglects effective potential barriers to plasma collection. It is based on energy and angular momentum conservation, expressed in a non-linear Poisson equation supplemented by the floating potential condition. In the collisionless case, exact Poisson equation with the charge density derived from the stationary Vlasov equation has been reported. The Y ukawa form persists at short-to-intermediate distances provided that an effective screening length is utilized that depends on the ion non-linearity parameter. In the collisional case, asymptotic theory together with the linearization of a BGK-type ion kinetic equation with point-sink or drift-diffusion approximation have quantified non-Yukawa aspects. In the presence of electron emission, source/sink competition, the formation of attractive potential wells has been reported.

The ion drag force, due to scattering of drifting ions, has been known to drive dust dynamics in discharges, tokamaks, and space. In collisionless subthermal flowing plasmas, the binary collision approach of classical scattering theory has been employed for Yukawa interactions and arbitrary ion-grain coupling with shifted Maxwellian or more accurate ion distribution functions. For ion-neutral collisions and arbitrary Mach numbers, the linear response approach has been employed with self-consistent ion distributions within the weak coupling limit. The complementarity of these approaches was exploited in a more general hybrid approach. Particle-In-Cell (PIC) simulations provided invaluable benchmark data, bridged the gap between the formalisms and yielded accurate analytical correction factors at arbitrary collisionality and non-linearity in the practical Mach number range.

A. Current status

A problem has been pointed out in the original formulation of OML that did not allow incorporation of plasma screening due to an error in the ion density. A revised OML theory has been formulated. A comparison with PIC simulations revealed that accuracy is retained up to $r_d \sim \lambda_D$, that screening effects on the dust charge can be significant. The extension to positively-charged dust has also been reported. Recent studies have been driven by tokamak dust, where effects beyond OML can become important. First-principles simulations have revealed that OML can become very inaccurate in the emission-dominated space-charge-limited regime due to a potential well formed by the slow emitted electrons being attracted back to the positively-charged dust. Semi-empirical formulae exist in the full ion collisionality range, tested against experiments. In discharge plasmas, the contribution of ion-neutral collisions to charging becomes significant already for $\lambda_{it} \sim 10 \lambda_D$.

Plasma screening of the dust charge dictates the dust-dust interaction potential: the key quantity for the description of collective effects in dusty plasmas within the one-component assumption. Even for isotropic plasmas, the Debye-Hückel (Yukawa) form is valid for weak ion-grain coupling as well as in absence of collisions with neutrals and plasma sources/sinks. In the collisionless case, exact potential profiles can be obtained by solving the non-linear Poisson equation with the charge density derived from the stationary Vlasov equation. The Yukawa form persists at short-to-intermediate distances provided that an effective screening length is utilized that depends on the ion non-linearity parameter. In the collisional case, asymptotic theory together with the linearization of a BGK-type ion kinetic equation with point-sink or drift-diffusion approximation have quantified non-Yukawa aspects. In the presence of electron emission, source/sink competition, the formation of attractive potential wells has been reported. The ion drag force, due to scattering of drifting ions, has been known to drive dust dynamics in discharges, tokamaks, and space. In collisionless subthermal flowing plasmas, the binary collision approach of classical scattering theory has been employed for Yukawa interactions and arbitrary ion-grain coupling with shifted Maxwellian or more accurate ion distribution functions. For ion-neutral collisions and arbitrary Mach numbers, the linear response approach has been employed with self-consistent ion distributions within the weak coupling limit. The complementarity of these approaches was exploited in a more general hybrid approach. Particle-In-Cell (PIC) simulations provided invaluable benchmark data, bridged the gap between the formalisms and yielded accurate analytical correction factors at arbitrary collisionality and non-linearity in the practical Mach number range.
Physics and applications of dusty plasmas

presence of ion flows. The shifted Maxwellian ion distribution used in early studies61,62 has been proven to grossly misrepresent the exact state of affairs63. In fact, self-consistent distributions that include neutral collisions and electric field acceleration are asymmetric and much broader. Exact Monte Carlo (MC) results have been compared with kinetic theory for constant cross-sections or constant collision frequencies (BGK)64. Self-consistent distributions were employed for the calculation of the potential profile with linear response theory64,65. PIC simulations of dust pairs helped to elucidate nonlinear wake aspects, shadowing in the absorption-induced ion drag force, downstream grain degrading, the importance of ion drag perturbation and the downstream grain electric force approximation based on the potential structure of the upstream grain alone66–68. Experimental studies of wake formation should also be mentioned70–72. The non-reciprocity of dust-dust interactions in flowing plasmas, known from early works73,74, has also received scrutiny75. Action-reaction symmetry is broken, exact interactions are mediated by a nonequilibrium medium. Failure to comply with Newton’s third law has some important statistical mechanics consequences. Simple idealized models that decompose the interaction to reciprocal and non-reciprocal parts can capture the main physics and have been employed in simulation studies76,77. Non-reciprocal effective forces have been directly measured78.

B. Perspectives

Dust in magnetized plasmas. There is an imperative need for semi-empirical analytical expressions that accurately describe the collected plasma fluxes, ion drag force and dust interaction potential. Indicative of the difficulties are the (doubly) broken spherical symmetry, the addition of the plasma gyroradii to the characteristic length scales, the complexity of the magnetized plasma susceptibilities and the extended collisional pre-sheath including a cross-field transport mechanism for depleted flux tube replenishment. Linear response theory calculations38–41, molecular dynamics (MD) simulations42,43, MC simulations with ad-hoc screened potentials44 and self-consistent PIC simulations45–48 have been reported. Interpolation between analytical limits is advisable. Many lessons can be learnt from tokamak probe theory49,50. Simultaneous OML violations. In some scenarios, more than one OML applicability condition can be violated. For dust in fusion devices, thin shear effects are important for ion collection and electron collection can be magnetized, $\rho_e, \lambda_{D} \ll \eta_L \ll \rho_i \eta_I$. Moreover, when considering hot dust embedded in magnetized plasmas, thermonic emission is strongly suppressed by prompt return to the surface in the course of the first Larmor gyration9,90,91. Furthermore, multiple electron emission mechanisms can be simultaneously active such as thermonic and potential ion-induced emission or photoelectric and secondary electron emission. A general theory of particle collection is certainly hard, but many quantitative characteristics can be understood by examining the large size limit, for which respective studies are typically available52–55.

Effect of closely packed grains. High dust densities have been known to reduce the dust charge96,97. Charge cannibalism is mainly due to global electron depletion, which can be accounted for via the quasi-neutrality condition, but also due to the sharing of particle fluxes when the mean interparticle distances are smaller than the plasma Debye length98–100. Even in absence of plasma flows, the latter close packing effects on the dust-dust interaction potential have only been studied in an overly simplifying manner101,102. In the presence of ionic flows, PIC simulations of multiple grains have confirmed the decharging of downstream grains due to ion focusing and revealed the dependence of the charge on the specific arrangement103. Close packing effects should become severe in two frontier topics104: magnetized dust plasmas due to elongated collection areas for the magnetized species and binary dusty plasmas due to pure geometrical considerations. Sheath-within-a-sheath. Theory and simulation efforts to study charge and momentum exchange between isolated grains and flowing plasmas generally assume a homogeneous plasma background. However, in nature or in laboratories, dust is often confined in strongly inhomogeneous plasma regions formed near electrodes, containing walls or large objects. Strong modifications are expected when the plasma inhomogeneity length(s) is comparable to the dust shielding length. This has been confirmed in a work that combined electrostatic sheath theory with linear response theory in the point charge approximation105. Self-consistent PIC modelling of dust charging and potential screening, including finite size effects, is highly desirable for many sheath-within-a-sheath scenarios such as dust levitation in rf discharge sheaths106,107, dust dynamics in lunar photoelectron dominated sheaths108–110, dust release in the magnetized sheaths of tokamaks111,112 and dust measurements by spacecrafts113,114. It is worth to emphasize the particular problem of the detachment of dust residing on the surface of plasma-wetted objects, see for instance dust remobilization in tokamaks115,116 or electrostatic dust lofting on the moon117 (see Sections VII and XII, respectively), where the large intervening surface prohibits the electrostatic lensing of plasma particles (with strong consequences on the potential profile and ion drag force) and where adhesive forces are important (typically weakened van der Waals interactions due to the unavoidable surface roughness)118,119. Plasma-dust interface microphysics. A standard dusty plasma idealization concerns the dust interface acting as a perfect absorber. In reality, bound electrons are constantly emitted after electron impact (secondary electron emission)120, ion/neutrall impact (kinetic emission)121,122 or ion neutralization (potential emission)123, while plasma electrons can be elastically backscattered from the bulk or quasi-elastically reflected from the surface barrier122. Moreover, plasma ions are continuously backscattered after recombining124,125 and material is chemically or physically sputtered as neutrals126. Plasma simulation tools model microphysical processes via electron emission or sputtering yields as well as energy/angular distributions of the emitted species54,128–130. Parameters are externally adopted from reliable experiments or dedicated MC sim-
physics of dusty plasmas. Such plasmas are not only coupled, since they do not consider the effect of plasma on the dust internal structure with the yields adopted from ultra-high vacuum experiments or modelling in vacuo. However, particle-induced emission is known to be extremely sensitive to surface conditions133 and the plasma-induced dust surface charge layers can modify the yields. Progress in the modelling of electron reflection with the invariant embedding approach has confirmed such expectations134–136. Energy exchange aspects should be even more sensitive to interface descriptions137. The future use of semi-classical (MD, MC), quantum Boltzmann and ab initio (density functional theory, non-equilibrium Green functions) approaches for interface simulations has been discussed138, but concrete applications are scarce139. Fully integrated plasma–interface–dust modelling remains an ambition.

Non-spherical shape and magneto-dielectric properties. Non-spherical dust studies have been reported138–144. Non-sphericity gives access to rotational degrees of freedom, that have been argued to be important in various scenarios145–149. PIC codes able to conform to objects of arbitrary shape can be used for self-consistent modelling150,151. The impact of electric152 & magnetic moments153 also remains poorly understood.

II. MODELLING OF DUSTY GAS DISCHARGES (L.S. MATTHEWS, P. HARTMANN)

Modeling dusty discharges is challenging because of the wide range of space and time scales that must be resolved. Given the ratio of the masses of the electrons and the typical 1 \(\mu\)m diameter dust grain, the difference in time scales is about seven orders of magnitude, covering the dynamics of electrons on the ns timescale to the dust particle dynamics on the ms timescale. The charging and interactions of dust grains require the resolution of spatial scales as small as the grain radius on the \(\mu\)m or nm scale and as large as the size of a cm-scale gas discharge. The difference in spatial scales ranges over four to five orders of magnitude. Current methods are being developed to bridge these time and length scales.

A. Current status

Laboratory dusty plasma experiments are often conducted at low pressure conditions in direct current (DC) or radio frequency (RF) discharges, where electron transport is generally non-local in nature. Kinetic plasma modeling, e.g., by solving the Boltzmann equation in a continuum model, or tracing individual particle trajectories and collisions with particle-in-cell simulations combined with Monte Carlo treatment of collisions (PIC/MCC), is required to achieve physical accuracy. DC discharges consist of two spatial regimes. Electrons and ions are accelerated in the large sheath electric field near the cathode, resulting in gas-phase ionization and ion-induced secondary electron emission, driving plasma generation. In the positive column regime, a relatively small electric field drives just enough ionization to compensate for recombination losses occurring at the discharge tube walls. The non-local transport in the cathode region can be modelled using a Monte Carlo simulation of the electrons coupled to a fluid-type model for the ions and combined with the electrostatic field solver154,155 or by solving the two-term Boltzmann equation156.

As the positive column increases in length, it is likely that instabilities (ionization waves and striations) will develop157. Hybrid simulations are able to reproduce the experimental observations158, even in the presence of dust159,160. The PIC/MCC method161 has been successfully used in more recent studies162 to self-consistently model the whole DC discharge, even in the case of complex gas mixtures163.

Low-pressure RF discharge plasma, or capacitively coupled plasmas (CCPs) drive the ionization of the background gas by the alternating cycles of collapse and expansion of the RF sheaths at both electrodes; the sheath motion periodically accelerates electrons toward the plasma bulk. At high RF power (>100 W) and high driving frequencies (>100 MHz), electromagnetic effects such as standing waves and the skin effect can significantly influence the plasma distribution, but in typical dusty plasma experimental systems (13.56 MHz, 1-100 W) the electrostatic approximation is well justified.

Low-pressure CCPs are self-consistently described by advanced fluid models164–166, solutions of the Boltzmann equation for electron kinetics167, hybrid schemes168, and PIC/MCC simulations169–171. The limitations and the optimization of the PIC/MCC method have also been discussed172–174.

The charging currents to the dust surface are usually calculated through orbit motion limited (OML) theory175,176. The currents are a function of the grain surface potential and plasma parameters, including plasma density and temperature. In regions of a plasma where electric fields are present, the net flow (drift) of ions due to electric fields not only changes the ion current to the grain surface177, but also increases the ion density in a region downstream of the grain. The ion wake is a positive space-charge region that can exert an attractive force on downstream particles178–180, contributing to the stability of dust structures181–183. PIC codes have been used to determine the structure of the ion wakefield down- stream of a dust grain and to compute the resulting nonlinear grain-grain interactions184,185. The characteristics of the ion wakefield behind charged dust grains have also been studied using molecular dynamics (MD) simulations of the ions in the plasma flow, treating the electrons as a Boltzmann fluid182,186–188. A simplification of the wake structure is to represent the ion wakefield as a point-like region of positive space charge (the wakefield focus) located a fixed distance downstream of the grain181–183.

Submicron particles may have a charge of only tens or hundreds of electrons, and the charge fluctuations due to the discrete additions of charge can be a significant fraction of the equilibrium charge190. The characteristic time scale for these charge fluctuations can be comparable to those of the dynamic processes affecting the dust191,192 with an asymmetry in the charging and discharging times since electrons (which charge
Physics and applications of dusty plasmas

a grain) move on shorter timescales than ions (which discharge a grain)195,197,199. Non-spherical grains have a varying surface potential, complicating the calculation of the equilibrium grain charge and affecting dust dynamics. The distribution of charge over the surface can be modeled by dividing the surface into discrete patches195-197. Charge collects at the extremities of the surface, and aggregate grains tend to collect more charge than a spherical grain due to their increased surface area196. The non-symmetric charge arrangement can be modeled in dynamics simulations as a monopole plus dipole, or more accurately by treating the charge distribution as a set of point charges197.

B. Perspectives

To date, no single numerical scheme has been implemented that covers all relevant time and distance scales. Currently, three different regimes are treated by models: resolving electron and ion dynamics to model the gas discharge plasma on timescales up to a microsecond with picosecond resolution; resolving ion and dust motion to model the charging and ion wake on timescales up to a few seconds; and modeling the evolution of an ensemble of dust grains in the plasma on timescales of tens to hundreds of seconds. In the strongly coupled regime, long time scales are needed to capture the dynamics of collective phenomena such as wave propagation, phase transitions, and instabilities. The loop must be closed to calculate the back reaction of the dust on the plasma. To some extent this can be done by treating the dust as a fluid199, although in this case the interaction with ion wakes is not included and the information on self-assembled dust structures is lost. Until now, some kind of simplified approach has been necessary, focusing on a specific phenomenon while being approximate at other scales. Consequently, we identify here three main directions of development in the near future. These are (i) the improvement of gas discharge modeling by implementing realistic gas phase and surface processes and geometries, (ii) the realization of self-consistent multi-scale models by including feedback loops between the individual modules, and (iii) the use of modern techniques such as machine learning (ML) algorithms and massively parallel computing architectures.

Recent modeling efforts have used a hybrid approach in which the global plasma properties are modeled using a PIC/MCC approach, and the results are used to provide boundary conditions for an MD simulation of particles within a small region of the discharge where dust resides175,183,200. Extending such models to the timescales necessary to resolve the dust motion remains a challenge, especially for cases where the plasma exhibits instabilities or fluctuations.

Models of low-temperature discharges can be improved by including additional chemical and physical processes. The influence of long-lived (metastable) excited states (in the case of noble gas discharges) and reactive radicals (in molecular gases) on the gas-phase ionization and electron emission at the surfaces is known to be significant, but a self-consistent implementation of the interaction between numerous excited states in discharge simulations is computationally demanding. Collisional-radiative models require the density of ground state species and electrons and the electron energy distribution function as input parameters to compute the distribution of excited states and the transition rates between them195,201.

Models that focus on dust and ion dynamics, treating the electrons as a Boltzmann fluid, can be adapted for discharge conditions with both hot electrons and Maxwellian cold electrons. The presence of hot electrons has a major effect on the dust charge202,203. However, treating electrons as a Boltzmann fluid misses the important back-reaction of the dust on the electrons. Dust clouds in Plasmakristall-I (PK-4) facility204 (see also Section VIII) are dense enough that the electron density can be reduced by a factor of two190. This electron density reduction becomes very important in understanding the nature of instabilities in the plasma or rapidly changing plasma conditions, such as ionization waves. Dynamic charging and ion wakes are particularly important for studying the waves and instabilities present in a complex plasma205,206.

In laboratory discharges, there are several effects that require modification of the OML currents, such as ion-neutral collisions, ion flow, discrete charging, and irregular grains (see Section I). The dust charge can vary significantly depending on where the dust is located in the discharge, whether it is due to variations of the plasma in space (such as the bulk or sheath region)190, or in time (afterglow)208,209.

The most fundamental property governing the dynamics of dust in plasma is the dynamical screening of the negative dust grains by the positive ions in the plasma. The ion flow causes the shielding length to vary with position, and in most cases the ion wake is not well represented by a point charge. A goal of current research is to develop a simplified model of the interaction potential between dust grains that accounts for the position-dependent ion wake, which changes in both magnitude and direction as the grains interact with each other (Fig. 1). Both the dust charge and the ion flux, which together determine the wake structure, are functions of plasma parameters such as neutral gas pressure, electron temperature, and degree of ionization. The gas pressure plays a more important role in determining the dust charge and wake characteristics than the power delivered to the discharge210. The shape of the grain also influences the wake characteristics211.

More complex models require more efficient algorithms and full utilization of computing resources. Over the past decade, the evolution of computer architectures has shifted from accelerating sequential code to implementing parallel execution capabilities. Modern CPUs provide tens of independent execution units, while graphics processors (GPUs) provide thousands of cores for general-purpose computing. Recent efforts in dusty plasma modeling have taken advantage of GPU-accelerated computing to create MD models that can be easily adapted to a range of boundary conditions and plasma states (MAD-BORIS, SARKAS, DRIAD, OpenDust192,178,212,213). By covering a large parameter space, the results can be analyzed using ML techniques to develop heuristic models of the detailed microphysics that can be im-
corporated into the simulation of macroscopic systems. The application of ML techniques, mostly based on neural network models, is in its infant stage in relation to gas discharge and dusty plasma modeling. Current studies include the nonlinear response analysis for dust particles to determine the equation of motion and thus the effective grain-grain interaction\cite{114}, and the improvement of dust particle detection in noisy environments\cite{215}. Certainly, with the rapid advancement of this technique it bears a great potential for the prediction of various plasma properties.

III. DIAGNOSTICS OF DUSTY GAS DISCHARGES (J. BERNDT, F. GREINER)

Before turning to the topic addressed in the title it is necessary to clarify its meaning since the term “diagnostics of dusty gas discharge” may be understood in different ways.

The first meaning of "Diagnostics of dusty gas discharges" relates to the measurement of parameters such as e.g. electron density or electron temperature in plasmas containing nanoparticles. In this context, the question arises to what extent the presence of nanoparticles affects the performance or interpretation of standard diagnostics such as Langmuir probes\cite{216,217} or Laser absorption spectrometry (LAS)\cite{218}. Such methods will probably work the common way as long as the dust concentration in the plasma is low. The Havnes parameter\cite{219} $P \leq 1$ describes a "dust in plasma" situation where the dust component has almost no global impact on the plasma, whereas $P > 1$ is a "dusty plasma" situation, where a strong electron depletion ($n_i < n_e$) is in effect (see\cite{220} for details).

The second meaning of "Diagnostics of dusty gas discharges" concerns the use or development of diagnostic methods that can be used in plasmas in general, but which are of particular interest for the understanding or the control of phenomena occurring in particle-containing plasmas. One example here is the measurement of negative ions, which are believed to play an important role in the formation of nanoparticles in discharges operated with organic monomers\cite{221,222}. As most of the dusty plasmas which have technological relevance are "nanodusty" plasmas, which contain particles from 100 nm down to a few nanometers, the particle properties (as size, refractive index, cristallinity etc) are a priori not known since the particles are produced inside of the plasma.

This leads us to the third meaning of "Diagnostics of dusty gas discharges". It refers to the diagnostics of the particles themselves, as the detailed knowledge of the particle size, shape, and density are the key parameters for the diagnostic of a dusty plasma. The characterisation of the particles will be the focus of this paper. In this context, the term "diagnostics" covers a variety of different techniques and methods, each of which is used to investigate different particle properties. One further remark that should be briefly made concerns the fact that the diagnostics that will be mentioned here will mostly be in-situ diagnostics applied to particles that are inside the plasma.

A. Current status

In principle, different particle diagnostics can be - for the sake of simplicity - divided into two main categories: indirect and direct diagnostics.

Indirect measurements: The indirect detection methods are based on the fact that the presence of dust particles in a plasma induces changes in the plasma characteristics. This response of the plasma to the formation of particles can be used as a simple and sensitive kind of global diagnostic that delivers information about the existence of particles in the discharge. Several effects can be used here for diagnostic purposes: the change in light emitted by the discharge, the reduction in electron density caused by the attachment of electrons to the particles, and the change in ion currents. Other examples concern the change in "electrical properties" that occur in some RF discharges, such as the DC bias voltage\cite{223,224}, the phase angle between voltage and current, or the anharmonicity of the wave-forms of RF current and voltage\cite{225}.

Direct measurements: Most of the direct measurements are based on the interaction of nanoparticles with electromagnetic radiation where the latter can range from the X-ray region to the (far) infrared. Depending on the particle properties to be investigated, there are different types of diagnostics e.g. Laser scattering imaging\cite{226}: The Video analysis of dust ensembles is the working horse of dusty plasma physics with micrometer sized dust particles. The basis of this technique is a 2D laser stripe which enables the video analysis of 2D cross sections of 3D dust clouds.

- **Computed tomography**\cite{227,228}: The 3D dust distribution of arbitrarily shaped dust clouds is determined by a combination of 2D extinction measurements and computed tomography.

Information about the particle size (and depending on the
Physics and applications of dusty plasmas

method, also about the refraction index of the particles) can be obtained by:

- **Light extinction spectrometry**[229]
- **White light scattering**[230]
- **Kinetic Mie Polariometry** without[231–232] and with imaging properties[233]
- **Laser-induced incandescence (LI)**[234]

Information about the elemental composition of particles respectively their bonding situation can be acquired by:

- **Laser induced particle explosive evaporation**[235]
- **Infrared absorption spectroscopy**[236–238]
- **X-ray scattering techniques**[239]

Information about particle charge can be gained by:

- **Infrared phonon resonance shift (IRPRS)**[240]
- **Laser-induced electron detachment**[241]

Absolute densities of precursor molecules inside of the nanodusty plasma are measured with:

- **Frequency Modulation Spectroscopy**[242, 243]
- **Mass spectrometry**[244]
- **Multi-mode microwave cavity resonance spectroscopy**[245]
- **Dust density wave diagnostic (DDW-D)**[246]

Of course, the current knowledge about the physics of dusty plasmas relies on the interplay of experimental investigation, modeling and simulation. Simulations are challenging, however, because the dust has a highly variable charge. Even for particles with a radius of 100 nm, the charge can vary from zero to more than 1000 elementary charges at a given time within the same discharge system. Simulations and consequently the diagnostic of such plasmas[247, 248] have to take into account the coupled physics of the plasma discharge, the plasma chemistry[249], the “aerosol” physics of the charged dust, and the plasma related details of particle growth processes[191].

B. Perspectives

The question of which diagnostics should be developed further or deserve more attention depends heavily on the intended applications or the specific research one is aiming for. In the field of complex plasma research, particles with known properties are very often injected into the discharge and it is studied, for example, how individual particles or collections of particles form certain time-dependent structures. In this area of research, there is obviously no need for diagnostics that provide information about the properties of the particles. Instead, tomographic methods are needed that provide precise, time-resolved information about the locations of a large number of individual particles.

In research areas dealing with the formation of particles, which are particularly important for applications, the situation is quite different. The diagnostic challenges are clear from Figure 2, which provides a simple illustration of nanoparticle formation in (reactive) plasmas. The figure shows the different phases of the particle growth chain from molecular precursors to micrometer-sized particles, and the transitions between the different phases. Regardless of the exact details of this process, which may vary depending on the precursors used (e.g., acetylene, methane, silane, HMDSO, and other gases or vapors), the simple schematic illustrates the need for diagnostics that can detect different types of species: from molecules to macromolecules to clusters (charged and neutral), and finally to particles at the nanometer or micrometer scale.

In addition to these requirements, the diagnostics used to monitor particle formation must be able to detect processes that can involve time scales ranging from less than a millisecond to several hours. The need for time-resolved diagnostics arises not only from the different time scales inherent in the process but also from the large technological potential of pulsed discharges[255], which automatically involve new and often small time scales. In addition, information about the spatial distribution of particles is of great importance, especially for technical processes where, for example, the contamination of certain components must be avoided. This underscores the need to develop imaging techniques that can directly provide such detailed spatial information.

It is unlikely that any single diagnostic will be able to fulfill this task. The future task, therefore, is rather to employ several different (in-situ) diagnostics in such a way that their combination can help to provide a more complete picture of the entire process. One of the biggest challenges (and one of the biggest needs) here is certainly the spatially and temporally resolved detection of clusters in the sub-nanometer to the nanometer range. Therefore, adapting existing techniques such as coherent Rayleigh-Brillouin scattering[256] to technically relevant plasma environments is a high priority for the future.

Another important parameter that has to be addressed in more detail in the future is the time dependent surface temperature of growing nanoparticles (see also Section VI). In particular, for processes such as e.g. the deposition of ultra-thin films or the fabrication of nano-composite materials it is also highly desirable to obtain information on the surfaces exposed to the species flows emerging from the plasma. Especially the contribution of large (potentially charged) macromolecules or clusters to the growth of such systems is of great interest in this context. Only the combination of in situ (surface) diagnostics such as GISAXS[253] and TEM, plasma diagnostics such as mass spectrometry (that measures the flux of species), and diagnostics that provide information on the growth of clusters in the plasma volume will provide sufficient information to understand the whole process. However, the simultaneous use of different types of diagnostics is extremely time-consuming and both labor- and cost-intensive. Therefore, it is of great importance in the future to offer simpler alternatives, especially
for mere users of dusty plasmas. These alternatives may not be able to draw a complete picture of the entire process but allow easy process control and optimization.

The aforementioned indirect diagnostics may offer such an alternative since they are easy to employ and relatively cheap. However, they initially provide only quite limited information about the complicated processes in dusty plasmas. The combination of sophisticated diagnostics and new modeling efforts may resolve this dilemma. Such an effort could lead to new insights that would allow a better interpretation of the signals resulting from indirect measurements. This is, in particular, important for the control of particle growth in reactive plasmas. Simultaneous time-resolved measurements of multiple quantities, such as (total) light emission or DC self-bias, could help to monitor the different phases of particle growth (see Figure 2) with relatively simple diagnostic tools and greater accuracy. The use of diagnostics that provide (time resolved) signals with a high signal-to-noise ratio would facilitate the extraction of useful information from the acquired data.

However, the collection of large amounts of data associated with such measurements presents new challenges and opportunities. A concerted effort of experimental and theoretical investigations in combination with new techniques such as ML may help to understand, control and especially predict the basic processes of the dust growth across all phases shown in Fig. 1. This is important for processes where the formation of particles needs to be suppressed as well as for processes where one wants to "harvest" nanoparticles or nanoclusters with a certain size.

IV. VOIDS AND INSTABILITIES IN DUSTY GAS DISCHARGES (M.Y. PUSTYLIK, M. MIKIKIAN)

Dust immersed in gas-discharge plasmas or grown in gas-discharge plasmas modifies the plasma properties. This modification is the result of four different physical mechanisms: Dust particles (i) absorb the fluxes of plasma species on their surfaces; (ii) non-negligibly contribute to the formation of electric fields; (iii) are sensitive to fluxes and temperature gradients in charged as well as neutral components of the plasma; (iv) due to their low charge-to-mass ratio, exhibit significantly slower dynamics compared to those of other plasma components. Presence of dust therefore leads, in many cases, to the appearance of "new" dust-induced phenomena that do not exist in dust-free plasmas and, moreover, disturb its calmness and uniformity which is desired for technological applications and microgravity experiments. In the following, we will present the current status of understanding of these phenomena and highlight the possible future directions of their investigation and control.

A. Current status

Dust acoustic wave (DAW) or dust-density wave instability revealing itself as a compressional wave pattern propagating along the local electric field is one of the most ubiquitous instabilities in dusty plasmas. It was observed in practically all types of discharges, - dc\(^{256,257}\), inductively coupled rf\(^{258,259}\) and capacitively coupled rf\(^{260}\), - under laboratory\(^{256}\) and microgravity\(^{262,263}\) conditions, with injected microparticles\(^{264}\) and grown dust\(^{265}\). Lots of works are devoted to the details of its theory\(^{258,260,266-274}\). This instability is understood as a streaming instability, caused by ions...
drifting through the dust suspension confined in a plasma. It was shown to cause coagulation of dust particles25,292. It is also used for diagnostics of electric field and dust charge in nanodusty plasmas246,277.

Different instabilities were observed during growth of dust particles in reactive rf discharges of different chemistry. For example, when growing dust by sputtering graphite29,277 or plastic microspheres lying on the bottom electrode of the discharge286–289, the electrical and optical characteristics of the discharge started to exhibit instabilities which stopped only when dust particle size reached fractions of a microneter. During the first dust growth in silane chemistry284,285, the instability was associated with the agglomeration of the very first nanoclusters. However, in the further dust growth cycles with uninterrupted silane supply286, the instability became continuous as in case of sputtering experiments. Other plasma instabilities triggered by the growth of dust particles cause the appearance of numerous regions of bright plasma emission of spheroidal shape (of mm sizes) which appear in the close vicinity of the electrode287 and sometimes rotate288 as in the carousel instability289. In fully developed instabilities, these spheroids are also present in the bulk plasma where they can merge or split290. The nature of these spheroids is not clear but they could be small dust-free regions where an enhanced emission takes place.

Operation of PK-4 facility on the International Space Station204 (see also Section VIII) revealed three specific dust-induced instabilities in the dc discharge: “dust-induced stratification”2,160, “transverse instability”291 and “partitioning of the dust suspension”2,292. The last two instabilities observed in the polarity-switched discharge (which represents the main working regime of PK-4) significantly limited the parameter range in which calm and uniform dust suspensions could exist. No reliable explanation proven by systematic experiments exists for both instabilities.

The problem of void, usually an eye-shaped (sometimes more complicated shapes are observed293–295) dust-free region in the center of a discharge278,296,297, seemed to be closed for rf plasmas since the microgravity experiments on void closure in PK-3-Plus laboratory298 and numerous simulations299–304 The void was supposed to occur due to the mechanical balance of ion drag force (due to the outward drift of ions) and electrostatic force exerted by the ambipolar electric field confining the dust in the plasma. However, comparison of experimental and simulated plasma emission patterns and dust distributions305 as well as very recent discovery of dim and bright void regimes306 (Figure 3) have questioned the universality of that simple and widely accepted concept. Earlier observations of void size increase on the increase of dust particle size in reactive plasmas307,308 also suggest dim-to-bright void transition during dust growth.

Closely related to the void problem is the problem of the so-called “heartbeat” instability308–316. It appears in dusty rf discharges as periodic contraction of the void with (sometimes very) low frequency. A bright flash of plasma emission precedes the contraction of the void317. Careful investigations313 have shown that the heartbeat instability is a mixed-mode oscillation in which rare catastrophic void contractions are mixed with small breathing oscillations of the void boundary316. Not only dust component, but the entire plasma exhibits this mixed-mode behavior. At a fixed amount of dust in the discharge, the instability was shown to occur in a certain range of discharge power and neutral gas pressures317. Discovery of dim and bright void regimes led to the hypothesis that the heartbeat instability is nothing but a self-excited oscillation between these two regimes. This hypothesis, however, still leaves many open questions on the mechanisms that could lead to such an oscillation.

B. Perspectives

Dust-induced phenomena in gas discharges are rarely so local that they can be explained by local effects of dust only2. Usually, the entire discharge including its optical and electrical characteristics is modified by presence of dust. Therefore, progress in understanding the dust-induced phenomena in gas discharges can only be achieved with the improvement of basic understanding of the physics of dusty gas discharges.

Generalization of scattered experimental and simulation results led to the formulation of an heuristic concept of the formation of dusty discharges which connects mechanical balance of dust particles with the ionization balance in the plasma. According to this concept, in presence of only ion drag and electrostatic forces acting on dust particles, there are two principles according to which the dusty discharges form:

(i) At relatively low discharge powers, the ion densities are so small that the mechanical balance can only be achieved if local ambipolar electric field vanishes; the ionization balance then localizes due to the absorption of plasma species on the surface of dust particles;

(ii) At relatively high discharge powers,
Physics and applications of dusty plasmas

the mechanical balance of dust particles can be achieved at a finite value of the ambipolar electric field, and the ionization balance then stays non-local as in a dust-free discharge.

Systematic theoretical and simulation work is required not only to give this concept more solid grounds, but rather to understand how the transition between the two formation principles occurs. Nowadays, dim and bright void regimes as well as the heartbeat instability are supposed to represent manifestations of these two principles and of a dynamic transition between them, respectively. More detailed understanding of the connection between the mechanical and ionization balance in dusty plasmas could lead to further progress in understanding of other dust-induced phenomena. In addition to this, on the experimental side, improvement of plasma diagnostics is required. In particular, optical measurements of electric fields in the range of $0.1 \sim 1 \text{ V cm}^{-1}$ would allow to observe the transition mentioned above. Such measurements are usually performed at low neutral gas pressures ($\sim 0.1 \text{ Pa}$) using laser-induced fluorescence (LIF) techniques on ions. Extension of this technique to higher neutral gas pressures could help to improve the understanding of the connection between mechanical balance of dust particles and ionization balance.

Very recently, experiments in the PK-4 facility revealed an abnormally fast compressional wave mode in dusty plasmas. This mode was treated as an ionization wave in dusty plasmas where the ionization balance is localized due to absorption of plasma species on the surfaces of dust particles. Although, it is still unclear whether the ionization effects play a role in this particular case, their role in the propagation of compressional waves in dusty plasmas should be clarified.

First-principles simulations of dusty gas discharges represent a difficult problem due to the enormously large difference in charge-to-mass ratio between electrons and dust particles (see Section II). New approaches have to be sought to either speed-up the calculations or to simplify the models while keeping all the essential physics inside. For complicated phenomena (like, e.g., heartbeat instability), development of phenomenological mathematical models or adaptation of such models from other fields would already represent a large step forward.

Real-time diagnostics capable of measuring temporal evolution of dust particle density and size at nanometer scale (see Section III) have to be further developed in order to describe the coupling between dust particle properties and the plasma behavior. This improvement would lead to progress in understanding the particle-growth instabilities.

It would be also very interesting to implement the feedback control of the instabilities in dusty plasmas in analogy to what is done for, e.g., instabilities in electronegative plasmas. It is a promising method for limiting the impact of instabilities on plasma processing or basic plasma experiments requiring calm conditions.

Apart from purely academic importance, the issues described above are vital for the improvement of the design of (quite expensive) microgravity complex plasma experiments as well as for the improvement of the quality of interpretation of their results. Knowledge gained about the dust-induced phenomena in gas discharges should be used to design the experimental hardware in such a way, that the dust suspensions remain uniform and calm in the widest possible parameter range. This is especially important for project COMPACT (Section VIII) which is at the moment in the feasibility study phase.

V. (COMPLEX) DUSTY PLASMAS AS MODEL SYSTEMS (R. GOPALAKRISHNAN, L. COUÉDEL, M. BONITZ)

A. Current status

Laboratory complex plasmas containing injected well-characterized spherical micro-particles amenable for optical tracking are an ideal experimental test system to analyse correlation effects in macroscopic or mesoscopic many-particle systems. The attractive feature of complex plasmas is the mesoscopic size of the suspended dust grains and the comparatively large inter-particle distances (of the order of $\sim 100 \text{ nm}$) which enables direct optical imaging of crystal or fluid-like states of grain collective behavior. In addition, the dynamical time scales associated with the dust grains, of the order of tens of milliseconds, allow the accurate resolution of the dynamics of a system of particles with the use of fairly unsophisticated high speed video cameras. Direct visual tracking is not possible in other strongly correlated systems such as electrons in solids or nuclear matter. Complex plasmas are complementary to other experimental model systems used in soft matter physics such as colloids and granular media.

Complex plasmas are an ideal test bed for understanding strong coupling phenomena. Indeed, complex plasma experiments allow the detailed kinematic resolution of elementary collision processes at mesoscopic ($r \sim 10 \text{ nm}$ to mm) length scales that mimic the atomic level of ordinary matter in a purely classical context. With nominal dust particle charge magnitudes in the range $Z_p \sim 10^2 \ldots 10^6$ where e is the elementary charge, the Coulombic interaction between highly charged microparticles decaying as r^{-1} ensures a strong coupling (as measured by the coupling parameter $\Gamma \approx Z_p^2 e^2/4\pi e_0 \varepsilon_0 m_p v_p^2/2$) at experimentally easily attainable dust grain concentrations ($n_p \sim 10^3 \ldots 10^5 \text{ cm}^{-3}$) and nominal mean microparticle kinetic energies ($m_p v_p^2/2$)/$k_B \sim 10^2 \ldots 10^3$ K. This is a major advantage compared to other strongly coupled systems such as ion or electron one-component plasmas (OCPs) that attain strong coupling behavior only at extremely high number densities (in that case $Z_p = 1$, and densities exceeding solid state density) or ultracold temperatures ($\sim 1 \text{ mK}$... 10 K). Thus, complex plasmas are ideal model systems to analyse strong coupling effects in classical OCPs. However, unlike ion/electron OCPs, microparticle motion in a strongly coupled complex plasma is under-damped due to dissipative dust-neutral collisions. Collisions can also non-trivially modify the microparticle charge. Flows of ions can also induce an ion drag forces on the microparticles. Finally, due to the presence of the background plasma, interactions are
not purely Coulomb but, in a first approximation, follow a screened-coulomb (Yukawa) interaction with a typical screening length given by the plasma Debye length λ_D. Other forces can also act on the microparticles depending on specific experiments (thermophoresis, laser forces, …)\(^{340}\). In a microparticle suspension trapped in a gas discharge, the microparticles gain kinetic energy through electrostatic interactions. This energy is dissipated by the neutral gas medium, effectively cooling down the microparticle suspension and allowing for strong coupling between the particles\(^{341,342}\). The gas pressure is therefore an important control parameter in complex plasma experiments for studying strongly coupled system behavior in under-damped regimes with particle level kinematic resolution.

A phase diagram of complex plasma states of matter in two dimensions\(^{343}\) and three dimensions\(^{344}\) allowed to identify the coupling regime of the different phases resolved experimentally on the single-particle level: the Coulombic gas ($\Gamma \ll 1$), liquid complex plasma ($1 < \Gamma < \Gamma_m$, Γ_m is the melting/freezing point in Γ-space, $\Gamma \rightarrow 1$ being a measure of grain kinetic temperature) and solid phases ($\Gamma > \Gamma_m$). Strongly coupled systems of microparticles have allowed the study of collective phenomena such as waves\(^{259,345–348}\), phase transitions\(^{342,349–351}\), energy transport\(^{349}\), viscous\(^{352}\) and visco-elastic\(^{353}\) dissipation, crystal lattices\(^{347,354–357}\) having as classical analogues of real matter. Complex plasmas also offer the possibility of studying pseudo-attractive interaction of like-charged microparticles. When the microparticles are located in regions of ion flow in the plasma, ion wakes are formed downstream of each particle\(^{358–360}\) leading to non-reciprocal attractive force between dust particles. In two dimensional complex plasma crystals, these ion wakes, under specific conditions, can trigger the mode coupling instability during which energy is transferred from the ion flow to the microparticle monolayer\(^{361,206,361}\). Such systems can be used as model system to study flame propagation in 2D solids\(^{362}\) and impulsive spot heating in ordinary reactive matter\(^{363}\).

Laboratory studies of complex plasmas can also be used to study the action of very strong magnetic fields on charged particles\(^{364–366}\), which is particularly important to understand the dynamics of dust particles, for example, in nuclear fusion devices\(^{367}\) (Section VII) and astrophysical environments\(^{368}\) (Section XII). A key question relevant to both, the dusty/complex plasma and the fusion plasma communities, is the effect of magnetic field on the dynamics of the plasma and the dust. However, the sensitivity of charged particles to a magnetic fields is low due to the very low charge-to-mass ratio of dust particles. While electrons and ions are considered to be magnetized for relatively low magnetic fields ($\lesssim 5 \text{ mT}$ and $\gtrsim 100 \text{ mT}$, respectively), very strong magnetic fields ($> 1 \text{ T}$) are needed to magnetize the dust particles. However, at high magnetic fields, the gas discharge plasma in which the experiments are performed (typically capacitively-coupled radio-frequency discharges) can become inhomogeneous (due to phenomena such as filamentation\(^{364,365}\)) consequently destroying the dust particle cloud homogeneity as well or even imposing circulation patterns\(^{370}\). The plasma filamentation phenomenon is generally observed at low pressures ($\lesssim 20 \text{ Pa}$) such as studies of propagating waves. In addition, most reported experiments to date, the applied magnetic field was not large enough to magnetise the dust component but only the background ions and electrons\(^{366}\). These experiments have nevertheless allowed to improve our understanding of the dust charging process\(^{371,372}\), ion wake formation\(^{373,374}\), dust density waves\(^{375–379}\), and real magnetic fields are limited to a few Tesla\(^{364–366}\), a quasi-magnetic field can be produced by setting a microparticle suspension in a plasma in rotation and using the formal equivalence of the Coriolis force to the Lorentz force as proposed by Kühlert et al.\(^{380}\) It allows to reach effective magnetic fields of up to 3000 T for the microparticles (whereas electrons and ions are almost unaffected) and successfully demonstrated to accurately reproduce the collective modes\(^{379}\) and transport properties, such as diffusion coefficient in magnetised plasmas\(^{380}\) otherwise inaccessible in standard experiments using real magnetic fields.

B. Perspectives

Complex plasmas offer opportunities for foundational discoveries both at the level of a single microparticle (particle level) and at the length scale of the microparticles as a population (particle phase level):

Particle level transport processes - A complex plasma can be viewed as a collection of microparticles that are exchanging mass, momentum, energy, and in some cases, chemical species with the plasma that consists of ions, electrons, neutral gas molecules, photons, and electric fields. Coupled transport processes that take place on the surface of a single microparticle, such as charging, ion drag, heating, aggregation, or radiation (see Section I) are of interest to the fusion community in understanding plasma-wall interactions\(^{353}\). The same processes are also of interest to the materials synthesis and processing communities\(^{381}\) (see Section VI). Especially, the contribution of dust to the overall energy balance in fusion reactors is important to understand and ensure that it does not significantly hinder energy production. For instance, a reliable technique to infer the particle’s surface temperature is not available at the moment (see Section III) even though many studies have discovered that the particle temperature can far exceed that of the background gas\(^{382}\), being still well below the electron temperature. On the other hand, particles can also be used as probes to understand the local plasma conditions. Their dynamics, a result of the charge and net force exerted by the local environment, can be used as a diagnostic\(^{386}\). Further work is necessary in this area to develop reliable diagnostic tools of microparticle parameters such as surface temperature, charge, surface reaction rates, to name a few to understand local plasma conditions. Lastly, light scattering can also be used to infer local discharge properties\(^{383–386}\). Scattering by both single microparticles and their suspensions can be done by varying the wavelength of the incident light to extract structure factors that contain information about the particle’s local geometry that scatters light. Finally, superconducting grain...
levitating in superfluid helium can be used as a sensitive probe for collective quantum effects in and out of equilibrium.

Particle phase level behavior - Mimicking condensed matter physics phenomena: The ability to resolve single particle dynamics when combined with advanced machine learning and deep learning algorithms can potentially unravel the interactions between microparticles that have remained an open question for long due to difficulties in completely characterizing the gas discharge conditions using probe as well as non-invasive measurements. Specifically, the effect of ion wakes, ion flows, and the effect of externally applied magnetic fields can be holistically approached by taking advantage of the particle-level resolution offered by complex plasmas. The key challenge is that the recorded microparticle trajectories are the result of physics intrinsic to the plasma itself as well as the physics that one is trying to understand by deliberately introduced perturbations. While the kinetic resolution of particle motion is certainly exciting, it becomes expensive to obtain large system sizes (number of microparticles) that can realistically mimic the behaviour of continuous media. Recent developments that use large electrodes (for instance, 85 cm diameter electrodes as part of the Large Diameter RF Complex Plasma Device at DLR) and the ability to engineer dust-dust and dust-ion potential interactions by adjusting the gas discharge parameters are some of the approaches taken to use complex plasmas for studying important condensed matter effects. The most challenging aspect is the isolation of specific plasma effects from the collective phenomenon being studied. Wherever that is not trivial, modelling must be used to deconvolve the two efforts to draw inferences about strong coupling phenomena.

VI. GROWTH OF FUNCTIONAL NANOPARTICLES (U. KORTSHAGEN, E. KOVACIČ, E.J. THIMSEN)

Chemically reactive nonthermal plasmas have a propensity to nucleate and grow nanoparticles. While this was first identified as a contamination problem in semiconductor processing by Selwyn and coworkers, more recently nonthermal dusty plasmas have gained significant attention for the growth of functional nanoparticles. For nanoparticle synthesis, several attributes uniquely differentiate dusty plasmas from other synthetic routes such as colloidal solutions or flames. These include:

- **Nanoparticle charge** - As in other dusty plasma situations, nanoparticles in plasmas are generally negatively charged, even though their charge may fluctuate and particles may temporarily become neutral for very small particles with only a few nanometers in diameter. Due to their unipolar negative charge, nanoparticles mutually repel each other, which strongly suppresses or eliminates particle agglomeration that is a problem for other gas phase syntheses.

- **Nanoparticle heating** - Nanoparticles in plasmas experience intense exothermic surface reactions, such as electron-ion recombination, reaction with chemical radicals, or recombination of hydrogen atoms and other species. These reactions can release large amounts of energy that, on a per atom basis, significantly exceed the atomic kinetic energy at the gas temperature. Accordingly, nanoparticles in plasmas can temporarily reach temperatures that exceed the gas temperature by several hundreds of Kelvin, which explains the capability of nonthermal dusty plasmas to create crystalline nanoparticles of materials with very high melting points such as silicon, titanium nitride, graphite/graphene, and alumina. Nonthermal dusty plasmas offer excellent size control for the nanoparticles grown. In most cases, the nanoparticle size is linearly correlated to the residence time of particles in the plasma.

Green chemistry - Nonthermal plasmas, already considered a green technology in some countries when operated with renewable electricity, can be a fully carbon-free synthesis that does not require solvents or wet chemical processes, thus potentially reducing toxicity and waste.

A. Current Status

Interest in the use of nonthermal dusty plasmas for the synthesis of functional nanocrystals initially focused on silicon for use in novel electronic and optical devices. Effective dusty plasma synthesis techniques were developed both at low pressure and atmospheric pressure. In subsequent years, dusty plasma synthesis of nanoparticles was extended to a wide range of materials, including carbon based materials, metal oxides, sulfides, nitriles, and elemental metals as
well as alloys. The state of the art until about 2016 has been summarized in several review papers.401,402

Since then, important progress has been made in multiple areas. Doping of semiconductor nanocrystals has long been a challenge.403 Hence, the successful synthesis of doped silicon nanocrystals demonstrated this exciting capability of dusty plasmas.402,403 and opened the door to new device applications such as thermoelectric materials. It is believed that the nonequilibrium nature of a dusty plasma may favor kinetic control of nanoparticle growth and may enable structures that deviate from thermodynamic equilibrium. For example, hyperdoping of silicon beyond the thermodynamic solid solubility limit was demonstrated with dusty plasma synthesis.404,405 These hyperdoped nanocrystals exhibited exciting new properties such as near-infrared plasmonic resonances.406 Moreover, co-doping with both boron acceptors and phosphorous donors enabled near-infrared emission.407

Nanoparticles in nonequilibrium plasmas can vaporize despite the low background gas temperature. This phenomenon is the basis for a synthesis aerotaxy, in which at least one of the precursor streams is comprised of an aerosol. To date, vaporization has been observed with relatively soft elements such as Bi,408 Ga,409 In,410 Sb411 and Zn. Vaporization can result in interesting physical modifications of the nanoparticle population such as size focusing.407 Furthermore, the vapor can chemically react in the plasma to synthesize condensed phase compounds including the III-V semiconductors GaN,408 GaSb412 and InN409.

B. Perspectives

Particle trapping in dusty plasmas containing micron or submicron particles has been known for a long time and has been associated with the periodical growth behaviour observed in some dusty plasmas.412 However, in the synthesis of sub-10 nm particles in widely used laminar flow reactors, Figure 4a, the possibility of particle trapping had long been ignored, because sub-10 nm particles can be neutral for a large fraction of time and the particle size was found to be linearly related to the gas residence time in the reactor, suggesting a continuous transit of particles through the reaction, Figure 4b. Only recently, researchers realized the importance of particle trapping in laminar flow reactors. Xiong et al.413 demonstrated that temporary electrostatic trapping of nanoparticles during their growth, typically close to the RF electrodes, leads to size filtering that enables very monodisperse size distributions, Figure 4c: small particles are electrostatically trapped and continue to grow until they reach a persistent size distributions, Figure 4c: small particles are electrostatically trapped and continue to grow until they reach a persistent size distribution of less than 5% of the average size.414 A better understanding of temporary particle trapping during the synthesis of functional nanomaterials is required and will lead to increased control of the process as well as the ability to synthesize entirely new classes of materials such as core-shell nanoparticles. To fully harness the benefits of temporary particle trapping will require a better understanding of particle charging and its dependence on nanoparticle materials properties. Nanoparticle trapping may be further augmented by pulsed power operation. By intermittently turning off the plasma, particles may be released from the trap, only to be pulled back into it when the plasma is reignited. This may be utilized to creatively affect the size distribution of nanoparticles as they grow.415,416 Pulsing was also successfully used to either induce or suppress dust particle formation and growth,417,418 leading to the introduction of a critical frequency dependent on precursor presence. Control of nanoparticle growth via pulsing is still a new field with significant need to explore the relevant mechanisms in terms of the typical timescales for gas flow, particle charging, and trapping.

The heating of nanoparticles in plasmas remains another topic that requires further investigation. Estimates of nanoparticle temperature in nonequilibrium plasmas have been primarily made by model calculations. Some experiments have been performed wherein these calculations were related to crystallization temperatures for materials.419,420 Unfortunately, crystallization temperatures are not well-defined quantities. Further, whether nanoparticle heating can explain the observed vaporization in aerotaxy, or not, depends on the selection of a heating model and choice of the empirical accommodation coefficients. This results in significant uncertainty in the magnitude of the excess temperature, which is the main obstacle to understanding the aerotaxy mechanism. Widely applicable direct measurements of nanoparticle temperature in nonequilibrium dusty plasmas would be a significant breakthrough. Fluorescence decay thermometry may be a viable route to measure nanoparticle temperatures in dusty plasmas. Recently, there has been great success using fluorescence decay thermometry to characterize background gas temperatures in nonequilibrium plasmas.418-420 The probe, which was inserted into the plasma, consisted of a photoluminescent crystal that has a temperature-dependent emission lifetime. The photoluminescence lifetime is on the millisecond timescale, which allows for relatively straightforward measurements. For example, Cr3+-doped Al2O3 (ruby) exhibits a sharp emission line at 695 nm that has a temperature-dependent emission lifetime. The photoluminescence lifetime is on the millisecond timescale, which allows for relatively straightforward measurements. For example, Cr3+-doped Al2O3 (ruby) exhibits a sharp emission line at 695 nm that has a temperature-dependent emission lifetime. The photoluminescence lifetime is on the millisecond timescale, which allows for relatively straightforward measurements. For example, Cr3+-doped Al2O3 (ruby) exhibits a sharp emission line at 695 nm that has a temperature-dependent emission lifetime. The photoluminescence lifetime is on the millisecond timescale, which allows for relatively straightforward measurements. For example, Cr3+-doped Al2O3 (ruby) exhibits a sharp emission line at 695 nm that has a temperature-dependent emission lifetime. The photoluminescence lifetime is on the millisecond timescale, which allows for relatively straightforward measurements. For example, Cr3+-doped Al2O3 (ruby) exhibits a sharp emission line at 695 nm that has a temperature-dependent emission lifetime. The photoluminescence lifetime is on the millisecond timescale, which allows for relatively straightforward measurements. For example, Cr3+-doped Al2O3 (ruby) exhibits a sharp emission line at 695 nm that has a temperature-dependent emission lifetime. The photoluminescence lifetime is on the millisecond timescale.
Especially in biomedical applications such as theranostics, it is crucial to endow the surfaces of these materials (such as nanoparticles or flakes) with specific chemical functionalities. The negative charging of nanoparticles in plasmas causes these units not to coagulate into larger units. Combining plasma synthesis with subsequent plasma-assisted functionalization could provide a path toward large-scale production of nanomaterials with tailored surface functions. Aside from one-step functionalization based on comixing of precursors with gases such as NH$_3$ or N$_2$, possible ways include the introduction of functional groups by evaporation of liquid precursors. Liquid precursor introduction also enables the production and surface functionalization of plasma polymer nanoparticles such as polyamline as a conductive polymer, important, for example, for absorber for microwaves or for molecular electronics. Other intriguing areas include dusty plasmas that contain or generate carbon or oxides as well as nonmetallic materials such as graphite, metal-organic frameworks (MOFs), MoS$_2$, and similar materials, which are crucial for applications in renewable energy, including batteries, fuel cells, hydrogen production, and storage. Additionally, nanoparticle deposition onto surfaces may contribute to the development of biomimetic surfaces, improved adhesion, electronic materials and quantum dots for diagnostics tools. For example, Marvi et al. used photoluminescent semiconductor quantum dots as a plasma-surface diagnostic for nanoparticle charging. Carbon nanoparticles also play a significant role in astrophysics where laboratory dusty plasmas may serve to produce “astroanalogues”. Laboratory-produced materials, such as hydrocarbons, ice particles, and non-spherical dust particles, provide a testing ground for simulating astrophysical processes. They may be utilized to study particle cooling and heating, the role of dust particle surfaces as sites for the formation of new molecules, unidentified optical and radiofrequency emission and absorption lines, the birth and destruction of dust on planetesimals.

VII. DUST IN FUSION DEVICES (S. RATYNSKAIA, S.I KRASHENINNIKOV)

Dust in fusion devices concerns both in-situ produced particles as well as deliberately injected populations. The former is unavoidable and constitutes a safety problem for future reactors with possible consequences for diagnostic equipment and even plasma operation. Due to this fact, studies of in-situ produced dust are guided by safety and operational needs. On the other hand, investigations of the interaction of injected dust as processes of dust impacts, dust remobilization and dust-vessel mechanical collisions, as outlined in figure 5. The processes involved in dust inventory evolution concern dust formation and accumulation sites and impurity production in fusion devices. Fluid dynamics and contact mechanics problems are highlighted in red and blue, respectively. Reproduced from S. Ratynskaia, L. Vignitchouk, and P. Tolias, Plasma Phys. Control. Fusion 64, 044004 (2022), licensed under a Creative Commons Attribution (CC BY) license.

A. Current status

Due to the problem of fuel retention in plasma-facing components (PFCs), the decision was taken to move away from graphite-based to full-metal machines. The main in-vessel materials of interest are tungsten and beryllium, as expected in ITER. The vessel composition is naturally reflected in the composition of collected dust. Experimental evidence in tokamaks typically stem from dust collection activities and in-situ camera observations, though innovative diagnostics have been proposed. To mimic the edge plasmas of future reactors but with better diagnostic access, linear plasma devices, capable of producing relevant heat fluxes, are utilized that provide detailed measurements not viable in tokamaks. Reactors must comply with safety limits that are imposed on the in-vessel dust inventory. The processes involved in the dust inventory evolution concern dust formation and remobilization, dust-plasma interactions and dust-vessel mechanical collisions, as outlined in figure 5. The physical processes of dust impacts, dust remobilization and dust adhesion have been successfully described within the framework of impact mechanics and the Lifshitz theory of van der Waals forces, respectively. The effects of nanometer scale surface roughness, diffusion boiling after prolonged thermal treatments and plasma exposure on dust adhesion have been experimentally studied. Deposit delamination, PFC cracking, unipolar arcs and unstable molten pools in the course of high energy transients constitute the primary mechanisms of dust production in con-
PFCs is a major component of the dust inventory, especially in the perspective. Several dust codes have been developed for the reliable modelling of the complex process of material detachment to volumetric heating and their energy deposition is characterized by a strong inertial component which makes it challenging to describe.

A peculiarity of fusion plasmas is vapor shielding; the heat flux attenuation due to the interaction of the cloud of vaporized dust material, which surrounds the grain, with the background plasma. The plasma of ionized ablated material expands mainly along the magnetic field lines. The situation becomes even more complex for the case of the powder injection (see below), where plumes from different grains can overlap causing strong modification of local plasma parameters. The question of whether vapor shield can cancel out the effect of irregular dust shapes on dynamics has not been addressed yet. Available theoretical models are still rather qualitative and poorly benchmarked against experimental data.

Moreover, considering the large dust sizes and moderate initial speeds, metallic dust motion (especially for tungsten) is characterized by a strong inertial component which makes accurate initial conditions of crucial importance for reliable predictions. In this aspect, benchmarking of modelling results against available (though often limited) data from present tokamaks and fusion-relevant devices is the most effective and promising route to constrain the expected dust sizes and release velocities. Since (re-occurring) remobilization of survived dust is an essential component of dust inventory evolution, the plasma-induced remobilization velocities also constitute crucial input for modelling. Despite multiple controlled remobilization experiments, nearly no empirical input is available concerning the release speeds due to technical limitations.

Limited attention has been paid to ferromagnetic and strongly paramagnetic dust that can be lifted by the magnetic moment force and interfere with plasma start-up. This was first observed in DIII-D and confirmed in recent studies. A magnetic dust population can be formed due to the change of iron crystalline phase from austenite to ferritic during re-solidification of stainless steel droplets. We note that stainless steel use is anticipated.
in ITER533 and DEMO511 with significant stainless steel dust production expected in ITER.

Another distinct feature of tokamak dust concerns fuel retention512. Oxidized tritiated tungsten dust may behave like dielectrics and sustain charge due to β-decay514, 513, 515. The impact of tritiated dust on tokamak safety is a topic of ongoing research514. Detailed simulations of electrostatic self-charging have been initiated only recently514.

Let us also mention possible advances in the science of powder injection for fusion applications. The wall is often covered with a thin layer of a low-Z material - the so-called wall "conditioning", to prevent the penetration of high-Z impurities into the core plasma and to reduce plasma recycling. In recent years, powder droppers have been used on virtually all major devices for in-situ wall conditioning517-526. Being injected into hot fusion plasmas, powder particles (B, BN, Li) ablate and the material is deposited on the wall. An unexpected consequence of powder injection have been reported; it appears that in many cases it eliminates violent bursts of unstable plasma which are responsible for the strong erosion of divertor targets. The physics behind this effect is not clear yet. It is plausible that the 3D nature of powder injection leads to the modification of plasma equilibrium conditions and exhibits the stabilizing effect. Further understanding would require coupling of 3D plasma turbulence codes with dust dynamics codes to enable simultaneous modelling of powder particles transport and ablation and thus spatiotemporal evolution of the source of neutrals. Finally, the injection of powder could promote the plasma detachment regime, that is characterized by a very low power loading on divertor targets and thus of a primary interest for future reactors527. However, this idea is still waiting for its thorough investigation.

VIII. MICROGRAVITY COMPLEX PLASMA RESEARCH (H.M. THOMAS, U. KONOPKA, C.A. KNAPPEK)

In dusty plasmas, the solid particle sizes can cover a range from nanometers to centimeters. Starting with diameters larger than about 1 μm the particles become individually observable using basic illumination techniques. Then, the particle positions and velocities and thus their full dynamics can be deduced from optical imaging. Studies of dusty plasmas utilizing this technique represent the basis of experimental complex plasma research. While these particle systems are optically resolvable down to their individual particle dynamics, they are also subject to particle weight effects. With increasing particle size the gravity induced acceleration becomes more and more important. Sedimentation effects start altering or even dominating studied phenomena especially for microparticle systems embedded in a low-pressure plasma environment. The latter is the reason why microgravity research is a complementary and mandatory pillar in the research on complex plasmas allowing to access unique conditions to investigate large three-dimensional, homogeneous systems in the absence of weight-induced effects. Microgravity experiments have been successfully performed utilizing parabolic flights528-539, sounding rockets540 and three sequentially established and operated facilities aboard the International Space Station (ISS). The ISS based complex plasma experiment facility series consists of PKE-Nefedov, PK-3 Plus and PK-4541. These experimental setups have dominated the study of complex plasmas under low-gravity conditions without any major gap since the year 2001.

A. Current status

The research under weightlessness (microgravity) conditions has proven to be of major importance for the utilization of complex plasmas as a classical condensed matter model system (see Section V). Microgravity has shown to be even mandatory to utilize the complete plasma bulk volume for particle confinement and, as a result, to create complex plasma system of statistically relevant size, in contrast to ground-based experiments. Phenomena that have been studied cover crystallisation and melting processes, wave and shock wave propagation, lane formation, transition from laminar to turbulent flow and driven shear flows. In most cases the particle behavior could be resolved down to the dynamics of individual particles. The research also included studies of particle de-charging in the plasma afterflow as well as particle sputtering and growth through polymerisation from the gas phase. Even experiments in a plasma free background have been performed, investigating effects such as fast agglomeration due to oppositely charged particles, an interdisciplinary study that has the potential to trigger alterations of planet formation models542-554.

Recent results were achieved by using the facility PK-4 in the Columbus Module on the ISS for long-term and parabolic flights where short-term investigations were sufficient. One of the highlights from the parabolic flights concern the investigation of the demixing of binary complex plasmas (containing two different particle sizes) where it was found that the demixing process is mainly driven by the plasma forces on the different sized particles in contrast to first theoretical considerations where a spinodal decomposition was considered as dominant process555-557.

On the other side, PK-4 on the ISS allowed the detailed long-term investigation of the formation of strings in electro rheological plasmas formed in AC electric fields and could resolve their 3-d structure and formation process and their influence on wave propagation574-576. The strings are forming due to the interaction of the negative charged particles with positive ion wake regions. The latter are formed downstream of the microparticles due to the flow of ions in the AC electric field and their interaction with the negative charged microparticle, which act like an attractor/collimator for the ions. The question whether the arising attraction in the microparticle-plasma system is of short-range or long-range order could be resolved as short-range by careful comparison of experimental results and molecular dynamics simulations581.

The research under reduced gravity is not only important for investigations on complex plasmas as a model system for classical condensed matter formed in the bulk of a plasma device but also for solving fundamental questions regarding the
Physics and applications of dusty plasmas

![Diagram of Dusty Plasmas and Applications](image)

FIG. 6. Low-gravity complex (dusty) plasma research in the context of soft matter research, natural dusty plasmas and dust in industrial plasma applications.

charging and screening of individual particles or the interaction with ions leading to ion drag and ion wakes. It helps also to observe strong coupling effects, leading waves and shock waves in the dust component, and the influence of the dust component on the background plasma in general. This all is important in understanding natural dusty plasmas and dusty plasmas in plasma processing, see Fig. 6.

B. Perspectives

Complex plasmas are useful tools to test models of statistical physics, plasma physics and soft-condensed matter through the study and reconstruction of the full distribution function. Since the latter is experimentally accessible, the simultaneous investigation of single-particle and collective scales is possible. This kind of potential studies is unique, especially since complex plasma allow to obtain this insight over a wide range of system dynamics from over-damped to quasi undamped system as well as over a wide coupling range, from loosely coupled (gaseous) to strongly coupled (crystalline) phases. As such especially the microgravity complex plasma research that opens the possibility to study full 3D systems has a wide potential in the coming research endeavour. The perspectives of low-gravity research in complex and dusty plasmas have been published recently in a white paper[243,244]. They can be differentiated between the research as a model system of classical condensed matter physics (complex plasma) and natural dusty plasmas.

Examples of open research questions are the experimental determination of the equation of state that describes the state of matter via the relation of thermodynamical quantities[245,246], the investigation of transport properties such as viscosity[247,248], heat conductivity or diffusion[249], and anisotropic and non-reciprocal interactions that emerge in the presence of inhomogeneities in the system[250].

Additionally, the measurement of crystal dynamics on the atomic scale during phase transitions in solids can give new insights on the temporal development of crystal structures and the structural complexity on the surface[251]. This knowledge is relevant for applications such as materials design, through the influence of the structure on general properties of the macroscopic materials.

The supercooled state, and the system behavior close to or even beyond the glass transition point is another topic of future research and can be studied by quenching the liquid system below the melting point, yielding new insights into the microscopic foundation of supercooled liquids[252,253] and the elementary mechanisms which determine the stability of supercooled fluids against crystallization.

The investigation of fluid dynamics at the discrete level, especially of nonlinear phenomena such as nonlinear waves[254,255,256] and turbulence[257] can yield valuable insights into the underlying macroscopic processes and their connection to large-scale hydrodynamic motion, e.g. how macroscopic interactions lead to the development of large-scale nonlinear (turbulent) motion.

Active matter consists of particles that take energy from their surroundings and convert it into non-thermal motion. The emerging motion is usually far from equilibrium, and exhibits phenomena such as swarming, aligning, clustering, self-crowding (jamming), active micro rheology, active turbulence, active baths and many more. These can be studied in complex plasmas by inserting active particles, e.g. Janus particles[258,259] or anisotropic particles[260] into the discharge. Introducing active particles into the plasma opens up a new research direction covering many aspects of active matter such as the structure and ordering in an active particle system, or how the collective behavior of self-propelled particles connects to the energy input on the single-particle level.

Natural dusty plasmas are numerous in astrophysical environments, such as the Moon, asteroids, planetary rings, cometary tails, interplanetary and interstellar clouds, and Earths mesosphere[261,262,263,264], (see Section XII). Many of those are low-gravity environments. Especially on planetary bodies close to Earth, dust and dusty plasma pose challenges for human exploration by its hazardous effect on technical equipment or humans. A better understanding of the physical processes of dust formation, charging, lofting or levitation, their movement and dynamics will not only give insights into the fundamental physics, but can help to improve methods of dust mitigation that will be essential for future exploration missions, especially for the Artemis program to the moon[10,265].

Finally, utilizing dust particles as probes in the bulk plasma, the investigation of the trajectories can yield information on the plasma itself[266,267,268].

Future research activities can be realised with the multi-user, multi-purpose facility COMPACT[269] planned for the ISS as a follow-up lab to PK-4, by parabolic flights performed e.g. with lunar-g characteristics[270,271] or directly by dusty plasma experiments in-situ on the Moon[272]. To complement the research under low-gravity it is mandatory to perform advanced theoretical modelling and numerical simulations - from molecular dynamics to particle-in-cell methods - in parallel to dedicated experiments under gravity conditions using plasma and particle diagnostics not available e.g. in COMPACT due to their size/mass and complexity.
IX. TWO-DIMENSIONAL COMPLEX PLASMAS (V. NOSENKO, Y. FENG)

Two-dimensional (2D) complex plasmas are single-layer suspensions of micrometer-size solid particles in the plasma sheath of a gas discharge, see Fig. 7. They have a special place in the field of complex plasmas. For one thing, the discovery of 2D plasma crystals\(^{589-592}\) in 1994 gave a major boost to the whole field. For another, 2D complex plasmas possess a number of unique features which make them attractive objects to study in laboratory experiments and computer simulations. First, they are relatively easy to prepare and observe, 100% of their constituent particles can normally be imaged by video cameras throughout the experiment. Second, in-plane interparticle interaction potential is approximated well by the (purely repulsive) Yukawa potential\(^{29}\), which means simpler analysis, general interest, and the relevance to generic 2D phenomena (phase transitions, transport phenomena, waves, etc.). Third, unlike in 3D suspensions of particles in bulk plasmas, in 2D systems the particles levitate in the plasma sheath where the electric field is strong, therefore the system description can be based on the linearization around finite values, not zero as in bulk plasmas. This makes 2D complex plasmas well-defined systems open to analysis and computer simulations.

![Image](https://example.com/image.png)

FIG. 7. (upper panel) Snapshot of a 2D complex plasma crystal showing about 400 particles and (lower panel) the corresponding pair correlation function \(g(r)\) for particles. The image is inverted and its brightness is adjusted for better viewing. Reproduced from V. Nosenko, J. Meyer, S. K. Zhidanov, and H. M. Thomas, New radic frequency setup for studying large 2D complex plasma crystals, AIP Advances 8, 125303 (2018), with the permission of AIP Publishing.

A. Current status

In our opinion, the most interesting and significant recent advances in 2D complex plasma research took place in the following areas.

1. 2D complex plasmas as model systems for plasma-specific and generic 2D phenomena.
 - Thermodynamics and statistical mechanics. Entropy was measured in 2D complex plasmas\(^{597}\). In 2D complex plasma experiments with shear flows, the fluctuation theorem was obeyed\(^{593,594}\), leading to the temporal convergence of the fluctuation theorem\(^{593}\), which was then attributed to the viscoelasticity of complex plasma\(^{594}\).
 - Equation of state (EOS) and phase transitions. Using computer simulations, the EOS for 2D complex plasma liquids was obtained\(^{595-598}\), from which their various physical properties were analytically derived\(^{599-601}\). Shear\(^{602,603}\) and bulk moduli\(^{604}\) of 2D complex plasma solids were also obtained from simulations. For both 2D and 3D complex plasmas, it was found that the supercritical transition between the liquid-like to gas-like phases always occurs at 20 times of the corresponding melting point from various Frenkel lines\(^{605}\), just corresponding to the transition between strong and weak couplings of complex plasmas. Slow dynamics of the glassy state was discovered in a 2D complex plasma experiment\(^{606}\) and the corresponding simulation\(^{607}\).
 - Transport mechanisms. Ratchet rectification and its reversal were experimentally demonstrated by adjusting plasma conditions using naturally persistent flows of one particle chain inside asymmetric sawteeth of gears on the electrode\(^{608}\).
 - Shear viscosity was determined from the fluctuations of shear stress in shear flows\(^{609}\). A Stokes layer was experimentally observed by applying a sinusoidal shear using the laser manipulation method\(^{610}\), then the frequency-dependent complex viscosity was also obtained in this system\(^{611}\). From various scaling laws of viscosity and the time of the atomic topological structure change, the origin of viscosity at individual particle level was discovered\(^{612}\).
 - Dislocation dynamics. From dislocation dynamics in 2D complex plasma experiments with shear flows, the Orowan equation introduced in 1940s was first demonstrated to accurately determine the plastic strain rate\(^{613}\). Shear softening and hardening effects of 2D dusty plasma solids in different orientations were also discovered\(^{614}\).
 - Compressional shock and soliton dynamics. Thermodynamic properties after the shock propagation were analytically derived\(^{615-617}\). Shock induced melting\(^{618,619}\) and elastic-to-plastic transition\(^{620}\) were both systematically investigated. Fast particles overtaking the shock front\(^{621}\) and the dispersive shock wave around the shock front\(^{622}\) were both investigated systematically. It was found that rarefaction waves are generated simultaneously when the compression is suddenly stopped\(^{623}\). Compressional shocks were also performed in 2D complex plasma experiments with a well controlled exciter to determine the resulting shock speed and width\(^{624-626}\), so that quantitative comparisons with simulations were made. The propagation of a dissipative soliton was experimentally studied in a 2D binary complex plasma in amorphous and
Physics and applications of dusty plasmas

crystalline states626. Substrate dynamics. A substrate, or a force field with potential wells, was introduced into 2D complex plasma simulations to generate new dynamics, which can be experimentally realized using a striped electrode, or interference of powerful laser beams. Under the modulation of 1D periodic substrates, the new phonon spectra627, the sub-diffusion, and the reentrant melting transition628, as well as the oscillation-like diffusion629, were all discovered. During the depinning procedure, three dynamical phases of pinned, disordered plastic flow, and moving ordered states630,631 were found. Asymmetric 1D periodic substrates induced bidirectional flows with unbiased external excitations were also found632. It was also found that, under 2D periodic substrates, the resulting phonon spectra633 exhibit more complicated coupling. In the depinning procedure of the system modulated by 2D periodic substrates, the direction locking effect634, the dynamical commensuration effect635, and the superlubric-pinned transition636 were all discovered.

Plasma-specific phenomena. Plasma wakes downstream of the ion flow past negatively charged particles modify the interparticle interactions making them non-reciprocal (in quasi-2D complex plasmas). This leads to rich dynamics including the mode-coupling instability206,363,637 coupling of noncrossing wave modes638 and thermoacoustic instability639.

II. Extending the scope of 2D complex plasmas.

- The most common structure of a crystallized 2D complex plasma is a triangular lattice with hexagonal symmetry. Recently, the square lattice was experimentally observed under appropriate conditions in (1) binary quasi-2D complex plasma640 and (2) monodisperse quasi-2D complex plasma641.

- Apart from traditional particle tracking velocimetry (PTV) and particle image velocimetry (PIV) image analysis methods, new methods based on machine learning are emerging. A supervised machine learning method was used to study a phase transition in a 2D complex plasma642.

- Larger 2D complex plasmas, up to 27 cm in diameter (previously 5–6 cm) consisting of up to 34000 particles (previously 5000–15000 particles), were recently observed638,639.

- The scope of complex plasmas as model systems was recently extended to include active matter systems. Active matter is a collection of active particles, each of which can extract energy from their environment and convert it into directed motion, thereby driving the whole system far from equilibrium. Single active Janus particles as well as 2D complex plasmas with their inclusion were recently studied678,642,643.

B. Perspectives

In our opinion, 2D complex plasmas will continue to be in the focus of intense research. The following topics will likely receive increased attention.

- Due to their unique characteristics as model systems, 2D complex plasmas will be used to study plasma-specific and generic 2D phenomena. This will be facilitated by recent and expected hardware developments such as the emergence of new-generation plasma chambers644, higher-resolution and faster video cameras, 3D imaging techniques using stereoscopy and plenoptic cameras. Therefore, more sophisticated experiments and more accurate data are expected leading to the possibility of studying more subtle effects in thermodynamics, non-equilibrium statistical mechanics, physics of transport phenomena, glassy state, phase transitions, dislocation dynamics.

- Some plasma wake-mediated effects predicted theoretically still await experimental verification, for example emerging activity in bilayered dispersions of particles645. The relationship between the discharge parameters and ion wake characteristics is not well understood. A molecular dynamics simulation of ion dynamics and particle charging was performed to self-consistently determine the particle charge and ion wake characteristics for different synthetic experimental conditions621. Direct experimental measurement of the plasma wakes, e.g. using laser-induced fluorescence would be a much-welcome breakthrough.

- System-size dependence of complex plasma properties is a long-standing problem. In particular, the dependence of transport coefficients on the system size is of interest. In fact, the very existence of valid transport coefficients in 2D systems is debated646. Therefore, experiments with larger 2D systems will be necessary to address these questions.

- Following the recent experimental discovery of square lattice640,641, other more complicated structures predicted theoretically637 are expected to be observed in dedicated experiments.

- Ensembles of active Janus particles suspended in a plasma are promising model systems to study active Brownian (Langevin) motion, where the particle damping and propulsion can be tuned.578,642,643 Since Janus particles can be considered an extreme case of particles with inhomogeneities, they can be used as a study model for the so-called “abnormal” particles with irregular trajectories447, possibly helping to develop a method of controlling them in experiments with complex plasmas.

X. ATMOSPHERIC PRESSURE PLASMAS WITH AEROSOLS (P.J. BRUGGEMAN, D. MARIOTTI, R.M. SANKARAN)

Aerosols are introduced or produced, intentionally or unintentionally, in non-thermal atmospheric-pressure plasmas (APPs) for both fundamental research and current or emerging technologies648-652. Understanding the interactions between particles and plasmas is critically important to engineer nanoparticles649,653 and thin films with specific properties650,655,654, and is also more broadly relevant to atmospheric science and water treatment, as well as catalysis, environmental science, medical applications, and other fields655,656.
A. Current status

Compared with more traditional low-pressure dusty plasmas, APPs containing aerosols offer the possibility of working with a much wider range of materials, from liquids to high melting point compounds. Aerosol particles in APPs can be maintained at room temperature (e.g. with minimal evaporation for liquids) or heated to melting temperatures for solid particles. Particle charging is a common feature for both low-pressure as well as APPs, however due to a colloidal sheath (for both electrons and ions) particle charging can be different compared to low pressure dusty plasmas. For droplets, charge could for example penetrate into the droplet and the large dielectric constant of water can lead to asymmetric charging and sheaths around droplets. A key advantage of plasma processes, both at low-pressure and at atmospheric pressure, is the possibility of controlling the separation between the background gas temperature and the energy of electrons, a condition that creates novel pathways for particle growth and interfacial chemistry. However, because of the atmospheric pressure operation, these characteristics allow for APPs to be compared more directly with colloidal or aerosol routes, also operated at atmospheric pressure, but where such pathways driven by energetic electrons are inaccessible. These characteristics place APPs containing aerosols in a related, but separate research space from that of both low-pressure dusty plasmas and colloid chemistry.

Research progress on APPs containing aerosols has been characterized by many reactor configurations and in particular microplasmas or small-scale plasma reactors (compared to larger traditional low-pressure plasmas). Furthermore, at atmospheric pressure, drag forces are large and particles are more readily carried by the gas flow, hence APPs are often operated in a flow-through mode (e.g. plasma jets or flow-through reactors), as depicted in figure 8. In these cases, particles evolve as they travel through the plasma where phenomena such as nucleation, growth, chemical/phase transformation, evaporation, coagulation, condensation, fragmentation, deposition and charging can take place. When particles reach the edge of the plasma, they enter downstream the so-called spatial afterglow, through a space charge region with large electron, gas temperature and species densities gradients. The spatial afterglow likely transforms particle properties and can have both beneficial and detrimental impact depending on the targeted application.

Solid particles within APPs have been widely investigated in the context of nanoparticle synthesis (see also Section VI). In these cases, atomic or molecular precursors are injected in flowing plasmas, where conditions for particle formation are deliberately created. Hence, the plasma evolves spatially, to include initially the formation of clusters, and subsequently the growth of larger particles. The transit of such particles through the afterglow, downstream of the plasma, is an important stage of the synthesis as it impacts the phase, surface states, and charge on the particles.

These approaches have been used not only to collect nanoparticles, but also to deposit films on substrates, however, the literature rarely assesses, or even makes the distinction if particles form within the plasma prior to deposition or if the role of the plasma is purely to activate precursors. While material synthesis has shown a high degree of success, fundamental understanding of the processes is lacking with few exceptions. Other work with solid particles can have applications for material recycling, reprocessing, or waste remediation. APPs interactions with liquid droplets leverage the ability to generate chemically reactive species in gas-phase plasmas to produce chemical reactions and reactive species in the liquid phase. Droplets with a large surface-to-volume ratio interspersed in the plasma are a strategy to reduce transport limitations in plasma activation of solutions. Recently, the use of liquid precursors and therefore the injection of liquid micrometer-droplets in APPs has been increasingly investigated for materials synthesis. This was often motivated by the absence of suitable precursors with appreciable vapor pressure. In addition, some vapor precursors may be difficult to handle or contain undesirable components (e.g. organics). Alternatively, precursors could be introduced as a liquid droplet by for example dissolving in an appropriate solvent and evaporating the solution in the plasma. Such an approach could be considered as an extension of the work that has been done in synthesizing nanoparticles in liquid solutions by interfacing a plasma either at the surface or inside.

The droplet can be also seen as a liquid phase microreactor for a variety of other applications including nitrogen fixation, production of reactive species enabling decontamination of pathogens and water treatment. While plasma-induced chemistry can be highly complex, several studies show that the chemistry in droplets can, for certain conditions, be dominated by short-lived species. In many cases the flux of short-lived reactive species in the plasma is large and the transport is limited by diffusion of the chemical compounds from the bulk droplet to the plasma-droplet interface. Furthermore, the complexity of plasma-droplet interactions is significantly enhanced by the strong mutual interaction of the plasma and droplet leading to enhanced evaporation and the introduction of vapor in the plasma with potentially large impacts on the plasma properties surrounding the droplet and even the overall plasma chemistry.

Plasma-bioaerosols interactions are another unique example with specific relevance for APPs. While such interactions have received increased attention with the COVID-19 pandemic, the ability of a plasma to inactivate aerosolized viruses, bacteria and fungi was already well established before the pandemic. Inactivation of bioaerosols in APPs can occur with contact times on the order of 10 ms, which is orders of magnitude faster than typical plasma-enabled inactivation of pathogens on substrates or in bulk liquids.

B. Perspectives

Plasma-aerosol interactions offer the possibility of opening up new pathways for chemical reactions in aerosol synthesis and processing. While a significant volume of literature is...
emerging showing the effectiveness of APPs in aerosol-based processes, the key design and operational principles that control the system performance and a thorough understanding of the underpinning fundamental mechanisms are still lacking. The inherently non-equilibrium, nonlinear, and complex plasma-aerosol interactions have an excessive number of degrees of freedom that are not always holistically accessible and there is an urgent need for an enhanced understanding and predictive capabilities.

Current needs include a better understanding and control of the nucleation process as a critical step in the formation of solid nanoparticles. The impact of the afterglow on particle properties and dynamics also needs to be better understood, which in view of the large gradients at atmospheric pressure might have a more profound, but to date unquantified impact on aerosol processing. While recent studies focusing on the interaction of a plasma with single droplets has increased our understanding of plasma-droplet interactions, a quantitative understanding of (1) the ultrafast synthesis of monodispersed nanoparticles enabled by plasma-droplet interactions, (2) the plasma-induced liquid phase reactions in droplets in general, and (3) plasma interactions with bioaerosols remains lacking. Recent work on microdroplet chemistry, without a plasma, has shown uniquely different outcomes compared to bulk liquid chemistry, which suggest that APPs containing aerosols may also alter reaction mechanisms compared with APPs interacting with bulk liquids. We highlight several proposed areas of focus below.

Interfacial processes - The plasma-particle interface presents distinct and challenging characteristics which are of wider scientific interest. For example, electron emission processes, and the likely important role of ionic and metastable species recombination at the interface, remain poorly understood particularly for liquids. The band structure of the particles, and therefore their composition and phase, are not only highly relevant for many applications, but are also an integral part of more advanced models of interfacial processes which need to be developed. Furthermore, the volatile nature of many aerosol particles can lead to significant changes in the local plasma environment surrounding the particle, increasing the complexity as well as directly impacting droplet charging and reactive species fluxes.

Spatial afterglows - The properties of the afterglow have already been found to enable quenching of nanoparticles exiting the plasma. Nonetheless, the impact of strong gradients on particles, for example, due to space charge boundary layers at atmospheric pressure, and the transition from bipolar charging to a more dominant role of ions in particle charging in the afterglow, is to date not fully understood. Spatial afterglows have some similarities with temporal afterglows in plasmas formed at reduced pressure, and the knowledge gained from these studies may be drawn upon to advance our understanding of APP spatial afterglows.

Modeling - Plasma-aerosol interactions are inherently 3-dimensional phenomena, nonetheless most modeling studies have been focused on lower dimensional models. There is an urgent need for the development of 3D models to capture the interactions occurring within plasmas containing multiple aerosol particles. A major emphasis should be on the incorporation of more detailed interfacial interaction mechanisms and on the development of simplified reactor geometries with easy access for diagnostics, that are more amenable to modeling and experimental model validation.

A better understanding of the processes underpinning plasma-aerosol interactions will not only contribute to plasma science, but enable the continued impact of this area on technologies and society.

XI. MAGNETIZED DUSTY PLASMAS (E. THOMAS, A. MELZER, E.G. KOSTADINOV)

The interaction between magnetic fields and dusty plasmas plays a key role across Earth, space, and astrophysical phenomena. In Earth’s magnetosphere, the interaction of the solar wind and the influx of meteors lead to a number of dusty plasma effects, such as noctilucent clouds and polar mesospheric summer echoes. On the moon, the levitation of charged dust particles in lunar swirls has been shown to map the topology of crustal magnetic fields. The alignment of dust particles in magnetized plasmas at the center of the Milky Way has allowed us to observe its magnetic fingerprints. While the scale and strength of magnetic fields in the universe varies, modern-day magnetized dusty plasma experiments produce some key normalized parameters of these environments and serve as dedicated research platforms to study these phenomena (Fig. 9).
Physics and applications of dusty plasmas

Here, a charged particle (electron, ion, or dust particle) is considered “magnetized” when its dynamics is substantially influenced by the magnetic force, \(F = qi\mathbf{v} \times \mathbf{B} \), where \(q \) and \(\mathbf{v} \) are the particle charge and velocity, and \(\mathbf{B} \) is the magnetic field. The magnetic force should be comparable in magnitude to the other forces that influence its dynamics. This condition can be quantified by the Hall parameter, \(\alpha = \omega_{ci} / \nu_{ci} \), where \(\omega_{ci} \) is the ion gyrofrequency, \(\nu_{ci} \) is the ion-neutral collision frequency, and \(\nu_{ci} \) is the electron-neutral collision frequency. Here, \(\alpha \) represents the charged particle species [electrons (e), ions (i) and dust (d)], \(P \) is neutral pressure, and \(m_i \) and \(q_i \) are their mass and charge, respectively. As the Hall parameter increases with increasing charge-to-mass ratio \((q_i/m_i) \), the electrons are most easily magnetized, then the ions, then the charged dust particles. Thus, to understand a system that has magnetized dust particles, we must also consider the dynamics of the magnetized plasma electrons and ions.

A. Current status

Weak magnetic fields of, \(B < 0.1 \) T were used to provide confinement of the electrons \((H_e > 1)\) and weak confinement of the ions \((H_i \sim 1)\), but there is effectively no direct impact of a magnetic force on the dust particles. The influence of the magnetic field is largely restricted to modifying the background plasma which leads to a larger trapping volume for the dust particles. In experiments by Merlino et al. an axial magnetic field was used to expand the anode glow region near a biased electrode.\(^{14,708}\) Other studies focus on modifications of ion instabilities and shocks in these weakly magnetized plasmas.\(^{706,707}\)

In inhomogeneous magnetic fields, there is a modification of the potential structure of the plasma that can lead to rotation of the both two-dimensional and three-dimensional dusty plasma structures.\(^{709,710}\) Additionally, the formation of dusty plasma tori, i.e., a “ring” of dust that rotates in the plane perpendicular to the magnetic field, were observed to form as a result of a delicate balance between electric, neutral drag, and ion drag forces on the dust grains, where the ion drag is modified by the presence of the magnetic field.\(^{711,712}\)

Dusty plasmas with magnetized electrons and ions, typically characterized by \(H_e \geq 1 \) and consequently \(H_i \gg 1 \), usually require substantial magnetic fields of the order of \(B \geq 100 \) mT or even \(B > 1 \) T. Under such conditions, the dynamics of the electrons and ions are greatly influenced by the magnetic field provoking a reaction of the dust component to these altered plasma dynamics.

Laboratory experiments generally employ discharges between electrodes that tend to form filaments at elevated magnetic fields.\(^{364,370,372,720,722}\) These filamentary structures are elongated along the field, but restricted perpendicular to the field, and feature increased light emission and, presumably, elevated plasma density. The filaments are suggested to be a result of non-ambipolar diffusion due to restricted ion diffusion perpendicular to the field.\(^{723,724}\) In dense dust clouds with submicron dust particles filamentation is found to be suppressed\(^{725}\). The directed magnetic field also maps features of the plasma boundaries as potential structures into the plasma.\(^{727,728,729}\)

The presence of electric fields \(E \) in bounded discharges give rise to \(E \times B \) rotations of the ions (and ion-neutral collision driven neutral gas rotation)\(^{731}\). The ion (neutral gas) rotation drives rotations of the dust component where the rotation speed generally increases with magnetic field strength\(^{729,730}\), eventually leading to a sheared rotation of the different parts of the dust cloud.\(^{729,731,732}\)

Experiments on the dust charge trapped in the sheath of the discharge reveal only little variation of the dust charge with magnetic field strength, even for fields larger than \(1 \) T.\(^{766,737,733}\) This is backed by simulations of the dust charging processes with flowing magnetized ions\(^{735–737,738–740}\). While electron and ion currents to the dust are influenced by the magnetic field, they change in a similar manner so that the net change of the dust charge is small.

In a flowing plasma, a region of enhanced positive space charge (ion focus) is created in the wake of the dust particle due to ions that are scattered into the region downstream of the dust particle.\(^{737,738}\) Analytical and linear response theory calculations find that the positive space charge potential reduces with magnetic field strength\(^{739,741,742}\). PIC and MD simulations of the ion focus support this finding.\(^{79,80,743}\) MD calculations show that at very high field strengths of the order of 10 T the ion focus turns into an ion “shadow” with a reduction of the positive space charge because the ions follow the magnetic field lines and cannot be scattered into the region downstream of the dust particle any more.\(^{32,83}\) All this is accompanied by a reduction of the ion drag force on the dust particle with magnetic field.\(^{744}\)

Dust-density waves\(^{266,745,747}\) are excited by an ion flow past the dust particles and feature strong modulations of the dust density at frequencies of the order of the dust plasma frequency.\(^{748}\) Since the ion flow is affected by the magnetic field, also the dust-density wave dispersion is modified in a magnetic field.\(^{727,749,750}\) However, the relevant dust cyclotron frequency is still much smaller than the dust plasma frequency for micron-sized dust particles even at magnetic field strengths of the order of a Tesla. Moreover, the dust-density wave dispersion remains unaffected when the ion flow is along the magnetic field. One or both of these limitations are met in the experimental situations so far.\(^{727,735,736}\) Hence, a direct influence of the magnetic field on the wave dispersion is not expected. However, the dust-density waves are found to feature stronger wave-damping at higher magnetic fields.\(^{755,756}\)

In fusion devices with magnetic fields of the order of a few Tesla, dust particles are produced from melting of wall material or from arcing and exfoliation\(^{72,54,367,731,732}\) (see also Section VII). In fusion devices, the plasma production is electrodeless and the plasma densities are much higher than in the situations described above. The main forces on the dust are the ion drag force and “rocket forces” due to non-uniformities in the particle material and the associated different reflection coefficients of plasma particles as well as forces due to dust material ablation. However, also in these conditions the direct influence of the magnetic field on the dust trajectories is considered negligible.\(^{54,367,732}\)
Physics and applications of dusty plasmas

FIG. 9. Representative magnetized dusty plasma regimes in terms of magnetic field (B) vs ratio of electron Debye length to dust gyroradius: Saturn’s rings (from NASA/JPL751), Orion’s Nebula (from NASA/ESA/SAM Robberto752), Dust near the sun (from NASA/Johns Hopkins APL/Steve Grienberg753), Star-forming region (from ESO, Mark J. McCaughrean754), Nocilicent clouds (adapted from Martin Koirmäe755), Processing plasma (Adapted from Robert L. Merlino, John A. Goree; Dusty Plasmas in the Laboratory, Industry, and Space. Physics Today 1 July 2004, 57 (7): 32–38. https://doi.org/10.1063/1.1784300, with the permission of AIP Publishing), Low temperature plasma chamber for nanoparticle growth with permanent magnets (courtesy of Edward Thomas, Jr. and Saikat Chakraborty Thakur), MDPX (courtesy of Edward Thomas, Jr.), Tokamak (© ITER Organization756), Lunar dust experiment (from NASA757), Lunar swirls (NASA/GSFC/Ari zona State University584), GIC reference cell (from758).

A true magnetized dusty plasma, in which the dynamics of all charged particles are dominated by the magnetic field still remains to be fully realized in a controlled experiment. For astrophysical systems753,754 as well as next-generation fusion experiments755,756, the role played by magnetized dust particles may have considerable influence on the evolution of the plasma. There are many theoretical models that seek to understand both single particle and collective particle dynamics in a magnetized dusty plasma246,277,743,756–760. However, a key challenge of many of these models is fully incorporating the modification in the plasma dynamics and particle charging that occurs as the magnetic field dominates the electron and ion dynamics.

B. Perspectives

The future exploration of magnetized dusty plasmas remains rich with opportunities. Many of the motivating questions in space and astrophysical plasmas about the magnetization of the dust grains still remain unanswered779–781. Recent observations of dust in the solar wind from Parker Solar Probe772–774 and investigations of dusty structures near strongly magnetized black holes775,776 show that there are still exciting questions.

The ultimate goal to achieve a direct magnetization of the dust component in experiments with $H_B \geq 1$ will probably require magnetic fields exceeding 1 T and submicrometer-sized dust particles. When dust cyclotron waves with typical wavelengths of the order of 10 cm are exploited as evidence of dust magnetization, the dust clouds have to be quite large766. However, imaging of individual particles (a unique feature of dusty plasmas) will become difficult or even impossible. Experiments would require a control or mitigation of filament formation demanding for a deep understanding of bounded plasma discharges under strong magnetic fields. In this context, questions of particle charging $282,83,88,735,736$, the generation or modification of plasma flows $80,82,83,88,744$, or growth processes in reactive gases $32,777$ have to be newly addressed.

The development of advanced analytical models and numerical simulations is crucial to fully bridge laboratory results and space observations. Analytical theory and numerical simulations of magnetized dusty plasma have been developed to investigate the formation of Mach cones (relevant to Saturn’s dusty rings)775,776, hydromagnetic waves and shocks (planetary ring systems)779–781, low frequency ion waves (solar atmosphere and pulsar magnetosphere)785,791, dust acoustic waves (Earth’s magnetosphere and auroral regions)784, and magnetized sheaths (plasma processing and probe theory)785.

When modeling such systems, apart from a Lorentz force term, it is necessary to account for additional electrostatic fields, plasma inhomogeneities, and anisotropic interactions. The difference in charge-to-mass ratio of the different species in magnetized plasmas leads to charge separation resulting in additional electrostatic fields. This process is believed to cause the formation of lunar swirls786,787,792. Another possible phenomenon is the plasma filamentation at strong magnetic fields786,792. Depending on the strength and topology of the external magnetic field, symmetry in the particle shielding may be broken, resulting in anisotropic interaction potentials that affect many dynamical features of the dust structures in magnetized plasmas. Thus, developing self-consistent analytical models to describe these processes and incorporating these effects in numerical simulations of magnetized dusty plasmas still present one of the greatest challenges in the field.

XII. SPACE DUSTY PLASMAS (M. HORANYI, I. MANN)

Dusty plasma phenomena in space physics often offer possible explanations for unusual observations. The term “dust” is used to identify macroscopic charge carriers with a wide range of sizes, from large macro-molecules (nm radii) to pebbles (mm radii). Exposed to UV radiation and/or immersed in plasma, dust particles can exhibit unusual dynamics and can change the properties of their environment. The spatial scale of dusty-plasma-related observations in space also spans many orders of magnitudes, including the small-scale (cm) structures on the lunar surface and the propagation of interstellar dust particles through the entire solar system (100s of AU). The atmospheres of the Earth4, Mercury788, the surface of the Moon789, asteroids790, comets791, and planetary rings792, for example, all offer rich laboratories to study the fundamentals of dust charging, transport, and the possible emergence of dusty plasma collective behavior219,793.

Challenges, in general, for dusty plasma studies in space...
are due to the fact that we do not know the composition of the dust, we usually deal with a wide size distribution, and the dust charge remains poorly known because it depends on the dust density itself and a number of processes driven by the radiation and plasma environment. In addition, the very presence of the dust can alter the properties of their environment, acting as sinks and/or sources of the plasma, changing the energy distributions of electrons and ions, and even the composition.

We focus here on dusty plasmas that can be studied with space missions through in situ measurements. In the ionosphere of the Earth dusty plasma influence the charge balance and is often noticed in an observed lack of electrons in comparison to positive ions (Fig. 10). Some dust plasma collective effects are observed in situ with rocket-born instruments and also with ground-based radar. Further away, dedicated instruments onboard space missions can detect the mass, charge speed, and composition of dust particles, simultaneously characterizing their radiation and plasma environment, enabling the identification of phenomena that are shaped by dusty plasma processes.

A. Current status

Dusty plasma in the ionosphere of the Earth recently became the focus of studies because it occurs at altitudes where the ionosphere-mesosphere coupling is important. This region overlaps with the zone of meteor ablation. Cosmic dust material that is ablated in the meteor process remains in the upper atmosphere, it forms small dust particles, called meteoric smoke, and it takes part in the ion chemistry and in the growth of ice particles observed in Noctilucent clouds. Noctilucent clouds were among the earliest examples of dusty plasma in space. These are layers of ice particles at about 82 km altitude observed during summer months above mid and high latitudes. The clouds are located above the normal cloud layers at altitudes of the ionospheric D region. They become visible to observers on the ground after sunset, when the upper layers of the atmosphere are still illuminated by the sun and sunlight is scattered by the ice particles. More recently, Noctilucent clouds are observed by backscattering of laser light with lidar, from the extinction of sunlight that they cause in the atmosphere, observed from satellite, and with imaging from balloons. All these methods are independent of dust charge and are biased to particles with sizes of several times 10 nm and larger. It is discussed that the formation of ice is more effective because of the existence of smaller meteoric smoke particles that form through the meteoric dust flux as the extinction measurements suggest that meteoric smoke is mixed with the ice. Also, rocket observations support the hypothesis that ice particles include smaller meteoric dust.

Charge interactions play a role in the formation process. While in-situ measurements with sounding rockets confirm the existence of charged dust and the in-situ detections are often correlated with the radar echoes and optical signals, the size distribution, charge, and composition of the particles remain mainly unexplored. Smaller particles can under certain conditions be traced with observations of mesospheric radar echoes that form as a result of neutral turbulence and in some cases by the interactions with the solid particles through their surface charging. While the participation of ice particles is confirmed for the formation of the mesospheric echoes in summer, called Polar Mesospheric Summer Echoes (PMSE), these echoes depend on a number of parameters which makes it difficult to pin down the dust/ice component and its charged interactions with the ionosphere. The charged dust also participates but is only rarely observed in the incoherent scattering process and a semi-empirical model to describe the incoherent scattering in the presence of charged dust was recently extended including dust with a size distribution.

Electrostatic dust lifting on the lunar surface is a fundamental physical process that has been suggested to explain unresolved observations for more than five decades. For example, the so-called Lunar Horizon Glow is believed to be sunlight scattered off a cloud of ~10 µm charged dust particles lofted or levitated ~30 cm above the surface near the terminator, where enhanced electric fields are created due to differential charging between the sunlit and shadowed regions. Similarly, the observations by the Apollo 17 LEAM experiment of dust movement across lit-dark boundaries or the high-altitude nanometer-sized dust lofted up to tens km height indicated by visual observations of the Apollo astronaut have been suggested to be the results of dust charging and mobilization. Recent theoretical and laboratory studies show promising results to understand the dynamics of electrostatic dust lofting and levitation on the lunar surface.
Physics and applications of dusty plasmas

A new patched charge model has been developed based on laboratory experiments, providing a breakthrough in addressing this question. The model shows that the emission and re-absorption of photoelectrons due to UV radiation and/or secondary electrons due to electron/ion impacts within subsurface microcavities generates large negative charges on the surrounding particles and intense inter-particle repulsive forces to lift off the particles. Following this discovery, more laboratory experiments and modeling work have provided new insights into the dust charging and lofting properties, including the initial charge and launch velocities, lofting rates, and size distributions.

B. Perspectives

Several opportunities are coming up for the observations of dusty plasmas in the ionosphere. Ongoing Earth observations, the dedicated studies with the MTS satellite, and the new balloon observations provide a basic understanding of the atmospheric structure at NLC and PMSE altitude that will help to investigate dusty plasma at these altitudes. The upcoming EISCAT3D radar with advanced capabilities for incoherent scatter observations will improve chances to measure the influence of dust on the incoherent scatter signal and its tri-static configuration improves the diagnostic of the PMSE formation.

The rapidly increasing number of satellites in low-earth and geosynchronous orbits already generates a difficult-to-solve problem of accumulating space debris. Possible dusty plasma effects can alter the lifetimes of debris and could offer a novel way to mitigate this hazard. The interest in lunar exploration is going through an unprecedented growth period as several countries are currently engaged in or planning for near future missions to the Moon. Many of these carry experiments addressing dust and dusty plasma issues on the lunar surface that are now recognized to be of high importance for both scientific and engineering application.

Dusty plasma studies in planetary magnetospheres will have ample opportunity to collect new observations by ESA’s Juice mission, launched in April 2023, and NASA’s Europa Clipper mission, to be launched at the end of 2024, both to Jupiter. In addition, NASA long-term plans for the exploration of outer planets include a flagship mission to orbit Uranus. In magnetospheres, the dynamics of small charged particles can be shaped, if not dominated, by electromagnetic forces acting simultaneously with gravity, drag, and radiation pressure. Dust particles traversing various regimes adjust their electrostatic charges as dictated by the changing plasma conditions, and respond to electric and magnetic forces. Dusty plasma effects can lead to unexpected effects including transport, ejection, and capture of small charged grains.

The heliosphere includes the solar system dust cloud where dust particles form through collisions of larger objects, and also are emitted from comets. New space observations in the vicinity of the Sun motivated studies of charged dust trajectories in the vicinity of the Sun or other stars. The trajectories of nanometer-sized dust that was released from larger particles were investigated using numerical simulations and theoretical models considering the effect of plasma corotation close to the Sun/star. As in previous studies, it was found that nanodust in the vicinity of the Sun or other stars and the effect of plasma corotation is strong for the high rotation rates and/or a low stellar wind speed. Trapping conditions are variable and for instance, large fractions of trapped particles can escape during coronal mass ejections.

The charged dust trajectories were also investigated for the inner planetary debris disks around Vega and Fomalhaut because both stars display a thermal emission brightness that could possibly arise from hot dust near the stars. It was found, that in comparison to the Sun, the trapping conditions would occur closer to the stars because their faster rotation leads to a more closely wound-up magnetic field spiral.

Another example of dust being influenced by plasma is the modulation of the interstellar flux into the heliosphere with the solar cycle. While this modulation is qualitatively understood our models do not satisfactorily explain the variability and direction of the interstellar dust flux. NASA’s upcoming Interstellar Mapping and Acceleration Probe (IMAP), as well as JAXA’s Destiny missions to be launched in 2023, will carry dust instruments to monitor the flow of interstellar dust through the inner heliosphere, and observe its variability modulated by the solar cycles, however superimposed with the solar system dust fluxes. The Parker Solar Probe and the Solar Orbiter at present explore the near solar inner heliosphere and carry antenna instruments that also measure dust impacts. From analyses so far many of the results can be explained with the orbits of dust that are influenced of gravity force and radiation pressure. Charged dust trajectories can become particularly important in the perihelion passages, and Parker Solar Probe can encounter particles that are in trapped orbits since the trapping can for instance occur for 30–75 nm particles that were created inwards from 0.16 AU from the Sun.

In addition to naturally occurring phenomena, dusty plasma effects can offer a uniquely efficient approach to cleaning optical surfaces, exposed mechanical devices, thermal radiators, and astronaut’s suits, all essential to mitigate dust hazards and enable the planned long-term presence of humans on the lunar surface, and eventually on Mars. Dusty surfaces exposed to electron beams with optimized fluxes, energy distributions, and directions, can be efficiently cleaned, removing even the smallest nm-sized dust particles.

Future space missions and ground-based observations of the near-Earth environment, lunar surface, near solar/stellar regions, comets, asteroids, planetary rings embedded in magnetospheres, our entire heliosphere, and beyond, will have to address dusty plasma issues, including dust charging, mobilization, transport, and yet to be identified, collective effects, in designing, analyzing, and interpreting new observations.
Physics and applications of dusty plasmas

XIII. NANO-CONTAMINATION CONTROL (J. BECKERS, M. VAN DE KERKHOFF)

Dust particles immersed in an environment of ionized gas are known to get (mostly negatively) charged by the collection of plasma species. This feature - together with the typical characteristics of plasma and possibly with the assistance of mechanical vibrations, gas flows, electric fields and/or photon or electron beam irradiation, may exert additional forces on the particles releasing them from surfaces or altering their location and trajectories. Hence, this charging enables opportunities to control and mitigate particle contamination issues in a multitude of scientific endeavours and applications. In the current section, we elaborate on the current status regarding (nano)particle contamination control related research and highlight some perspectives on possible high-potential future research directions. In this contribution we mainly focus on surface release and gas phase steering of contaminating particles and less on their deposition on secondary surfaces.

A. Current status

It was back in 1989 that Selwyn et al. discovered for the first time the presence of plasma-generated dust particles in an IBM plasma processing reactor\(^{1}\). The fact that in those experiments the micrometer-sized particles - made visible by in-situ laser light scattering - appeared to remain levitated in the plasma above the surface, already indicated that plasma can affect the location and movement of such contaminants. Essentially, this was the first encounter of the most fundamental plasma-assisted contamination control mechanism, i.e. the plasma self-induced electric fields \(E\) at the plasma’s borders (sheaths) interacted with the plasma-deposited surface charge \(Q\) on the particles, and generated an electric force \(F = Q \cdot E\) affecting the particles’ positions and trajectories.

Ever since, particle contamination issues in (or due to) plasma environments have appeared in many scientific, instrumental and industrial areas. For instance, extra-terrestrial exploration (e.g. of the Moon, Mars or other outer-space objects) can be (negatively) impacted by the accumulation of surface-released dust particles on diagnostic instruments\(^{445-447}\) and solar panels\(^{448}\) (see Section XII). Often these particles are charged by ultraviolet light irradiation\(^{449-451}\) and by the solar wind plasma\(^{452,453}\). In Extreme Ultraviolet (EUV) lithography scanners, contamination of critical imaging surfaces with particles as small as 50 nm significantly impacts the overall performance and yield of the systems and therefore needs to be controlled\(^{454-455}\). The particles in such scanners may be embedded in and/or irradiated by a photon-induced plasma and ionizing radiation\(^{456-460}\). In plasma material processing tools, surfaces to be processed may suffer from (and be dysfunctionalized by) contamination with particulates that are either released from the environment and reactor walls or that are in situ plasma-synthesized from the precursor gas and/or components that are sputtered and etched from surfaces. Especially in the 1990s, significant research efforts have been made to study particle formation, electrical charging, transport and trapping of particles in (afterglow) plasma processes\(^{461-463}\).

In contrast to most examples, where plasma is inevitably present, sometimes plasma is generated intentionally for contamination control purposes. For instance, an in-situ plasma-assisted particle seal was proposed for application in robotic feedthroughs in ultra-clean vacuum systems such as those used in semiconductor processing equipment, EUV lithography scanners and electron microscopes\(^{476-479}\). Finally, in nuclear fusion devices, dust particles may be produced by energetic plasma-surface interactions\(^{475,477}\). Besides possibly having a detrimental effect on the plasma operation itself, these contaminants may be radioactive and toxic and, hence, may impact public health in case of a large-scale accident. This topic is discussed extensively in Section VII of this perspective paper. The rapid developments of the above-mentioned areas in which dust particle contamination plays a crucial role have boosted both fundamental research endeavours and the development of new technologies to control and mitigate contamination by small particles either on (or from) surfaces or airborne.

With respect to the cleaning of surfaces from particles, be it for application in extraterrestrial missions or in (semi-)industrial processes, many proposed processes use plasma as a basis. Here, plasma-charging of the governing surfaces and contaminants in combination with plasma-self-induced electric fields in the sheath region near the surface is used to generate an electric force on the contaminants that is strong enough to overcome the adhesion force and, hence, to release the particles from the surface. Often, the stochastic nature of charge collection from the plasma by the particles and/or triboelectric charging triggers random/poorly predictable particle release\(^{480-483}\). Depending on the specific environment conditions, different types of plasma have been applied. Examples include studies of contaminated surface interactions with highly transient EUV-induced plasmas\(^{484-485}\). Electron Cyclotron Resonance plasma sources in hydrogen (to mimic EUV scanner conditions)\(^{486}\), laser-induced plasma shock waves\(^{487}\), plasma jets generated between two co-axial electrodes\(^{488}\), and many more. Also, other procedures have been developed, which can be possibly combined with (the generation of) plasma, to influence surface contamination and promote the release of particles from surfaces. One successful method appeared the additional irradiation of particle-laden surfaces with beams of electrons\(^{489,490}\), laser beams\(^{491},492\), high-speed gas jets\(^{493,494}\), and surface vibrations\(^{495-497}\).

With respect to the mitigation of airborne particles, using plasma has advantages over methods using filters in the
sense that plasma-assisted particle removal devices do not obstruct the gas flow. The most basic example for airborne particle removal is the concept of the electrostatic precipitator - invented by Hohlfeld back in 1824\cite{901} - in which particles are electrostatically charged and steered by an electric field towards collector plates. This way of particle filtering has been widely applied in, for instance, coal burning energy plants\cite{902}, diesel engines\cite{903} and indoor air cleaners\cite{904}. For application in these atmospheric conditions, often corona-like discharges are used\cite{905}. Applications in low pressure (roughly below 100 Pa) high-tech environments usually require (capacitively or inductively coupled) plasmas with much more complex geometries. As in these cases the plasmas, used to charge the particles, also tend to shield the electric fields applied to deflect them, pulsed plasma operation is usually considered most effective. For these technologies to be developed, in-depth understanding of particle charging and interaction with afterglow plasmas is crucial. Targeting this application, but also other applications and fundamental curiosity, many experimental and numerical works have been carried out on particle dynamics in temporal\cite{191,880–883}, spatial\cite{911,912} and spatio-temporal\cite{208,913,914} afterglow plasmas. Particle and aerosol interaction in atmospheric (flow-through) pressure plasmas has been investigated extensively more recently as well\cite{652,667,670,915–919} (see Section X). Also, considerable research efforts have been undertaken when it comes to the understanding of the growth of contaminating particles inside chemically reactive gases\cite{925,926–929} and the suppression of them in processing plasma applications, i.e. by using sine wave\cite{930} or square-wave modulation of the (usually radiofrequency) plasma driving signal\cite{931}.

B. Perspectives

In general, using plasma as a key ingredient for novel contamination control strategies has high potential. Nevertheless, from a physics point of view, the ecosystems in such applications - especially those in high-tech industries - are rather complex, combining complex-structured and highly sensitive surfaces, (ionizing) photons, electrostatic fields, gas flows and additional irradiation with charge carriers. Also, plasma may have undesirable side-effects, and must be properly managed and confined. Before applications can be developed to their full potential, much more understanding and investigation are needed. For applications where plasma is intentionally applied for contamination control purposes, the challenge is to correctly use and steer the complex interplay between the key plasma parameters such as electron temperature and density, decay rates in the afterglow phases, etc. (which are to a certain extent controllable), the resulting particle charge (which may vary in time and can even become positive) and the consequent surface-release, deflection and collection methods. The complexity of the interplay lays in the fact that most processes and parameters are mutually interdependent. Possibly even more challenging is the development of contamination strategies for applications in which plasma is inevitably present, e.g. in space exploration applications, materials processing, and EUV lithography applications, as earlier discussed. In those areas, plasma configurations and key parameters are dictated externally and, hence, the right implementation of plasma-facing surfaces, external electric fields, flow conditions and irradiation with charged particles and/or photons is essential.

In order to drive the general fundamental understanding regarding plasma-enabled (nano)particle contamination control, the following aspects are considered most important:

- **Plasma-induced chemistry** - i.e. unraveling the influence of plasma-induced chemistry on particle morphology change and (the impact thereof on) the release of contamination from surfaces, especially in atmospheres including gases of which the induced plasma may be depositing, oxidizing or reducing. In this context, the adsorbed layer surrounding a particle should be taken into account explicitly\cite{932}. This influence should be connected to an overall theoretical framework regarding particle release from surfaces including effects of e-beam and UV irradiation, plasma-induced and externally applied electric fields, electron and ion impact, particle and surface (de-)charging and particle migration over the surface.

- **Spatially decaying and highly transient plasmas** - i.e. revealing a detailed description regarding dynamics of spatially decaying and highly transient plasmas and their impact on charging of airborne particles. The stochastic particle charging nature might become dominant even for micrometer sized particles when the electron temperature approaches the ion temperature and the plasma density becomes rather low in the late afterglow phase. Although relatively much research on stochastic charging of particles has been conducted\cite{933–935}, more detailed understanding remains needed, especially in afterglow conditions.

- **Nanometer length scales** - i.e. obtaining in-depth knowl-
edge on plasma-charging dynamics of nanometer sized particles. The interesting issue of the dominance of stochastic charging processes (see previous point) especially holds for nanoscale particles. Recent development regarding visualizing of charge on or adjacent to quantum dots may enable such advanced studies in the near future28,933,934.

XIV. NON-ELECTRIC MANIPULATION OF PARTICLES (H. KERSTEN, V. SCHNEIDER, D. BLOCK)

To manipulate highly charged particles, utilization of electric fields is the most obvious solution935,936. However, this approach bears a number of difficulties. First of all, a plasma is quasi-neutral and shields very efficient externally applied fields. Thus, electrostatic manipulation is limited to the plasma sheath region or requires to insert additional electrodes937,938 for manipulation purposes into the plasma. Further, the applied voltages will result in currents and this can alter the discharge properties or at least change the local plasma conditions notably. However, for using particles for diagnostic purposes, the plasma should not be altered. Thus, the manipulation of dust particles by means of forces that do not affect the plasma itself is an important issue. Such forces are gravity, neutral drag, thermophoresis and interaction with intense electromagnetic radiation, i.e. lasers. The following paragraphs will summarize these approaches and their current status and give an outlook on future perspectives of non-electric manipulation for dusty plasma research.

A. Current status

Although gravity itself is not a variable quantity on earth, it is possible to use rotating systems to utilize centrifugal forces to act as if hyper-gravity conditions would apply. For this purpose, a fully functioning low pressure dusty plasma setup was mounted at TU Eindhoven on the working stage of a centrifuge, capable of inducing up to 10 times the earth’s gravitational acceleration939. With this setup, the “weight” of microparticles can be increased while the general plasma parameters are left unchanged. In addition, the angle of the resulting apparent gravity vector can be changed due to a rotational degree of freedom of the facilitating vacuum vessel suspension. This ability, in combination with the magnitude control of the apparent gravity, allows manipulation of the horizontal and vertical particle equilibrium positions in the plasma sheath. First experiments939,940 demonstrated that the electric field and the particle charge as a function of levitation height can be probed in the plasma sheath.

A similar approach using centrifugal forces can be applied to dust clusters via rotating electrodes. Here the centrifugal force is perpendicular to gravity. The rotating electrode can drive a neutral gas flow which (due to viscosity in the background gas and neutral gas drag of the dust particles) gives rise to a solid body rotation of 2D dust clusters711. In principle, these experiments are similar to those of Nosenko et al941,942 where alternating electric fields similar to a Paul trap943 were applied to horizontal boundaries. While Nosenkos approach drives an ion flow and thus affects the plasma, the pure neutral gas drive does not. Interestingly, the circularly moving dust particles are not only subject to centrifugal forces but to Coriolis forces as well. While the first allow to measure the screening length via a force balance, the latter allow (due to a mathematical equivalence of Lorenz and Coriolis force) to study (pseudo) magnetized dust systems977,984 (see Section V).

Another option for additional non-electric forces acting on the dust are thermal gradients. The thermophoretic force is well known for rarefied gases965 and the physics are identical in a weakly ionized plasma system. Hence, with heated and/or cooled electrodes moderate temperature gradients of about 10 K cm-1 are sufficient to compete with gravity for micro-particles. For example, Rothermel et al946 used a vertical temperature gradient to counter act gravity and produce 3D microparticle suspensions which have a similar void structure as those observed under microgravity.

Finally, lasers are a powerful tool for manipulation of particles without changing the plasma conditions. Laser excitations of single microparticles were used for charge determination947,948, to excite waves949, to study dynamical properties (shear flows, viscosity, heat transport) and to increase the average dust kinetic temperature950-955. The advantage of lasers is that they provide precise control on location and motion of particles in the interaction region and thus allow to address individual particles as well as complete particle systems. The origin of the force is twofold: First, the photons are scattered by the dust particles and, thus, transfer strong accelerations964. That even a vertical control-trolled motion of particles in the plasma sheath is possible, was shown by Schneider et al. using two counter-propagating laser beams956.

Optical tweezers959 use strong intensity gradients to trap transparent microparticles. Ito et al960 succeeded in trapping and etching Poly(methyl methacrylate) (PMMA) particles in vertical orientation against gravity. With a modified setup structural and dynamical properties of a dust cluster have been manipulated92,961,962. That even a vertical control-trolled motion of particles in the plasma sheath is possible, was shown by Schneider et al. using two counter-propagating laser beams956.

It has to be noted that intense lasers yield to a heating of the particle which can cause reversible surface modifications567 or even damage the particle and lead to strong accelerations964.

B. Perspectives

As listed above, there is a number of powerful and established non-electric methods which allow to manipulate particles. Such experiments can be used to gain insight into the physics of the dust component. Furthermore, manipulated individual probe particles can deliver information about the surrounding plasma or sheath properties.

For example, thermophoresis was successfully used to
(partially) compensate gravity and may complement the hyper-gravity experiments making the regime up to zero-gravity conditions accessible in the lab406,407 (see Sections V and VIII). If gravity is only partly compensated and an additional radial confinement (glass box) is used, finite 3D dust clusters can be created966,967. The experiments and simulations on these so-called Yukawa-balls allowed to explore structural and dynamical properties of finite 3D strongly coupled systems for the first time330. This shows that thermophoresis is a powerful tool to alter trapping conditions. Its rather simple technical realization will certainly make it a first choice in future if specific trapping conditions are needed to study structural and dynamical processes in dusty plasmas. Besides this common thermophoresis, especially thermal creep flows968–970 might play a role for dust particle growth971.

So far, laser manipulation has established as a standard tool to trigger or control dynamical processes in complex plasmas. Lasers are used to control the kinetic temperature of the dust component as well as to trigger collective particle motion or instabilities and the exploration of dynamical processes in complex plasmas is still ongoing. Certainly, laser manipulation will remain one of the working horses in experimental complex plasma research. A few examples for recent and future activities are studies of cold fluids and their viscoelastic properties972–976 and the excitation of selective modes961. Furthermore, it might be possible to generalize the optical tweezers approach and generate optical lattices in order to tailor the structural properties of particle arrangements. These lattices would allow to tailor the local confinement geometry and strength, for a systematic variation of kappa, which is so far not possible.

A peculiarity of laser manipulation of particles is that two forces are involved: radiation pressure and photophoresis. While the first only depends on the intensity of the radiation, the latter increases with neutral gas pressure and its magnitude and direction depends on the optical properties of the particles. Hence, two particle species of different material within the same plasma volume and being illuminated by the same light source will not experience the same net-force. For example, for binary systems977 an increase of kinetic temperature of the particles via a laser heating system952 will result in a binary system, where the individual particle species have different kinetic temperatures967. This can be utilized to study basic thermodynamics in the system, e.g. to measure entropy directly972 according to its basic statistical definition of Boltzmann and Gibbs. This example shows that the specific properties of radiation pressure and photophoresis can be tailored and utilized to explore fundamental properties of complex plasmas. Additionally, photophoresis plays an important role in configuring optical tweezers. The development of the next generation of such devices for complex plasmas will strongly benefit from being able to quantify radiation pressure and photophoresis.

On the other hand, the particles can be utilized as probes. Since the microparticles can be observed in the plasma sheath easily, they can serve, in particular, as electrostatic probes for the characterization of the potential surfaces and electric fields in this region977,978,979. Usually, the plasma sheath, which is an important zone of energy consumption and, hence, often the essential part of a discharge for applications, is difficult to monitor by common plasma diagnostics such as Langmuir-probes or optical spectroscopy. By monitoring the dependence of the position and motion of the particles on the discharge parameters, information can be obtained on the electric field in front of electrodes or substrate surfaces, respectively, where other plasma diagnostic methods fail.

The optical tweezers approach969,970 allows to determine the sheath width and the forces acting on a single charged particle. Furthermore, combining this technique with a so-called dual-frequency discharge980, different forces in the plasma sheath can be determined depending on the frequency combination of the discharge982. The vertical movement of a particle by optical traps through the sheath region of a rf plasma towards the electrode surface opens up new possibilities to study the electric field forces, the ion drag force or the influence of secondary electrons by using different electrode materials. Probing the sheath region with single particles provides data and information for theoretical models and simulations (see Sections I and II) and gives new insights into the physics of this space charge region. It demonstrates that the technologically important plasma sheath becomes experimentally accessible using particles as probes. Especially, if these are combined with recent developments in electrostatic particle manipulation, the sheath properties can be studied in more detail.

Using a step-wise electric excitation of the particle981 gives an optimum with respect to accuracy and minimum measurement time. It allows to probe the particle charge in the plasma sheath as a function of distance to the confining electrode and to quantify the repulsive Coulomb interaction force acting between two microparticles including the screening length980.

ACKNOWLEDGEMENTS

The editors of this perspective article Job Beckers and Mikhail Pustylnik are thankful to PhD student Tim Donders for his support during the editing process.

Job Beckers acknowledges financial support from the Dutch Research Council NWO (project number 15710).

Johannes Berndt and Eva Kovačević acknowledge the project PEGASUS (Plasma Enabled and Graphene Al-lowed Synthesis of Unique nano-Structures), funded by the European Union’s Horizon research and innovation programme under grant agreement No 766894 and the EU Graphene Flagship FLAG-ERA III JTC 2021 project VEGA (PR-11938) as well as support obtained via ARD MATEx Region Centre, France and project Orleans Metropole, France.

Dietmar Block acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) in the projects BL555 3-2 and BL555 4-2.
Physics and applications of dusty plasmas

Peter J. Bruggeman acknowledges the US Department of Energy under Award Number DE-SC-002032, the National Science Foundation under Award Number PHYS 1903151 and the Army Research Office under Grant Number W911NF-20-1-0105.

Lénaïc Couëdel acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Grant No. RGPIN-2019-04333.

Gian Luca Delzanno acknowledges the Laboratory Directed Research and Development Program of Los Alamos National Laboratory under project number 20230668ER. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001).

Van Feng acknowledges the support from the National Natural Science Foundation of China, Grant No. 12175159.

Franko Greiner thanks the Deutsche Forschungsgemeinschaft (DFG) for funding of the project GR1608/8-1 “Dusty plasmas with high electron depletion: Investigation of fundamental mechanisms and properties through particle and plasma diagnostic .

Peter Hartmann acknowledges the Hungarian National Office for Research, Development and Innovation (NKFIH) Grant K134462.

Mihaly Horányi acknowledges NASA Solar System Exploration Research Virtual Research Institute’s (SSERVI), Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT).

Christina A. Knapek acknowledges Funding grant: DLR/BMWi FKZ 50WM2161.

Uwe Komopka acknowledges that his work was supported by NASA-JPL Subcontracts No. 1679198 and No. 1655063.

Uwe Kortshagen acknowledges support from the Army Research Office under MURI grant W911NF-18-1-0240 and from the US Department of Energy under grant DE-SC0022242.

Evdokiya G. Kostadinova acknowledges the US National Science Foundation NSF-1903450.

Sergei I. Krasheninnikov acknowledges support of the work by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award No. DE-FG02-06ER54852 at UCSD.

Davide Mariotti acknowledges EPSRC Award n.EP/V055232/1.

André Melzer acknowledges DLR German Space Agency 50 WM 2161 and 50 WM 1962.

Maxime Mikikian acknowledges funding grant: DLR/MBMF 50WM9852, CNES 02/CNES/4800000059, ANR-11-JS09-0010, ANR-19-CE40-0023.

Volodymyr Nosenko, Mikhail Y. Pustylnik and Hubertas M. Thomas acknowledge funding grant: DLR/BMWi FKZ's 50WM1441, 50WP1203, 50WP1203, 50WP1203, 50WP1203, and 50WP9852.

Svetlana Ratynskaia and Panagiotis Toliyas acknowledge funding grant: DLR/BMWi FKZ's 50WM1441, 50WP1203, 50WP1203, 50WP1203, 50WP1203, and 50WP9852.

BIBLIOGRAPHY

Physics and applications of dusty plasmas

Physics and applications of dusty plasmas

Physics and applications of dusty plasmas

Physics and applications of dusty plasmas

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

A. Melzer, H. Krieger, S. Schuett, and M. Mulsow, “Finite dust clusters
Physics and applications of dusty plasmas

Physics and applications of dusty plasmas

43

Physics and applications of dusty plasmas

for calculation of ensembles of trajectories of dust particles in a tokamak;”

Physics and applications of dusty plasmas

1. INTRODUCTION

Dusty plasmas are a fascinating and active area of research due to their unique properties and potential applications. They consist of a plasma component and a dust component, with the dust particles interacting through Coulomb forces. The interplay between the charged particles and the neutral dust results in a complex system with emergent phenomena.

2. PHYSICS OF DUSTY PLASMAS

The physics of dusty plasmas involves a range of topics, including phase transitions, turbulence, wave propagation, and turbulence. One of the key phenomena in dusty plasmas is the formation of Coulomb crystals, which are analogous to solid-state physics.

3. APPLICATIONS OF DUSTY PLASMAS

Dusty plasmas have potential applications in various fields, such as astrophysics, semiconductor technology, and materials science. For instance, they can be used to study the formation of complex structures under microgravity conditions, which is relevant for understanding the formation of planets and other celestial objects.

4. CONCLUSION

In conclusion, the study of dusty plasmas is an interdisciplinary field that combines elements of plasma physics, condensed matter physics, and astrophysics. The rich phenomenology of dusty plasmas continues to inspire new research and applications across various scientific domains.

References

Physics and applications of dusty plasmas
Physics and applications of dusty plasmas

The physics and applications of dusty plasmas

Physics and applications of dusty plasmas

exposed to plasma and electron beam, “(2020).”

a) carrier gas & gaseous precursor

RF

nanoparticles

b) Flow

Time

Flow

Time

c) trapping zone
Release mechanisms

| Melt splashing | Solid dust remobilization | Solid dust production |

Initial conditions

Dust-plasma interaction
- Charging
- Heating
- Dynamics
- Mass ablation

Dust-wall collisions
- Bouncing
- Sticking
- Spreading
- Splashing

Particle final states

| Complete vaporization | Splashing as a droplet | Sticking as solid dust |

| Impurity source maps | Dust inventory evolution | Accumulation sites |
Natural dusty plasmas

Dusty plasma in industrial applications

Low-gravity research

Complex plasma as soft matter

Fundamental processes:
- Charging, lofting/levitation
- Interactions, waves, etc.

Dust-growth, -transport, plasma/surface contamination, etc.

Classical condensed matter:
- Phase transitions, cooperative phenomena, active matter, etc.
- Charged granular gases: transport, agglomeration, etc.
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

Please cite this article as DOI: 10.1063/5.0168088

![Diagram of magnetic field intensities and related phenomena](image-url)