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Self-diffusion in two-dimensional quasimagnetized rotating dusty plasmas
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The self-diffusion phenomenon in a two-dimensional dusty plasma at extremely strong (effective) magnetic
fields is studied experimentally and by means of molecular dynamics simulations. In the experiment the high
magnetic field is introduced by rotating the particle cloud and observing the particle trajectories in a corotating
frame, which allows reaching effective magnetic fields up to 3000 T. The experimental results confirm the
predictions of the simulations: (i) superdiffusive behavior is found at intermediate timescales and (ii) the
dependence of the self-diffusion coefficient on the magnetic field is well reproduced.

DOI: 10.1103/PhysRevE.99.013203

I. INTRODUCTION

From the first observation of plasma crystals [1–4] two
decades ago, strongly coupled dusty plasmas have been serv-
ing as a uniquely useful, simple, and universal “tool” for
the studies of various physical processes in weakly damped,
strongly coupled many-particle systems. The ensemble of
electrically charged solid microparticles that are levitated in
a gas discharge plasma qualitatively reproduces most of the
features of simple atomic matter, but at length scales and
timescales that are easily accessible with standard video mi-
croscopy techniques providing direct visual access to individ-
ual particle trajectories. Utilizing this property, dusty plasmas
can be used to investigate the microscopic details of classical
macroscopic phenomena like collective excitations, thermal
conductivity, viscosity, diffusion, deformation of crystalline
solids, liquid flow including turbulence, phase transitions,
etc., as well as phenomena like self-organization, lattice de-
fect formation and migration, etc. Experiments on one- and
two-dimensional (2D) systems (particle chains and single
layers) are performed routinely in ground based laboratories,
but for three-dimensional systems microgravity environments
provide obvious advantages [5–7].

In most of the studies to date the observed motion of
the dust grains could be described by theoretical models
(accompanied by computer simulations) that decoupled the
dust dynamics from the complex interaction of the grains
with the gas discharge plasma, which serves as the embedding
medium and provides the means for the particles to acquire
their charge. The basis of this reasonable approximation lies
in the very different timescales characterizing the discharge
plasma and the charged dust ensemble. Both in radio fre-
quency (RF) and direct current (DC) discharges the typical
response times are in the nanosecond to microsecond regime
for electrons and ions, while dust grains with typical diameters

above 1 micron react on a scale of 10 to 100 milliseconds.
Phenomena like charge fluctuation on the grain surface and
the alternating external electric field in the RF case can be
neglected: the grains experience only the time averaged effect
of these. Assuming a homogeneous background discharge
plasma, the most simple model that is still widely used and
most successful for 2D systems is the Yukawa one component
plasma (YOCP) model, which approximates the net interac-
tion between the dust and the plasma via a single exponential
screening parameter as derived by Debye and Hückel for
electrolytes [8]. More realistic models (and, for example,
Langevin dynamics simulations) take into account the driven-
dissipative nature of the experiments and have successfully
quantified the effect of the background gas [9–12]. The fact
that in most cases the behavior of the dust grains that are part
of a complex, multicomponent system called dusty plasma can
be described by the YOCP model is another essential reason
why dusty plasmas are such a universal tool.

The idea to extend strongly coupled dusty plasma research
into the exciting world of magnetized systems emerged in the
early years of experimental complex plasma research. Pio-
neering experimental work has been performed by Konopka
[13] and Sato [14] with promising results. These and later
experiments [15,16] inspired several groups to perform nu-
merical simulations [17–19] of magnetized dusty plasmas and
provided the foundations for the new generation of magnetic
dusty plasma experiments (MDPX) currently in operation
[20]. During the interpretation of the experimental observa-
tions, two fundamental conclusions were reached that we in-
terpret as problems that hinder the above mentioned universal
applicability of dusty plasmas as simple model systems of
atomic matter in magnetic fields. These circumstances are as
follows.

First, due to the small charge-to-mass ratio of the dust
grains relative to that of electrons and ions, extremely large
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magnetic fields (in the range of thousands of teslas) are
needed to magnetize the dust component. Here magnetization
is defined as a state where the cyclotron motion (radius and
frequency) of the dust particles is comparable to that of the
dust dynamics (interparticle distance, plasma frequency of the
dust particles).

Second, using a magnetic field strong enough to magnetize
the dust greatly modifies the dynamics of the electrons and
ions in the gas discharge and introduces practically unpre-
dictable inhomogeneities and anisotropies of the electron and
ion densities and fluxes [15]. The dust particles are sensitive
to these inhomogeneities and settle into structures that are
defined by the background plasma, and not by the intergrain
interactions. This finding does on one hand open new inter-
esting research directions [21], but on the other hand makes
the separation of the dust dynamics and discharge plasma
dynamics impossible.

A possible solution that overcomes both issues was sug-
gested by Kählert et al. [22,23] based on the Larmor theorem
[24]. Using the formal equivalence of the magnetic Lorentz
force Fm ∼ Qv × B and the Coriolis force FC ∼ 2mv × �,
one can be substituted for the other. Here Q and m are the
electric charge and mass of the dust grain; the vectors v, B, �

are the velocity, magnetic induction, and the angular velocity
of rotation of the (whole) system. Although the Coriolis force
is not present in the laboratory reference frame, it appears as
an inertial force together with the centrifugal force if one ob-
serves the rotating system from a corotating frame. In this case
the particle velocities are defined in this corotating reference
frame. The applicability of this idea was first demonstrated on
the vibration spectrum of a small cluster of dust grains [22]
in an experimental setup introduced in [25] and later on the
collective excitation spectra and wave dispersion properties
of a 2D many-particle ensemble [26] in the “RotoDust” setup.
It has been shown that this alternative approach solves both
issues that arise in real magnetic dusty plasma experiments:
the equivalent magnetic field can be extremely high, and
the plasma properties (primarily the homogeneity, as well as
the electron and ion dynamics) are practically unaffected by
the rotation of one of the electrodes, due to the large difference
in timescales of the rotation (few Hz) and the electron and ion
motions. In this way, the RotoDust experiment successfully
extends the applicability of dusty plasmas to study principal
many-body phenomena at the particle level in a universal
fashion to magnetized systems.

In this article we focus on self-diffusion, one of the
fundamental transport processes in nature, in magnetized
strongly coupled dusty plasmas in the liquid phase. RotoDust
experiments were performed in the Hypervelocity Impacts
and Dusty Plasmas Lab (HIDPL) of the Center for Astro-
physics, Space Physics, and Engineering Research (CASPER)
at Baylor University, Waco, Texas, and at the Institute for
Solid State Physics and Optics, part of the Wigner Research
Centre for Physics of the Hungarian Academy of Sciences,
Budapest (referenced, respectively, as “TEX” and “BUD” in
the following). Details of the dusty plasma apparatuses can
be found in an earlier publication [27]; here only a brief
outline is given in Sec. II, where details of the methods of
the measurements and data evaluation are given. Molecular
dynamics (MD) simulations, described in Sec. III, are also
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FIG. 1. Schematics of the “RotoDust” electrode configuration of
the (a) BUD setup and the (b) TEX system.

performed to compute the mean-squared displacement and
diffusion coefficient of 2D magnetized Yukawa systems with
system parameters matching the experimental conditions for
comparison. The results are presented in Sec. IV, while a
summary is given in Sec. V.

II. ROTODUST EXPERIMENTS AND DATA EVALUATION

Both the TEX and BUD experiments are based on RF
discharges operated at a frequency of 13.56 MHz in argon gas,
with rotatable horizontal powered lower electrodes, as shown
schematically in Fig. 1. The relevant difference between the
two setups is in the gas pressure operation regime due to
the size difference of the respective plasma volumes. In the
TEX experiments the discharge gap was 2.5 cm and the gas
pressure was varied between 10 and 30 Pa, while in the BUD
experiment the discharge gap is 15 cm and gas pressures
between 0.5 and 1.5 Pa were used.

In both setups the horizontal electrostatic confinement was
enhanced by glass cylinders with inner diameters 1/4 to
1/2 inches placed on the rotating electrode, with a careful
alignment of the symmetry axis of the glass cylinder and the
axis of rotation. This enhancement is necessary to compen-
sate for the centrifugal effect that acts against the horizontal
confinement. The rotation of the lower electrodes is driven
by controllable speed DC motors (of type BMU260C-A-3)
through a ferrofluid rotary vacuum feedthrough in the BUD
system, or from inside the vacuum chamber in the TEX setup.
The rotating electrode drags the gas inside the glass cylinder,
transferring the rotation to the dust particles by neutral drag.
Turbulent motion of the neutral gas is not expected, as the
Reynolds number is very low in such a low-pressure environ-
ment. After turning on the motor, it takes about a second for
the dust cloud to reach the rotation rate of the electrode.

Melamine formaldehyde (MF) particles with diameters of
dTEX = 8.89 μm ± 1% and dBUD = 4.38 μm ± 1% were dis-
persed into the glass cylinders while operating the discharge
plasmas in the range of 2 to 20 watts of RF power. The
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experimental parameters (RF power, gas pressure, and rota-
tion rate) were adjusted to achieve large homogeneous single
layer configurations in the strongly coupled liquid regime.
Typical particle numbers in the dust clouds ranged from N =
100 to 1000 grains with the diameter of the dust cloud ranging
from 3 to 10 mm. The dust clouds were illuminated with
wide laser beams and image sequences were recorded at 125
frames per second (fps). The image exposure time was set to
1/2000 seconds to prevent the images of individual particles
from streaking given the fast rotation in the range of 2 to 6
revolutions per second.

The optical magnification is chosen to entirely fit the whole
ensemble into the observation field of view. The image se-
quences were processed by our own algorithm, which includes
the following steps:

(1) Particle detection was performed following the proce-
dure described in [28]. At this stage the apparent displace-
ments of particles between subsequent images are too large
for direct tracing; see Figs. 2(a) and 2(b).

(2) The center of mass (COM) for each frame is calculated
from the positions of all the particles in each frame.

(3) Over time, the position of the COM is observed to
move in a small circle. The center of rotation (COR) is
identified as the long time average of the COM positions
found for each frame.

(4) An initial estimate of the rotation rate � is derived
from the variation of the vector connecting the COR and COM
from frame to frame; see Figs. 2(c) and 2(d).

(5) Particle coordinates in the rotating frame are found by
applying the inverse rotation with angular velocity −� about
the point COR to compensate for the overall rotation; see
Fig. 2(e).

(6) A periodic artificial “wobbling” of the derived coor-
dinates of the dust cloud due to small misalignment of the
axis of rotation and the symmetry axis of the glass cylinder
is compensated by applying a least-squares minimization
algorithm to the differences of particle positions in subsequent
frames. Parameters found in this step are the additional frame-
to-frame translation and rotation of the particle cloud that is
superposed on the steady rotation already subtracted during
steps 4 and 5; see Fig. 2(f).

(7) To obtain the trajectories of individual particles, the
grains have to be identified from frame to frame. This is done
by linking the grain with the nearest position in the next frame
to the particle in the current frame.

As a result of these data processing steps, one obtains
the 2D coordinates and velocities of all particles as observed
in a corotating frame as functions of time for sequences
of typically 10 000 to 40 000 frames. Using these particle
positions the mean-squared displacement

MSD = 〈s2〉(τ ) =
〈

1

N

N∑
i=1

[ri (t ) − ri (t + τ )]2

〉
t

(1)

can be easily measured.
For ideal systems the diffusion coefficient can be calculated

from the MSD assuming Brownian-like motion, where for
long times the MSD has an asymptotic time dependence
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FIG. 2. Elementary steps of the derotation transformation
demonstrated using two subsequent snapshots from experiment
TEX11 (see Table II, with recording rate 125 frames per second,
image resolution 256 × 256 pixels, and a field of view of 4.5 × 4.5
mm). Raw images at times (a) t0 and (b) t0 + 8 ms, with superposed
red circles showing the result of the particle detection. (c) and (d)
Detected particles together with the center of rotation (COR, red
circle) and the vector connecting the COR with the instantaneous
center of mass (COM). (e) Overlay of the two sets of particle
positions after the rough derotation described in step 5. (f) Overlay
of the two sets of particle positions after the least-squares correction
and removal of the outer particle ring relative to COR as described in
step 6.

MSD ∝ t :

D = lim
t→∞

MSD

4t
. (2)

However, in performing real experiments or numerical simu-
lations, the systems of interest may behave slightly differently
from the Brownian motion model and can have nonlinear time
dependencies, for example MSD ∝ tα , where the exponent
α is a dimensionless parameter usually with a value close
to unity. The case when α > 1 is called superdiffusion, and
the opposite case α < 1 is called subdiffusion. In both cases
Eq. (2) is inconclusive and it is not possible to characterize the
particle transport with a single parameter. Alternatively, it is
possible to extend the concept of the diffusion coefficient to
two parameters, namely the exponent α introduced previously
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and the generalized diffusion coefficient:

Dα = lim
t→∞

MSD

4tα
, (3)

as discussed in [12].
The topic of anomalous diffusion in general is of high

interest in various fields in physics and biology [29], where
particle simulation methods provide significant contributions
to the quantification of particle transport [30] because a solid
theoretical background is still not available, especially in low
dimensions [31]. Some predictions suggest that in the real
thermodynamic limit (infinite system size and observation
time) in isotropic systems with short range interparticle inter-
actions, the diffusion becomes normal and the instantaneous
value of the diffusion exponent α asymptotically approaches
unity [32]. However, for finite sizes and short times, highly
relevant for nanotechnology and high frequency applica-
tions, the system can show significant anomalous transport,
which can even be enhanced by the external magnetic field
[19,33–35].

Generally, as t → ∞ is not directly accessible in particle
simulations or experiments, a common practice is to substitute
formulas (2) and (3) by fitting the MSD curve with MSD(t ) =
4Dαtα + b in a finite interval t1 < t < t2. In practice t1 has to
be chosen large enough for the time interval not to include
the initial ballistic regime and possible oscillatory transients
at early times [32]. The maximum time used in the fitting t2
is determined by the physical size of the experiment, as the
MSD is limited by the system size.

It is essential that the results be presented in a form which
allows their universal application, as well as allowing them
to be compared with results from theory and numerical simu-
lation. To do so we have to derive the principal parameters of
the 2D magnetized YOCP model from our experiments. These
parameters are as follows:

(i) the Coulomb coupling parameter

� = Q2

4πε0

1

akBT
, (4)

where ε0 is the dielectric constant, kB is the Boltzmann
constant, T is the kinetic temperature of the dust grains, and a

is the Wigner-Seitz radius defined as a = √
1/πn in 2D, with

n being the surface number density of the dust grains;
(ii) the Yukawa screening parameter

κ = a

λD
, (5)

where λD is the Debye screening length, a property represent-
ing the polarizability of the gas discharge plasma; and

(iii) the magnetization parameter

β = ωc

ωp

, (6)

where ωp is the nominal 2D plasma frequency defined as
ω2

p = nQ2/2ε0ma, and ωc is the cyclotron frequency. In the
case of a real magnetic field the cyclotron frequency can be
calculated as ωc = QB/m, but in the RotoDust case, where
the magnetic Lorentz force is substituted by the Coriolis force
in the equation of motion of the dust grains, the cyclotron
frequency is equivalent to ωc = 2�.

To obtain the desired system parameters we perform the
following steps for each measurement:

(1) A calibration image is taken with the same optical
setup to match the pixel size with physical distances. Our
resolution is in the range of approximately 100 pixels per
millimeter. As each dust grain covers approximately 5 pixels,
the positions are known with subpixel accuracy, with the
uncertainty in the measured interparticle distance an estimated
5%.

(2) The number of observed dust grains and the visual size
of the dust cloud are used to calculate the surface density, and
via this, the Wigner-Seitz radius a.

(3) To obtain the electric charge Q and the Debye screen-
ing length λD we follow the procedure introduced in [26].
After recording the image sequence of the rotating cloud,
the rotation is stopped and all but two particles are dropped
from the dust cloud by rapidly switching the discharge off
and on in a short time but keeping all discharge parameters
unchanged. Three parameters are easily obtainable from the
recorded image sequence of this two-particle system: the
average distance between the two particles 〈d〉, the oscillation
frequency of the center of mass ωCOM, and the oscillation
frequency of the interparticle distance ωd . These three param-
eters, together with the grain mass m, are the input parameters
for the solution of Eqs. (2) and (3) of Ref. [36]:

Q2

4πε0
= 1

2
mω2

COM
〈d〉3λD

〈d〉 + λD
e〈d〉/λD ,

ω2
d = 3ω2

COM
〈d〉2 + 3〈d〉λD + 3λ2

D

λD(〈d〉 + λD)
, (7)

which are derived using the assumptions of a harmonic
trap for the horizontal confinement in the form of Vtr(r ) =
1
2Mω2

COMr2 and Yukawa interaction between the particles
with potential energy

�Y(r ) = Q2

4πε0

exp(−r/λD)

r
. (8)

The solution of Eqs. (7) provides the charge Q and the Debye
screening length λD.

(4) To obtain the most accurate estimation for the
Coulomb coupling parameter �, we compute the pair cor-
relation function g(r ) from the experimental particle posi-
tion data and compare peak amplitudes to numerical data
of nonmagnetized 2D YOCP results as investigated in great
detail in [37]. The mapping of magnetized and nonmagnetized
equilibrium pair correlation functions is guaranteed by the
Bohr–van Leeuwen theorem [38].

After performing all these additional steps, the results
for the MSD and the diffusion coefficient are available as
functions of the universal dimensionless parameters �, κ , and
β and will be presented together with the numerical results in
Sec. IV.

III. MD SIMULATIONS

Our numerical simulations are directly motivated by previ-
ous numerical studies of diffusion in magnetized 3D Yukawa
systems [19,39], studies on the connection between caging
and diffusion in 2D Yukawa systems [40], and studies that
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TABLE I. List of experiments on the BUD setup. Estimated
uncertainties are within 1% for �, 5% for pressure p, a, and N , and
10% for Q, the RF power PRF, and λD. The dust particle diameter
was dBUD = 4.38 μm ± 1%.

p PRF � Q a λD

exp. name (Pa) (W) (rad/s) (e) (μm) (μm) N

BUD01 0.66 4.0 16.9 2330 235 230 158
BUD02 1.0 1.0 18.2 2150 260 290 152
BUD03 1.05 1.0 23.2 2350 210 220 146
BUD04 1.05 3.0 23.1 2100 180 170 313

identify superdiffusion in 2D magnetized systems [12,41].
Earlier investigations of nonmagnetized Yukawa systems
[33,42–46] provide valuable references for the methodology,
the possible presence of superdiffusion, and numerical data.

We apply the molecular dynamics (MD) simulation
method to describe the motion of the particles governed by
Newton’s equations of motion, where the forces included are
due to the interparticle Yukawa potential and the external
magnetic field. Gas drag and random Brownian kicks orig-
inating from the background gas are neglected, as for the
experimental conditions listed in Tables I and II the Epstein
dust-neutral collision frequency (νdn = 0.5–30 sec−1) is be-
low the dust plasma frequency (ωdp = 100–300 rad/sec). For
the integration of the equation of motion that accounts for the
presence of the magnetic field we use the method described in
[47]. In the simulations N = 4000 particles are released in a
2D square simulation box with periodic boundary conditions.
The simulation time step is chosen to be short enough to re-
solve single particle oscillations; numerical stability is verified
by monitoring the total kinetic energy in the system. During

TABLE II. List of experiments on the TEX setup. Estimated
uncertainties are within 1% for �, 5% for pressure p, a, and N , and
10% for Q, the RF power PRF, and λD. The dust particle diameter
was dTEX = 8.89 μm ± 1%.

p PRF � Q a λD

exp. name (Pa) (W) (rad/s) (e) (μm) (μm) N

TEX01 12.0 4.2 11.09 3160 125 120 395
TEX02 12.0 4.2 9.70 3160 108 120 395
TEX03 12.0 4.2 8.31 3160 101 120 395
TEX04 12.0 4.2 6.93 3160 97 120 395
TEX05 13.3 5.1 11.11 3900 83 90 1910
TEX06 13.3 5.1 11.09 3900 86 90 1910
TEX07 8.0 4.3 19.25 2920 90 94 1720
TEX08 13.3 6.4 55.66 5400 73 80 150
TEX09 13.3 6.4 54.46 5400 73 80 150
TEX10 13.3 6.4 54.97 5400 85 80 150
TEX11 13.3 6.4 44.63 5400 61 80 150
TEX12 26.6 6.1 41.16 4530 73 75 220
TEX13 26.6 6.1 46.74 4530 69 75 220
TEX14 20.0 8.2 40.79 5130 81 85 90
TEX15 26.6 7.9 35.45 4620 76 85 100
TEX16 20.0 6.7 28.52 5480 97 100 1200
TEX17 20.0 6.7 13.89 5480 102 100 540
TEX18 20.0 6.7 20.24 5480 111 100 390
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FIG. 3. Pair correlation functions g(r ) from the experiment
(BUD01, symbols) and MD simulation (line) with parameters
� = 150, κ = 1.05, β = 0.65.

the initial “thermalization” phase of the simulation, a veloc-
ity back-scaling technique is applied to achieve the desired
system temperature. This phase is kept long enough that the
system reaches its stationary state. With increasing magnetic
field the necessary relaxation time can become longer, as
discussed in [48]. In the second “measurement” phase, no
thermalization is applied and the particles move freely in the
force field governed by the pairwise Yukawa interaction and
the external magnetic field. From the simulated particle tra-
jectories we derive the pair distribution function g(r ) and the
mean-squared displacement MSD, the two quantities which
are the focus of this study.

Input parameters for the simulation, such as �, κ , and β,
are taken from the experiments and are verified by comparing
the experimental and computed pair correlation functions. In
validating the measured and computed g(r ) data, the ampli-
tude and position of the first peak is given the greatest weight,
as long-term correlations are expected to be more affected
by the finite size and confined geometry of the experimental
system. We find agreement with deviations less than 10% for
the positions and amplitudes of the peak for the computed and
measured g(r ) as demonstrated in Fig. 3.

IV. RESULTS

Two series of measurements were carried out, one with
the TEX setup and one with the BUD setup. Tables I and II
summarize the different cases and list the measured physical
quantities.

To illustrate the quality of the experimental MSD data an
example is shown in Fig. 4. The time interval shown here is
much longer than the ballistic regime, which has a duration of
approximately a few plasma oscillation cycles. The observed
nonlinearity is a true long time feature of the transport process,
as supported by the numerical simulation.

At large times (tωp > 2000), or even more relevantly at
large distances (MSD > Na2, where N is the number of
particles in the dust cloud as listed in Tables I and II), the trend
of the experimental data changes, tending towards saturation,
which is clearly a consequence of the final system size. This
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the range for the parameter fitting, where the finite size effect is
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natural limitation means that these experiments can only be
used to estimate the transport parameters which are based on
the finite time characteristics of the MSD curve, as previously
mentioned in Sec. II.

To obtain the quantities α and Dα that are used to character-
ize the anomalous diffusion following the definition in Eq. (3)
we perform least-squares fitting to both the simulation and
experimental data in the form MSD(t ) = 4Dαtα + b. The fit-
ting is performed in the parameter range 0.2N < MSD/a2 <

0.8N , to minimize the effects of the finite size saturation.
The dimensionless YOCP parameters �, κ , and β derived

for each experimental condition are listed In Table III. A
comparison is given for the anomalous diffusion parameters
α and Dα derived from the experiment and MD simulation for
each case.

The anomalous diffusion exponent α takes on values in the
range between 1.0 and 1.4, a consequence of superdiffusive
behavior. The values of the generalized diffusion coefficient
Dα depend sensitively on the exponent α, making direct
comparison of experimental and simulation results difficult.
Therefore, we define a fixed-time diffusion coefficient D1000,
which is calculated as

D1000 = D(t = 1000/ωp) = MSD(t = 1000/ωp)

4 × 1000/ωp
. (9)

Being a finite-time quantity D1000 may not properly repre-
sent the particle transport in the thermodynamic limit, but sim-
ilar concepts could be useful in applications related to small
samples (nanotechnology) and ultrafast processes, where spa-
tial or temporal constraints are present. D1000 is still a quantity
that strongly depends on all relevant system parameters (�, κ ,
and β); however it has been shown that the relative diffusion
coefficient D/D0, the ratio of the magnetized (β > 0) and the
nonmagnetized (β = 0) values for given � and κ parameters,

TABLE III. Dimensionless system parameters and diffusion co-
efficients. Estimated uncertainties are within 15% for all quantities.
The unit of Dα is 100a2/ωα

p .

exp. α Dα α Dα

name � κ β (exp.) (exp.) (MD) (MD)

BUD01 45 1.0 0.63 1.07 1.28 1.10 1.19
BUD02 70 0.9 0.84 1.26 0.182 1.25 0.197
BUD03 170 1.0 0.77 1.16 0.075 1.10 0.097
BUD04 150 1.05 0.65 1.24 0.072 1.30 0.063
TEX01 61 1.0 0.46 1.07 1.01 1.11 1.01
TEX02 63 0.9 0.37 1.14 0.800 1.17 0.558
TEX03 66 0.85 0.30 1.22 0.402 1.27 0.304
TEX04 70 0.8 0.24 1.36 0.150 1.35 0.168
TEX05 45 0.9 0.23 1.39 0.229 1.14 1.37
TEX06 78 0.93 0.24 1.20 0.360 1.14 0.659
TEX07 24 0.96 0.55 1.12 2.15 1.04 4.10
TEX08 135 0.9 0.69 1.17 0.114 1.18 0.107
TEX09 135 0.9 0.71 1.18 0.116 1.23 0.073
TEX10 122 1.0 0.89 1.06 0.351 1.10 0.222
TEX11 138 0.85 0.50 1.00 0.361 1.05 0.270
TEX12 115 1.0 0.64 1.21 0.116 1.24 0.106
TEX13 58 0.9 0.61 1.19 0.434 1.17 0.537
TEX14 53 0.95 0.61 1.08 1.02 1.13 0.804
TEX15 41 0.9 0.45 1.01 3.07 1.04 2.60
TEX16 81 1.0 0.52 1.17 0.328 1.12 0.619
TEX17 114 1.0 0.35 1.16 0.281 1.16 0.267
TEX18 71 0.9 0.41 1.00 1.63 1.09 0.818

is a function of the magnetization β only [35] as

D

D0
(β ) = 1 + 1

3β

1 + 7
4β + β2

. (10)

To derive the relative diffusion coefficients, we first com-
puted the MSD and D1000

0 values for the nonmagnetized
(β = 0) 2D Yukawa systems with Yukawa parameters � and
κ corresponding to the experimental cases listed in Table III.
The resulting values are plotted in Fig. 5 and listed in
Table IV. From the Yukawa system parameters � and κ we
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FIG. 5. Fixed-time (tωp = 1000) diffusion coefficient, D1000
0 ,

from the β = 0 reference simulations as a function of the effective
Coulomb coupling parameter. The theoretical fit formula is adapted
from Ref. [46] with A = 2.1444 and B = 0.00778.
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TABLE IV. Dimensionless system parameters and diffusion co-
efficients. Estimated uncertainties are within 15% for all quantities.
The unit of D1000 is 100a2/ωp.

exp. D1000
0 D1000 D1000

name �eff β (MD) (MD) (exp.)

BUD01 33.2 0.63 4.74 2.32 2.02
BUD02 54.3 0.84 2.69 1.10 1.08
BUD03 124 0.77 0.466 0.189 0.221
BUD04 106 0.65 0.985 0.487 0.369
TEX01 44.8 0.46 3.54 2.09 1.59
TEX02 48.9 0.37 2.89 1.79 2.09
TEX03 52.5 0.30 2.79 1.94 1.82
TEX04 57.1 0.24 2.54 1.85 1.76
TEX05 35.0 0.23 4.70 3.57 3.36
TEX06 59.5 0.24 2.25 1.70 1.41
TEX07 18.3 0.55 9.96 5.33 4.85
TEX08 104.3 0.69 0.795 0.362 0.363
TEX09 104.3 0.71 0.795 0.352 0.398
TEX10 89.1 0.89 1.17 0.435 0.523
TEX11 109.5 0.50 0.685 0.371 0.351
TEX12 84.1 0.64 1.12 0.541 0.480
TEX13 45.0 0.61 3.42 1.70 1.58
TEX14 40.1 0.61 3.87 1.93 1.74
TEX15 31.9 0.45 5.75 3.42 3.28
TEX16 59.4 0.52 2.46 1.39 1.04
TEX17 83.3 0.35 1.23 0.805 0.850
TEX18 55.0 0.41 2.50 1.51 1.62

derived the effective Coulomb coupling coefficient �eff based
on the height of the first maximum of g(r ) as defined for the
liquid regime in [37]. Unfortunately in the experiment � and
κ cannot be set arbitrarily, and we cannot attain a one-to-one
match for the conditions in the magnetized and unmagnetized
cases. In the MD simulations, however, these are the main
input parameters; therefore the simulation values of D1000

0 are
used to derive D1000/D1000

0 for both the simulation and the
experiment.

As shown in Fig. 5, the reference values β = 0 for the
fixed-time diffusion coefficients show a dependence on the
Coulomb coupling coefficient, which is well approximated by
the formula

D1000
0

a2ωp
= A(κ )

�
exp [−B(κ )�] (11)

derived for 3D Yukawa systems in [46], with somewhat
different numerical factors A(κ ) = A = 2.1444 and B(κ ) =
B = 0.00778, where the κ-dependent coefficients are approx-
imated by constants, as κ shows only small variations around
κ = 1.

The final results of this study are listed in Table IV,
where numerical values of the fixed-time diffusion coeffi-
cients D1000 from both the dusty plasma experiments and
the corresponding MD simulations are given. Graphical rep-
resentation of the data is shown in Fig. 6, where the rela-
tive diffusion coefficients D1000/D1000

0 are plotted for both
the experiments and the simulations as a function of the
magnetization parameter β. The analytic formula given by
Eq. (10) is shown as a line which is a good representation
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FIG. 6. Fixed-time (tωp = 1000) diffusion coefficient relative to
the nonmagnetized values, D0, as a function of the dimensionless
magnetization parameter β.

of the data points. The simulation data closely follow the
theoretical trend. The experimental results have significantly
higher scatter and uncertainty, but generally support the model
prediction.

V. SUMMARY

RotoDust experiments and molecular dynamics simula-
tions were carried out to quantify the diffusion (mass trans-
port) in quasimagnetized single layer dusty plasmas and to
link this to existing transport model results for magnetized
two-dimensional Yukawa systems. Although the relatively
small size of the experimental dust cloud limits our inves-
tigations to the range of time far from the thermodynamic
limit and the Yukawa system parameters cannot be controlled
independently as in simulations, we were able to confirm
two of the main theoretical predictions for strongly coupled
magnetized 2D Yukawa plasmas [12,35].

(i) At intermediate times, the experimental MSD curves of
quasimagnetized systems clearly show superdiffusive behav-
ior, where the MSD grows faster than linear with time. The
values of the α exponent strongly depend on the coupling,
screening, and effective magnetization parameter and are in
good agreement with results from molecular dynamics simu-
lations.

(ii) The relative fixed-time diffusion coefficient, which
characterizes mass transport on intermediate timescales, was
shown to be consistent with a scaling law [35] that is largely
independent of the screening and coupling parameters. It
describes the decrease of the particles’ mobility with an in-
crease of the (effective) magnetization. In our experiments, the
(relative) mobility was reduced by a factor ∼2 at the highest
effective magnetization, β ∼ 0.9.
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