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Femtosecond Electron Dynamics in Graphene
Nanoribbons – A Nonequilibrium Green Functions
Approach Within an Extended Hubbard Model
Jan-Philip Joost,* Niclas Schlünzen, and Michael Bonitz
A new approach to study the correlated femtosecond electron dynamics in
finite graphene clusters, such as nanoribbons, is presented here. The systems
are described by an extended Hubbard model that takes into account the
overlap of adjacent orbitals and hopping between up to third-nearest
neighbors. The model is solved by the nonequilibrium Green functions
approach combined with different self-energy approximations, including the
second-Born and GW self-energy, to take into account electronic correlations.
The description allows us to predict the correlated nonequilibrium dynamics
of excited graphene nanostructures of arbitrary geometry containing up to
100 carbon atoms for up to 25 fs.
1. Introduction

Since the first experimental discovery of its unique features in
2004[1] the interest in graphene has grown rapidly. As the first
truly two-dimensional material it exhibits a number of unique
mechanical, optical, and electronic properties which make
graphene a promising candidate for various technological
applications of the future.[2–6] However, as graphene is a
semimetal, the absence of a band gap prevents the realization of
next-generation graphene-based nanoelectronics.[7] Therefore,
large effort was put into creating semiconducting graphene
materials that retain its remarkable transport properties. While
some methods focus on substrate-induced[8,9] or strain-
induced[10,11] band gaps, the most promising approach, at the
moment, is obtaining a band gap through the effect of quantum
confinement in finite graphene nanostructures[12,13] such as
graphene nanoribbons (GNRs). The electronic properties and
especially the low energy spectrum of the π-electrons are strongly
influenced by the edge structure of the nanoribbons. Depending
on the shape of the edges one distinguishes between armchair
graphene nanoribbons (AGNR) and zigzag graphene nano-
ribbons (ZGNR).
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A detailed understanding of these finite
graphene nanostructures is of high impor-
tance for current research. Due to the
recently developed new synthetization
methods of graphene nanoribbons,[14–18]

the number of exciting experiments in-
creased drastically over the last years.[19–25]

Therefore, an accurate theoretical descrip-
tion of these systems in nonequilibrium
and particularly of their time-resolved
spectral properties is needed. However,
finite graphene nanostructures, especially
in nonequilibrium, are extremely complex,
inhomogeneous systems that put high
requirements on any theory that attempts
to describe them accurately. A proper
theory has to describe finite systems that are experimentally
accessible. Such systems typically include up to 100 carbon
atoms.[17,26,27] Further, the approach has to take into account the
finite overlap of the atomic orbitals and describe moderate
electronic correlations. Additionally, the two-dimensional geom-
etry of the graphene honeycomb lattice has to be modeled.
Finally, the theory has to be able to describe the correlated
nonequilibrium dynamics of the system for up to several
femtoseconds within a reasonable amount of computational
time. In conclusion, one has to find a model that allows for an
accurate description of these systems while at the same time
remains numerically manageable.

A method that fulfills all these requirements is the theory of
real-time nonequilibrium Green functions (NEGF) due to
Keldysh.[28,29] It allows for a self-consistent dynamics of
correlated electrons fully obeying conservation laws. Themethod
contains a single input quantity – the self-energy Σ, see Section 3
– and would be exact if the exact Σ ¼ Σ G½ � was used. But in
practice, of course, approximations are used. Nevertheless, the
accuracy of NEGFsimulations has been carefully tested in recent
years, for example, refs. [30,31], and – with the appropriate
choice of the self-energy – allows for reliable and predictive
simulations. At the same time, NEGF simulations are
computationally demanding and the effort scales cubically with
the basis dimension. A link between accuracy and low numerical
effort is provided by using Hubbard-type lattice models, for
example, ref. [32], and we will, therefore, follow this strategy in
the present paper as well. At the same time we will improve the
model compared to earlier simulations, by using an extended
Hubbard model where the model parameters are provided by ab
initio approaches as discussed in Section 2. Using this approach
we obtain accurate ground-state results for graphene
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nanoribbons including the band gap, the momentum dispersion
and the spectral function. Further the first nonequilibrium
results for the electron dynamics following a short laser pulse are
presented and demonstrate the strength of the NEGF approach.

This paper is organized as follows. In Section 2, we introduce
the extended Hubbard model and formulate a systematic many-
body description on the mean-field level. This is extended to
correlation effects in Section 3 where the NEGF approach is
introduced. Our numerical results are presented in Section 4
starting with ground-state properties and concluding with
correlated electron dynamics in response to a short laser pulse.
We conclude with an outlook in Section 5.
2. Extended Hubbard Model

The elementary constituent of graphene is carbon, the sixth
element of the periodic table. As such, it contains six electrons
that are in the configuration 1s22s22p2 if the carbon is in the
ground state. That is, two electrons are close to the nucleus and
occupy the innermost 1s-shell while the other four fill the outer
shells of the 2s and 2p orbitals. However, in the presence of other
carbon atoms one electron from the 2s orbital is excited to the 2p
orbital and forms covalent σ-bonds between the atoms. The
quantum-mechanical superposition of the remaining 2s electron
with n of the 2p states is called spn hybridization.[33]

The structure of graphene is obtained by the planar sp2

hybridization. The three hybridized orbitals are oriented in a
plane and havemutual angles of 120�. This lets the carbon atoms
arrange in a hexagonal structure, the so-called honeycomb
lattice. The remaining unhybridized 2pz orbital is oriented
perpendicular to the plane. Due to the non-negligible overlap
between these orbitals of adjacent atoms, they form the so-called
π-bonds.[34] These half-filled bands are responsible for most of
graphene’s interesting electronic properties.
2.1. Tight-Binding Model

A commonly used model when describing graphene-based
systems is the tight-binding approximation (TB) which is easy to
solve due to its simplistic nature.[35] In this model, the
aforementioned 2pz atomic orbitals are a common choice for
the underlying basis set ~ii�� which, in general, is non-orthogonal.
The non-vanishing overlap of these single-particle orbitals is
taken into account by the overlap matrix

~Sij ¼ h~i ~ji
�� ð1Þ

where the special case of an orthonormal basis is equivalent to
~Sij ¼ δij.

In the TB approximation the graphene system is described by
the single-particle Hamiltonian

Ĥ
TB ¼

X
ijkl

~S
�1
ik
~h
TB
kl
~S
�1
lj

~iih~j�� �� ð2Þ

with the corresponding matrix elements ~h
TB
kl ¼ h~kjĤ

TBj~li which
in general include the kinetic part and the on-site potential as
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well as any possible external single-particle excitations. The
Hamiltonian Ĥ

TB
possesses a complete set of orthonormal

eigenstates Ψnij , which are given by a linear combination of the
atomic orbitals ~ii�� ,

jΨni¼
X
i

~ani j~ii ð3Þ

These eigenstates and the corresponding eigenvalues En of
the Hamiltonian are determined by the stationary Schrödinger
equation

Ĥ
TB

Ψni ¼ En Ψnijj ð4Þ

which can be transformed into a generalized eigenvalue problem
by multiplying from the left with the bra vector h~jj resulting inX

i

h~jjĤTBj~ii~ani ¼
X
i

h~jj~ii~ani En ð5Þ

This set of linear equations can be written in matrix form as

~H
TB~A ¼ ~S~AE ð6Þ

where ~H
TB
, ~A, and ~S contain thematrix elements ~h

TB
ji , ~ani , and ~Sji,

respectively. E is a diagonal matrix with the eigenvalues En.
To solve Equation (6) one can apply the symmetric Löwdin

orthogonalization[37] which leads to a standard eigenvalue
problem

HTBA ¼ AE ð7Þ

that is defined in a new orthogonal basis iij which are denoted
without a tilde. Both basis sets are connected by the square root
of the overlap matrix via

jii¼
X
k

j~ki~S�
1
2

ki ð8Þ

Further, the matrices containing the matrix elements of the
Hamiltonian and the expansion coefficients of the eigenstates
transform as

HTB ¼ ~S
�1

2 ~H
TB~S

�1
2 ð9Þ

A ¼~S
1
2~A ð10Þ

Thus, in the TB approximation the system is defined by the
matrix elements of the single-particle Hamiltonian ~h

TB
ij and the

overlap matrix ~Sij.
A common way to get a set of parameters that closely

reproduce the electronic properties of graphene and graphene
nanostructures is to fit the resulting TB band structure against
ab initio results of DFT calculations.[35,36,38] In practice, often
only the orbital overlap of up to the third-nearest-neighbor atoms
is considered which results in seven fitting parameters. An
illustration of the three nearest neighbors of a single site in a
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graphene lattice is depicted in Figure 1. The resulting matrix
elements of the Hamiltonian are then given by

~h
TB
ij ¼ �J δij~E2p þ~tij

� � ð11Þ

where J is the hopping amplitude which is used for normaliza-
tion, ~E2p is the 2pz on-site energy of a carbon atom and~tij are the
hopping matrix elements defined as

~tij ¼

~t1; if i; jð Þ is 1 NN

~t2; if i; jð Þ is 2 NN

~t3; if i; jð Þ is 3 NN

0; else

8>>>><>>>>: ð12Þ

In a similar fashion, the elements of the overlap matrix are
given by three parameters as

~Sij ¼ δij þ

~s1; if i; jð Þ is 1 NN

~s2; if i; jð Þ is 2 NN

~s3; if i; jð Þ is 3 NN

0; else

8>>>><>>>>: ð13Þ

In Table 1, some parameter sets are presented that have
shown to reliably reproduce the DFT band structure of different
graphene systems.

However, while this approach is reasonable for infinite
graphene sheets where electronic correlations are commonly
thought to be weak, it provides insufficiently accurate results for
finite graphene structures such as nanoribbons. For the latter, it
Figure 1. Illustration of the positions of neighboring sites in the graphene
honeycomb lattice. The three nearest neighbors (1NN) of the white site
are marked in red, the six second-nearest neighbors (2NN) in blue and the
three third-nearest neighbors (3NN) in green.
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is known that the reduction of screening that is due to the
quantum confinement, results in stronger electron–electron
correlations and the emergence of a band gap which cannot be
described sufficiently well by DFT (LDA) calculations.[12,39]

Instead, it was found that including quasiparticle corrections
using the G0W0 approximation results in a larger band gap that
is in better agreement with experimental findings.[26,40] Thus,
the tight-binding approach presented above that is able to
reproduce DFT band structures has to be extended to include
correlations.
2.2. Extension to Hartree–Fock

In a first step electron interactions can be included on the
Hartree–Fock (HF) level. Since this case can still be described by
an effective single-particle Hamiltonian, only the matrix
elements ~h

TB
ji in Equation (6) have to be replaced by the ones

of the new Hamiltonian containing mean-field interactions
while the rest of the derivation in Section 2.1 remains
untouched.

To derive the HF Hamiltonian it is convenient to express it in
second quantization. The creation and annihilation operators
obey the same transformation relation between the two basis sets
as the single-particle orbitals, cf. Equation (8). Thus, in the
nonorthogonal basis the generalized operators, cf. Equation (18),
that create and annihilate an electron with spin σ on site i can be
written as

~̂c
†
i;σ ¼

X
k

ĉ†k;σ
~S

1
2
ki ð14Þ

~̂c i;σ ¼
X
k

~S
1
2
ikĉk;σ ð15Þ

Since the overlap matrix S is real and symmetric it follows
immediately from Equations (14) and (15) that the creation and
annihilation operators fulfill the known involutivity condition

 
~bc †i;σ
!†

¼ ~̂c i;σ ð16Þ

Additionally, as is the case of the orthonormal basis, two
creation and two annihilation operators anticommute

~̂c
†
i;σ ;

~̂c
†
i;τ

n o
¼ ~̂c i;σ ; ~̂c i;τ

n o
¼ 0 ð17Þ

However, the anticommutation relation between a creation
operator and an annihilation operator is modified and contains
the overlap matrix

~̂c
†
j;σ ;

~̂c
i;τ

n o
¼ δστ~Sij ð18Þ

which for ~Sij ¼ δij reduces to the familiar anticommutator in an
orthonormal basis.
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Table 1. Various parameter sets for the hopping (cf. Equation (12)) and overlap (cf. Equation (13)) matrix in the extended Hubbard model.

Structure Set J [eV] E
�
2p J½ � t�1 J½ � t�2 J½ � t�3 J½ � S

�
1 S

�
2 S

�
3

2D Graphene 1NN 2.7 0 1 – – – – –

3NN[35](Reich2002) 2.97 0.094 1 0.025 0.111 0.073 0.018 0.026

Graphene nanoribbons 3NN[36](Tran2017) 2.756 0.068 1 0.026 0.138 0.093 0.079 0.070

For homogeneous graphene the parameters are taken from Reich et al.[35] and for GNRs from Tran et al.[36]

www.advancedsciencenews.com www.pss-b.com
The action of a creation operator ~̂c
†
i;σ and annihilation operator

~̂c i;σ on an arbitrary N-particle state nf gij is defined as

~̂c
†
i;σ nf gi ¼ 1� ni;σ

� � �1ð Þαi;σ�� �� nf gi;σi;

~̂c i;σ j nf gi ¼
X
k

nk;σ �1ð Þαk;σ ~Sik nf gk; σij ð19Þ

where the notation j nf gi;σi and j nf gi;σi denotes that a particle
with spin σ was added or removed at site i, respectively, ni;σ is the
occupation number of the orbital corresponding to site i and spin
σ and αk;σ ¼

P
l<knl;σ .

In the basis of these canonical operators given in Equa-
tions (14) and (15), a Hamiltonian including single-particle and
two-particle contributions has the form

Ĥ ¼
X
ijkl

σ 2 "; #f g

~S
�1
ik
~h
TB
kl
~S
�1
lj
~̂c
†
i;σ
~̂c j;σ

þ 1
2

X
ijklmnpq

σ; τ 2 "; #f g

~S
�1
im
~S
�1
jn ~wστστ

mnpq
~S
�1
pk
~S
�1
ql
~̂c
†
i;σ
~̂c
†
j;τ
~̂c l;τ~̂c k;σ ð20Þ

where the matrix elements of the interaction ~wστστ
mnpq do not allow

for spin flips and the single-particle contribution ~h
TB
kl is assumed

to be spin independent. Further, the matrix elements of the
effective single-particle Hartree–Fock Hamiltonian, the so called

Fock matrix ~h
eff
ij , are given by[41]

~h
eff
ij ¼ ~h

TB
ij þ

X
klmn

σ; τ 2 "; #f g

~wτστσ
imjn � ~wσσσσ

imnj

� �
~S
�1
nl ~ρlk;σ

~S
�1
km ð21Þ

where ~ρlk;σ ¼ h~̂c
†
k;σ
~̂c l;σi is the element of the reduced density

matrix in the nonorthogonal basis.[42]

Inserting these matrix elements in Equation (6) for ~H results
in the well-known Roothaan–Hall equations[43–45]

~F~A ¼ ~S~AE ð22Þ

with ~F containing the matrix elements ~h
eff
ij . Again, a Löwdin

orthogonalization results in a standard eigenvalue problem in
the orthonormal basis
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FA ¼AE; ð23Þ

with

F ¼ ~S
�1

2~F~S
�1

2 ð24Þ

Since the Fock matrix contains the elements of the density
matrix, Equation (23) has to be solved self consistently until
convergence is reached.

A similar approach was already successfully applied by
Hancock et al.[46] for transport calculations in graphene
nanoribbons using a Hubbard type on-site interaction of the
form

~wστστ
ijkl ¼ Uδijδikδilδστ ð25Þ

where δστ ¼ 1� δστ enforces Pauli blocking and U is a free
parameter that corresponds to the strength of the interaction. For
these interaction elements the Fock matrix becomes

~h
eff
ij ¼ ~h

TB
ij þ δijU

X
kl

~S
�1
il ~ρlk

~S
�1
ki ð26Þ

with ~ρlk :¼ ~ρlk;" þ ~ρlk;#. However, as discussed in Section 2.1, a
pure mean-field approach is not sufficient to correctly describe
finite graphene nanosystems. For an accurate treatment one has
to take into account electronic correlations. Therefore, we will
extend the description systematically using the formalism of
nonequilibrium Green functions (NEGF) that is described in the
next section. Since it is convenient to treat the NEGFapproach in
an orthonormal basis, it is useful to also express the Fock matrix
in this basis. Using Equations (21) and (24) results in

heffij ¼ hTBij þ
X
kl

σ; τ 2 "; #f g

wτστσ
ikjl � wσσσσ

iklj

� �
ρlk;σ ð27Þ

with the matrix elements in the orthonormal basis given by

hTBij ¼
X
kl

~S
�1

2
ik
~h
TB
kl
~S
�1

2
lj ð28Þ

ρij;σ ¼
X
kl

~S
�1

2
ik ~ρkl;σ

~S
�1

2
lj ð29Þ
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wστστ
ijkl ¼

X
mnpq

~S
�1

2
im
~S
�1

2
jn ~wστστ

mnpq
~S
�1

2
pk
~S
�1

2
ql ð30Þ

In the special case of an on-site Hubbard interaction, cf.
Equation (25), the interaction elements in the orthonormal basis
reduce to

wστστ
ijkl ¼ Uδστ

X
m

~S
�1

2
im
~S
�1

2
jm
~S
�1

2
mk
~S
�1

2
ml ¼: wijklδστ ð31Þ

Finally, the spin-resolved Fock matrix is then given by

heffij;" #ð Þ ¼ hTBij þ
X
kl

wikjlρlk;# "ð Þ ð32Þ

which will later on be used in the propagation of the
nonequilibrium Green functions, see Section 3.1.
3. Nonequilibrium Green Functions Approach

The single-particle Green function G is the central property in
the nonequilibrium Green functions approach. It is defined on
the Keldysh time contour C as[47,48]

Gσ
ij z; z

0ð Þ ¼ � i
�h
hTCĉi;σ zð Þĉ†j;σ z0ð Þi ð33Þ

where h. . .i is the ensemble average and the creation and
annihilation operator are defined in an orthonormal basis. Due
to the spin symmetry of the considered systems the spin indices
will be neglected in the further discussion and the Green
function will be simplified to[49]

Gij z; z
0ð Þ :¼ G"ij z; z

0ð Þ ¼ G#ij z; z
0ð Þ ð34Þ

In order to make the complex-time Green function
numerically accessible, it is useful to define real-time contour
components of the Green function based in the relative positions
of the complex times z and z0 on the contour, namely the less
G<ð Þ, greater G>ð Þ, retarded GR

� �
, and advanced GA

� �
component that are defined as

G<
ij t; t0ð Þ ¼ � 1

i�h
hĉ†j t0ð Þĉ i tð Þi ð35Þ

G>
ij t; t0ð Þ ¼ 1

i�h
hĉ i tð Þĉ†j t0ð Þi ð36Þ

GR
ij t; t

0ð Þ ¼ Θ t; t0ð Þ G>
ij t; t0ð Þ �G<

ij t; t0ð Þ
� �

ð37Þ

GA
ij t; t

0ð Þ ¼ Θ t0; tð Þ G<
ij t; t0ð Þ �G>

ij t; t0ð Þ
� �

ð38Þ

where Θ t; t0ð Þ denotes the Heaviside step function.
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As a generalization of the single-particle density matrix,
ρij ¼ hĉ†j ĉ ii, onto the two-time plane the Green function carries

all information about the single-particle density on the time
diagonal

ρij tð Þ ¼ �i�hG<
ij t; tð Þ ð39Þ

With this, one gets access to the time-dependent expectation
value of any single-particle operator Â1, such as the single-
particle energy, via

hÂ1i tð Þ ¼ �i�h
X
ij

AijG
<
ji t; tð Þ ð40Þ

One should note that when combined with the TB approach
presented in Section 2.1 the orthonormal basis of the Green
function does not correspond to the nonorthogonal basis of the
2pz atomic orbitals of the carbon lattice. For the density matrix
the transformation to the physical basis can be performed by the
inverse of Equation (29) which leads to

~ρij¼
X
kl

~S
1
2
ikρkl

~S
1
2
lj ð41Þ

In this basis the occupation on a single lattice site i is then
given by

hρ̂iii¼
X
k

~S
�1
ik ~ρki ð42Þ

Since the Green function is defined as a two-time quantity (cf.
Equation (33)), it also gives access to the spectral properties of the
system. The local spectral function is given by a Fourier
transform with respect to the relative time,

Ai ωð Þ ¼ i�h
Z

dt dt0e�iω t�t0ð Þ G>
ii t; t0ð Þ � G<

ii t; t0ð Þ� � ð43Þ

The sum over all local contributions of the spectral function
results in the density of states (DOS) of the system.
Combining the temporal transform in Equation (43) with a
spatial one results in an expression for the full energy
dispersion relation

A ω; kð Þ ¼ i�h
Ns

X
ij

e�ik i�jð Þ
Z

dt dt0e�iω t�t0ð Þ

� G>
ij t; t0ð Þ �G<

ij t; t0ð Þ
h i ð44Þ

Another important quantity is the time-resolved photoemis-
sion spectrum[50,51]

A< ω;Tð Þ ¼ �i�h
X
i

Z
dt dt0Sκ t� Tð ÞSκ t0 � Tð Þ

�e�iω t�t0ð ÞG<
ii t; t0ð Þ ð45Þ
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as it allows for direct comparison with photoemission
experiments. Here, S is a Gaussian function to simulate the
probe pulse that is used in corresponding experiments

Sκ tð Þ ¼ 1

κ
ffiffiffiffiffi
2π
p exp � t2

2κ2


 �
ð46Þ

with a given pulse width κ.
3.1. Equations of Motion

The time evolution of the Green function on the Keldysh contour
is given by the Kadanoff–Baym equations (KBEs),[52]

X
l

i�h
d
dz

δil � hTBil zð Þ
� 

Glj z; z0ð Þ

¼ δijδC z; z0ð Þ þ
X
l

Z
C
dz Σil z; zð ÞGlj z; z0ð Þ

ð47Þ

and the adjoint equation. The KBEs would be formally exact if
the self-energy Σ in the collision integral on the right hand side of
the equation was known. However, for most system the exact
self-energy is not accessible. Hence, approximations to the
NEGF scheme are introduced via proper choices of the self-
energy. A more detailed discussion on the approximations used
here is given in Section 3.2. The self-energy can be separated into
a time-diagonal mean-field contribution and a correlation part

Σ z; z0ð Þ ¼ δC z; z0ð ÞΣHF zð Þ þ Σcorr z; z0ð Þ ð48Þ

Due to the contour delta distribution δC z; z0ð Þ the Hartree–
Fock part of the self-energy can be included into theHamiltonian
on the left side of Equation (47) resulting in an effective single-
particle Hamiltonian that is equivalent to the Fock matrix in
Equation (27). Now the KBE can be written as

X
l

i�h
d
dz

δil � heffil zð Þ
� 

Glj z; z0ð Þ

¼ δijδC z; z0ð Þ þ
X
l

Z
C
dz Σil z; zð ÞGlj z; z

0ð Þ
ð49Þ

where the self-energy Σ t; t0ð Þ :¼ Σcorr t; t0ð Þ only contains the
correlation part.

In practice, the KBEs are solved for the less and greater real-
time components of the Green function. In order to get
access to the full single-particle information of the system, it
is necessary to obtain G> t; t0ð Þ and G< t; t0ð Þ in the
complete t; t0ð Þ-plane. However, due to the symmetry relation

GO
ij t; t0ð Þ ¼ � GO

ji t0; tð Þ
h i�

each of the two KBEs (Equation (49)

and the adjoint) has to be solved for only one real-time
argument and component of the Green function. One possible
choice of equations is:

X
l

i�h
d
dt
δil � heffil tð Þ

� 
G>

lj t; t0ð Þ ¼ I 1ð Þ;>
ij t; t0ð Þ ð50Þ
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X
l

G<
il t; t0ð Þ �i�h d

 

dt0
δil � hefflj t0ð Þ

" #
¼ I 2ð Þ;<

ij t; t0ð Þ ð51Þ

where on the right-hand side the collision integrals I 1ð Þ;> and
I 2ð Þ;< are introduced. They are defined as

I 1ð Þ;>
ij t; t0ð Þ :¼

X
l

Z 1
ts

dt ΣR
il t;�tð ÞG>

lj t;t0ð Þ þ Σ>
il t; tð ÞGA

lj t; t0ð Þ
n o

ð52Þ

I 2ð Þ;<
ij t; t0ð Þ :¼

X
l

Z 1
ts

dt GR
il t;�tð ÞΣ<

lj t;t0ð Þ þ G<
il t; tð ÞΣA

lj t; t0ð Þ
n o

ð53Þ

with the starting time ts, see Section 3.3 for a discussion. This
way, G< t; t0ð Þ is propagated above and G> t; t0ð Þ below the time
diagonal. For t ¼ t0 either one of them can be calculated while the
other one can be accessed by the symmetry relation on the time
diagonal

G>
ij t; tð Þ �G<

ij t; tð Þ ¼ � i
�h
δij ð54Þ

Likewise, the collision integrals I 1ð Þ;> t; t0ð Þ and I 2ð Þ;< t; t0ð Þ have
to be calculated for times t > t0 and t< t0 only, respectively. To
this end a new notation is introduced for a general contour
quantity A,

A tPt0ð Þ :¼ A t; t0ð Þ tPt0
�� ð55Þ

This results in three equations of motion for the full two-
time propagation of the real-time components of the Green
function:

i�h
d
dt
G>

ij t � t0ð Þ¼
X
l

heffil tð ÞG>
il t � t0ð Þ

þI 1ð Þ;>
ij t � t0ð Þ ð56Þ

�i�h d
dt0

G<
ij t 	 t0ð Þ ¼

X
l

G<
il t 	 t0ð Þhefflj t0ð Þ

þI 2ð Þ;<
ij t 	 t0ð Þ ð57Þ

i�h
d
dt
G<

ij t; tð Þ ¼ heff tð Þ;G< t; tð Þ
h i

ij

þI 1ð Þ;>
ij t; tð Þ � I 2ð Þ;<

ij t; tð Þ ð58Þ
In order to solve these equations of motion, the collision

integrals that appear in Equations (56)–(58) have to be expressed
in terms ofG< t< t0ð Þ andG> t > t0ð Þ. Using the definition of the
advanced and retarded Green function and self-energy (cf.
Equations (37) and (38)) one arrives, after some calculations, at
the following expressions for the collision integrals at a given
time step T :
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I 1ð Þ;>
ij T > t0ð Þ ¼

Z t0

ts

d�t
X
k

Σ>
ik T > �tð ÞG<

kj
�t < t0ð Þ

n

� Σ<
ki
�t < Tð ÞG>

jk t0 > �tð Þ
��� o

þ
Z T

t0
d�t
X
k

Σ>
ik T > �tð ÞG>

kj
�t > t0ð Þ

n

þ Σ<
ki
�t < Tð Þ� ��

G>
kj
�t > t0ð Þ

o
ð59Þ

I 2ð Þ;<
ij t < Tð Þ ¼

Z t

ts

d�t
X
k

G>
ik t > �tð ÞΣ<

kj
�t <Tð Þ

n

� G<
ki
�t < tð ÞΣ>

jk T > �tð Þ
� ��o

þ
Z T

t
d�t
X
k

G<
ik t < �tð ÞΣ<

kj
�t < Tð Þ

n

þG<
ik t< �tð Þ Σ>

jk T > �tð Þ
� ��o

ð60Þ

for the off-diagonal elements and

I 1ð Þ;>
ij T;Tð Þ ¼

Z T

ts

d�t
X
k

Σ>
ik T > �tð ÞG<

kj
�t < Tð Þ

n

� Σ<
ki
�t < Tð ÞG>

jk T > �tð Þ
� �� o

ð61Þ

I 2ð Þ;<
ij T;Tð Þ ¼

Z T

ts

d�t
X
k

G>
ik T > �tð ÞΣ<

kj
�t <Tð Þ

n

� G<
ki
�t < Tð ÞΣ>

jk T > �tð Þ
� �� o
¼ � I 1ð Þ;>

ji T;Tð Þ
� � �

ð62Þ

for the timediagonal. These equationdoonly dependonG< t < t0ð Þ,
G> t > t0ð Þ, Σ< t < t0ð Þ, and Σ> t > t0ð Þ. Therefore, if it is possible to
express the self-energy in terms of the less and greater components
of the Green function – which is possible for all relevant
approximations, cf. Section 3.2 – the propagation scheme will be
closed. Examples for application of this NEGF scheme to Hubbard
clusters can be found for example, in refs. [32,53–55]. Computa-
tional details will be presented in Section 3.3.
Figure 2. Feynman diagrams for the self-energy approximations used in
this work: Hartree–Fock (HF), second-order Born approximation (2B),
and Hedin’s GW approximation.
3.2. Self-Energy Approximations

The exact self-energy Σ contains the full N-particle information
of the system. However, since in most cases the exact solution is
not known one has to develop many-body approximations
(MBA) to the self-energy. For this, as shown in Equation (48),
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the self-energy can be separated into a Hartree–Fock and a
correlation contribution. The time-diagonal mean-field part can
be included in an effective single-particle Hamiltonian and the
remaining self-energy contains only the correlation part, cf.
Equation (49).

The mean-field Hamiltonian was derived in Section 2.2 and
its elements are given by the Fock matrix, cf. Equation (32). For a
Hubbard-type on-site interaction that is considered here, the
matrix elements of the interaction in the orthonormal basis are
defined in Equation (31). The corresponding diagram is depicted
in Figure 2. Due to the spin delta δστ the exchange contribution
vanishes and only the direct mean-field diagram remains.

While in the nonorthogonal basis the strength of the on-site
interaction is defined by the parameter U, in the orthonormal
basis this leads to a local interaction, cf. Equation (31)

wijkl ¼ U
X
m

~S
�1

2
im
~S
�1

2
jm
~S
�1

2
mk
~S
�1

2
ml ð63Þ

For higher-order approximations to the correlation self-energy
this would result in a high numerical complexity. In order to
reduce the numerical effort, here, only the diagonal contribution
to the interaction

Ui :¼ wiiiiU
X
m

~S
�1

2
im
~S
�1

2
im
~S
�1

2
mi
~S
�1

2
mi ð64Þ

is taken into account. This approximation is valid if the
overlap matrix ~S – and consequently ~S

�1
2 – has mainly diagonal

contributions which is the case for the considered parameter set,
cf. Table 1 and Equation (13). Further, it allows for a fast
calculation of higher-order self-energy contributions. The two
approximations specifically used in this work are presented in
the following using a generalized time-dependent U tð Þ for the
adiabatic switching procedure, cf. Section 3.3.

The second-Born (2B) approximation is the most simple
approach to add correlations to the self-energy. The idea is to
describe the scattering event between two particles by consider-
ing only the first term in the Born series.[47] This results in the
following expression for the 2B self-energy

Σ2B;>
ij T > t0ð Þ ¼ �h2Ui Tð ÞUj t

0ð ÞG>
ij T > t0ð ÞG>

ij T > t0ð ÞG<
ji t0 < Tð Þ

ð65Þ
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Σ2B;<
ij t < Tð Þ ¼ �h2Ui tð ÞUj Tð ÞG<

ij t < Tð ÞG<
ij t < Tð ÞG>

ji T > tð Þ
ð66Þ

It includes all terms up to second order in the interactionU but
no higher-order terms. Thus, it is a reasonable approachwhen the
interaction strength is low. From a numerical point of view the 2B
self-energy is easy to calculate since no integration over a time
argument has to be performed. A diagrammatic representation is
shown in Figure 2. More details can be found in refs. [47,56,57].

The GW approximation is a more sophisticated approach that
takes the dynamically screened interaction between particles into
account. The real-time components of the self-energy are given by

ΣGW;>
ij T > t0ð Þ ¼ i�hW<;""

ji t0 < Tð ÞG>
ij T > t0ð Þ ð67Þ

ΣGW;<
ij t < Tð Þ ¼ i�hW<;""

ij t < Tð ÞG<
ij t < Tð Þ ð68Þ

The less component of the same-spin screened interaction
W<;"" has to be calculated in an iterative manner. For this, it is
convenient to define the retarded and advanced component of
the two-particle Fock-like Green function

GF;R
ij t > t0ð Þ ¼ G>

ij t > t0ð ÞG<
ji t0 < tð Þ

� G<
ji t0 < tð Þ

� ��
G>

ij t > t0ð Þ
� � � ð69Þ

GF;A
ij t < t0ð Þ ¼ G<

ij t < t0ð ÞG>
ji t0 > tð Þ

� G>
ji t0 > tð Þ

� ��
G<

ij t < t0ð Þ
� �� ð70Þ

Now, the same-spin screened interaction is given by

W<;""
ij t < Tð Þ ¼ �i�hUi tð ÞGF;<

ij t < Tð ÞUj Tð Þ

�i�hUi tð Þ
X
k

Z t

ts

d�tGF;R
ik t > �tð ÞW<;"#

kj
�t <Tð Þ

�i�hUi tð Þ
X
k

Z t

ts

d�t GF;<
ki

�t < tð Þ
� ��

WA;"#
kj

�t < Tð Þ

�i�hUi tð Þ
X
k

Z T

t
d�tGF;<

ik t < �tð ÞWA;"#
kj

�t < Tð Þ

ð71Þ

It depends on the different-spin screened interaction

W<;"#
ij t < Tð Þ ¼ �i�hUi tð ÞGF;<

ij t < Tð ÞUj Tð Þ

�i�hUi tð Þ
X
k

Z t

ts

d�tGF;R
ik t > �tð ÞW<;""

kj
�t < Tð Þ

�i�hUi tð Þ
X
k

Z t

ts

d�t GF;<
ki

�t < tð Þ
� ��

WA;""
kj

�t < Tð Þ

�i�hUi tð Þ
X
k

Z T

t
d�tGF;<

ik t < �tð ÞWA;""
kj

�t < Tð Þ

ð72Þ
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that, again, contains the same-spin screened interaction
W<;"". Additionally, these two coupled equations depend on the
advanced components of the same- and different-spin screened
interaction that are given by

WA;""
ij t < Tð Þ ¼ �i�hUi tð ÞGF;A

ij t < Tð ÞUj Tð Þ

þi�hUi tð Þ
X
k

Z T

t
d�tGF;A

ik t < �tð ÞWA;"#
kj

�t < Tð Þ

ð73Þ

WA;"#
ij t < Tð Þ ¼ i�hUi tð Þ

X
k

Z T

t
d�tGF;A

ik t< �tð ÞWA;""
kj

�t < Tð Þ

ð74Þ

In order to solve this system of coupled equations
numerically, first, the two advanced components of the screened
interaction are calculated. On the time diagonal a solution can be
immediately found for both:

WA;""
ij T;Tð Þ ¼ �i�hUi Tð ÞGF;A

ij T;Tð ÞUj Tð Þ ð75Þ

WA;"#
ij T;Tð Þ ¼ 0 ð76Þ

Next, Equations (73) and (74) can be solved simultaneously in
an iterative manner for every time t starting from the diagonal.
After that, Equations (71) and (72) are iterated until convergence
for every time step t, this time starting at ts. This way, the less and
greater component of the GW self-energy can be computed
according to Equations (67) and (68).

Due to its integral (Dyson) equation structure the GW
approach contains contributions up to infinite order in U.
Therefore, it is much more challenging than the 2B approxima-
tion, from a numerical perspective. But this effort is warranted
because the GW approximation has shown very good results for
systems near half filling, where screening effects are impor-
tant.[58] Furthermore, it is frequently used for band structure and
photoemission calculations.[59,60] The first three diagrams of the
GW approximation are depicted in Figure 3. A detailed
derivation of these equations and the corresponding expressions
for other self-energies can be found in ref. [61].

With the self-energies given in Equations (65)–(68) the
propagation scheme for the real-time components of the Green
function is closed.

3.3. Numerical Solution of the Keldysh–Kadanoff–Baym
Equations for GNR

Despite the application of the diagonal Hubbard interaction the
numerical solution of the KBEs remains a challenging task. For a
given time step T, first, the effective single-particle Hamiltonian
heffij (cf. Equation (32)) and the chosen self-energy (cf. Equations
(65)–(68)) have to be calculated from the Green functions. Now
all quantities are known that are needed to determine the
collision integrals I 1ð Þ;> and I 2ð Þ;< via Equations (59)–(62). Next,
the components of the Green function can be propagated one
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Figure 3. Illustration of the structure of an armchair graphene
nanoribbon (AGNR). The width N ¼ 7ð Þ and the length L ¼ 7ð Þ of the
graphene ribbon is defined as the number of dimer and zigzag lines of
carbon atoms, respectively. Here, a 7-AGNR is shown. The dashed
rectangle defines the unit cell of the ribbon. In Figure 1 the positions of the
nearest neighbors in a GNR are depicted.
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time step further to T þ Δ using Equations (56)–(58), where Δ is
the time step size. Before the actual propagation is started the
ground state of the system has to be calculated, which is done via
adiabatic switching. A detailed description of this procedure is
given in ref. [32]. An alternative procedure to obtain the ground
state is the inclusion of the imaginary-time branch in the
Keldysh time contour.[47,62] Both methods have their advantages,
adiabatic switching results in additional propagation time while
the imaginary branch leads to the occurrence of extra terms in
the collision integrals.[63]

Since the calculation of the self-energies and collision
integrals require the Green function on the complete two-time
plane, the computational memory demand and calculation time
of the propagation algorithm show a quadratic and cubic scaling,
respectively, with respect to both, the basis size and the number
of time steps.

In order to nevertheless keep the numerical challenges in
check a lot of sophisticated improvements have beenmade to the
propagation techniques of the NEGF scheme. For the solution of
the KBEs a fourth-order Runge–Kutta method is used while the
time integrals occurring in the calculation of the self-energies
and the collision integrals are determined using high-order
Newton–Cotes and Fourier extension algorithms.

From a performance perspective, another crucial part of the
propagation scheme is the huge number ofmatrixmultiplications
which can be parallelized with respect to the spatial and temporal
indices. In theory, this can be utilized to massively speed-up the
simulation on an appropriate architecture. Therefore, all calcu-
lations in this work have been performed using graphics
processing units (GPUs) that are known to greatly outperform
CPUs when it comes to parallel calculations.[64]

In the past, our NEGF simulations have been carefully tested
for convergence with respect to the time step where, among
others, particle number and total energy conservation are
monitored, for example, Ref. [31], and also time reversibility[65,66]

is verified. For small systems tests against exact diagonalization
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calculation are performed. Additionally, comparisons with 2D
cold atom experiments[32,67] and 1D density-matrix renormali-
zation group (DMRG) calculations[30] showed excellent accuracy
of our simulations.
4. Results

The system of interest in this paper are so-called graphene
nanoribbons (GNR) which are quasi-one-dimensional slices of
graphene. Because of their typical width of only a few
nanometers they exhibit various remarkable properties such
as enhanced electron correlations due to quantum confinement
effects.[39]

The electronic properties and especially the low energy
spectrum of the π-electrons is strongly influenced by the edge
structure of the nanoribbons. Depending on the shape of the
edges one distinguishes between armchair (AGNR) and zigzag
graphene nanoribbons (ZGNR). While the model presented in
Sections 2 and 3 is applicable to both types of nanoribbons, here
we will focus our attention on hydrogen-passivated AGNRs. The
width N of the ribbons is defined as the number of dimer lines
while the length L is given by the number of zigzag lines as
illustrated in Figure 3.
4.1. Ground-State Results: Band Gap, Dispersion, and
Spectral Function

The extended Hubbard model introduced in Sections 2 and 3
contains eight free parameters. For the seven tight-binding
parameters we choose the set proposed by Tran et al.[36], cf.
Table 1, that has been created to accurately reproduce the LDA
band structure for a wide range of GNRs including different
edge structures and various widths. The final free parameter of
the model, the on-site interaction U, has to be adjusted to best
reproduce the band structure and band gap of GNRs observed in
experiments and theory that goes beyond LDA by including
quasiparticle corrections. A convenient choice for the system for
which the value ofU can be fit is the GNR with an armchair edge
and a width of seven dimer lines (7-AGNR) which is depicted in
Figure 4. On the one hand this system has a small width which
reduces the numerical effort of our calculations and, on the other
hand, its ground-state properties such as the band structure and
band gap have been explored in detail both theoretically and
experimentally.[12,26,68–70]

However, most experiments and theoretical works study long
7-AGNRs the band gaps of which are converged toward the value
of the respective GNR for L!1. Since our calculations are for
ribbons of finite length L we have to consider the influence of
finite-size effects on our results before comparing with
theoretical and experimental values for the band gap. For this
reason in Figure 4, we plot the size of the band gap Eg for
7-AGNRs of different lengths L within our model with the
interaction set toU ¼ 0 which is equivalent to the extended tight-
binding model. The high numerical costs allow for calculations
up to a length of L ¼ 16 which corresponds to a basis size of
Ns ¼ 112. The band gap is given by calculating the energy
dispersion, cf. Equation (44), and determining the difference
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Figure 4. Band gap Eg for 7-AGNRs of different length L. The results of our
model for U ¼ 0 are shown as triangles. The black solid line corresponds
to an exponential fit through the data points for L ¼ 10; . . . ; 16 and its
asymptotic value for L!1 is marked by the dotted line. As a comparison
the band gap for an infinite 7-AGNR predicted by the nearest-neighbor
tight-binding model and LDA are shown as dashed lines.[68] Figure 5. Band gap Eg of 7-AGNRs with a length of L ¼ 16 within the

extendedHubbardmodel using the HF (teal squares), 2B (orange circles),
and GW (green triangles) self-energy as a function of the on-site
interaction U. As a reference various theoretical and experimental band
gaps for infinite 7-AGNRs are added. The results for free-standing GNRs
are marked by dashed lines for the nearest-neighbor tight-binding model
and LDA,[68] and by a dotted line for G0W0.

[12] The blue rectangle shows
the area considering image-charge corrections[69] and the gold and gray
solid lines correspond to measurements for GNRs on Au(111)[70] and
NaCl,[26] respectively.
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between the lowest peak in the upper subband and the highest
peak in the lower subband at the high symmetry point K in the
first Brillouin zone of graphene.

Since the band gap of the shorter ribbons L ¼ 4; . . . ; 8 is
highly modified due to finite-size effects we perform an
exponential fit through the data of the longer ribbons
L ¼ 10; . . . ; 16 which is shown as the solid black line in Figure 4.
The value of the fit for L!1 is shown as dotted line and shows
excellent agreement with the LDA gap of 
1.6 eV for the
7-AGNR with infinite length. This is not surprising since the
parameter set used was fit to match the LDA band structure of
GNRs. As a comparison, the band gap predicted by the tight-
binding model considering only nearest-neighbor hopping is
considerably smaller with Eg ¼ 1:25 eV. In the following, we
adjust the value of U for a system of length L ¼ 16. For this size
the deviation of the band gap compared to the infinite system is
about 0.1 J. Thus, when comparing our results for U > 0 we
expect the observed gap to be 
0.1 J larger due to finite-size
effects than it would be for an infinite ribbon.

In order to obtain a reasonable value for the interaction U, in
Figure 5 we compare the band gap of our HF, 2B and GW
calculations using U ¼ 0; . . . ; 3:5J for a 7-AGNR of length
L ¼ 16 against various theoretical and experimental results for
similar 7-AGNRs in the form of horizontal lines. As already
mentioned, these reference data describe the converged band
gap for long ribbons L!1ð Þ on top of different interacting
substrates.

Setting U ¼ 0 the HF, 2B and GW self-energies produce the
same band gap of Eg 
 0:7J which is equal to the data of Figure 4
for L¼ 16. As a result it is roughly 0.1 J above the LDA result for
free-standing ribbons with L!1 due to finite-size effects as
established in Figure 4. For HF the band gap is nearly
independent of U and only slightly decreases by 
0.025 J from
U ¼ 0 to U ¼ 3:5J. The 2B self-energy on the other hand shows
an opening of the band gap starting at U 
 2J which results in a
band gap at U ¼ 3:5J that is about 0:02J larger than for U ¼ 0.
Using the GW self-energy the band gap also starts to open at
U 
 2J. However, at U ¼ 3:5J the gap already has a size of 
1 J,
which is an increase of 0.3 J compared to U ¼ 0. A similar
Phys. Status Solidi B 2019, 1800498 1800498 (1
dependence of the band gap on the on-site interaction has been
observed for the one-dimensional Hubbard chain.[71] However,
here the band gap increase due to correlations in the case of 2B
andGW is not as strong as in the 1D case. This is likely due to the
larger bandwidth of the graphene honeycomb lattice (6J)
compared to the one-dimensional chain lattice (4J) which is
why an interaction of U ¼ 3:5J is less significant in the former
case than in the latter.

In order to assess the quality of our results for the size of the
band gap we compare to various reference data in Figure 5.
While LDA calculations produce good results for weakly
correlated homogeneous graphene,[72] for graphene nanorib-
bons it was found that electronic correlation effects are more
important and that quasiparticle corrections G0W0ð Þ to LDA
greatly increase the band gap to Eg ¼ 3:7 eV.[12] However, in the
presence of a substrate that influences the band structure of the
ribbons through screening effects smaller band gaps are
observed. Measurements of 7-AGNRs on a Au(111) and NaCl
surface revealed a band gap of Eg ¼ 2:37 eV and Eg ¼ 2:9 eV,
respectively, which are between the prediction of LDA and
G0W0.

[26,70] Taking into account screening effects theoretically
through image-charge corrections GW þ ICð Þ leads to a reduced
band gap of Eg ¼ 2:3� 2:7 eV compared to G0W0.

[69]

Considering finite-size effects the GW self-energy for an
interaction strength of U ¼ 3:5J nicely reproduces the band gap
found including image-charge corrections (GWþ IC) and
measured for 7-AGNRs on Au(111).

To highlight the influence of the interaction U in the left two
panels of Figure 6, we show the band structure (cf. Equation (44)
for the energy dispersion) of the 7-AGNR of length L ¼ 16
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Figure 6. The left and middle panel show the energy dispersion of a 7-AGNR with a length of L ¼ 16. The colormap corresponds to NEGF calculations
using the HF (left) and GW (middle) self-energy with U ¼ 0 and U ¼ 3:5J, respectively. The dashed black lines mark the LDA band structure with the
original LDA band gap (left)[26] and shifted to obtain the band gapmeasured for 7-AGNRs on Au(111) (middle).[70] The right panel shows the DOS for the
NEGF results.
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considered in Figure 5 for a HF calculation withU ¼ 0 and aGW
calculation using U ¼ 3:5J. In the right panel, we plot the
corresponding DOS, cf. Equation (43). The HF result is
compared to the LDA band structure marked by the dashed
black lines. As expected they match up nicely with some small
deviations due to finite-size effects, one of them is the peak at
ω ¼ 0J which was found to vanish for L!1. In the middle
panel the dashed lines again show the LDA band structure, but
shifted in such a way that the band gap corresponds to the
experimental result of Eg ¼ 2:37 eV for 7-AGNRs on Au(111).
As found in Figure 5, the GW self-energy with U ¼ 3:5J nicely
reproduces the band gap. Thus, in the vicinity of the band gap the
shifted LDA result agrees with theGW band structure. However,
the higher energy regions are strongly affected by correlation
effects which is especially noticeable in the DOS where satellites
appear for ω < �2J and ω > 3J which is outside the scope of the
LDA. Therefore, the shifted LDA band structure is not accurate
outside of the direct vicinity of the band gap.

In conclusion, we choose U ¼ 3:5J for the on-site interaction
of the extended Hubbard model. It should be mentioned that
despite only fit to 7-AGNRs, the model presented here is able to
accurately describe a broad range of AGNRs. On the one hand,
the set of TB parameters by Tran et al.[36] was created to perform
well for all kinds of nanoribbons with different width and edge
structure and, on the other hand, it was found by Yang et al.[12]

that the influence of quasiparticle corrections results in a similar
increase of the band gap compared to LDA calculations for all
small AGNRs. Thus, the introduced parameter set combined
with an on-site interaction of U ¼ 3:5J should be applicable to a
broad range of AGNRs. Of course the value ofU can be changed
and determined in similar fashion if other geometries or edge
shapes are to be described.
4.2. Laser-Pulse-Excited Electron Dynamics in GNR

In the following we evaluate the performance of the different
self-energy approximations in the non-equilibrium regime using
a 5-AGNR with a length of L ¼ 6. Nanoribbons of this type and
size can be produced through bottom-up synthesis.[17] The
system starts in the ground state and is subsequently excited by a
Phys. Status Solidi B 2019, 1800498 1800498 (1
laser pulse of the form

Elaser tð Þ ¼ E0 cos ω0 t� t0ð Þ½ �e�
t�t02ð Þ
2σ2 ð77Þ

with a laser amplitude of E0 ¼ 0:1Je�1a�1, where e is the
elementary charge and a ¼ 0:142 nm is the lattice constant of
the system. Furthermore, a laser frequency of ω0 ¼ 2J is used
and the standard deviation of the Gaussian is set to σ ¼ 4:35J�1.
The shape of the laser pulse at t0 ¼ 0 is depicted as a solid black
line in the upper panel of Figure 7. The laser excitation is treated
within the dipole approximation resulting in a single-particle
excitation

f i tð Þ ¼ �ri � eElaser tð Þ ð78Þ

which is justified because the wavelength λ0 ¼ 224:9 nm of the
laser pulse is a lot larger than the size l 
 1 nm of the system.
The excitation enters in Equation (11) as an additional time-
dependent local on-site energy. In the following the direction of
the electric field is set to be parallel to the armchair edge of the
ribbons.

In order to study the response of the nanocluster to the laser
excitation, we consider the time- and energy-resolved occupation
of carriers in the conduction band. For that reason, we determine
the time-dependent photoemission spectrum, cf. Equation (45),
using a probe pulse width of κ ¼ 2:5J�1 at four different times,
tJ ¼ �30; 0; 20; 50, that are sketched in the upper panel of
Figure 7 by the Gaussians of different colors. The different
snapshots show the system in the ground state, during the laser
interaction, directly after the laser pulse decayed and long after
the laser excitation (
12 fs), respectively.

In the lower panel of Figure 7, the photoemission spectrum
around the Fermi energy ωF ¼ 0 is depicted for all four times for
the HF, 2B, andGW self-energies. In the ground state only states
below the Fermi energy are occupied. The small spectral weight
above ω ¼ 0 is due to the broadening of the highest occupied
state in the valence band ω < 0ð Þ because of the finite width κ of
the probe pulse. In general, during the interaction with the laser
pulse with a frequency of ω0 ¼ 2J electrons are excited from
ω 
 �1J to ω 
 1J. The precise shape of the excited carrier
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1 of 14)
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Figure 7. The lower panels show the time-dependent photoemission
spectrum for a 5-AGNR with a length of L ¼ 6 at four different times
before, during and after a laser excitation for the HF (left), 2B (middle),
and GW (right) self-energy at U ¼ 3:5J. In the upper panel, the four times
are marked, with respect to the pump laser pulse (black line), by Gaussian
functions that correspond to the probe pulse.
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distribution differs slightly for the distinct self-energies which is
likely due to the different descriptions of the band structure and
the resulting possible single-particle transitions. Nevertheless,
the direct single-particle excitation by the laser pulse is already
well reproduced by the HF self-energy.

However, for the correct description of the electron dynamics
after the laser pulse correlation effects have to be included. For
the HF self-energy the total spectral weight in the conduction
band ω > 0ð Þ decreases slightly after the laser-pulse amplitude
vanishes. However, the general shape of the distribution
remains the same because collision processes that could lead
to a redistribution of the occupation are not contained in the
mean-field description. In contrast, using the 2B self-energy that
takes into account collision events between electrons a
considerable shift of the excited carrier occupation can be
observed after the laser-pulse interaction. Even for long times
(
12 fs) after the excitation the system has not reached a steady
state yet. Instead, the number of particles in the valence band
seems to increase. One possible explanation for this are carrier
multiplication effects that were predicted[73–76] and experimen-
tally observed[20,22,77,78] for various graphene structures. In this
mechanism, highly-excited electrons can excite additional
electrons from the valence to the conduction band through
collisions. In total this results in an increase of the carrier density
in the conduction band but a decrease of their mean energy. This
effect will be studied in greater detail in a forthcoming paper.

The GW approximation observes a similar redistribution of
the excited carriers toward lower energies with a simultaneous
increase in the electron density. However, between tJ ¼ 20 and
Phys. Status Solidi B 2019, 1800498 1800498 (1
tJ ¼ 50 this effect is considerably smaller than for the 2B self-
energy. Nonetheless, both the 2B and theGW self-energy contain
electron–electron collision effects which lead to the increase of
carriers in the conduction band. Since HF does not include these
kind of scattering events, going beyond the mean-field level is
essential for the correct description of the observed electron
dynamics. Therefore, previously developed extended TB and
mean-field models[46,79,80] are not suitable for the electron
dynamics considered here.
5. Conclusions and Outlook

In this paper, we have developed a new approach to describe
the time-resolved nonequilibrium dynamics and spectral
properties of finite graphene nanoclusters. Our description is
based on an extension of the standard Hubbard model that is
solved by the nonequilibrium Green functions (NEGF)
approach to include correlations. Due to its concise nature
the Hubbard model greatly reduces the computational
demands of the description of finite systems. For the correct
description of finite graphene nanostructures the standard
Hubbard model has to be extended to take into account the
overlap of the π -orbitals in the graphene honeycomb lattice.
Here, hopping and overlap between up to third-nearest
neighbors is included. The parameter set is taken from Tran
et al.[36] that was created to accurately describe finite graphene
systems. Additionally, to determine the on-site interaction U
the band gap and band structure of a 7-AGNR has been
compared to various theoretical and experimental
results.[12,26,68–70] It was found that the width of the band
gap of 7-AGNRs on Au(111) is well reproduced using the GW
self-energy and an interaction of U ¼ 3:5J.

Furthermore, we investigated the response of a 5-AGNR with
a length of L ¼ 6 to a laser-pulse excitation and compared the
results of the HF, 2B, and GW self-energies. Taking correlation
effects into account appeared to be mandatory for the correct
description of the electron dynamics in the nanoribbon
following the laser pulse interaction. On the mean-field level
the general shape of the electron distribution in the conduction
band did not change for long times (
12 fs) after the laser pulse
excitation. In contrast for the 2B and GW self-energy an increase
of the particle number in the upper band was observed even after
the interaction with the laser has vanished. This could indicate
the presence of carrier multiplication effects that will be further
investigated in an upcoming paper.

The flexibility of the presented approach allows us to describe
not only GNRs but finite graphene structures in general with any
possible lattice geometry. In fact, there is a variety of systems
with different edge structures that exhibit intriguing proper-
ties[7,81–83] that could be analyzed using this model in the future.
One interesting system is carbon nanotubes (CNTs) which have
a similar structure to GNRs.[84] In the presented approach of the
extended Hubbard model and the NEGF method CNTs can be
described as GNRs with periodic boundary conditions perpen-
dicular to the ribbon axis. Therefore, it is easy to also extend the
investigations to CNTs. Of course, the parameter set might have
to be adjusted if the systems differ strongly from the GNRs
considered here.
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