
Received: 28 November 2018 Accepted: 6 December 2018

DOI: 10.1002/ctpp.201800157

O R I G I N A L A R T I C L E

Permutation blocking path integral Monte Carlo simulations
of degenerate electrons at finite temperature

Tobias Dornheim* Simon Groth Michael Bonitz

Institut für Theoretische Physik und Astrophysik,

Christian-Albrechts-Universität zu Kiel, Kiel,

Germany

* Correspondence
Tobias Dornheim, Institut für Theoretische Physik

und Astrophysik, Christian-Albrechts-Universität

zu Kiel, Leibnizstr. 15, D-24098 Kiel, Germany.

Email: dornheim@theo-physik.uni-kiel.de

Funding Information
This research was supported by the Deutsche

Forschungsgemeinschaft, BO1366-10/2.

Norddeutscher Verbund für Hoch- und

Höchleistungsrechnen grant shp00015.

We analyse the simulation of strongly degenerate electrons at finite temperature

using the recently introduced permutation blocking path integral Monte Carlo

(PB-PIMC) method [T. Dornheim et al., New J. Phys. 17, 073017 (2015)]. As a rep-

resentative example, we consider electrons in a harmonic confinement and carry out

simulations for up to P = 2000 so-called imaginary-time propagators – an impor-

tant convergence parameter within the PIMC formalism. This allows us to study the

P-dependence of different observables of the configuration space in the Monte Carlo

simulations and of the fermion sign problem. We find a surprisingly persisting effect

of the permutation blocking for large P, which is explained by comparing different

length scales. Finally, we touch upon the uniform electron gas in the warm dense

matter regime.
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1 INTRODUCTION

Over the last decade, there has been a remarkable spark of interest in the properties of electrons at high densities and tem-

peratures. This regime, which is often denoted as warm dense matter, is of key relevance for the description of, for example,

astrophysical objects,[1–7] hot-electron chemistry,[8,9] and inertial confinement fusion.[10–12] For this reason, these extreme con-

ditions are now routinely realized at large research facilities such as the European X-FEL (free electron laser) in Germany,[13]

the Linac Coherent Light Source in Stanford[14,15] and the National Ignition Facility at the Lawrence Livermore National

Laboratory.[16,17]

On the other hand, a rigorous theoretical description of electrons in the warm dense matter regime is considered most chal-

lenging because of the intricate and non-trivial interplay of (a) Coulomb coupling, (b) quantum degeneracy, and (c) thermal

excitation effects. For this reason, ab initio quantum Monte Carlo (QMC) methods, which can take into account all of these

effects accurately, are widely recognized as the best option. Unfortunately, path integral Monte Carlo (PIMC) simulations[18,19]

of electrons are severely limited by the notorious fermion sign problem (FSP),[20–22] which often renders the most interesting

parameter regimes inaccessible.

Consequently, over the last years there has been a surge of new developments in QMC methods at finite temperatures.[20,23–35]

In particular, the recently introduced combination of two complementary methods[20,24–26,35,36] has made it possible to effectively

avoid the sign problem and to achieve a complete description of a uniform electron gas covering the entire warm dense matter

regime. On one hand side, the configuration PIMC (CPIMC) method[23,26,37] is formulated in Fock space and can be interpreted

as performing a Metropolis Monte Carlo evaluation of the exact infinite perturbation expansion around the ideal system. Hence,

CPIMC is very efficient at weak non-ideality and strong degeneracy, but breaks down with increasing coupling strength. On

the other hand, the permutation blocking PIMC (PB-PIMC) approach[26,34,35] significantly extends standard PIMC towards
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lower temperatures and higher densities. While it has been well known that the application of antisymmetric imaginary-time

propagators (i.e., determinants)[38–40] can lead to a reduction of the FSP, this advantage quickly vanishes with an increasing

number of high-temperature factors P that are needed to reduce the factorization error in the density matrix, see Equation (4)

below. Therefore, in the PB-PIMC method the determinants are combined with a higher order factorization of the density

matrix,[41,42] which allows high accuracy even for small P.

In this work, we present a detailed analysis of PB-PIMC simulations of strongly degenerate electrons at finite temperature.

In section 2, we introduce the theory of standard PIMC (section 2.1), the origin of the FSP (section 2.2), and how it can be

alleviated using the permutation blocking idea (section 2.3). Subsequently, we present results for electrons in a harmonic trap

(section 3.1) and analyse the impact of the number of high temperature factors P= 2, …, 2000 on different expectation values

and discuss the corresponding impact on the sign problem. In addition, we touch upon the uniform electron gas (section 3.2),

and end with a brief summary and discussion in section 4.

2 THEORY

2.1 Standard path integral Monte Carlo

The standard PIMC method was introduced in the 1960s for the simulation of 4He[43,44] and has subsequently emerged as one of

the most powerful many-body simulation techniques at finite temperature, see Ref. [19] for a review article. More specifically,

PIMC has allowed key insights to the physics of, for example, superfluidity,[45–47] collective excitations,[48–50] and structural

properties.[51–54] While ab initio simulations of up to N = 104 correlated bosons and boltzmannons (i.e., distinguishable particles

obeying Boltzmann statistics) are feasible,[55,56] PIMC simulations of fermions are severely limited by the notorious FSP,[20–22]

as we shall see in the following sections.

Let us consider a system of N particles in a fixed volume V at a temperature T in thermodynamic equilibrium. In this case,

all thermodynamic observables can be computed from the canonical partition function

Z = 𝑇 𝑟𝜌, (1)

which is defined as the trace over the canonical density operator

𝜌 = e−𝛽Ĥ , (2)

with 𝛽 = 1/kBT being the usual inverse temperature. By restricting ourselves to distinguishable particles and evaluating

Equation (1) in coordinate representation, we obtain

Z = ∫ dR ⟨R|e−𝛽Ĥ |R⟩, (3)

where R= {r1, …, rN} contains the all DN particle coordinates (with D denoting the number of dimensions). Unfortunately,

the matrix elements of the density operator, Equation (2), cannot be readily evaluated as the kinetic and potential parts of the

Hamiltonian, K̂ and V̂ (with Ĥ = K̂ + V̂), do not commute, i.e.

e−𝛽Ĥ ≠ e−𝛽K̂e−𝛽V̂ (4)

To overcome this obstacle, we use the group property

e−𝛽Ĥ =
P−1∏
𝛼=0

e−𝜀Ĥ , (5)

with 𝜀= 𝛽/P, and insert P− 1 unity operators of the form 1̂ = ∫ dR𝛼 ∣ R𝛼⟩⟨R𝛼 ∣ into Equation (3) and obtain

Z = ∫ dX ⟨R0|e−𝜀Ĥ|R1⟩⟨R1|… |RP−1⟩⟨RP−1e−𝜀Ĥ|R0⟩ (6)

Note that Equation (6) is still exact, and the integration is carried out over P sets of particle coordinates, dX= dR0…dRP− 1.

The new expression for Z given by Equation (6) is very advantageous, as each factor appears at a P-times higher temperature.

In the limit of large P, the inequality from Equation (4) disappears, and the primitive factorization becomes exact.[57]

e−𝛽Ĥ = lim
P→∞

(e−𝜀V̂ e−𝜀K̂)P (7)

The partition function is finally interpreted as the sum over all closed paths X of particle coordinates in the so-called imaginary

time 𝜏 ∈ [0,−iℏ𝛽]:

Z = ∫ dX W(X), (8)
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FIGURE 1 Schematic illustration of path

integral Monte Carlo. Shown are two

configurations in the 𝜏−x plane with no

pair-exchange (left) and a single pair exchange

(right). The corresponding configuration

weights are positive and negative. Reproduced

from Dornheim et al.[26] with the permission of

the authors. Copyright Elsevier BV

with W(X) denoting the corresponding configuration weight. In the left panel of Figure 1, we show such a configuration X
with P= 6 and N = 2, and each particle is represented by an entire 𝛽-periodic (i.e., closed) path in the imaginary time. The

general idea of the PIMC method is to stochastically generate all paths using the Metropolis Monte Carlo scheme,[58] which is

not affected by the large number of dimensions in Equation (6).

2.2 PIMC simulation of indistinguishable particles and the fermion sign problem

Let us now extend our consideration to the simulation of N (spin-polarized) indistinguishable particles. For this purpose,

the partition function from the previous section has to be extended to include the sum over all N! permutations of particle

coordinates:

Z = 1

N!
∑
𝜎∈SN

sgnb∕f(𝜎)∫ dR ⟨R|e−𝛽Ĥ|𝜋𝜎R⟩, (9)

where 𝜋s denotes the exchange operator corresponding to the element 𝜎 from the permutation group SN . While for bosons the

sign sgnb(𝜎) is always 1, for fermions sgnf(𝜎) alternates with the number of pair exchanges. This is further illustrated in the right

panel of Figure 1, where we show a configuration X of two particles where the coordinates have been permuted. This results in

a closed path that is periodic with respect to 𝜏 = 2𝛽, or, equivalently, an exchange cycle containing two particles at once. In the

case of fermions, this single pair exchange leads to a negative configuration weight. Therefore, the fermionic partition function,

Equation (9), constitutes a sum over both positive and negative terms, so that W(X) can no longer be interpreted as a probability

distribution, and a stochastic sampling of the paths is not directly possible.

Fortunately, the Metropolis algorithm can still be used by introducing the modified partition function

Z′ = ∫ dX ∣ W(X) ∣, (10)

and the exact fermionic expectation value can then be computed as

⟨O⟩ = ⟨𝑂𝑆⟩′⟨S⟩′ , (11)

with averages being carried out over the modified distribution W ′
(X)= |W(X)| and S=W(X)/|W(X)|= sgnf(𝜎) denoting the

sign. Note that, in the case of standard PIMC, this modified configuration space directly corresponds to the simulations of

bosons, and all fermionic effects like Pauli blocking are realized by a subsequent cancellation of positive and negative terms in

Equation (11), which is very inefficient. The average sign, that is, the denominator, is a measure for this cancellation. It can be

shown that it exponentially decreases with inverse temperature and system size, ⟨S⟩′ ∝ e−𝛽𝑁(f−f ′), with f and f ′
being the free

energy per particle of the original and the modified system.

The statistical uncertainty of the Monte Carlo result, ΔO, is, in first order, inversely proportional to ⟨S⟩′ [20]:

ΔO
O

∝ 1⟨S⟩′√NMC

∝ e𝛽𝑁(f−f ′)√
NMC

(12)

Evidently, the error bar exponentially increases with 𝛽 and N, which can only be compensated by increasing the number of

Monte Carlo samples with 1∕
√

NMC. In practice, this quickly becomes unfeasible, and the simultaneous vanishing of both the

enumerator and denominator in Equation (11) constitutes an exponential wall. This is the infamous FSP,[21,22] which prohibits

standard PIMC simulations even of relatively small systems at moderate temperatures.
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FIGURE 2 Schematic illustration of

permutation blocking path integral Monte Carlo.

Shown are two configurations in the 𝜏−x plane

with P= 2 (left) and P= 5 (right) high

temperature factors. The different colours

correspond to the three different types of

imaginary-time slices, and the arrows show the

thermal wavelength of a single time step,

𝜆𝜀(P)= (2𝜋𝜀/3)1/2. The red and blue connections

depict the diagonal and off-diagonal elements in

the diffusion matrices, respectively. Reproduced

from Dornheim et al.[26] with the permission of

the authors. Copyright Elsevier BV

2.3 Permutation blocking path integral Monte Carlo

The permutation blocking PIMC method[34,35] significantly extends standard PIMC simulations towards stronger quantum

degeneracy as it occurs, for example, in the warm dense matter regime.[26]

The first ingredient to this approach is the application of antisymmetric imaginary-time propagators[38–40] (i.e., determinants),

which allows us to combine permutations in Equation (9) that contribute to the partition function with a different sign. This

is illustrated in the left panel of Figure 2, where we show a configuration X of two particles. In standard PIMC, we either

evaluate the red connections corresponding to a positive weight, or the blue connections corresponding to a pair exchange and,

therefore, a negative weight. In contrast, the application of the permutation blocking allows us to combine both paths into a

single meta-configuration, so that a significant part of the cancellation is carried out analytically within the determinants. There

is, however, a catch: with an increasing number of high-temperature factors P, which are needed to bring down the factorization

error in Equation (4), the effect of the blocking decreases, see the right panel of Figure 2. For large P, we either have large

diagonal elements (no pair exchange) as in the depicted example configuration, or large off-diagonal elements, but they are

never comparable at the same time. Therefore, it is crucial to combine the determinants with a higher order factorization of the

density matrix that allows sufficient accuracy for small P, which constitutes the second key ingredient to the PB-PIMC method.

The final result for Z is then given by

Z = 1

(N!)3P ∫ dX
P−1∏
𝛼=0

(
e−𝜀Ṽ𝛼e−𝜀

3u0
ℏ2

m
F̃𝛼 det(𝜌𝛼) det(𝜌𝛼𝐴) det(𝜌𝛼𝐵)

)
, (13)

where the Ṽ and F̃ terms contain all contributions due to the potential energy and the forces, and we have to compute three

determinants of the diffusion matrices 𝜌𝛼 for every high-temperature factor. The particular definition of these functions and a

detailed discussion of the employed factorization scheme[41,42] can be found in Refs. [26, 34].

In a nutshell, by using the determinants in Equation (13), the modified weights W ′
(X) already contain a significant part of

cancellations, which makes the modified configuration space different from the bosonic case and brings it closer to a direct sam-

pling of fermionic configurations (in which case all terms would be positive and the FSP vanishes). The beneficial consequences

of this circumstance are discussed in detail in the following section.

3 RESULTS

3.1 2D harmonic trap

Let us first consider the case of N spin-polarized electrons in a harmonic confinement, which are described by a Hamiltonian

of the form

Ĥ = −1

2

N∑
k=1

𝛻2
k +

1

2

N∑
k=1

r2
k +

N∑
k<l

𝜆

∣ rl − rk ∣
, (14)

and we use oscillator units (i.e., the characteristic length l0 =
√
ℏ∕mΩ and energy scale E0 =ℏΩ, with Ω being the trap

frequency) throughout this work. Note that Equation (14) is often considered as a simple model for electrons in a quantum

dot.[59–61] In Figure 3, we show the results for N = 4 electrons at 𝛽 = 3 and 𝜆= 1. The left ordinate corresponds to the average

sign S, and the green crosses and red circles depict PB-PIMC and standard PIMC data, respectively, which are shown versus

the inverse number of high-temperature factors P. Evidently, standard PIMC is afflicted with a severe sign problem and we

find S∼ 10−2. Note that the average sign exhibits only a very weak dependence on P, which is a consequence of the factoriza-

tion error, Equation (4), but does not reflect any qualitative changes in the FSP. In stark contrast, the PB-PIMC results exhibit
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FIGURE 3 P-dependence of the average sign for PB-PIMC (green) and PIMC (red) for N = 4 electrons in a 2D harmonic trap at 𝛽 = 3 and 𝜆= 1. The left

ordinate corresponds to the sign S and the right ordinate to a distance r in coordinate space corresponding to the XC hole rxc (black) and the thermal

wavelength of a single propagator, 𝜆𝜀(P)= (2𝜋𝜀/3)1/2 (blue). The right panel shows a magnified segment around larger numbers of high-temperature factors
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FIGURE 4 PB-PIMC and PIMC results for N = 4 electrons at 𝛽 = 3 and 𝜆= 1. The left panel shows the convergence of the total energy E with P, and the

right panel shows the averaged pair correlation function g(r) computed with PB-PIMC for P= 2 in the modified configuration space Z ′
. In addition, the arrow

indicates the exchange-correlation hole rxc

the expected swift decrease with increasing P, as explained in detail by Groth et al. [26]. However, at a first glance, the average

sign does not seem to converge towards the value from standard PIMC, as expected from the theory, but stays considerably

larger even for large P. This finding can be understood by examining the right ordinate, which corresponds to a distance r in

the coordinate space. The blue curve depicts the thermal wavelength of a single step in the imaginary time, 𝜆𝜀(P)= (2𝜋𝜀/3)1/2,

and the dash-dotted horizontal line depicts the extension of the exchange-correlation hole rxc, see also Figure 4 (right panel).

The increased sign in the PB-PIMC method as compared to standard PIMC is a direct consequence of the analytical permuta-

tion blocking that is carried out within the determinants in Equation (13). This effect fully disappears only when the thermal

wavelength is much smaller than the smallest distance between two particles within the PB-PIMC simulation, that is, when

𝜆𝜀 ≪ rxc. Evidently, 𝜆𝜀 slowly vanishes only for large P, and the average sign starts to exhibit a more steep decrease for P∼ 103,

see also the right panel showing a magnified segment around large numbers of high-temperature factors. In summary, we have

found that permutation blocking has a noticeable effect on the average sign for unexpectedly large numbers P, which is a

direct consequence of the ratio of the thermal wavelength of a single high-temperature factor 𝜆𝜀 and the exchange-correlation

hole rxc.

Let us next consider the convergence of a relevant observable. In the left panel of Figure 4, we show the P dependence of

the total energy E both for PB-PIMC (green crosses) and standard PIMC (red circles). Observe the small error bars in the

PB-PIMC data for small P, which are a direct result of the large sign. Upon increasing P, the sign drops and, consequently, the

statistical uncertainty increases, see Equation (12). In addition, because of the employed higher order factorization, we observe
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a remarkably weak dependence of E on the number of high-temperature factors, and even for P = 2 we have a relative accuracy

of the order of ΔE/E ∼ 10−4. In contrast, the standard PIMC simulations are afflicted with an equally severe sign problem

independent of P, and the factorization error due to the primitive factorization, cf., Equation (4), is significantly larger.

In the right panel of Figure 4, we show PB-PIMC data for the pair distribution function

g(r) = 1

A

⟨ N∑
i=1

N∑
k=i+1

𝛿(r − ri,k)

⟩′

, (15)

with an arbitrary normalization A and the definition ri, k = |rk − ri|. Observe that the expectation value in Equation (15) is car-

ried out in the modified configuration space, and g(r) can be divided into three distinct segments: for r < rxc, we have the

exchange-correlation hole and two particles never appear at such a small distance towards each other; around r ≈ 1 there is a

broad peak corresponding to particles located around the centre of the trap; for r ≳ 2 there is a slowly decreasing tail of particle

pairs at opposite ends of the system.

Finally, in the left panel Figure 5 we show results for the radial density n(r). The red circles correspond to standard PIMC

results for P = 200, which are exact within the given statistical uncertainty. The black diamonds, yellow triangles, green crosses,

and blue squares correspond to the PB-PIMC results for P = 2, P = 4, P = 6, and P = 40, respectively. Again, we observe a

strikingly fast convergence with P, and deviations to the PIMC data are hard to resolve with the bare eye.

In the right panel of the same figure, we show results for n(r) directly evaluated in the modified configuration space, that is, the

distribution of particles within a given simulation without taking into account the cancellation defined in Equation (11). In the

case of standard PIMC, this corresponds to the exact bosonic density, cf., the red circles. For comparison, we have also included

the fermionic density as grey triangles. As expected, bosons tend to cluster around the centre of the trap, whereas the Pauli

blocking acts as an effective repellent force that pushes the electrons away from each other. Consequently, the fermionic density

at r = 0 is decreased by a factor of 40%, and the electrons are squeezed outwards. The black diamonds depict PB-PIMC results

for P = 2, which are remarkably close to the fermionic distribution. Therefore, a significant fraction of the fermionic exchange

effects is captured by the determinants, the modified configuration space is close to the fermionic one, and the impact of the

cancellation of positive and negative terms is small. With increasing P, there appears a progression away from the fermionic and

towards the bosonic density, and, in the limit of large P, the PB-PIMC simulation will reproduce the standard PIMC simulation

and the effect of the determinants will completely vanish. In practice, this means that within the QMC simulation there will

only seldom appear a particle at large r, see also the inset showing a magnified segment around this regime. Therefore, the

comparatively much larger values of the fermionic density can be achieved only by evaluating Equation (11) with a small average

sign, which makes the simulations drastically more expensive.

3.2 Uniform electron gas

As a second example, we consider the uniform electron gas,[26] that is, N electrons in a box of length L and volume V = L3

with periodic boundary conditions. However, since the convergence behaviour with the number of high-temperature factors P
is qualitatively similar to the previously shown harmonic trap, here we restrict ourselves to a graphical interpretation of the

configurations.



DORNHEIM ET AL. 7 of 9

FIGURE 6 Snapshots from standard PIMC

simulations of N = 33 spin-polarized electrons

at rs = 1 and 𝜃 = 0.75 with P= 9 (left) and

P= 100 (right)

FIGURE 7 Snapshots from PB-PIMC

simulations of N = 33 spin-polarized electrons

at rs = 1 and 𝜃 = 0.75 with P= 2 (left) and

P= 30 (right)

In Figure 6, we show snapshots from a standard PIMC simulation of N = 33 spin-polarized electrons at rs = 1 and 𝜃 = 0.75

(with the density parameter rs = [3 V/4𝜋N]1/3, the degeneracy temperature 𝜃 = kBT/EF, and EF denoting the Fermi energy),

which corresponds to the heart of the so-called warm dense matter regime.[26] The left panel depicts a configuration for P = 9

high-temperature factors, and the right panel for P = 100. While in the former case the paths look considerably more scrawly

and less smooth than in the latter, the difference is only quantitative.

In Figure 7 we show snapshots from a PB-PIMC simulation at equal parameters. The different colours correspond to the

three different types of imaginary time slices for each high-temperature factor, see section 2.3, and the width of the connections

between particles is a direct measure for the associated diffusion matrix elements. For P = 2 (left panel), the permutation block-

ing is very effective, and many particles are integrated in multiple paths at the same time. Since different paths correspond to

distinct permutations of particle coordinates, which enter the fermionic expectation value with different signs, the simultaneous

evaluation of many such terms leads to a significant reduction of the sign problem. The right panel corresponds to P = 30 and,

in stark contrast to the standard PIMC, the depicted configuration is qualitatively different from the P = 2 case. In particular,

because of the decreased value of the thermal wavelength 𝜆𝜀 (see also Figure 3), only a few particles are involved in multiple

paths with a non-vanishing weight, and the configuration resembles the smooth paths from standard PIMC shown in the right

panel of Figure 6.

4 SUMMARY AND DISCUSSION

In summary, we have presented a thorough introduction to the PIMC formalism and explained in detail the origin of the

infamous sign problem in the case of fermions. In addition, we have investigated the dependence of the average sign on the

number of imaginary-time propagators P, both for the standard PIMC approach and the more sophisticated PB-PIMC tech-

nique. While the sign in standard PIMC exhibits a weak P-dependence, as expected, in PB-PIMC the utilized number of

propagators within the simulation crucially influences the observed sign. This is due to the decreasing effect of the ana-

lytic cancellation of configurations with different particle permutations (i.e., the eponymous permutation blocking) with

increasing P, which is the major advantage of PB-PIMC. Interestingly, even for very large P this blocking effect leads to

a significantly larger sign compared to standard PIMC, since the condition for an equal sign of both methods is that the
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exchange-correlation hole must be significantly larger than the thermal wavelength of a single propagator; this occurs only

for P≫ 2000.

Furthermore, we have demonstrated that both the energy and the radial density for electrons in a harmonic trap converge

remarkably fast with P for PB-PIMC, which is in stark contrast standard to the primitive factorization used in standard PIMC.

By further analysing the density profile, we have found that for small numbers of propagators, the PB-PIMC algorithm more

closely samples the real fermionic configuration space, in accordance with the previous finding of a more efficient cancellation

of configurations in this case. Lastly, we have depicted various simulations snapshots of both methods for the uniform electron

gas in the warm dense matter regime, which further illustrates that the qualitative structure of the sampled paths becomes more

equal with an increasing number of propagators.

We expect our results to be useful for the further development of fermionic QMC methods at finite temperature, which is of

paramount importance for a variety of fields such as warm dense matter,[26] electrons in quantum dots,[60] ultra-cold atoms,[62]

or quark-gluon plasmas.[63,64]
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