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Theoretical foundations of quantum hydrodynamics for plasmas
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Beginning from the semiclassical Hamiltonian, the Fermi pressure andghm potential for the

viously known results are revised and improved with a clear descriptio

quantum hydrodynamics application (QHD) at finite temperature are comSistently derived in the
framework of the local density approximation with the first order density gradient correction. Pre-
of'jo undeglying approxi-

mations. A fully non-local Bohm potential, which goes beyond of all

local field corrections, and considered for the case of the relaxatio
the range of applicability of the QHD is discussed.

PACS numbers: xxx

I. INTRODUCTION

The investigation of dynamical properties of systems

ious results and is linked
for the QHD model is
in the framework of
proximation. Finally,

tim

here E is electric-field strength, and 3 stands for a
temsor that contains all many-body and quantum effects,
including<correlations and dissipation. The exact form of

ations for 3 have been proposed with different levels

containing partially or fully degenerate electrons h\a‘ not known, and different approaches and approxi-
m

fields like dense plasmas [1, 2], warm dense matter
streaming and wake effects [5, 6] and plasmonics
Interiors of giant planets, white and brown dwarfs, st

3

gained growing interest due to their relevance for sb&
2 4]7

dense plasma (warm dense matter) [11, 12].
tal studies of dense plasmas include thedree el
excited plasmas [13], and inertial confinéme
periments [14-16]. On the other hand, pla
rials, containing fully degenerate €leetrons, have recently
received renewed attention as the resultiof the advances
in nanofabrication techniquesf[8, 9,47, 18]. All the above
mentioned different systemsfare govern by the behavior
of Coulomb interacting (?dan ele?rons.

The theoretical descyiption of quantum plasmas must
take into account ‘Mgeneracy effects such
as non-locality, spin ];%istics, and correlations (non-
ideality) approppiate n the relevant scales. A con-
tinuum descripgion O?g thesdynamics of the quantum elec-
trons in the spiri a hd)nsity functional theory (DFT)
i isi chfto the problem. The possibility
llows from the Hohenberg-Kohn
[21, 22] and the Runge-Gross theorem
or current) density functional theory
The dynamics of the electrons can be

average electron current density j(r,t) by the
1tﬂnd momentum equations [19, 23]:

—n(r,t)+ V- [j(r,t)] =0, (1)

m%j (r,t) —n(r,t)eE(r,t) = =V - X(r,t), (2)

phistication, e.g. [24, 25].

An alternative concept are first-principle approaches
ased on wave function methods, e.g. [26], quantum-
statistical theory [1], quantum kinetic theory [20, 27] or
non-equilibrium Green functions [28, 29]. However, as
TDDFT, these methods require substantial theoretical
and computational effort and are particularly important
to capture electronic correlations. Therefore, in cases
where correlations and their dynamics are of minor im-
portance, simpler approaches are being used. This par-
ticularly applies to quantum hydrodynamics (QHD) that
became popular as a simplified approach for quantum
plasmas [30-34], plasmonics [8-10, 35|, and electrons in
semiconductors [36, 37] and is, therefore, in the focus of
this paper.

The key ingredients of QHD — as it is often used in
the context of quantum plasmas — are the ideal Fermi
pressure, Pr, and the so-called Bohm potential, Vg [38].
In QHD, the closed momentum equation is, instead of

Eq. (2),

m%j (r,1) = n (v, 1) eB(r, ) =
— VPrpn(r,t)] — n(r,t) VVgn(r,t)], (3)

Manfredi and Haas [31] derived the Fermi pressure and
a quantum correction in the form of the Bohm potential
using a semi-classical Hartree ansatz for the N-electron
wave functions with identical amplitude for all single-
electron orbitals [38]. However, in order to reach agree-
ment with the results of the more fundamental kinetic
theory in its simplest form — the random phase approxi-
mation (RPA) — both, the Fermi pressure and the Bohm
potential have to be “corrected” by constant pre-factors
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‘ s I\[JPB 5]. Similarly, in plasmonics, the QHD theory is
.used with one or, sometimes, two fitting parameters cor-
PUbIIISJ (r)}gl ng to the prefactors of the Fermi pressure and
the Bonm potential, but with an additional exchange cor-
relation potential contribution, which is valid only in the

static case.

Moreover, in the context of quantum plasmas, QHD
has often been used beyond the range of applicability of
the model and, occasionally, even with explicitly incor-
rect expressions. This has led to un-physical predictions
and some controversy, for a discussion, see Refs. [38-
41, 48].

However, introducing the above mentioned corrections
factors does not solve the problem. It turned out that
these fitting parameters (pre-factors) are not constants
but differ depending on the characteristic wavelength and
frequency of the physical problem. In addition, these
coefficients are found to vary with the plasma density
and temperature. This results in complicated parametric
dependencies of the Bohm potential. This means that
the range of the values in which correcting parameters
can be chosen and the corresponding underlying physical
assumptions need to be clarified.

For this reason, in this paper QHD is reconsid e(\
in detail, for both zero temperature and finite temzx o

}‘Ei\\megw

ature, and it is put into the context of well esta
approaches such as Thomas-Fermi theory and dielec

theory (such as the random phase approximation)«Sgart-
ing from these approaches it becomes moge clear whate
approximations are actually being made an at is the
corresponding range of validity of the model.

In Sec. II, continuity and momentum M of the
QHD model are briefly introduced for the finite tempera-

¢ Bohm potential

ture case. In Sec. 111, the relatio
in the density gradient approximation t@ the power ex-
pansion of the inverse finite gempérature! RPA polariza-
tion function is presented, &nd t}ae Q potentials, i.e.,
the potential related t(?é Fermi pregéure and the Bohm
potential, are considered m different’limiting cases. This
will allow us to rep duM results and, in part,
even to improve thém. Sec. W, the generalized non-
local Bohm potenti ased on the exact RPA polar-
1 ed. The exchange-correlation

application is discussed in Sec. V.
The paper gs«eonc od/é)y a discussion of the range of
model.

HD EQUATIONS AT FINITE
TEMPERATURES

The underlying equations of the QHD model can be de-
rived from a field theory, starting from the semi-classical
Hamiltonian which, in the absence of a magnetic field,
reads [35, 46]

[Mnmwu¢n=Em@¢n—/£%HMnﬂm

H
n(r,t) 2 e [, t)n(r',t)
+/72 [V o, 1) e /7&7 ;

drdr’,
r'|

(4)

where w is the scalar petential determining the velocity
field by v = —Vw, En] = Ei[n] + Ex[n] is the sum
of the kinetic and the exchange-correlation energy func-
tionals, and Vo xternal electric potential.
Using n(r,t) a cw(r,t) as canonically conjugate
field variables, e employ Hamilton’s equations [49]:

5%(1‘, (v, )] On(r,t) 5)
Imgbw(r,t) o

—
> L am S
1dqobtain e following equations of motion that form

thiebasis 9f QHD [46, 47]:
8h.
n(r,t) =V -[n(r,t) Vw (r,t)], (7)
dEn]

(r,t) = on
*f

Introducing the potential of the generalized force [48]

- e‘/:ext"_
1
|

n(r',t
Ir(— r,) dr’ + 3me [V (r,t)]*. (8)

O0E[n(r,t)]
)] = — t
pnte. ) = B o). ()
with the definition
n(r’,t)
o(r, 1) = e/ Y Vi (10)
and making use of relations v = —Vw and (v-V)v =

1V(Vw)?, we arrive at the QHD equation in terms of av-
erage density n (r,t), velocity v (r, ), and the generalized
force =V [r,t] [46-48]

prid (r,t) + V- [n(r,t)v(r,t)] =0, (11)

me%v (r,t) + me(v (r,t) - V)v(r,t) = =Vu(r,t).
(12)

In previous works, Eq. (12) was obtained for the case
of fully degenerate electrons (zero temperature limit).
Equations (11) and (12) represent QHD equations in the
micro-canonical ensemble, as they were derived from the
semi-classical Hamiltonian (4) (alternatively, they can be
obtained from a semi-classical Lagrangian [46]).

For the extension to finite temperature, we now switch
to the grand canonical ensemble. There, these equations
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‘ s k the same form, but n and w must be understood

S quan ities that are averaged over the grand ensemble

Pu b“ﬁ Now we generalize the momentum equation (12)

to the finite temperature case where it is advantageous

to use the free energy functional, F[n], instead of E[n].
Indeed, in the grand canonical ensemble we have [51]

0E 40
= _ e 1
on  on’ (13)
with the grand potential
Qn(r)] = Fln(r)] - poN, (14)

where p is a constant defining the chemical potential
of the system in thermodynamic equilibrium, and N =
J n(r)dr corresponds to the mean value of the number of
particles in the grand canonical ensemble. The derivation
of Eq. (13) is given in the Appendix A.

It is should be noted that, in Eq. (13), E is the aver-
age value of the energy over a grand canonical ensemble.
With this, we obtain for the potential of the generalized
force at finite temperature:

uln(e, ), T) + o = DL

Snirsy +eP ) <5>

where F[n] = Fig[n]+ Fx[n] is decomposed into the4 e
(non-interacting) part Fig[n], and the exchangeé corre
tion part Fy.[n]. In the static long wavelengt

see
below), the generalized force, —Vu[n 1sﬁ?teh‘

to the pressure tensor P [52]

o OFln \)

v 5nrt ’

which provides the link with the standard fluid theory,
cf. Eq. (2).

(AM POTENTIAL
RESSURE

Dral Expressions

potential related to the Fermi pres-
sure and the“Boh ntial, we neglect the exchange-
correlationiterm, Fg.[n]; and turn to the local density ap-

DA)Swith non-locality taken into account
by th¢ first or adient correction to the noninteract-
energ}&funcmonal [45, 53, 54]:

\ 2l = Rlnl + [ ave ) [ ne) P07

e free energy Fp is defined via the free energy

n] :/fo[n]dr, (18)

o]l
||

7

III. DERIVATION TH
AND F

A

(N

In order to deriye

where
density

and the functional as[n] still remains to be found. Sub-
stituting Eq. (17) into (15) we have:

paln(e,0,7] + o = 200 002 ) gy 2
2V - [az[n]Vn(r)] + ep(r,t). (19)

Now we show that it is possible to connect the QHD
Bohm potential with the expansion of the inverse po-
larization function a{. thereby, to obtain as. For the
static case, w = 0, this was done by Perrot [55]. Here we
generalize his result the dynamic case. We consider
small localized v. s of the potential, dp, density,

on, velocity in“terms“@f the scalar potential, dw, and of
the chemical-potengial, du;q. From Eq. (7), taking the
equilibriu d%ity ribution as uniform (ny = const)

and assum 0 =0, we obtain
-

o = ——n 20
= o, (20)
‘Ql;r_:; om, and éw denote the Fourier transforms of dn
%}spectlvely The resulting variation of g, as
neddby Eq. (19), has the form [55]
_ <52f0[n]
Hid =

on?

— 2as [no]A> on+edp. (21)

n=ngp

Thus, the linearized momentum equation (12) for @w = o
and, taking into account Eq. (21), is written as:

— iwmedw = edp+

2 foln _
[ 8];% ] . + Qag[no]k2] on. (22)
Finally, making use of Eq. (20), we find
~ 9% fo [n] 2 w?me |
65@ = — [ on2 . + 20,2[710]]47 — ﬁnio . (23)

This is an important result that relates the density
perturbation to the perturbation of the external poten-
tial. As we have assumed weak perturbations, we can
make use of the results of linear response theory and
identify in Eq. (23) the inverse polarization function,

! = ed@/6n:

1 _ {82f0[n]
I (k,w) on?

w? me

K2 ng
(24)

+ 2ao [no}kﬁQ —

n=ng

B. RPA result for the Bohm potential and Fermi
pressure

Equation (24) gives us the opportunity to express the
r.h.s. of Eq. (24) systematically via linear response the-
ory. The lowest order many-body approximation for II is
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ng — n(r,t), according to the standard concept of LDA.
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‘ s Itpn( om phase approximation (RPA), which reads in r,t), i
[56]

ujlibrium, for arbitrary temperature

Publis! ing
]{?2 2
Hrpa(k,w) = — X0

16me223 lg(u+2)

—g(u—2)], (25)
where we introduced dimensionless frequency and wave
number, u = w/(kvr), z = k/(2kr), and defined x3 =
(rkpap)~! ~ r,/6.03, where ap is the Bohr radius,
rs = a/ap, with a being the mean interparticle distance,
and we also introduced the Fermi wave number and the
plasma frequency, kr = (372n)*/3, w? = 4mne? /me. Fi-
nally, we defined

ydy
g(x) = —g(—z) = /exp(yz/Q*n)le n

Tty
=Yy

‘ . (26)

With these explicit expressions the RPA polarization
can be studied in detail. Particularly simple expressions

The Bohm potential in the local density approximation,
for QHD applications can be obtained for any degeneracy
parameter from the second term on the right hand side
of Eq. (17):

Vg = % /drag [n] | Vn(r) |?

- 2 80,2 [TL] B
= |Vn| o /a

The coefﬁcients a n d as[m] are expressed in terms of
the density n(r) e dimensionless chemical poten-

tial, n = Bu, ‘Kmtroduced the inverse tempera-
ture, = 1/(

Usmg local sity approximation, we obtain
- 5 I, /5tm(r)]. The following partial deriva-
tives are neede find the Bohm potential (31),

2[n]V?n + Vn - Vas [n]). (31)

exist for various limiting cases with respect to frequency 5
and wave number. In the limiting cases of large or small - on 1
values of z, the inverse of the real part of the RPA po- ' on~ 1_1,5(n) (32)
. . . . —1/2\N
larization function has the following expansion [56, 59]: ‘) Vn(r)
o Vi = (33)
1 . 9 9 . 4 4 —1/2(n)
—————— ~Gg+as(2kp)” 2°4a4(2kr)* 25+ 4eu
2Irpa (2, u) 272 33/2 ;3 4 9-3/2 .
Lu2m e C = i = 370 . As is shown below,
~ ~ 192 ~ 14 e
>~ ag + agk” + ask” + +§ﬁn70' 0 = kpT/Er ~ T x n~%/3 — 0, we have az[n] =

In particular, we obtain the long-wavelength li 't\o?tkki

inverse polarization function as

tential, as will be shown be-
(30) are closely related to the

energy, in the case of the ground
plied external field with an inverse
sponsé, function. The proof of this theorem for

of the consistency of the results of this paper with this
theorem are given in Appendix C.

Once the coefficients ag[no] and az[ng] are defined, we
allow the equilibrium density to vary in space and time,

vh?/(8mn), and the Bohm potential has the following

form:
2
V2n
-2 4
- ) (34)

where the coefficient ~y sensitively depends on the consid-
ered values of the wave number and frequency.

On the other hand, the Fermi pressure is proportional
to the functional derivative of the Thomas-Fermi free en-
ergy [48], which, at § — 0, can be written as:

5F6()T£n] _ 8];o7£ﬂ] — _/an ([n],0 — 0)dn = aEp,
(35)

where the coefficient & depends on the considered limit
on the k—w plane. Previously, this coefficient was chosen
by adjusting the QHD result for the longitudinal plas-
mon dispersion to the RPA prediction [43, 61] for zero
temperature [note that F' — FE, at § — 0].

Now, we will use Eq. (29), to analyze different limits
for the coefficients ag[n] and ag[n] = —ag, for different
frequency-wavenumber ranges.

h? Vn
VB(W7 k) = ’7((*‘)7 k)87m ( o

n

C. Low frequency and long wavelength limit,
w L hk?/2m, k < 2kp

The results given for the static case remain valid also
for low frequencies, i.e. u < 1 or w <« kvp. This regime
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FIG. 1. The values of the factors 7, 7, and 7 in the finite tem-
perature Bohm potential, Eq. (47), for the long-wavelength
case.

is relevant for a variety of physical processes such as
the screening of a test charge and the dispersion of low-
frequency waves (e.g. ion-acoustic waves) in a plasma. In
a variety of publications e.g. the topic of screening of a:
ion in a quantum plasma were treated incorrectly usin

the Bohm potential for the high-frequency case rat\
al

than for the static case. This has lead to the unp

S
predlctlon of ion-ion attractlon in an equlhbrlum q NQ and (

limiting case, we calculate the coefficients a
and obtain [45]:

do[n] = — o

’ 2kEXG Ha(n)’
az [n] (37)

with
0[n

Hi(n) = Y521y, = b L)
In the low-temperat — 0, we have Hy(n) ~ 1
and Hy ~ —1, and4Eq. (37) gives the asymptotic results

= 1/9 for the coefficient in front
. (34) [45, 55, 57, 58].

) and (33), the finite-
tion of the Bohm potential can be
ting Eq. (37) into Eq. (31) and
count/the dependence A[n] ~ n=2/3. Fur-
re, for t atic case (w = 0), we have fy = frr,
‘R iS t}e Thomas-Fermi free energy density:

V2m3/2
= 13n2p5/2

S

(#8200 = 311200 ) (39

where I, is the Fermi integral of order v. Using Eq. (38)
Perrot [55] showed that the second order partial deriva-

2
tive of the Thomas-Fermi density of states, 10 fren]

a 2 )
in the static long wave length limit (k < 2kp) exg,ctly

coincides with ag[n] given by Eq. (36). Finally, the func-
tional derivative of the Thomas-Fermi term yields:

OFtr 1
-7 (39)

At zero temperature, n = SEp, leading to 6Trp/on =
EFr, in agreement with the result of Ref. [48].
By regrouping terms we can rewrite the Bohm poten-

tial (31) in the follov% form:
B\Q v (40)
where 3
2a[n]V?n, (41)
and )"h..\
0
cgin] —2Vn - Vag[n]
o 2 On daz[n] das(n]
( "5 an 2(Vn - Vn) on
das[n] (42)

C
= Vot 22
-1 /2(77) n
the last hne of Eq. (42) was obtained using relations
In order to analyze finite temperature
effects we 1ntr0duce the coefficient:

>_1:

similar to the zero-temperature case, and use it in V; to
obtain

h2

21 3/2(77) 073/27
8men

91° 1/2(77)

WM:@M( (13)

h? V3n
Vi= —2— . 44
1 78m6< - ) (44)
By taking into account that C' = z-073/2, we find:
B2 21y s(n)l 0 °
Vo= 172(M) 11 /2(n) Baz[n] o \V721| . (45)
8me 1—3/2(77) 877 n

Finally, we introduce the coefficient:

2L o (M1I-12(n) 0 [ I_3/2(n)
Topln) o0 (121/2(n>> B

and substitute Eqgs. (44) and (45) into Eq. (40). This
yields the following expression for the finite-temperature
Bohm potential in the static long wavelength limit:

(o[22 -52).

8m
The correction coefficient 4 of the first term in the
Bohm potential for the finite-temperature case (47), and
the dependence of v and % on # are presented in Fig. 1.

3l = -

vn |?

- (47)
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At limit of fully degenerate electrons, 8 — 0, as well

in th< classical limit, 6 > 1, the correction coefﬁment

PUb|I§;H>&B 1es unity, ¥ — 1. ThlS correction coefficient %
1s important for a partially degenerate plasma, around
0 ~ 0.5, as can be seen from Fig. 1.

Recently, Haas and Mahmood [60] considered the
finite-temperature Bohm potential by analyzing ion-
acoustic waves on the basis of linearized QHD equations
and comparing them with the RPA result. They correctly
derived the coefficient v in Eq. (43), but missed the cor-
rection coefficient 4 in Eq. (46). Note that in Eq. (47),
the second term of the Bohm potential is proportional
to n1/ng, whereas the first term ~ (ng/ni)?, where ng
is a small density perturbation (i.e., ng/n; < 1). As a
result, in the linear approximation, which was considered
by Haas and Mahmood [60], the information about the
first term of the Bohm potential and the coefficient 7 is
lost.

D. Short wavelength limit, £ > 2kr at low
frequencies, w < hk?/2m

For the degenerate electron gas, Jones and Yang [6
showed that in the short wavelength hmlt the ﬁrst

netic energy has the form of the von Welzsacker
ent correction with ag [n] = 8m —, which gives v =
for the Bohm potential. This result is importa
von Weizsédcker gradient correction correc
Kato’s cusp condition for the electron distri
to a test charge (core) [63]. Knowledgefof t
the coefficients determining the Fermi press
potential at the transition from the long wavele
to the short wavelength case can seful to analyze the
QHD results in plasmonics [10, 65], quantum plasmas [64]

T ta dense plasmas

£

and the application of orbital A
th limit, u < z,

In the low-frequency shior
néion of the function

z > 1, we use the folléwi é
Agg(u—kz)g(u—%ﬁx

+ug"(2), (48)
where
I3 295/2
o (49)
From [gs. (48 (49) we obtain
2 2
05/2 3z 3u (50)

3
Sé&——gfs/z(n) T T T

an be substituted into the formula for the inverse
polarization function, with the result

=T c (51)

20.0 —
Igpa (0, 0)

[Mrpa (£,0)

10.0

5.0

2.0

— exact RPA result |

1.0
expansion result at
05 0=04 "' k < 2kp
} S -— k> 2kp
/ 2

k/2kp

FIG. 2. TQ\Q quantity ITgpa (0,0)/Irpa (k,0) at
nl i

3

< )], (52)
a o] = 8;16” (53)

From Eq. (53) we see that the coefficient in front of the
Bohm potential in Eq. (34) becomes v =1 [61], and it is
interesting to note that, in the short wavelength limit, the
Bohm potential is independent of temperature. Consider
now the Fermi pressure term. At small temperatures,
0 < 1, using Eq. (52) for the functional derivative of
Fy[n] yields

0Fy[n] 3 372 9
on —5lrt g Ert
where the first term is the result for the ground state
and the second term is the finite-temperature correction.
Thereby, the transition from the long wavelength to the
short wavelength limit leads to a change of the factor
@, from 1 to 3/5. Note that, in the short wavelength
limit, or for large values of the density gradient the von
Weizsacker gradient correction is the leading term in the
non-interacting free energy functional of electrons [63].
In Fig. 2 the results of the expansions of the in-
verse RPA polarization function in the limits of long,
k/2krp < 1, and short wavelengths, k/2kp > 1, are
compared with the exact RPA result. It can be con-
cluded that, in the case of the uniform electron gas, the
long-wavelength limit result is applicable up to k& ~ kp.

(54)

E. High frequency limit, w > ik*/2m

The present limiting case is important for a variety
of physical situations, such as for the description of the
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ISIDAI (Lengmuir) plasmon of the electrons as well as for ‘ - - --Plasmon dispersion(Langmuir waves)
A ]

.the plasina response to a high-frequency electromagnetic
Publi ‘hunxgt 1 frequencies exceeding the plasma frequency.
10 obtain the correct pre-factors of the Bohm potential
and Fermi pressure in the present high-frequency limit,
u > z, we use the formulas [56]

3
glut2) = glu—2) = 22¢/(w) + T¢"(w),  (55)
2 I390%/2
gu) = oo+ (56)
and obtain
z 9 322 3u?

The coefficients ag[n] and as[n] are obtained from
Egs. (57) and (51)

4e? 9 5

- _ _&me g /2

ao [n] K22 X 1613/2(77)9 [n], (58)
h2

az [n] = 8men’

(59
t

Equation (59) shows that the coefficient in front o

the Bohm potential equals v = 1. In the high-fre eVl
limit the coefficient as[n] does not depend on tempera-
hm

ture, which means that at finite temperature
potential is given by Eq. (34). This is explained\by/the«
D
nteof

fact that, at sufficiently high frequency of%t e
ing electric field, the back and forth
electrons is not affected by their therm hsﬁh

From Eq. (58), the high-frequency
the Thomas-Fermi pressure c

he

account the relation I3/5(60 2 0)
following expression for the mct}pna

at high frequency: ‘( /
) [N

Fp. (60)

the coefficient & = 9/5. We
ious wotks [35, 43], this constant coef-
ded in order to reach agreement
f the QHD and the RPA expression
dispersion relation.

erature correction to Eq. (60) can be ob-

ite-te

tained By expanding I3/5(n) around 6 = 0,
S 0Fp[n] 9 92
N Y CEp+ T Epb? 1
n ~pirt g bl (61)

The different values of the factors v and & in the
k-w plane are summarized in Fig. 3. Furthermore, the
information about the obtained coefficients as[n],~ and
ap[n], a is listed in tables I and II.

—-—-ion-acoustic waves
- : =

5- ﬂ =1 )

® < pair continuum < ®
1

—
The values of the factors v in Bohm potential Eq.(34)
q.(35) for different considered cases on (k,w) plane
< 1. area between curves w; and wz corresponds
the pair continuum. Dashed line is the plasmon disper-
sion w Sﬂc)g + (3/5)k*v% + (1/4)h*k* /m? and dash-dot line
requency of the ion-acoustic waves multiplied by m,/me.
Dashed area corresponds to the static long wave length limit.

rrows indicate that the factors v and @ were obtained for
ent limits (see Tables I and I).

TABLE I. The prefactor of the Bohm potential «y [cf. Eq. (47)]
and the expansion coeflicient az[n] in different limits

| | asn] [ 7]
2 __MHa(m)

w < hk*/2m, Tamen H2(n) 1/9
k <« 2kp

w < hk?/2m, sfn 1
k> 2kp

th f2
w2 | g |1

Using the high-frequency result for ag and the Bohm
potential, one can derive the well-known plasmon disper-
sion from the continuity and momentum equations:

27.4
W2 (k) = w? — gao[no]%e k2 4 oy (62)
which, at § < 1, approaches the form
3 h2k*
2 2 212
w (k‘) :wp+ngk +T7flg’ (63)

where we took into account that 2do[no]ng/me — —2v¥,

at # — 0, and that, in the high-frequency limit, as[n] =
h? /8men.
On the other hand, in the limit 8 > 1, taking into

account that ag[ng] — —%’%}T, leads to the dispersion
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A I]ﬁBLE II. The prefactor @& of the Fermi pressure [cf. Eq. (35)]

Pub“zgﬁ."rﬁlgw xpansion coefficient ao[n] in different limits.

l l ao|n] o]
k2 __me
WK o, 2k3xgH1 (1)
k < 2kp
hik? 4me? 3 5/2|3
WL g | T2y X 1613/2(0)0 ik
k> 2kp
hik? dme? |\, 9 5/2| 9
w > R _k%'Xg X 16]3/2(77)9 / 5

relation

h2k4
4m?2’

€

Wwi(k) = wf) + 3vA K + (64)

where vy, = ,/krﬁ—T is the thermal velocity of the elec-

trons.
Note that the linearized QHD equations correctly re;
produce the dynamic RPA polarization function in th
long wavelength limit, 11°(w), Eq. (28), without any
ditional terms related to the fermionic pressure.

POTENTIAL IN LINEAR RESP, o

entialNof quan-

is of'the RPA
he latter

In the previous section, the Bohm
tum hydrodynamics was derived on the b
polarization function, using the expansion o

in powers of the wavenumber. #This“has allowed us to

improve the QHD model, depending on the wavenumber

and frequency range in thregfrelevant,cases, by involving

the dynamic LDA and t i

basis of the RPA J
On the other hand,

obtain the response
HgHD(k,w), for arbi

ed to independently
ion uncorrelated) electrons,

frequencies and wavenumbers.
avenumbers the previous power
It is, therefore, instructive to
nsion can be entirely avoided.
fiforce agreement with the polar-
ion of finear response theory, but now in the
~wavenumber range. The simplest solu-
again, go use the full (non-local) RPA polarization
and to equires

ISup (k,w) = Hgpa (k,w). (65)
This
tial.

We now derive a relation between the free energy of the
system and the RPA polarization. To this end, we con-
sider an equilibrium density profile ng(r) that is current-

ill result in a generalized non-local Bohm poten-

I no(r)]

dno(r) (66)

+ epo(r) = po,

where g is a constant. The equilibrium configuration
is now exposed to a weak external perturbation giv-
ing rise to n(r,t) = no(r) + ni(r,t), w(r,t) = wi(r,t),
o(r,t) = @o(r) + 1(r,t). The first order perturbations
follow by taking the c
the perturbations,

tinuity equation in first order in

52 F[n]

/
dn(r,t)on(r’ t) (1),

(68)

( o n=ng
represents the total potential of the fermionic

re which includes the Fermi pressure, Bohm po-
tential and, in general, the exchange-correlation terms.

where wmetermines the velocity perturbation via v; =
wiheand the last term on the right hand side of
Eq. (68)
res

S Now we again assume the equilibrium density to be

IV. GENERALIZED NON-LOCAL Bé‘m\‘?\
SE

uniform and consider small fluctuating quantities ny, w;.
From Eqgs. (67) and (68) we obtain, after Fourier trans-
form to frequency and wavenuber (k,w) space, which we
denote by §

—iwiy + k*ngw, = 0, (69)
oL 6@1 52F[TL] ’fll
= Me +3 [5n(r,t)6n(r’,t) neng | e (70)

From Egs. (69) and (70), immediately follows the QHD
result for the inverse polarization function HéhD(k, w) =

6(,51/751:

2
id—1 _ Mmew
HQHD(kvw) = k2 -5

§2F[n]
on(r)on(r’)

] . (T1)

Neglecting the exchange-correlation contribution to the
free energy and taking Ilqup = Ilrpa, it is straightfor-
ward to deduce from Eq. (71) that:

1 1
HRPA(]{J,W) Ho(w)’

(72)
where we used the definition (28) of the long-wavelength
limit, II°(w), of the RPA polarization. As it was men-
tioned previously, Eq. (72) incorporates both the Fermi
and Bohm potentials. In QHD, Eq. (72) can be used
without additional separation of different contributions.

3 62Fq
on(r,t)on(r’,t)

n=ngp
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‘ s I pw ve verify that the generalized result, Eq. (72),

.correctly reproduces the results for the Bohm potential
PUb“@h Hﬂ& pecial cases that were obtained in the previous
section. We do not use the (ideal) free energy density in
the form of a gradient expansion, Eq. (17), but, instead,
start from the more general non-local form [21, 45]:

Fialn] = Fy[n(r)]+

/dr dr’ K([no]; Ir — r’|)n1 (r,t)ni(x’,t), (73)

where the kernel K is symmetric with respect to permu-
tation of r and r’. Using Egs. (18) and (29), Eq. (73) can

J

be written as:

§2Fq

[ Sn(r, Don( 1) (74)

) ] = —2ag[no] + 2K (k).

where K ([n]; k) is the Fourier transform of the kernel K.
Substituting Eq. (74) into Eq. (72) we find for K, after
the inverse Fourier transformation,

K ([nol; [r — ') A&nmiw+
) Y
(@)

+ C~lO [no] ) (75)

2110 (w
and, for t e‘g?jlera ed non-local Bohm potential, we

have ~—

Valn(r.t)] = [ 2 (fnal v — ¥ (syax’ + [

V- [ e (Kol

where we have used the abbreviation n;(r) = nl(\

K([no]; v — r’|) = az[no]V -

(14[

£
n the right-hand-side of

first/ ter
Eq. (78), one can find ohm*potential from (76) in
the form of Eq. (31) ?rth nore, higher order terms

Considering only the

give rise to higher @rder gradient*corrections to the non-
nsity functional [45, 67-70]. For
nvergence of the gradient expansion
[71] and

interacting free ederg
more details ondhe c;)
in the ground state! we refer the reader to Ref.
the refere

re rela&fm Eq. (72) for the QHD equations
rovides a unified general picture for the
e complex parametric dependencies of

1, it indicates ways how to systematically go be-
othsﬂle local density approximation and the model
eal Fermi gas. The inclusion of exchange and
correlation effects will be performed in Sec. V whereas
further issues of non-locality will be discussed in Sec. VI.

On the other hand, the local version of QHD, i.e. LDA
with first order density gradient corrections, has now also

aK([”OL |‘(* I‘/D ﬁj nl(r’)dr'f

e

- 2
2K ([no]; [r = ') (¢')dr’ + O (ma /o) ), (76)

been clarified. Indeed, there is no inconsistency in us-
ing one set of pre-factors in front of the Bohm poten-
tial and Fermi pressure for computing the equilibrium
(static) density profile and another one for the study of
the time-dependent perturbation around the equilibrium
equilibrium state. But within this approach, one can use
more sophisticated free energy density functionals that
were recently developed in orbital-free DFT [72, 73, 81]
for the calculation of the equilibrium density distribution,
taking into account correlation effects. As the next step
one can use the general expression (72) or the approxi-
mation discussed in Sec. IIL.E for the consideration of the
time-dependent density perturbation. The only question
remaining is how to include in the most consistent way
correlation effects into the QHD description of the den-
sity perturbation of arbitrary frequency. This question is
discussed in the following section.

V. EXCHANGE-CORRELATION POTENTIAL
FOR QHD APPLICATION

Now we make progress in another direction: we in-
clude, in addition to the ideal free energy, also the
exchange-correlation free energy functional Fy.. This will
allow us to generalize the polarization function from the
ideal to the interacting case, I§yy, — Iqup. We note
that for 7" = 0 exchange correlation contributions were
included in QHD phenomenologically in Ref. [42].
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A. QHD and local field corrections

AllP

PUbIIShtI rLg <nown from linear response theory and DFT
that the exchange-correlation free energy can be obtained
from the local field correction [73, 74]. Now we use the
same approach to derive the exchange-correlation poten-
tial for the QHD application.

Taking into account the result from Eq. (72) for the
second order functional derivative of Fig[n], we find from

Eq. (71):
aun (k) = Mrpa (k) .
02Fyc
1-F |:6n(r)§n(r’) n_n0:| HRPA(k;W)

(79)

Interestingly, this expression has the same form as the
density response function of a correlated electron gas, e.g.
[75] or the polarization function, within the formalism of
local field corrections [74]:

Igpa (k,w)

Hipc(k,w) = 1+ u(k)G(k,w)Irpa (k,w)’ “%

with (k) = 4me?/k? being the Fourier transform of

result, i.e. Hqup(k,w) = Hypc(k,w), we no
possibility to derive the exchange-correlation fr
in terms of local field corrections, for applicationi t

QHD equation (68):
] = fﬁ(k)G\). (81)

b% in the frame-
ic properties of the

=

e

82 Fye

§ on(r)én(r’)

Note that a similar result was

dynamic local field correc
expansion, were studied ifi de

m Monte Carlo simulations
k) can be represented by a
forssmall aid large wave numbers [82, 83],
— exp( 2)], where the coefficients A and
B can be obtained Ssing analytical fits for the exchange-
oy .
correlation free rgy per electron, fy., and the pair-
distribution fumnction of the uniform electron gas, g(r), at
ré20,b oh quantum Monte Carlo data [73]. For the
gr‘ﬁzt{t: 0 — 0, an accurate analytical formula of
Gk ich has been fitted to quantum Monte Carlo data
[84] was, presented by M. Corradini et al. [85]. For the fi-
nite temperature case, an accurate parametrization of the
exchange-correlation free energy has been provided re-
cently by Groth et al. [86], and first ab initio calculations
of the local field correction were presented in Ref. [88].

an

K f Eds. (80)
Coulomb potential. From the requirement that the cor-
related QHD polarization is in agreement with thxﬁt\ @ G(k

Ty

Further, knowing the static local field correction, the
dynamic result for G(k, w) can be calculated, for instance,
on the basis of the method of moments [90]. Alterna-
tively, the dynamic STLS approximation can be used to
calculate G(k,w) for both ground state [91] and at finite
temperature [92, 93].

approximation

B. Collision{eéfects in relaxation-time

In order to ill the effect of correlations in the
most simple way, let us,consider the polarization function

in the relaxatién tinte approximation (Mermin polariza-
tion function) [547%94]:
)

5
Hgrpa (k,w)
f) = —Bealbw) 82
gt 1+ ihvll(k, ) (82)

with t deﬁnbion
~ 1 HRPA(k,w) ]
L ek w) = — | —/————= — 1], 83
‘) (k) Tw {HRPA(k»O) (83)
? -

being the electron collision frequency. Comparison
and (82), leads to:

iv 1 1
w) = — - . (84
k2 ) w |:HRPA(]€,O) HRPA(k,w)] ( )
In the long-wavelength limit, & — 0, we use the expan-
sion (27), and derive from Eq. (84)

4dme?

—a Gk w) =~ %[2(518[”0] - &o[”ol) +

2(&2 [no] — @2 [”0})"“2 - Hol(w)}

1Me WV
o k'27

~

(85)

where ag[ng] and as[ng], are the (frequency-dependent)
expansion coefficients of the RPA polarization in the
long-wavelength limit that were given in tables I and II,
and a9[no] and a3[no] are the respective zero-frequency
limits.

For the exchange-correlation term in the momentum
equation (70), the relaxation time approximation gives
rise to a friction force:

82 Fye[n]
1 XC
/ o S on(r, ) e

4dme? )
3! [— = G(/faw)ﬁl] =F! [ - szh} =

[
37 [piime] = vwy (v, t) me, (86)
where Wy = ké—‘;’mﬁl, and Eqgs. (81) and (85) were used. If

one retains also terms scaling as ~ ag, and ~ as in Eq.
(85), the so-called hydrodynamic Drude model used in
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quency, v, in the Mermin polarization function (82) is

ﬂ& 1 scattering processes [20] and must incorporate

a contribution from electron-electron collisions [96, 97] as
well as electron-ion (neutral) collisions.

‘ s kShPon cs [35, 43, 95] is recovered. The electron collision
e
Publighi

This example corresponds to the simplest form of the
dynamic exchange-correlation potential. However, this

J

Now we can write down the general form of the QHD momentum equation:

Owy (r,t)

Me o = ep1(r,t)+

dk ; /
/dr'n1(r'7t) [/ G dw el r=r) =] (—

where the notation ny — no(r) emphasizes that the initially const
but only after performing the inverse Fourier transformation to real space

VI. SUMMARY AND OUTLOOK

started with a general expression for the free energy as a

approximation appears to be very useful for the de-
scription of dense plasmas and warm dense matter if
one extends the model to a dynamic collision frequency,
v = v(w) [98-101]. In this case, v(w) can be computed
taking into account quantum and non-ideality effects by
other techniques such as quantum kinetic theory or Green
functions [98] (for electron-ion (neutral) collisions), or
semiclassical molecular dynamics simulations [102].

N

, (87)

no—mno(r’)

ium density is allowed to vary in space,

tequi

exist seﬁajl different approximations, based on the re-
ation between the second-order functional derivative of

ree energy and the inverse RPA polarization func-

J, and the so-called two-point and single-point func-

In this paper, first of all, previously known results o th - !
QHD have been revisited and extended. To this end\re\ tion, such as a density-dependent (or independent) kernel

functional of the density and used the local densi
proximation together with gradient correctiongt Explici
results were obtained in different limiting cases
pared to the RPA polarization function.
and « in the equation for the Fermi pres
Bohm potential have been derived congi
ing the linear density response function 1
Thomas-Fermi theory complemented by t
density gradient correction Thisfg substantially be-
yond many previous works where thesepre-factors were

ifying“the equation of state

included empirically by mo

in order to reach agre?ént

RPA results for the pl n dispersion

Secondly, a generali N:ﬂ Bohm potential was
derived in linear re§ponse and linked to the RPA polar-
ization function second-order functional deriva-
?Ctl free energy density, Eq. (72).

s togavoid the gradient expansion
cofistitutes a crucial step in the
it of QHD. In fact, this approach
s subsequently to systematically include
ion contributions (terms beyond RPA)

the Bohm potential was proposed in Eq. (76),
use of the ansatz Eq. (73). It is worth not-
, on the basis of Eq. (72), one may find dif-
ferent forms of the non-local Bohm potential by utiliz-
ing different approximations for the non-interacting free
energy density functional. In the static case, as it is
known from orbital-free density functional theory, there

SLp\‘gonaﬂs [104, 105]. However, any choice of an ansatz must

e checked for consistency and numerical stability [106]
to avoid un-physical results.

As a third result, the exchange-correlation potential for
the QHD application in linear response has been analyzed
and expressed in terms of the dynamic local field correc-
tion. This has allowed us to use the result of previous
studies of the dynamic local field correction in the QHD
theory. In the present paper, the Bohm and exchange-
correlation potentials were first considered for the case
of the uniform electron gas and, after determining the
potentials, for the case of a spatially varying equilibrium
density. This means that, regarding an equilibrium den-
sity variation in space, the result was obtained in the
adiabatic approximation. From TDDFT, it is known
however, that, because of the long-ranged behavior of
the exchange-correlation potential of an inhomogeneous
electron system, a frequency-dependent adiabatic local
density approximation does not exist [19, 23]. In other
words, the exchange-correlation kernel (the second-order
functional derivative of Fy.) is not a short-ranged func-
tion of |r — r’|. This feature is known as the ultra-non-
locality problem of time-depended DFT. However, the
exchange-correlation potential in LDA can be used if the
characteristic scale on which the equilibrium density dis-
tribution changes is much larger than that of the time-
dependent potential [19, 107] as the exchange-correlation
kernel of the homogeneous system is a short-ranged func-
tion of |r —1/|.

Information about the applicability of QHD for the
description of electrons with a non-uniform equilibrium
density distribution can be deduced by considering the
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‘ s Iclpnui v equation (67)

Publishing) _

adt

V - (noVwy) = no V3w, (1 + M) .

n0V2w1

When one turns to the case of a uniform electron gas, the
information about the term in brackets on the right hand
side is lost. This means that the obtained result is valid

f % < 1. Reformulating this condition in

only i

terms of the velocity, [Vng - v| < no|V - v|, we obtain:

\Y%
[Vrol
no

|V - v| g8
The condition (88) means that the length scale of the
equilibrium density variation must be much larger than
the length scale of the velocity variation. Therefore, the
QHD model under consideration is designated for de-
scription of quantum electrons with a weakly inhomoge-
neous equilibrium density distribution, but possibly, with
strong correlations.

Another important point is that it is straightforward

velocity [or the scalar field w, in Eq. (8)] as —Vw(r, t)
v(r,t) = v(r,t) —1/c A(r,t), e.g. [108], where AN
vector potential.

Finally, we note that the presented recipe fo

.

for formulation of a QHD model for electro in

nfi
lower dimensions.
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PIJENDIX A

roth for help-
Zh.A. Mold-

-

For the pargial de}vative of a Hamiltonian with respect
>the proof of the relation <{T
], where (...) denotes averaging over the
ensemble, and H is a Hamiltonian of the
t,rest and in the absence of an external field, i.e

w =@ and Ve = 0. Here we extend this relation to the
case of'the functional derivative <‘% = ‘;—f.

We consider the density distribution as the sum of
the mean density ng = const and the modulation nq(r)
around ng, with [nq(r)dr = 0. The mean density ng
is understood as the smoothed density distribution with

the.con-
sistent derivation of the quantum potentiaq > dsede

Jsr
to incorporate a magnetic field into the QHD model vi - 5f = g(z) exp [/ f(a:)g(x)dx] ) (91)
the minimal coupling approach, i.e. by redefining \d

classical Hamiltonian can be expanded around ng as

ni(r)na(r) + ...
(89)

Ké(into account that, for a functional of the
p [[ f(z)g(x)dz], the functional deriva-

ve reads

[/]
use Eqgs. (89), (90), and (91) to obtain:

_ LA —im)—pony/ T

)

*(H[”]*HON)/T} — 9
o L T on (52)
where T is in energy units (kg = 1).
Finally, with the help of (92), we have

OF _ [ORN _ ojry (o~ (Hinl—uonym O
on on on
) )
_ T 0 —(H[n]-uoN)/T\ _ _p /T 0 —Q/T
Te 5n’H (e ) Te ¢
146Q 60
— YT [ 2T /T 00
¢ < T6n> ¢ on (93)

APPENDIX B

Here the convergence of the expansion (27) for the
static case is discussed. This is of interest for the de-
scription of the screening of an ion by electrons as well as
in the context of the construction of the non-interacting
free energy density functional for orbital-free DF'T appli-
cations [45].

In Fig. 4, curves of the inverse static polarization
function in the RPA in units of its value at £k = 0,
Hglle(0,0) = 2ag, are shown, for different values of
the degeneracy parameter. At a fixed wavenumber,
k/2kp > 1, the dimensionless inverse static RPA po-
larization function monotonically decreases with 6, as is
demonstrated in Fig. 4. In contrast, in the long wave-
length limit, k/2kr < 1, the dependence of H}_ul)A(k,O)
on 6 is non-monotonic. In this limit, with increase
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FIG. 4. The inverse value of the static polarization function
in the RPA calculated in units of its value at k = 0, i.e.,
gpa(0,0) = 2dp in Eq. (36), for different values of the de-
generacy parameter 6.
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in the degeneracy parameter up to ~ 0.75 the valu L -
1 1 .
of Hgpa (k,0)/Igpa(0,0) increases. In contrast, at 6 g&iﬁ . Convergence of the expansion of the inverse static

0.75, the increase in the degeneracy parameter leads
the decrease of the dimensionless IIp, (k,0).

Further, we discuss the long-wavelength limit.
Fig. 5, the convergence of the expansion, Eq. ?Q%for
the static case, Izpy(k,0) = 23 ak! with théc

at 0 ~ 1 and k < 2kp, taking“iuto adcount the first
order correction, 2d»k?, gives 21‘83 good descrip-
tion of the static polarizati nctign, at least in the
case of the homogeneousS_elect % For 6 = 1, the
accurate interpolation of the inverse static polarization
function in the RP. k <Qkp is provided by tak-
ing into account thesgecond non-zero correction (I = 4):
Mgpa (k,0) = 2(do + a2ke + ask?).

(): STIFFNESS THEOREM AT
SINITE TEMPERATURE

PEN

is Appendix the relation between the static inverse
density response function and a change in the free energy
due tothe density perturbation by an external field is
given. Suppose we have a unperturbed free energy Fy[ng|,
with the mean density ng = const. Applying a weak
external field, Ve, the electron density becomes n =
no + 7, where |n|/ng < 1. The total intrinsic free energy

A polarization function is illustrated for the values of the

~\NSSgeneraucy parameter 0.1, 0.75, and 1.5. Solid thin (black)

rves correspond to the different maximal orders of the ex-
pansion that are included and are indicated by the numbers
on the right y-axis. The explicit results for the expansion
coefficients are given in Ref. [45].

of the perturbed system reads,

Fln] — (e;/ﬁ(r)ﬁ(r/)drdr’ —/eﬁ(r)v;xt(r)dr)

v —r'|

= Fy[no] + /K(r —r)a(r)n(r’) drdr’+
+ /L(r7 v’ r")a(r)a)a”) dede’'de” + ..., (94)

where the expansion of the intrinsic free energy in terms
of the density perturbation 7 is used [cf. Eq. (89)]. As the
result of conditions [ 7(r)dr = 0 and 51;7[7] |n, = const,
there is no contribution in Eq. (94) due to the term linear
in 7. Additionally, the potential energy U[n] in Eq. (94)
(terms in parantheses on the Lh.s.) does not explicitly
depend on ng, due to quasi-neutrality condition, i.e. we
assume that the system has a positive neutralizing ho-
mogeneous background which remains unchanged by the
external electric field. Therefore, it is taken into account
that 5%[1"] ln=n, = 0. The one-to-one correspondence be-
tween the external potential and the equilibrium density
was proven by Mermin [54]. Further, we skip the integral
with the kernel L and higher terms which are related to
nonlinear response features.

From Eq. (94), the minimization condition of F'[n] with
respect to n allows us to identify
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Publishing| ., =2 / Kr—a@)dr,  (95)

where it is taken into account that Fy[ng] is constant,
and the effective potential is defined as

oo (r) = ¢ / ﬁ(r,)/|dr’ Ve (1), (96)

r —r

Now, wusing the Fourier expansion K(r — r') =
&3 K(k)exp[—ik - (r — r’)] and the convolution theo-
Kk

rem, from Eq. (95) we find
~ _ ecﬁeﬁ (k) 1

K(k) = 2n(k)  2(k)’ (97)

Finally, substituting Egs. (95) and (97) into Eq. (94) we
arrive at the desired relation between the inverse density
response function and a change in the free energy due to
the density perturbation by the external field

F[n] — Fo[’I’LQ] =

_ 1 (k)|
775; 2x (k)<

where the density response function is d d a; =
n(k)/[eVext (k)] and/or in terms of the olarlh%b%fm c-
tion IT = 7n(k)/[e@err(k)], and the Fo '(}sto of

r

=

L W)V ()
a2 \

\gral of n vanishes. This constant term appeared because

Coulomb potential, @& = 4re?/k?, as

(k)

k) (k)

x(k) = — (99)

==

Equation (98) has the meaning of a stiffness theorem
at finite temperature for the case of the density pertur-
bation by the external electric field. The term on r.h.s.
of Eq. (98) is referred t0 as stiffness energy, which pro-
portional to the squ{b of the amplitude of the density
deviation from the ori%ﬂibrium value, |7|?, and
to the stiffness o th?rstem epresented by x71).

The relatio for the ground state was obtained
in Ref. [21]. Fo
(98) was u
Quantum 'Ii)l‘rfti Carlo'in Ref. [84]. For the discussion of

il Eq.(94) we refer to Refs. [68, 69, 109].
Fy[no] in Eq. (94) are the exact total

ldy res ively.
Now we show that the results of this paper on the
B

ohm pogential are consistent with relations (97) and
. Madeed, in the static case, Eq. (75) agrees with
Eq. ©7) (if one considers non-interacting electrons) ex-
t{for the constant summand ag[ng] which does not

contribute to the total free energy since the volume inte-

Fy[n] in Egs. (17) and (73) is the LDA approximation to
the already perturbed system’s free energy, in contrast
to Fy[no] in Eq. (94).
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