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Abstract. We review recent progress in theory and simulation of strongly correlated classical plasmas,
in general, and dusty plasmas, in particular. Using the one-component plasma (OCP) as a model, the
structural properties of extended and finite correlated systems are analyzed and criteria for disordering
transitions are introduced. These are based on the pair and three-particle distribution functions and the
associated reduced entropies and heat capacities. These quantities are computed from the particle positions
alone and are, thus, directly accessible in experiments. Further, these quantities are applied to confined sys-
tems where disordering proceeds via a sequence of phase transitions which have to be clearly distinguished.
In the second part of this review, the transport properties of strongly correlated plasmas in equilibrium
are considered, particularly under the influence of an external magnetic field. Examples given are for the
diffusion, heat conduction and viscosity. Here, the influence on both fundamental transport coefficients and
on particle-resolved dynamical effects is considered. Finally, we give a brief discussion of spin and quantum
effects and how they influence the structural and dynamical properties of correlated systems.

1 Introduction

Strongly correlated systems are ubiquitous. They are
observed in a variety of fields – from ultracold plas-
mas [1], cold atoms in optical lattices [2], dusty plasmas
[3] and inertial confinement fusion [4] to the physics of
planet interiors [5] and neutron stars [6,7]. The theoretical
description of strongly correlated systems in general and
plasmas, in particular, is challenging because they lack
– unlike weakly coupled or crystalline systems – a single
small parameter around which an analytical solution can
be expanded. Thus, these systems are a fertile ground for
the development of theoretical models, simulations, and
numerical approaches.

In this review paper, we focus on the progress made
in computationally and theoretically describing the struc-
tural properties, particularly phase transitions, and the
transport properties of dusty plasmas and one-component
plasmas in the German Transregional Research Cen-
ter TRR24 “Fundamentals of Complex Plasmas” in the
recent five years [8–41] and put this into the context
of other modern developments. Another objective is to
compare correlation effects in macroscopic (infinite) and
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finite (trapped) classical systems and outline peculiarities
of the latter. Finally, we also briefly discuss how these
effects change in quantum systems where the analysis is
substantially more complicated.

Generally, a plasma is considered strongly correlated (or
strongly coupled) when the nearest-neighbor interaction
energy is on the order of (or exceeds) the thermal energy
kBT . Strong correlations between the constituent particles
then give rise to many unique phenomena. Such conditions
are important for many processes in, e.g., dense astro-
physical objects [6,7], fusion research [4], and the exotic
quark-gluon plasma created in ultra-relativistic collisions
of nuclei [42,43]. With regards to basic research, the real-
ization of strongly coupled dusty plasmas opens up the
possibility to observe liquid and solid state processes at an
“atomistic” scale [3]. These experiments carry the promise
of making available direct tests of fundamental physical
theories such as the topological phase transition in the
KTHNY scenario [44–46].

To enable an accurate interpretation of these particle-
resolved experiments and to make reliable predictions,
naturally, requires a thorough theoretical description and
a detailed understanding of the fundamental processes
that are involved in the physics of correlation phenomena.
Here one has to clearly distinguish between generic corre-
lation effects and specifics of individual systems. While the
former are a consequence of the pair interaction between
the plasma particles and of the system geometry including
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dimensionality and confinement effects, the latter depend
on many details of the plasma generation mechanism. For
the example of dusty plasmas, this includes the discharge
geometry or frequency and the presence of electric fields
that give rise to flows of charged or neutral particles that
are, ultimately, associated with nonequilibrium effects
such as wakes. These induce substantial departures from
pure correlation effects in thermodynamic equilibrium.

Restriction to the “generic” properties obviously leads
to a model system. Its main advantage is that it exhibits
many key trends that arise from correlation effects that
should be important for all strongly coupled plasmas.1

The most important “quintessential plasma model” to
describe correlation effects is the one-component plasma
(OCP). In its basic formulation, the OCP is a spatially
homogeneous collection of classical, non-relativistic point
particles of uniform mass and charge embedded in a neu-
tralizing background of opposite charge. This background
can be assumed either unpolarizable, leading to a bare
Coulomb interaction between the constituent particles, or
weakly polarizable, leading e.g., to the familiar Debye-
Hückel or Yukawa screening. The OCP, as a model for
real plasmas, is of similar importance as the hard sphere
model of real gases or the jellium model for electrons in
metals [47,48]. These models play the same conceptual
role – to elucidate the fundamental physics which are also
at work in more complex systems.

For this reason, in this paper we concentrate on results
for the OCP. Its basic parameters and the generalization
to quantum systems are introduced in Section 2. Struc-
tural properties and phase transitions in the classical and
quantum OCP, as well as the specifics of confined systems,
are discussed in Section 3. Dynamical and transport prop-
erties of infinite and finite system are then reviewed in
Section 4.

2 Basic parameters

In the following, the OCP and some important parameters
for classical and quantum systems are briefly introduced.
For more details, we refer the reader to the available
monographs by Ichimaru [49,50] and our recent reviews
[3,51]. Furthermore, the main parameters and quantities
are summarized in Table 1 where classical and quantum
systems, on the one hand, and macroscopic and finite
systems, on the other, are compared.

The degree of correlations in a system is typically mea-
sured as the ratio between the average potential and
kinetic energy per particle,

Γ =
|〈V 〉|
〈K〉

. (1)

For Coulombic systems,2 〈V 〉 is conventionally approx-
imated by the two-particle interaction energy at the
Wigner-Seitz radius a, which follows from the definition

1 At the same time, the neglect of specific features has to be veri-
fied and justified, in each case, before the results are applied to real
systems.

2 The cgs-system of units is used throughout this work.

of the number density n = 3/(4πa3), cf. equation (2) and
Table 1.

2.1 Classical system in equilibrium

In a classical system in thermal equilibrium, the mean
kinetic energy is of the order of kBT so that

Γ =
q2

a
× 1

kBT
(2)

with particle charge q and system temperature T . Note
that this Coulomb coupling parameter – even though it is
commonly used – does not take the actual average poten-
tial energy per particle into account – it disregards both
the interaction energy associated with long-range interac-
tion and the number of nearest neighbors. Consequently,
the main advantage of the parameter Γ is that it reflects
the correct scaling of Coulomb interaction effects with
the relevant system parameters: temperature, charge, and
density. At the same time, its absolute value is not of
universal importance. Most importantly, Γ is the only
parameter needed to completely describe the system’s
structural properties and thermodynamic phases. We also
note that another interpretation for Γ can be given as
Γ = lL/a, i.e., the ratio of the Landau length lL = q2/kBT
and the Wigner-Seitz radius a. In this view, lL = Γa is
the distance at which the potential energy between two
particles equals their thermal energy.

For Debye-Hückel/Yukawa systems (“Yukawa OCP”)
with interaction potential

VY (r) =
q2

r
e−r/λ (3)

it is customary to employ the same Coulomb coupling
parameter Γ as for pure Coulomb systems. Evidently, in
this case Γ serves even more as a convenient normal-
ization than as a physically relevant parameter. Since
the potential (3) is not scale-free, an additional param-
eter is needed which quantifies the screening length λ.
This parameter will be written below as κ = a/λ, the
ratio of the Wigner-Seitz radius to the screening length.
An improved definition of the coupling parameter for a
Yukawa OCP, Γ eff , will be introduced in Section 3.1. The
screening length itself depends on the screening mecha-
nism present in the system considered and differs between
classical and quantum systems where it equals the Debye
and Thomas-Fermi length, respectively. In the following,
we will use κ as an additional parameter that governs the
interaction range of the potential. In the limit κ→ 0, we
will recover the Coulomb potential.

2.2 Equations of motion of a classical strongly
coupled plasma

To describe the dynamics of the OCP an additional
parameter (besides Γ ) is needed which arises from the
particle mass m. This mass dependence defines a relevant
time scale, which is given by the inverse of the plasma fre-
quency, ω−1

p =
√
a3m/(3q2), cf. Table 1. The equations of
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Table 1. Overview of parameters and key properties of strongly correlated one-component plasmas in thermody-
namic equilibrium (unmagnetized, unscreened, κ = 0): I. Relevant length and time scales. II. Common dimensionless
parameters. III. Thermodynamic functions, including: free energy F , entropy S, heat capacity c, pair distribution g
and s-particle distribution. IV. Phase transitions. V. Collective excitations. VI. Transport properties. The relevant
sections and equations are indicated. The modifications due to screening of the interaction and in a magnetic field are
discussed in the main text. Spin properties are specified for the case of fermions with s = 1/2. For topics not covered
in this article, the reader is referred to the indicated references and literature cited therein.

Charge q, Mass m,
Temperature T

Classical system Quantum system (“jellium”)

Infinite system I. Length: a; lL = q2

kBT
(Landau length) I. Length: a; Λ = h/

√
2πmkBT ; aB = ~2

mq2

Homogeneous

Density n = 3/(4πa3)

a: mean interparticle distance
Plasma frequency

ωp =
√

4πnq2

m

Time: t0 = ω−1
p Time: t0 = ω−1

p

Energy: q2/a; kBT Energy: q2/a; kBT ; EF = ~2(3π2n)2/3

2m

II. Coupling: Γ = q2/(akBT ) II. Coupling: rs = a/aB
Degeneracy: Θ = kBT/EF ; χ = nΛ3

Spin polarization: ξ =
N↑−N↓
N↑+N↓

∈ [0, 1]

III. F , S, cV , g(r), equation (11) III. F , S, cV , gαβ(r), α, β ∈ {↑, ↓}
IV. Liquid–solid at Γ = Γm IV. Liquid–solid at rs = rsm,

Spin polarization of fluid: rs = rpols , [69]
V. Plasmons, Ωi(k), reference [70] V. Plasmons, Ωi(k), reference [65]

Plasma waves Charge density waves, spin density waves
VI. Diffusion, heat conduction, Section 4 VI. Reference [71]

Trapped system I. Length: r0 I. Length: r0; l0 =
√

~
mω

Time: t0 = ω−1 Time: t0 = ω−1

Trap frequency ω
r0: mean interparticle distance

r0 : from q2

r0
≈ mω2r20

2

Inhomogeneous

Radial shells (ni, Ni)

Particle number, N =
∑
iNi

Energy: q2/r0; mω2r2
0/2; kBT Energy: ~ω; q2/l0; kBT

II. Coupling: Γ = q2/(r0kBT ) II. Coupling: λ = q2

l0~ω
Degeneracy: β = ~ω

kBT

III. gn1,n2(r1, r2), gn1,n2,n3(r1, r2, r3) III. gα1,α2
n1,n2

(r1, r2), . . . , gα1,α2,α3
n1,n2,n3

(r1, r2, r3)
Shell-resolved correlations, Section 3.2 Shell- and spin-resolved correlations,

S
(k)
ω , c

(k)
ω , equations (15) and (16) αi ∈ {↑, ↓}

IV. Radial melting, intra-shell IV. 2D: radial and angular melting, reference [72]
disordering, Section 3.2 3D: open

V. Normal modes, reference [3] V. Normal modes, Section 5.2
VI. Diffusion, heat conduction, VI. Diffusion, reference [67]

viscosity, Section 5

motion for the particles i = 1, . . . , N for the Yukawa OCP
read

m
d2

dt2
ri = −∇ri

N∑
i6=j

q exp(−rij/λ)

rij
+
q

c

d

dt
ri ×B, (4)

where an external magnetic field B has been added which
is directed along the unit vector êB . Introducing dimen-
sionless lengths and times, ρi = ri/a, ρij = rij/a =
|ri − rj |/a, and τ = tωp, these equations are rewritten
in dimensionless form,

d2

dτ2
ρi = −1

3
∇ρi

N∑
i6=j

exp(−κρij)
ρij

+ β
d

dτ
ρi × êB , (5)

where the magnitude of the magnetic field is given by β =
ωc/ωp [ωc = qB/(mc) is the cyclotron frequency]. For κ =
0 (λ = ∞), these equations correspond to the equations

of motion for the (Coulomb) OCP.3 For a finite system in
a trap, we have to include in equation (4) additionally the
confinement force |Fci | = −mω2ri acting on each particle
radially towards the trap center.

2.3 Quantum charged particle system in equilibrium

When quantum effects of the charged particles become
relevant (at low temperature and/or high density), the
previous description breaks down. A quantitative charac-
teristics is given by quantum degeneracy parameters. Two
commonly used parameters are

χ = nΛ3 =
3

4π

(
Λ

a

)3

≈ 0.24

(
Λ

a

)3

, (6)

Θ = kBT/EF =
4π

(3π2)2/3
χ−2/3 ≈ 1.31χ−2/3, (7)

3 We note that for planar systems, the system units are given
by a = 1/

√
πn (where n is the areal number density) and ω−1

p =√
a3m/(2q2), whereas the definitions for Γ and κ remain unchanged.
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where Λ is the thermal de Broglie wavelength and EF is
the Fermi energy, see Table 1. Quantum effects are small
for systems characterized by ` = Λ/a . 0.2, χ . 0.05, or
Θ & 10 (these inequalities are approximately equivalent).

When quantum effects are not negligible, the classical
OCP has to be replaced by the more general “jellium
model” (also known as uniform electron gas, UEG) [47,48].
In contrast to the OCP, its complete structural description
(apart from the spin polarization) requires two parame-
ters, Γ and Θ. However, it is common to consider the pair
(Θ, rs) instead, where the Brueckner parameter rs is the
ratio of the Wigner-Seitz radius a and the Bohr radius

rs =
a

aB
=

(
81π2

128

)1/3

ΘΓ ≈ 1.84ΘΓ. (8)

Note that, due to the high current interest in matter
under extreme conditions (“warm dense matter”, where
rs ∼ θ ∼ 1 [52]), there has been a spark in thermody-
namic simulations of jellium, e.g., references [25,28,31,
33–36,38–40,53–63], and an accurate, complete thermo-
dynamic description of its properties was achieved only
recently [33,36], see reference [64] for a recent review.

To facilitate comparisons between the quantum UEG
(Θ, rs) and the classical OCP (Γ ), the following relations
are convenient,

Γ =

(
128

81π2

)1/3
rs
Θ
≈ 0.54

rs
Θ
, (9)

` =
Λ

a
=

(
25/2π1/4

3

)2/3
1√
Θ
≈ 0.54

1√
Θ
. (10)

The dynamics of correlated quantum systems are much
more complicated than the classical analogue. Here,
substantial progress has recently been achieved using
quantum kinetic theory [65] and nonequilibrium Green
functions [66–68]. Some quantum dynamics results will be
presented in Section 5.

3 Structure and phase transitions

In this section, the structural properties of the OCP4 are
investigated. We develop criteria which classify the cou-
pling strength in the plasma and show that a meaningful
comparison between differently screened Yukawa systems
is possible by defining a modified coupling parameter. We
also demonstrate a method for resolving phase transitions
in finite systems for which bulk criteria are not applicable.

3.1 Extended systems

For macroscopic (infinitely extended) systems, a suitable
microscopic measure of correlation effects is the radial
pair distribution function (RPDF) g(r) that is defined
as the angle-average of the two-particle distribution

4 The term OCP is meant here to include both Yukawa and
Coulomb interacting systems.

function g(r),

g(r) =
1

Nn

〈
N∑
i6=j

δ(r − rij)

〉
. (11)

The RPDF is a central quantity for the thermodynam-
ics of the OCP since it determines all static properties,
e.g., the compressibility, the energy, or the pressure [73].
It is also a means to incorporate particle correlation
into analytical theories such as the quasi-localized charge
approximation [74].

In an ideal system, g(r) ≡ 1, indicating the absence of
any spatial order. As the non-ideality increases, the so-
called correlation hole (depletion of g(r) at small pair
separations) appears for repulsive potentials. A second
feature of the RPDF manifests itself at larger particle cor-
relations, viz. a series of peaks and troughs corresponding
to a shell-like arrangement of neighbors. Together, these
two features allow one to classify systems into uncor-
related (no correlation hole), weakly correlated [finite
correlation hole but no peaks in g(r)], and strongly
correlated [distinct peaks in g(r)].

Sensitive measures for the correlation hole and the
degree of correlation are the value r1/2, at which
g(ar1/2) = 1/2, and the height, gmax, of the first peak of
the RPDF [15,76]. Using these characteristics, it is possi-
ble to define a mapping between the structural properties
of systems with different interaction potentials. This is
particularly interesting for the comparison of Coulomb
systems and Yukawa systems with different screening
lengths. This strategy allows one to define an effective
coupling parameter Γ eff (κ) for a Yukawa system which
coincides with Γ defined in equation (2), for κ = 0, and
gives the structurally most similar Yukawa system for
a given finite κ. The result is (details can be found in
reference [15]):

Γ eff(Γ, κ) = f(κ) · Γ, 0 ≤ κ ≤ 2, 1 ≤ Γ eff ≤ 150, (12)

where the scaling function is given by

f(κ) = 1− 0.309κ2 + 0.0800κ3. (13)

Although formally outside the definition range of Γ eff, the
value Γ eff = 172 can be used as an universal melting point
for Coulomb and Yukawa OCP, see Figure 1. This under-
lines the universality of the melting process in (Yukawa)
OCPs. The definition (12) utilizes only some of the infor-
mation contained in the RPDF. A more specific matching
between the OCP and experimental systems is possible
by also taking into account the positions and heights of
the additional extrema of the RPDF. These have been
published in tabular form for two- and three-dimensional
systems in reference [21].

3.1.1 Quantum and spin effects

We conclude this section by considering the impact of
quantum effects. In Figure 2, the RPDF of a classical
OCP and a quantum UEG at comparable coupling and

https://epjd.epj.org/
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Fig. 1. κ–Γ phase diagram for Yukawa systems. The symbols
indicate the melting transition [75]. The solid line marks a
constant effective coupling parameter Γ eff = 172. Note that
for larger κ the phase diagram is more complex due to the
existence of an additional fcc-lattice phase (not shown) [75].
Reprinted from reference [15].

Fig. 2. Pair distributions of a one-component system. guu =
g↑↑(r) and gud = g↑↓(r): spin-resolved RPDFs of the quantum
UEG at rs = 4 and Θ = 1 (Γ = 2.16 and ` = Λ/a = 0.54). g(r):
RPDF of the classical OCP at Γ = 2. Data from references
[15,28].

moderate degeneracy are visualized. The UEG data are
calculated by ab initio permutation blocking path-integral
Monte Carlo simulations (PBPIMC approach [25,26]) and
are spin-resolved for electrons with parallel (↑↑) and anti-
parallel (↑↓) spins. The larger correlation hole for electrons
with parallel spin is a consequence of the Pauli principle
(two electrons with same spin projection cannot occupy
the same spot, even in the absence of pair interaction).
Of course, this effect is absent for different spins. Since
the UEG considered here was unpolarized (zero total
spin projection, ξ = 0, cf. Tab. 1), the mean pair dis-
tribution function is, in good approximation, gUEG(r) =
1
2 [g↑↑(r) + g↑↓(r)] (not shown). As can be seen in Figure 2,
quantum effects reduce correlations compared to the clas-
sical case [compare g↑↑(r) and g(r)], since the quantum
delocalization decreases the correlation hole and “smears
out” the pair correlations, even in the presence of the Pauli
repulsion.

3.2 Finite systems

Finite clusters of charged particles have been extensively
analyzed in recent years in dusty plasmas or trapped
ions after their successful creation in suitable confinement
potentials. The competition of a confinement potential
and the Coulomb interaction between the particles typ-
ically leads to the formation of concentric shells (or rings
in 2D). The properties of these finite clusters and espe-
cially phase transitions comprise many complex features
[77] related to, e.g., the occurrence of highly symmetric
“magic” clusters (for certain particle numbers N) which
are particularly stable against melting [78,79]. Obviously,
the transition from a crystal-like state, with complete
localization of particles, to a liquid-like state involves the
loss of order within individual shells (intrashell disorder-
ing, ID), relative angular disordering of two shells, and
radial melting (RM) where a particle undergoes transi-
tions between two shells [80,81]. All these transitions, in
general, occur at different temperatures (different cou-
pling parameters), i.e., in contrast to macroscopic systems,
instead of a single melting transition, here one should
expect a series of phase transitions. While this has been
analyzed in detail for finite 2D clusters [79,80], 3D clus-
ters are much more complex, and only partial results are
available, e.g., references [24,78,82].

A complete understanding of these complex properties
requires a criterion for the occurrence of phase tran-
sitions which is able to resolve different stages of the
melting process. Furthermore, to compare with experi-
ments that detect the coordinates of individual particles,
it is desirable to formulate such a criterion exclusively in
coordinate space. Finally, a system in a trap is spatially
inhomogeneous (cf. top part of Fig. 3), thus its prop-
erties, including correlation effects, vary in space. This
means, the key quantity used in macroscopic systems,
the pair distribution function g(r), has to be generalized.
An obvious choice is the two-particle distribution function
gn1,n2(r1, r2) that describes the probability to find a par-
ticle pair at position r1 and shell n1 and r2 and shell n2,
respectively. It turns out that this is not always sufficient,
and also the three-particle function gn1,n2,n3

(r1, r2, r3)
may be required.

A systematic approach to these quantities was devel-
oped in reference [24]. It starts from the full N -
particle equilibrium distribution function, ρ, and intro-
duces reduced k-particle distributions (k = 1, . . . , N − 1)
by integrating out the remaining N − k positions:

ρk(r1, . . . , rk) =
1

(N−k)!

∫
d3rk+1 . . . d

3rNρ(r1, . . . , rN ),

(14)

where ρ is normalized to N !. The problem simplifies sub-
stantially by exploiting the spherical symmetry of the
system and by relating the k-particle distribution of the
correlated system to the one of the non-interacting system,
ρid
k , which gives rise to the reduced correlation func-

tion gk = ρk/ρ
id
k . As an illustrative example, we show in

Figure 3 a modified two-particle correlation function – the
center-two-particle correlation function (C2P). Shown is

https://epjd.epj.org/
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Fig. 3. Distribution, correlations and quantum and spin effects
of N = 13 particles in a harmonic trap with β = 3 and λ =
0.1, cf. Table 1. Top: Radial density profile for the case of
spinless particles (“Boltzmann”, green), Bose statistics (blue),
and Fermi statistics (red). Bottom: Corresponding center-two
particle correlation functions averaged over the outer region of
the density profile (see shaded area in the insets) for bosons
(a), distinguishable particles (b), and fermions (c). Reproduced
from Dornheim et al. [32]. Copyright Wiley-VCH Verlag GmbH
& Co. KGaA. Reproduced with permission.

the probability of finding one particle at a certain dis-
tance from the trap center (vertical axis) and a second
one in the outer “shell” (shaded area under the density
profile), aligned under a given angle (horizontal axis) rel-
ative to each other. Focusing on part (b) one clearly sees
a decreased correlation of particles within the same shell
and an angular distance smaller than 20◦ (the so-called
(exchange-) correlation hole). This is typical for the case
of moderate correlation whereas for lower temperatures
(strong correlations) more and more localization features
emerge indicating a transition to a crystal-like state. A
similar analysis can be performed for the three-particle
correlation function (TCP) that is derived from ρ3. For
details and the involved coordinate transforms, the reader
is referred to reference [24].

Of course, the information contained in the C2P and
TCF is very detailed and comprehensive as it resolves all
relevant distances between particles. In order to derive a
criterion that can be used to obtain the phase boundaries,
we define reduced Shannon entropies, S(k), according
to [24],

S(k) ∼ −kB
(N−k)!

N

∫
d3r1 . . . d

3rk ρk(r1, . . . , rk)

× ln ρk(r1, . . . , rk) (15)

from which we derive an effective “heat capacity”

c(k)
ω ≡ T ∂S(k)

∂T

∣∣∣∣
ω

= − ∂S(k)

∂ lnΓ

∣∣∣∣
ω

, k = 1, 2, 3, . . . (16)

of the kth correlation function. Note that the harmonic
trap gives rise to a modified “canonical ensemble” where
the parameters N,V, T are replaced by N,ω, T , and
derivatives in equation (16) are computed at fixed trap fre-
quency (and N). Results for a classical Coulomb cluster of
N = 80 particles in 3D are shown in Figure 4 and demon-
strate the remarkable power of this approach to identify
the different disordering processes: as for phase transi-
tions in macroscopic systems, peaks of the generalized
heat capacities are a clear signal of enhanced fluctua-
tions that are characteristic of an disordering transition.
Which transition takes place is understood by analyzing
simultaneously the peaks of the heat capacities associated
with the single particle distribution (i.e. the density), the
two-particle and three-particle correlation functions and
entropies or heat capacities.

3.2.1 Quantum and spin effects

The developed approach to phase transitions in finite
systems can be straightforwardly extended to quantum
systems. This is illustrated in the following for quantum
particles in a parabolic trap with trap frequency ω. In par-
ticular, to investigate the effect of quantum statistics on
spatial correlations, we consider (spin-polarized) bosons
and fermions and, as a reference, spin-free “distinguish-
able” particles (so-called Boltzmannons). In the fermionic
case, this model system is often used as a description for
electrons in a quantum dot, e.g., references [72,83–87]. Fig-
ure 3 shows results for N = 13 quantum particles at weak
coupling and relatively low temperature (for definitions,
cf. Tab. 1), β = 3 and coupling constant λ = 0.1 [32].
Under these conditions, the particle wave functions over-
lap, and the effects of quantum statistics distinctively
manifest themselves in the radial density profiles (top
panel). Compared to the distinguishable (spinless) parti-
cles (green), bosons (blue) are more concentrated around
the center of the trap (as this reduces their energy)
whereas fermions (red) are pushed outward, due to the
Pauli principle.

In the bottom panel, we show the corresponding C2P
functions that are averaged over the outer region of the
density profile. Evidently, bosons (a) and distinguishable
particles (b) exhibit a fairly similar behavior and the

https://epjd.epj.org/
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exchange-correlation hole around ϑ = 0 is only weakly
expressed. In stark contrast, for fermions (c), there is
a pronounced region where the probability of finding
another electron is severely decreased. Therefore, the anal-
ysis has revealed that, at the present conditions of weak
coupling, correlation effects of quantum confined electrons
are dominated by Fermi statistics (and, hence, the Pauli
repulsion) and only weakly influenced by the weak non-
ideality. This emphasizes the important role correlation
functions play for the understanding of the nontrivial
interplay of quantum exchange and Coulomb correlation
effects in non-ideal quantum systems. Details can be found
in reference [32].

4 Dynamics and transport in correlated
plasmas

The dynamics of strongly coupled classical magnetized
plasmas represent a particular challenge for theory since
the large role played by interparticle interactions necessi-
tates a particle-based description, and the presence of a
magnetic field introduces further complexity. In this sec-
tion, we review the recent progress made by the SFB
TR-24 in elucidating important transport processes in
these systems, viz., heat transport, momentum transport
(viscosity), and mass transport (diffusion).

4.1 Correlation effects on the diffusion properties in a
macroscopic system

Diffusion is the most simple transport process. Since it is
intimately connected to the motion of individual particles,
it lends itself to a detailed analysis. Concomitantly, a
particle-based exploration of the system dynamics can
help to identify the “building blocks” of more complex
processes involving many particles simultaneously. Molec-
ular dynamics allows for a direct approach to the diffusion
coefficient by computing the mean-squared displacement
(MSD) that is averaged along the trajectories of all parti-
cles, ur(t) = |〈ri(t)− ri(0)〉N |2. A typical result is shown
in Figure 5, see curve β = 0 in the top part. At early
times, the particles move ballistically, ur(t) ∼ t2, while
diffusive motion, ur(t) ∼ t1, occurs at larger time delays,
where the slope is proportional to the diffusion coefficient.
An interesting peculiarity is observed in 2D Yukawa sys-
tems. There, superdiffusion was observed experimentally
in dusty plasmas [88] and in simulations [89] which is
related to a growth of ur(t) faster than t1. However, we
could show with accurate MD simulations that this is only
a transient phenomenon in these dissipative systems [90–
92]. The next interesting question is the effect of Coulomb
interaction on the diffusion coefficient. Since the increase
of the coupling strength is accompanied by enhanced par-
ticle localization, the consequence should be a reduction
of the mobility. This is indeed observed in the lower part
of Figure 5, cf. the data points for different values of Γ at
β = 0 [93].

Fig. 4. Top: Reduced entropies of the one-particle distribu-
tion [S(1)], two-particle distribution C2P [S(2)] and TCF [S(3),
shell-resolved] as a function of Γ for a Coulomb cluster of

N = 80 particles. Bottom: Heat capacities c
(k)
ω corresponding

to the reduced entropies of (a) compared to the conventional

thermodynamic heat capacity cω (crosses). The peaks of c
(k)
ω

(cf. vertical lines) signal disordering transitions [RM: radial
melting, ID1/2: intrashell disordering on the inner/outer shell]
Reprinted from reference [24].

4.2 Diffusion in magnetized strongly correlated
systems

Let us now turn to the influence of a magnetic field on the
diffusion coefficient. This has been studied in great detail
for weakly coupled (high-temperature) plasmas where it
was found that the cross field diffusion coefficient decays as
1/B2, whereas diffusion parallel to the field is independent
of the field strength [94]. At very strong fields, anomalous
transport sets is in giving rise to a linear reduction of the
mobility perpendicular to the field, D⊥ ∼ 1/B, that was
first observed by Bohm.

Now the interesting question arises how the magnetic
field acts in a correlated system – which was analyzed for
a 3D classical OCP in reference [93] and for 2D systems in
reference [14]. In 3D it was found that D⊥ rapidly decays
with both B and Γ and, at sufficiently large B always
approaches the Bohm regime,D⊥ ∼ 1/B. A striking result
was that also D‖ turned out to be field dependent. This is
easily understood as correlation effects give rise to large-
angle scattering of particles, and particles initially moving
parallel to the field may obtain a large velocity compo-
nent perpendicular to the field. As a result, simulations
revealed that, for large Γ also D‖ ∼ 1/B [93], in striking
contrast to high-temperature plasmas.

In two-dimensional systems oriented perpendicular to
the B-field, only cross-field diffusion is possible, and the
behavior is illustrated in Figure 5. The upper curve
shows the MSD for different values of the magnetic field
strength [14]. As in the field-free case, at early times,
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the particles move ballistically, ur(t) ∼ t2, while diffu-
sive motion occurs at larger time delays. With increasing
magnetic field, an oscillatory behavior is imprinted on the
MSD by the gyrating motion of the particles. An early
sub-diffusive behavior occurs which is replaced with bal-
listic migration only at later times. The onset of diffusive
motion is shifted to larger time delays as well.

After a sufficiently long time, an almost diffusive motion
is established, at all magnetic field strengths considered,
and a measure of the diffusion can be estimated from
D∗ = limt→∞ ur(t)/(4 t).

5 Results are given in the lower
part of Figure 5 for different values of Γ . It is found
that the effect of the magnetic field is to suppress the
self-diffusion in 2D OCPs. The suppression is different at
different field strength regimes: small to negligible reduc-
tion, for β < 0.5, and a Bohm-type 1/β suppression, at
β & 1. In good approximation, the relative suppression of
the self diffusion, R(β) = D∗(β)/D∗(0) is independent of
Γ and given by

R(β) =
1 + β/3

1 + 7
4β + β2

(17)

from which the α/β decay at large β is evident. Here, α =
48/71 ≈ 2/3 which is comparable with the decay prefactor
in three dimensional system [93,96].

An extension of this analysis two a two-component sys-
tem of particles with different charge to mass ratio was
presented in reference [14] and indicated interesting addi-
tional effects such as non-monotonic dependencies of the
transport properties on the magnetic field strength which
are expected to be highly relevant for future studies of
multicomponent plasmas.

4.3 Relation of diffusion to caging effects

Diffusive motion in strongly coupled plasmas is also inti-
mately connected to the mean time that a particle spends
in a local potential minimum created by the other par-
ticles (so-called “caging time”). A variant of this caging
time, the “directional caging time”, is shown in Figure 6,
for different coupling strengths, as a function of β [29].
The dramatic increase of caging times due to the magnetic
field is evident, and this time can be directly related to
the diffusion coefficient. It is interesting to note that this
caging time can be calculated semi-analytically within the
quasi-localized charge approximation for magnetized sys-
tems [12,97,98]. For more details, see the contribution by
Kählert et al. in this issue [70].

The complexity of the correlation-magnetic field inter-
action is also manifest in the generation of supercooled
2D Yukawa liquids [13]. If a sufficiently correlated Yukawa
OCP is rapidly cooled (“quenched”), structural rearrange-
ment generally leads to a new crystalline equilibrium
state, see left path in Figure 7. If a magnetic field is applied
to the system, however, the crystallization is blocked
since the energy equilibration channels are reduced and
the system cannot relax toward equilibrium, see right

5 See reference [95] for an in-depth discussion of anomalous
diffusion in 2D magnetized plasmas.

Fig. 5. Top: Mean-squared displacement (MSD) of a 2D
Yukawa OCP (κ = 1.0) at different magnetic fields. The mag-
netic field imprints an oscillatory MSD and an intermediate
sub-diffusive regime. Bottom: A measure of the diffusion coef-
ficient, D∗, and its dependence on Γ and β. The decay with β
follows a Bohm-type law ∼ β−1. Reprinted from reference [14].

paths in Figure 7. Such systems have peculiar proper-
ties, including a high mobility at low temperature [13].
The transition from equilibrated to non-equilibrated liq-
uids depends critically on the magnetic field: In Figure 8,
this is demonstrated for a model system in which a minute
increase of the magnetic field leads to a transition in the
nature of the particle dynamics. For the quenched mag-
netized Yukawa OCP, this means that the equilibration
timescale is reduced by more than three orders of mag-
nitude when the applied magnetic field is doubled from
β = 0.55 to 1.1 [13].
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Fig. 6. Directional caging time of particles as a function of
the magnetic field strength and Γ , as indicated. See reference
[29] for a discussion. Reprinted from reference [29].

Fig. 7. Results from quenching a 2D Yukawa OCP (κ = 1,
Γ = 140). The system is initially in the liquid state (top, ωpt =
0) as is apparent from the system order (the colors code the
number of nearest neighbors: 5 [light grey/yellow], 6 [black], 7
[dark grey/red], and other [purple]). The quench is realized by
removing all kinetic energy from the system. Depending on the
applied magnetic field strength, the system crystallizes (β =
0) or stays in increasingly long-lived supercooled metastable
states (bottom row, ωpt = 24000). Reprinted from reference
[13].

4.4 Heat conductivity in a strongly coupled
magnetized OCP

For many plasma applications including thermal transport
in stars or fusion, the heat conductivity of a plasma is of
crucial importance since it is relevant for the evolution of
the energy density and temperature [99]. For the OCP, the
heat conduction has been thoroughly investigated in the
last decades, see, e.g., references [100,101]. These results
have been improved and extended to magnetized systems
in references [22,30].

Fig. 8. Trajectory of a particle in an asymmetric cage of
six fixed neighbors. At β = 0.99, the particle can reach all
of the energetically accessible regions. At an only slightly
larger strength of the magnetic field, β = 1.05, the congruence
between the Larmor radius and the structural arrangement
causes a sudden change in the dynamics and the particle
is unable to reach the potential minimum. Reprinted from
reference [13].

In a magnetized system, Fourier’s law must be taken in
its tensorial form, i.e.,

jα = −λαβ(∇T )β ,

where j is the energy flow and the thermal conductivity
tensor λαβ has three independent components (assuming
B ‖ êz),

λ =

(
λ⊥ λ× 0
−λ× λ⊥ 0

0 0 λ‖

)
. (18)

Field-parallel and cross-field heat transport are described
by the components λ‖ and λ⊥, respectively. Both reduce
to the scalar heat conductivity in the limit of a vanish-
ing magnetic field. In addition, there exists a cross-term,
λ×, describing heat currents perpendicular to the temper-
ature gradient (so-called Righi-Leduc effect [103], which is
analogous to the Hall effect). In the limit of zero magnetic
field isotropy is restored, and the tensor has only a single
component λ0 with λ‖ → λ0, λ⊥ → λ0 and λ× → 0.

Results for these quantities are given in the top and
middle part of Figure 9, as a function of Γ at different
magnetic field strengths. The first striking feature is the
non-monotonic Γ -dependence of the heat conduction in
the absence of a magnetic field, i.e. λ0. This arises from the
interplay of two main mechanisms to the heat conduction:
single-particle motion (related to diffusion) and collective
modes (phonon-like transport). While the former effect
decreases with Γ (as does the diffusion coefficient), the
latter rapidly increases and starts to dominate the heat
transport resulting in the formation of a minimum of λ0

around Γ = 40.
The second striking feature is observed in a magnetized

system: the magnetic field may enhance heat transport
along the field, i.e. λ‖. This effect has a two-fold ori-
gin. On the one hand, collisional transport of heat is
enhanced because the lateral escape of colliding particles
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Fig. 9. Top: Elements of the heat conductivity tensor of a
Yukawa OCP (κ = 2) at different magnetic field strengths as
a function of Γ . Middle: Tensor elements at β = 1 relative to
the field-free value λ0. Bottom: The effective heat conductivity
λeff = Trλ as a function of β relative to the field-free value. The

weakly coupled case Γ � 1 is shown in grey [102]. Reprinted
from reference [30].

is restricted by the magnetic field. On the other hand, the
transfer of heat associated directly with a moving parti-
cle (potential and kinetic energy) is also enhanced since
lateral energy loss is reduced and the particle retains its
energy for longer flights. The relative importance of the
different heat transfer channels and the opposing trends
of λ⊥ and λ‖ with β lead to a non-monotonic field depen-
dence of the effective heat conduction, see lower part of
Figure 9. A suitable quantity that combines all heat con-
ductivity components is the trace of the tensor, λeff , which
is shown in the bottom part of Figure 9. It shows a distinct
non-monotonic behavior with β with a strong increase for
β & 0.5 at intermediate values of Γ . For more details, see
reference [22].

Besides heat conduction, a magnetic field also sup-
presses temperature isotropization in plasmas. In conjunc-
tion with the importance of collisional heat transport in
strongly coupled plasmas, this leads to the emergence of
spontaneous temperature anisotropies in an isotropically

Fig. 10. Field-parallel and cross-field temperature profiles of a
Yukawa OCP (κ = 2, Γ = 100) after a sinusoidal temperature
profile has been imprinted on the system along the field lines,
B ‖ êz. Shown are the initial temperature profile (solid line)
and the profiles at two later times. A temperature anisotropy
develops from the isotropic perturbation due to the system
dynamics. Reprinted from reference [37].

disturbed plasma [37]. This is illustrated in Figure 10:
at tωp = 0, an isotropic sinusoidal temperature profile
is imposed on the plasma. In the subsequent tempo-
ral evolution, the temperature components Txy and Tz
relax towards homogeneity with different time dependen-
cies, leading to the described temperature anisotropy. In
reference [37], this effect is investigated in detail and
an analytical model is developed which describes this
behavior.

5 Transport properties of strongly coupled
finite plasmas

The calculation of transport properties of finite systems
or clusters of particles requires an approach different from
that for extended systems since methods based on the
fluctuation-dissipation theorem are not straightforwardly
applicable. Instead, non-equilibrium methods, in which
a gradient is imposed on the systems which leads to a
observable flux, closely mimic experimental setups and
provide suggestions for future experiments.

5.1 Nonequilibrium approach to heat conduction and
viscosity in finite classical systems

For example, the heat transport in a finite 2D dust clus-
ter can be measured by (laser-)heating the central region
(shaded region in Fig. 11) and relying on the friction
between the dust particles and the surrounding plasma as
a heat sink. This non-equilibrium setup leads to a steady-
state temperature profile from which the heat conduction
properties can be inferred [11,23]: in Figure 11, the radial
temperature profiles resulting from different heating laser
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Fig. 11. Temperature profiles of an inhomogeneously heated
dust cluster (κ = 1) for different values of power of the heating
laser FL. Symbols indicate measured temperature profiles and
lines the best fit to theory. Reprinted from reference [23].

Fig. 12. Thermal conductivity k as a function of the mag-
netic field strength B for different screening parameters κ
obtained from direct non-equilibrium simulation of a heated
two-dimensional dust cluster. Reprinted from reference [23].

powers are shown as symbols and the lines correspond to
the best fit to the theoretical profiles from which the heat
conduction is calculated.

In addition, in this configuration, a perpendicular
“effective magnetic field” can be applied by setting the
cluster into rotation [8–10]. By measuring the tempera-
ture profile and resultant heat conductivity as before, it
is found that the magnetic field has the effect of impeding
the cross-field heat transfer [23], see Figure 12.

The same principle can be applied to assess the shear
viscosity. Here, the laser force is used to imprint a tan-
gential force on the outer ring of particles, see left part of
Figure 13, and the velocity profile is measured in radial
direction. The viscosity inferred from these simulations
[20] is in notably good agreement with macroscopic sim-
ulations of extended systems [104] (right part of Fig. 13),
which underlines the value of small-cluster experiments.

5.2 Excitations in correlated quantum systems

Finally, we touch upon quantum effects in small spa-
tially confined charged particle systems, e.g., quantum

dots [79,81,85], ultracold quantum gases, or quantum
particles in traps and optical lattices [105–108]. The sim-
plest dynamic excitations of such systems confined in a
parabolic trap are the sloshing (dipole or Kohn) mode
[109] and the breathing mode. While the former has the
trap frequency, ωsl = Ω, as in a classical system, the lat-
ter – the uniform radial contraction and expansion of all
particles – has been found to differ from classical particles.
For classical systems (with fixed interaction potential), the
frequency of this mode is a constant, independent of the
particle number. In the quantum case, however, it depends
on the relative strength of the inter-particle interaction λ
(see above) and the number of particles N [17,18]. While
in the strong coupling limit, λ → ∞, the classical result
ωbr =

√
3Ω is recovered, in the limit of strong quantum

degeneracy (strong particle overlap), the ideal quantum
gas behavior is obtained where ωbr = 2Ω. These depen-
dencies are shown in Figure 14 for selected values of λ
and N .

The measurement of the breathing frequency allows one
to determine key observables such as kinetic and interac-
tion energy of a system [16] and is thus particularly well
suited as a diagnostic in confined quantum systems, in
particular, for electrons in quantum dots, for details see
reference [18]. We note that, in addition, the breathing fre-
quency is sensitive to the pair interaction potential – even
in classical systems – and the breathing motion may devi-
ate from a self-similar contraction and expansion, e.g., in
the case of a Yukawa potential [110]. In the recent years,
many computational studies on the breathing mode were
performed for ultracold bosonic atoms in traps and opti-
cal lattices, e.g. [111–113], because here the corresponding
experimental methods are particularly advanced. It can
be expected that the collective excitation spectrum will
continue to play a crucial role in the understanding and
diagnostics of strongly correlated quantum systems in the
near future.

6 Summary and outlook

In this paper, we have reviewed recent progress in the
theory and simulation of strongly correlated plasmas.
The paradigmatic one-component plasma has been used,
on the one hand, to gain insight into the fundamental
processes occurring in these systems and, on the other
hand, to model dusty plasma experiments and develop
new experimental protocols and analysis approaches. The
structural composition in finite and extended system has
been a major research focus over the last decade. Building
on this, we have developed criteria for phase transitions
in finite clusters that are based on two- and three-article
distribution functions, reduced entropies and heat capac-
ities, which elucidate the different stages of disordering in
these systems. These techniques have already been used in
dusty plasma experiments, and we also demonstrated that
they can be successfully applied in the quantum regime as
well.

Our second topic was the interplay between a strong
magnetic field and particle correlations which was shown
to cause non-trivial dynamics. The complexities of this
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Fig. 13. Left : Sketch of the applied non-equilibrium scheme. A tangential force acts on particles inside the shaded ring. Right :
Viscosity η (in units of η0 = mn0ωpa

2 where n0 is the equilibrium density) inferred from the simulations as a function of Γ , red
(light) symbols. The screening varies slightly due to the driving forces as indicated. The dark symbols represent data from Liu
and Goree [104] obtained for a periodic dust system. Reprinted from reference [20].

Fig. 14. Breathing frequency of a charged 2D system in a har-
monic trap with frequency Ω for two values of the Coulomb
coupling parameter λ, cf. Table 1. The result is in striking con-
trast to classical systems (corresponding to λ→∞) where the
breathing frequency equals

√
3Ω, independently of N . The fre-

quencies of configurations with closed shells (N = 2, 6, 12, 20)
exhibit local minima. The results were obtained with a sum
rule formalism and Hartree-Fock calculations [18].

system have been analyzed through the calculation of
tensorial transport coefficients such as the diffusion coeffi-
cient, heat conductivity and viscosity, as well as particle-
based investigations of the system dynamics following an
external excitation. Non-equilibrium methods for small
magnetized clusters have been developed which allow for
an accurate probing of transport processes, such as dif-
fusion, heat transfer, and viscosity. Previous work in this
direction has been complemented by the theoretical and
experimental development of rotating dusty plasma exper-
iments (see contribution by Kählert et al. in this issue
[70]) which, together with conventional magnetization,
allow for unprecedented access to magnetized, strongly
correlated systems.

Together, these investigations have furthered the under-
standing and experimental accessibility of strongly corre-
lated plasmas, in general, and dusty plasmas, in particu-
lar, and promise many interesting new results in the near
future.
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