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Abstract
A new combination of first principle molecular dynamics (MD) simulations with a rate equation
model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of
argon atoms from a platinum (111) surface. The combined model is based on a classification of
all atom trajectories according to their energies into trapped, quasi-trapped and scattering states.
The number of particles in each of the three classes obeys coupled rate equations. The
coefficients in the rate equations are the transition probabilities between these states which are
obtained from MD simulations. While these rates are generally time-dependent, after a
characteristic time scale tE of several tens of picoseconds they become stationary allowing for a
rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal
evolution of the energy distribution functions of the adsorbate atoms. We separately study the
energy loss distribution function of the atoms and the distribution function of in-plane and
perpendicular energy components. Further, we compute the sticking probability of argon atoms
as a function of incident energy, angle and lattice temperature. Our model is important for
plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

Keywords: plasma-surface modeling, gas-surface interaction, thermal accommodation, sticking
probability, argon plasma, platinum surface, adsorption and scattering of neutral particles

1. Introduction

The recent progress in the production of micro- and nanoe-
lectromechanical systems, aerospace engineering, vacuum
technologies, and process engineering, such as gas separation
membranes and heterogeneous catalysis, have revived the
interest in fundamental research of rarefied gas flows and heat
transport. Here, the influence of the gas-surface interactions
on the momentum and energy transfer leading to the wall slip
effects is of primary interest. The resulting macroscopic
properties, such as the momentum/energy accommodation
coefficients, can then be efficiently used as the input para-
meters for scattering kernels in rarefied gas flow simulations
and well-defined boundary conditions.

Plasma-surface interaction is another currently actively
studied field, where surface processes involving neutral atoms
and molecules are of high importance. This includes the
understanding of the film formation on the surface as well as
feedback effects of the surface processes to the plasma
composition and discharge characteristics. The questions of
interest include the adsorption of gas atoms and molecules,
their sticking probability, the generation of secondary parti-
cles, as well as the dependence of the adsorption on the
surface temperature and the energy and impact angle of the
gas particle. These properties are often known only approxi-
mately since both measurements and simulations in a plasma
environment are quite complex. Although hydrodynamic
modeling and kinetic simulation of plasmas have progressed
remarkably during the recent decade, the interaction of the
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plasma with a solid surface is typically treated on a simplified
level via averaged sticking and desorption rates. To give a
few examples, the interaction of neutral particles with sur-
faces is usually neglected by treating neutrals as a static
background, e.g. [1, 2]. Secondary electron emission (SEE), a
key surface process, is often treated using constant SEE
coefficients, e.g. [3]. Electrons hitting a solid surface are
usually assumed to be lost without reflection in simulations,
e.g. [4], and only recently a microscopic calculation of the
electron sticking coefficient appeared [5]. Recently it was
shown [6] that a resolution of energetic neutrals in PIC
simulations has a dramatic influence of the plasma parameters
because it may strongly affect the SEE [7].

Similarly we expect that obtaining energy-resolved des-
orption rates of neutral atoms would allow for much more
accurate modeling of low-temperature plasmas. In this paper
we present new results for these quantities for the test case of
argon atoms impacting on a platinum surface.

In the last decades the scattering problem of rare gas
atoms from metal surfaces continued to be in the focus of
both theoretical [8, 9] and experimental analysis [10]. A
detailed overview on the recent progress in this field can be
found in [11–13]. The analyses include both classical and
quantum scattering regimes. In particular, it was found that
some quantum features in the diffraction patterns can be
resolved even for atoms as heavy as Ar [14]. Such a situation,
however, is quite unusual and most of the scattering experi-
ments with heavy atoms are of classical nature [15–17]. But
even in this case, a classical mechanics picture of the atom-
surface scattering is far from being complete and further
developments are of interest.

There are several main problems for a theory. The first
one is an accurate inclusion of the gas-surface interaction,
typically reconstructed from ab initio quantum mechanical
approaches such as density functional theory. A second issue
concerns a correct consideration of all energy dissipation
channels, like the interaction of the gas with the surface and
bulk phonons, and electron–hole excitations originating from
the perturbation of the electron density of the surface atoms.
These major processes have to be taken into account by a
theory to describe correctly the energy transfer to the surface,
the angle- and energy-dependent sticking probability, the
equilibration kinetics of the adsorbate localized at the surface,
and the subsequent thermal desorption, which extends over a
time scale ranging from few picoseconds to milliseconds. An
important test for a theoretical description is certainly pro-
vided by experimental measurements performed on different
physical systems and scattering conditions.

Concerning experimental studies, the dependence of the
angular distribution of scattered atoms on the incident energy
of the gas atoms and the surface temperature as well as the
average energy loss to the surface are typically in the focus.
The latter, being the most challenging to theory, is typically
defined via the so-called accommodation coefficient, i.e., the
ratio of the energy loss to the incident energy of the gas
particles. In particular, theories, which assume parallel
momentum conservation and hard sphere scattering, are not
able to capture the main experimental observation that the

slope of the relative final energy changes from negative to
positive when increasing the incident energy of the gas par-
ticle. This behavior has been observed e.g. for the scattering
of Ar atoms and diatomic molecules (N2 and O2) from a
Ag(111) surface [18] and for the scattering of Xe atoms from
a Pt(111) surface [19].

A real theoretical breakthrough in the understanding of
experimental data has been gained by using molecular
dynamics (MD) simulations. The experimental results on
scattering of Xe on Pt(111) have been reproduced by Barker
et al [20]. The energy loss distribution function (ELDF) and
its dependence on the incident energy and angle has been
accurately analyzed by Lahaye et al [21] for Ar on Ag(111).

While being in good agreement with experimental data,
MD simulations alone cannot always provide a deep under-
standing of the underlying physics. Therefore, several theor-
etical models of scattering have been developed in parallel. In
general, they treat the interaction of the gas atoms with the
surface by coupling their vertical motion to the phonon bath
and use the methods of the classical statistical physics. In this
framework, Brako [22] obtained an analytical expression for
the energy and momentum transfer as well as for the angular
distribution. However, the corrugation of the surface was
neglected for reasons of simplification. As a result, Brako’s
theory misses the coupling between the phonons and the
parallel momentum of the atom.

The first model which took this effect into account—the
so-called ‘washboard model’—was developed by Tully [23]
and was extended in a later paper by Yan et al [24]. It
assumes an impulsive collision of the gas atoms with the
surface, but shows difficulties in reproducing the double peak
structure of the angular distribution function.

The first progress in this direction was made by Pollak
et al [9]. They generalized Brako’s formula and the ‘wash-
board model’ and presented explicit results for the joint
angular and final momentum distributions, the joint distribu-
tions of final scattering energy and angle as well as the
interrelationship between the average energy losses and the
angular scattering distribution. The application of this theory
was successful in reproducing the main experimental obser-
vations. A shift of the maximum of the angular distribution to
subspecular angles at low incident energies was predicted
which is due to large energy losses in the horizontal direction.
In contrast, a superspecular maximum in the angular dis-
tribution was reproduced at high incident energies, when the
energy loss in the vertical direction dominates. The theory
predicts as well that the full width at half maximum of the
angular distribution varies as the square root of the temper-
ature. It was successfully applied to explain the scattering
experiments of Ar on the Ag(111) surface, however, only in
the regime when the incident energy is sufficiently large and
one can neglect the sticking probability.

The nature of sticking of heavy atoms to clean surfaces
has been intensively investigated using semiclassical pertur-
bation theory [9, 25–29]. Hubbard and Miller [25] calculated
the sticking probability for the HeW(110) and NeW(110)
systems in the regime when the energy transfer from the
surface is small. Pollak [26] derived an expression for the
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sticking probability in the limit of weak surface corrugation,
and by assuming weak coupling to the harmonic surface
phonon modes. Later, an improved theory has been presented
in [27], which included the second order corrections to the
angular distribution of the scattered particles. In their recent
work, Sahoo and Pollak [28] employed a one-dimensional
generalized Langevin equation and derived an analytic
expression for the temperature-dependent energy loss. A
combination with the multiple collision theory of Fan and
Manson [29] allowed to determine the fraction of trapped
particles after subsequent collisions (bounces) with the sur-
face. The theory has been tested by comparison with num-
erical simulations for the scattering of Ar on a LiF(100)
surface.

In contrast to the classical theory, a quantum mechanical
formalism capable of describing the scattering, trapping,
sticking, and desorption for light particles, like He and H, has
been also extensively studied, see [30–32] and references
therein.

The effect of sticking and thermalization with the surface
becomes increasingly important for surfaces covered with
self-assembled monolayers consisting of long-chain functio-
nalized molecules. This type of problem has been analyzed
recently by Castejón et al [33]. It was demonstrated how the
efficiency of the energy exchange and the sticking probability
vary with the length of the molecules in the monolayer.
Longer molecules lead to an increased surface corrugation
and provide an additional dissipation channel that promotes
more efficient momentum and energy accommodation, and
enhanced trapping.

Another aspect, which called for a systematic invest-
igation, is the consideration of internal degrees of freedom of
the scattering projectiles, such as the molecules N2 or CO2.
Following the statistical description, one samples the rota-
tional energy of molecules according to the Boltzmann dis-
tribution [34], where the thermal occupation of the excited
states is defined by the quantum number of the angular
momenta operator and the rotational partition function [35].
Then, the rotational energy is splitted between two rotational
degrees of freedom to describe the rotation of the molecular
around its symmetry axis [35]. Moreover, the incident azi-
muth and altitude angles of the molecular bonds are rando-
mized according to the specified incidence conditions. In this
case, the scattering from the surface can bring a molecule to
an excited rotational state and, thus, can constitute an addi-
tional dissipation channel [36].

While direct MD simulations provide a detailed
description of the adsorbate kinetics near the surface, such
simulations are very time consuming in general. In order to
overcome the restriction to relatively short time scales of the
order of 100 ps, we have developed a new approach for the
modeling of the atom-surface interaction, which is based on a
combination of MD simulations with a rate equation model
and which has been presented in detail in paperI [37]. There,
we demonstrated how MD simulations can be used to
reconstruct the quasi-stationary transition rates for the deso-
rption processes on a much longer time scale. The basic
assumption used was that the thermalization of the incident

atoms with thermal and subthermal energy and the phonon-
bath of the surface takes place on a time scale of the order
of 50–100 ps.

In the present paper, we provide an additional con-
firmation of this assumption by performing a detailed analysis
of the convergence of the energy distribution functions
(EDFs). The focus is on Ar atom scattering from a Pt(111)
surface, which represents a quite well studied system. Mullins
et al [38] have conducted detailed experimental studies on
such system and reported on the changing role of the parallel
momentum, pP, with surface temperature, Ts, for the trapping
probability. The degree to which the parallel momentum is
involved in the trapping process is frequently expressed by an
energy scaling factor, qcosn , where θ is the angle of incidence
of the gas atoms impinging onto the surface. The ‘total’
energy scaling corresponds to n=0, while the ‘normal’
scaling corresponds to n=2. The normal scaling implies that
the trapping probability is a function of the normal momen-
tum, p⊥, only. However, the experiment showed a gradual
change of the scaling factor with increasing surface temper-
ature from n=1.5 at =T 80 Ks to n=0.5 at =T 300 Ks . It
was suggested that high surface temperatures increase the
surface roughness and that parallel momentum dissipation
also becomes increasingly more important to the trapping
dynamics as Ts increases.

Such deviations from the normal energy scaling have
been intensively investigated by means of numerical simula-
tion [39–43]. Both low and high temperature regimes have
been analyzed. It was found that á ñ ( )p t shows a much slower
convergence with time in comparison with á ñ^ ( )p t . This fact
points to an incomplete equilibration of the parallel velocity
prior to desorption. The desorbed atoms retain a memory of
their incidence conditions, and this information enters into the
desorption probability. Correlations with initial conditions
retained during the dynamics of adatoms across the surface
can be studied in depth in the simulations by monitoring the
time dependence of the energy and other quantities. This
approach is followed in the present studies as well. In part-
icular, we look in detail how the energy exchange (or the
energy loss function) depends on the incidence conditions:
the initial momentum, energy and lattice temperature. The
main non-adiabatic process is the exchange with lattice
phonons.

The present work extends the earlier analyses [39–45] on
the scattering of Ar on Pt(111) surfaces by including the
effects of multiple reflections. This allows to resolve char-
acteristic times for the convergence of the energy and energy
loss distribution function to a quasi-stationary state.

The paper is structured as follows. In section 2 we ana-
lyze the temporal evolution of the energy distribution of the
adsorbate. The relaxation of the surface-normal and tangential
energy components is analyzed in section 3. Section 4 pre-
sents results for the sticking coefficient of argon atoms on
Pt(111) surfaces. It includes an analysis of its dependence on
the incident energy and angle, and on the lattice temperature
as well as a comparison with experimental data available from
literature. Finally, a discussion and conclusions are given in
section 5.
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2. Evolution of the energy distribution of trapped and
scattered adsorbate atoms

In this section we analyze in detail how the system evolves
towards equilibrium by analyzing the convergence to an
equilibrium EDF, and reveal possible dependencies on the
incident angle (θ), incident energy (Ei) and lattice temperature
(Ts). We study mono-energetic gas atoms that are introduced
at a height z of Å20 above the surface and are incident on a
surface with q =[ ] ( )◦ 0 30, 60 and Ei/(kBTr/e0)=0.5 (0.62,
1.41) with =k T e 25.7 meVB r 0 corresponding to the room
temperature =T 300 Kr . Here, the angle θ=0° denotes
normal incidence. The energies are chosen to maintain a
similar value of the initial sticking probability in every case.

Argon atoms are trapped near the surface within the
distance = - Åz r 10c c

Ar Pt , where -rc
Ar Pt is the cut-off

radius of the potential [37]. Their trajectories are followed up
to nb=40 bounces or until the atoms are scattered into the
continuum, i.e., an atom can freely leave the surface region
for heights z(t)>z c. For each set of incidence conditions {θ,
Ei, Ts}, the measured distribution functions, their mean values
and variances are evaluated for a statistical ensemble con-
taining 1000–5000 trajectories.

When a gas atom interacts with the surface for the first
time, the exchanged energy depends crucially on the incident
energy, but only to a lesser extent on the lattice temperature
Ts. This was confirmed by previous studies of Smith et al
[41], where it was shown that the mean energy loss is
insensitive to Ts, while the width of the energy loss dis-
tribution function increases with Ts. These observations are
re-examined below with full temporal resolution to identify
the presence of a quasi-equilibrium phase and to justify the
introduction of the equilibration time t E and the equilibrium
transition rates abT E according to paperI [37].

2.1. Dynamics of the ELDF

We start our discussion with the ELDF, which is analyzed
after a different number of bounces nb of argon atoms with the
Pt(111) surface. Figure 1 compares the results for the three
incident angles θ=0°, 30°, and 60° at =T 190 Ks after one
and two bounces. Here, ΔE=Ef−Ei is the energy change
during a single bounce event with the final (Ef) and incident
(Ei) energy, θ=0° corresponds to normal incidence, and NT,
NQ and NC denote the fraction of atoms in trapped (T), quasi-
trapped (Q) and continuum (C) states, respectively. The
explicit definition of these states has been introduced in paper
I [37] and is based on the energy criteria. The scattering states
correspond to the gas atoms which can freely leave the sur-
face once the normal kinetic energy component exceeds the
surface binding potential V, i.e. + >^E V 0k . The trapped
and quasi-trapped states are the atoms which remain tempo-
rally localized near the surface ( + <^E V 0k ) and are dis-
tinguished by the sign of the total energy, i.e. E<0 or E>0
correspondingly.

The energy losses due to electronic friction are of minor
importance in the present analysis, since the vibrational fre-
quencies of Ar on the surface are much lower than the Debye

frequency of the platinum surface. Therefore, the coupling to
the high frequency electronic motion should be negligible.
We have tested this by explicit inclusion of a spatially varying
electronic friction term in the equations of motion and found
that the corresponding energy losses are below few meV.
Notice that this effect becomes important in the high-energy
regime with incident energies exceeding 0.5 eV.

Figure 1 illustrates that the ELDF always extends from
approximately −70 to 60 meV at the conditions considered. It
has a similar shape in all three cases for nb=1 and 2,
respectively. The corresponding mean value of the distribu-
tions is close to -20 meV for nb=1 and -10 meV for
nb=2, and it does not depend on the incident angle θ.
However, the relative contributions of the different states, i.e.,
the T, Q, and C states, is very different. For angles around
θ=60°, a large fraction of initial energy is accumulated in
the parallel kinetic energy q=E E sini i . Hence, in order to
bring a particle to a trapped state, i.e., a final state with

= + + <^ E E E V 0f f f , the parallel momentum should be
significantly perturbed by the lattice:
D µ - µ -  ( )E E E Ef i i . Here,

^Ef ,
Ef , and V denote the

perpendicular and parallel final kinetic energy and the trap-
ping potential of the surface, respectively.

We also observe that the value +^( )E Vf is similar in the
three cases after the first reflection due to a similar value

q=^E E cosi i of the incident gas atoms. Hence, the energy
loss of the trapped states increases with growing parallel
incident kinetic energy Ei . This explains the shift of the
maximum in the ELDF of the trapped states to negative
energies with increasingθ. As a result, the relative contrib-
ution of the T states in the full distribution function is reduced
and taken over by the Q states. This trend can be directly

Figure 1. Energy loss distribution Pl(ΔE; nb) with ΔE=Ef−Ei

after nb=1 (left column) and nb=2 (right column) bounces at the
lattice temperature =T 190 Ks . The contribution of the trapped,
quasi-trapped (filled area) and continuum states is indicated for
comparison. Incident angles are θ=0°(30°,60°) and the corresp-
onding incident kinetic energies are chosen as Ei/(kB Tr/e0)=0.5
(0.62, 1.41) with =T 300 Kr corresponding
to =k T e 25.7 meVB r 0 .
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followed on the left side of figure 1, where the Q states are
shown by the filled pattern.

The right column of figure 1 shows the ELDF after the
second bounce. The contribution of the T states dominates for
small incident angles (θ=0°, 30°). This results from the
large transition rate TTQ leading to a fast conversion from Q to
T states (see figure 9 in paper I [37]). For larger incident
angles (θ=60°), the population of the Q state becomes
comparable to that of the T state for nb=2 due to the large
fraction of NQ for nb=1 being reduced by the second
bounce.

From this first analysis, we can expect that the conv-
ergence to the quasi-equilibrium, i.e., when the T states
dominate, takes longer for larger incident angles, because
more bounces are required to reach such condition. In order to
have a similar initial sticking coefficient, the energy Ei in the
incident beam has to be increased with increasing angle of
incidence θ due to the Ei component. This in turn increases
the initial population of the quasi-trapped states and leads to a
slower convergence to a quasi-stationary distribution.

The corresponding ELDF obtained for the larger lattice
temperature =T 300 Ks is represented in figure 2. The
interpretation of these results is similar as for =T 190 Ks

(figure 1). The main difference is the thermal broadening of
the ELDF occurring at all angles.

Figure 3 shows the ELDF for different number of
bounces nb at the incident angles θ=0°, 30°, and 60° and
Ts=190 and 300 K. Because more bounces require longer
time scales, this figure represents the temporal evolution of
the ELDF, where the correlation between average number of
bounces and the absolute time scale is displayed in figure 7 of
paperI [37]. The results shown in figure 3 clearly demon-
strate that the adsorbate atoms actually equilibrate. The con-
verged distribution is always reached after nb=40 bounces.
It has a symmetric Gaussian-like form with respect to the
absolute value ofΔE. Here, the probabilities of excitation and
de-excitation due to an absorption or emission of lattice
phonons become equal.

The rate of convergence of the ELDF to the stationary
form depends on the incident angle. The distribution is close
to the converged result after about 15bounces at both lattice
temperatures for θ=0° and 30°. In contrast, there are still
some deviations from the stationary distribution for θ=60°,
even for nb=15. Here, full convergence is reached only for
nb�30. The slower convergence at larger θ is directly
related to the non-negligible contribution of the quasi-trapped
states.

The comparison of the results for the two lattice tem-
peratures clearly shows that the effect of thermal broadening
becomes larger with increasing Ts. A corresponding quanti-
tative analysis is presented in table 1, where the variance σl(θ,
Ts) of the ELDF is given for the three incident angles and
three lattice temperatures. The variance is obtained by fitting
the ELDF for nb=40 to the Gaussian form s- D( ) ( )e E 2 l

2 2
. It

exhibits a linear scaling with Ts and shows no noticeable
dependence on θ. This justifies that the fitted distributions
have a quasi-stationary form defined purely by the lattice
properties, whereas any correlations with the incidence con-
ditions (θ, Ei) are practically lost.

2.2. Dynamics of the total EDF of the adsorbate atoms

The bounces lead to a change of the total EDF of the
adsorbate atoms P(E, nb), which is represented in the figures 4
and 5. Figure 4 presents the EDF of the adsorbate atoms after

Figure 2. Same as in figure 1, but for the lattice temper-
ature =T 300 Ks .

Figure 3. Energy loss distribution Pl(ΔE; nb) for different number nb
of bounces with 1�nb�40 at different incident angles θ and

=T 190 Ks (left) and =T 300 Ks (right). The converged distribution
(nb=40) is shown by the filled pattern.

Table 1. Variance σl(θ, Ts) (meV) of the ELDF for different incident
angles θ and lattice temperatures Ts. For θ=0°, 30°, and 60° the
incident gas atoms have the initial energy Ei/(kBTr/e0)=0.5, 0.62,
and 1.41, respectively.

Ts (K) θ=0° θ=30° θ=60°

80 3.50(4) 3.48(4) 3.60(6)
190 7.20(10) 7.48(12) 7.22(10)
300 10.13(24) 9.83(19) 9.77(14)
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one and two bounces at the lattice temperature of 190 K,
which corresponds to the ELDF displayed in figure 1. The
EDF is composed of trapped, quasi-trapped and continuum
states, where the contribution of the T states corresponds to
energies E<0 and the Q and C states contribute to the EDF
for E�0.

Figure 5 displays the EDF for different number of
bounces nb�40 at Ts=190 and 300 K, corresponding to
the ELDF in figure 3 and covering the entire time scale of the
MD simulations. As before, we clearly observe that the
convergence to the stationary distribution depends on the
incident angle and that it should be explained by the initial
population of the quasi-trapped states. We also find that the
converged distribution corresponds mainly to the trapped
states with the negative energies comparable to the depth of
the physisorption well ( » -E 78 meV0 ).

Next, we analyze the evolution of the high-energy tail of
the distribution functions. The tail with E�0 is due to the
quasi-trapped and continuum states. The fraction of these
states typically decreases with increasing nb (or time). The
lower or higher energies are mainly due to the Q and C states,
respectively. Note that the contribution of the Q states van-
ishes above some characteristic energy Ec, which is related to
the lattice temperature according to n= ·E k Tc B s with
n = ¼2 3. This effect can be clearly seen in figure 5. For
instance, the high-energy tail of the EDF at nb=40 strongly
decays above 40 meV for =T 190 Ks corresponding to
16.4 meV, and it extends up to 60–70 meV at the higher
temperature =T 300 Ks , which corresponds to 25.7 meV.

The reason, why the contribution of the Q states can be
observed in the EDF even in the regime of quasi-equilibrium
( n 30b ), is directly related to the detailed balance condition
derived in paper I [37]

» +( ) ( ) ( )[ ( ) ( )] ( )N t T t N t T t T t , 1T QT Q CQ TQ

which holds between the T and Q states. Here, TQT, TCQ, and
TTQ denote the transition rates from T to Q, from Q to C, and
from Q to T states, respectively. A finite but relatively small
fraction of the Q states is sustained by the excitation channel
T Q. By analyzing our MD data we found that this

situation is common for high lattice temperatures (Ts=190
and 300 K), see NQ(t) in figures 5 and7 of paper I [37]. The
same effect is also present for the lower =T 80 Ks when the
thermal desorption is strongly suppressed. It can be resolved
from the curve NQ(t) in figure 3 of paper I when plotted in a
logarithmic scale.

This behavior can be understood from the following
arguments. If the desorption of the trapped states to the
continuum is most probable via a two-stage excitation, i.e.,
 T Q C, the quasi-trapped states should be present as a

key ingredient of the desorption kinetics. In this case the high-
energy tail observed in P(E) is an intrinsic feature of the
present system. This behavior is further supported by the
temperature dependence of the transition rate T E

QT that is
analyzed in paper I.

3. Kinetic energy distribution of adsorbate atoms:
accommodation of normal and tangential energy
components

In paper I [37] two types of states temporarily localized near
the surface have been introduced. Typically, the quasi-trapped
trajectories are characterized by a fast accommodation of the
normal velocity component [39, 41]. The equilibration times
can be analyzed via the bounce number-dependent distribu-
tion functions for the parallel and normal kinetic energy
components: P(E⊥, nb) and P(EP, nb). They can be directly
related to the time-dependent distributions using the scaling
factor c from the time dependence of the average bounce
number, á ñ »( ) ·n t c tb (see paper I [37]). In the following,
we use the value = =·t a m E10 6.53 ps0

3
0 Ar h as a

time unit, where a0 is the Bohr radius, mAr denotes the atomic

Figure 4. Total energy distribution P(E, nb) after nb=1 (left
column) and nb=2 (right column) bounces at =T 190 Ks and
incidence conditions as in figure 1. The contribution of the trapped
states (NT) corresponds to E<0. The quasi-trapped (NQ) and
continuum (NC) states contribute for E�0.

Figure 5. Total energy distribution P(E, nb) for different number nb
of bounces with 1�nb�40 at different incident angles θ and

=T 190 Ks (left) and =T 300 Ks (right). The converged distribution
(nb=40) is shown by the filled pattern.
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mass of the argon atoms, and =E 27.211 eVh is the Hartree
energy.

3.1. Distribution function P ðE⊥
k ; nbÞ of the normal energy

component

First, we demonstrate the convergence of the normal comp-
onent ^Ek of the kinetic energy with increasing number of
bounces nb in figure 6. Three incident angles θ and two lattice
temperatures are compared. The incident kinetic energies are
the same as in figure 1. They are visible in the initial dis-
tribution ^( )P E t, 0.4k 0 , represented by the dashed blue lines
with two peaks at =^E 60k and 80 meV, which are computed
at the time ~ =t t0.4 2.6 ps0 , just before the full energy
exhibits the first jump due to the inelastic scattering. Note that
the value ^Ek is shifted from the incident kinetic energy ^Ei by
the depth of the physisorption well. The particles reside at a
distance of about 3–4Å from the surface and, hence, are
strongly accelerated in the physisorption potential well. The
initial distribution is very similar for the three angles. The two
peaks correspond to the energy in the physisorption well at
the two turning points, which corresponds to the atop and
hollow site, respectively. This fact explains the separation of
about 12 meV between the peaks. We conclude that the initial
scattering conditions are very similar for all three cases. As a
result, the subsequent evolution of the distribution function

^( )P E n,k b with increasing nb follows the same trend and
rapidly converges for nb>6. In particular, the distribution at
nb=15 practically coincides with the converged distribution
(see the filled pattern, which refers to nb=40 bounces).

The left and right panels demonstrate the effect of ther-
mal broadening specific to the given lattice temperature. For
Ts=300 K there is a reduction of the height of the dis-
tribution function at the origin, =^( )∣P E n0,k b n 15b

, an

increased half-width and a broader high-energy tail. In con-
clusion, the MD simulations prove indeed a relatively fast
convergence of the normal kinetic EDF.

3.2. Distribution function P ðE∥
k ; nbÞ of the in-plane energy

component

A similar analysis is performed for the parallel component Ek
of the kinetic energy. The corresponding result is displayed in
figure 7. It is immediately evident that the initial distribution
function ( )P E t,k taken just before the first bounce at
t∼0.4t0 significantly differs from the normal energy dis-
tribution shown in figure 6. It is peaked at the parallel kinetic
energy in the incident beam, q=E E sini i

2 . Up to some
separation distance, this value is not influenced by the gas-
surface interaction and, hence, the acceleration in the physi-
sorption potential is irrelevant. As a result, a strong correla-
tion with the initial energy is preserved for several first
bounce events.

For the three angles presented in figure 7, the parallel
components have been chosen accordingly as =E 0 meVi

(θ=0°), =E 3.98 meVi (θ=30°), and =E 27.26 meVi
(θ=60°). The requirement of a similar initial sticking
probability for the cases compared in section 4 results in a
relatively large parallel component for θ=60°, whereas the
normal components for the three cases stay comparable:

=^E 12.85 meVi (θ=0°), =^E 11.95 meVi (θ=30°), and
=^E 9.07 meVi (θ=60°).
This choice of initial parameters explains to a large extent

the slope of the distribution function after the first bounce.
Due to a broad energy perturbation, D ~E 15 meV, in a
single inelastic scattering event, specified e.g. by the half-
width of the distribution for θ=0° at nb=1, no qualitative
difference is observed for the incident angles 0° and 30° when

DE Ei . For θ=60° we observe a broad distribution of

Figure 6. Distribution of the normal kinetic energy component
^( )P E n,k b for different bounce numbers nb with 1�nb�40. Two

lattice temperatures (Ts=190 and 300 K) and three incident angles
(θ=0°, 30°, 60°) are compared. The incident kinetic energy for
each θ is specified in figure 1. The converged distribution (nb=40)
is shown by the filled pattern, and the dashed blue lines with the two
sharp peaks represent the initial distribution just before the first
bounce.

Figure 7. Distribution of the parallel kinetic energy component,
( )P E n,k b for different bounce numbers nb with 1�nb�40. Two

lattice temperatures (Ts=190 and 300 K) and three incident angles
(θ=0°, 30°, 60°) are compared. The converged distribution
(nb=40) is shown by the filled pattern. The blue solid line is the
prediction by the Boltzmann distribution, ( )P E T,k sB .
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similar half-width ΔE, centered around the initial energy
~E 27i meV. It gradually converges to the filled pattern

(nb=40) with the increase of the bounce number, but the
convergence is much slower than for the normal component
E⊥ (see figure 6). Even for nb=15 we still observe from
figure 7 that the population at low energies is reduced at the
expense of the population at high energies. The distribution
above Ei starts to decay significantly only for 6�nb�15 or
within  t10 ps 20 ps. On the same time scale, the frac-
tion of the quasi-trapped states NQ(t) is reduced from 20% to
8%. Hence, there is a direct relation between the NQ fraction
and the population of high-energy states in ( )P E n,k b . The
faster the depletion of NQ(t) due to the decay channels Q T
and Q C takes place, the faster the convergence of the in-
plane EDF to the quasi-equilibrium form is. The value of the
transition rates TCQ(TQ) (see paper I [37]), in its turn, crucially
depends on the surface kinetics and the smoothness of the
potential energy surface (PES) reconstructed by the Ar–Pt
(111) interaction potential. For a flat PES the parallel kinetic
energy component is less perturbed during a bounce event,
and the conversion of the EDF to its stationary form takes
longer.

As an example, we consider the small incident angles
θ=0° and 30°. Here, the NQ fraction is small already after
the first bounce (see figure 5 of paper I). As a result, at
=t 20 ps (or á ñ ~n 15b ) its relative contribution to ( )P E n,k b

is below 3% in figure 7, and the trapped states dominate. We
can observe that the distribution function (DF) is close to its
stationary form already after few bounces (nb∼6) in
this case.

Now the question arises why the distribution ^( )P E n,k b

converges much faster than ( )P E n,k b . The comparison of
figures 6 and 7 makes clear that ^( )P E n,k b contains the same
amount of the quasi-trapped states as ( )P E n,k b in figure 7.
However, its transformation to the stationary form is reached
already after few bounces (nb∼10). Moreover, the initial DF
is peaked at a much higher energy (60–80 meV). One main
reason is the trapping condition + <^E E 0k p with the
potential energy Ep, which specifies an upper bound for the
possible values of ^Ek . Hence, all trajectories with the high-
energy normal component vanish to the scattered fraction
very fast.

3.3. Relaxation of the in-plane EDF at low-temperature

In figure 8 we analyze the convergence behavior of the dis-
tribution of the parallel kinetic energy component at low
lattice temperature ( =T 80 Ks ) and two incident angles (30°,
60°). In contrast to the higher temperatures (see figure 7), the
convergence is not achieved at nb=15. There are significant
deviations from the DF at nb=40. They can be better fol-
lowed if the DF is compared with the Boltzmann prediction
for the lattice temperature of 80 K, see equation (2) below.
Indeed, both distributions seem to converge to the thermo-
dynamic prediction, when the adsorbate fully equilibrates
with the thermal bath presented by the lattice atoms. There are
still some discrepancies present at low and high energies. We

can conclude that at such low temperatures the bounce
number nb=40 is not sufficient to reach a quasi-stationary
distribution close to the Boltzmann prediction, even though
the trapped states dominate the DF for both angles already at
t>4.5t0 (30 ps) according to the analysis presented in
paperI [37].

When comparing the results shown in figure 8 with the
cases at higher temperatures displayed in figure 7, we actually
observe that the latter DFs have converged to the Boltzmann
curve specified by some effective temperature T for all three
angles and nb=40. In the case of a lattice temperature

=T 190 Ks (left panel of figure 7), we obtain the value
 ~T 150 K. At =T 300 Ks the effect of the subthermal

distribution becomes larger, and we find  ~T 200 K. Com-
pared to the equilibrium Boltzmann prediction of  =T Ts, the
measured DF shows an increased population of low-energy
states. All this indicates that while the full convergence to an
equilibrium function has been reached, the effective adsorbate
temperature remains different from the lattice temperature
with  <T Ts. We note that a similar ‘lag’ between T and Ts
has been measured for Ar on 2H-W(100) in [46] and for Ar
on Pt(111) in [47]. Our fitted values of T are found to be in
very good agreement with these experimental data.

On the quantitative level, the convergence to equilibrium
can be defined in terms of the effective temperature of the
adsorbate. By analyzing the normal and tangential compo-
nents (figures 6–8), we found that in most cases the DFs for
nb�9 can be well fitted by the Boltzmann distribution

» -( )
( )

[ ( )] ( )( )
( )

( ) ( )P E n
T n

E T n,
1

exp 2n
b n

b
k
n n

b

with the temperature T used as a time-dependent fit parameter
and n=(⊥, P). Using this relation, the average kinetic energy
á ñ( )( )E nk

n
b , given by

òá ñ = =( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )E n E E P E n T nd , , 3k
n

b k
n

k
n

k
n

b
n

b

should coincide with a true kinetic energy component as soon
as the model distribution(2) is close to the energy distribution

Figure 8. Distribution of the parallel kinetic energy component,
( )P E n;k b , at low lattice temperature, =T 80 Ks , at different bounce

numbers 1�nb�40. Two incident angles (θ=30°,60°) are
compared. The converged distribution (nb=40) is shown by the
filled pattern. The blue solid line is the prediction by the Boltzmann
distribution, ( )P E T,B k s .
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determined by the MD simulations. Such an analysis is pre-
sented for the lattice temperatures Ts=80 K and 300 K in
figures 9 and 10, respectively. The two dashed lines in the two
upper figures in the left panels show the decay of the MD
kinetic energy versus the number of bounces. The open dots
are the estimates based on equation (3), where the effective
temperature T( n) has been introduced as a fit parameter
(shown are the results for θ=60°).

Note that in the Boltzmann case the average kinetic
energy is a measure of the temperature: á ñ =( ) ( )( ) ( )E n T nk

n
b

n
b .

Hence, both dependences demonstrate how fast the adsorbate
effective temperature converges. As shown in figure 9 for
Ts=80 K, the temperatures TP and T⊥ (and the kinetic
energies á ñEk and á ñ^Ek as well) approach some effective
temperature T . It is comparable with the lattice temperature
Ts, which is shown by the horizontal dashed line. In agree-
ment with our previous discussion, we observe a much faster
relaxation of the normal component. For comparison, the
convergence of the normal energy distribution, ^( )P Ek , and of
the total kinetic energy distribution, P(Ek), versus nb can be
followed in the right panels. The two lower figures illustrate
the behavior of the average potential energy á ñ( )E np b as a
function of bounce number and of the corresponding dis-
tribution function (∣ ∣)P Ep for selected  n1 40b .

The corresponding analysis for the higher lattice temp-
erature, Ts=300 K, is presented in figure 10. The main
difference to the case with Ts=80 K is that the converged
effective temperature is  =T 200 K and is well below Ts.

The presented results bring us to the following
conclusions:

i. The Boltzmann distribution can approximately fit the
simulation data for the distribution functions.

ii. In this case, the average kinetic energy is a measure of
the effective adsorbate temperature T( n).

iii. In the long term, the value T( n) approaches some
stationary value, typically, below the lattice temperature
Ts.

iv. The MD simulations allow us to identify the equilibra-
tion times for different incidence conditions q{ }E T, ,i s .

4. Sticking coefficient

Now we focus on evaluation of the sticking coefficient and its
dependence on the lattice temperature and the incidence
conditions. Using our subdivision of particle trajectories, it is
clear that both trapped and quasi-trapped particles contribute

Figure 9. Left: convergence of the parallel and normal components
of the kinetic energy ( Ek ,

^Ek ) and potential energy (Ep) versus nb, for
the incident angles θ=30°,60° and lattice temperature Ts=80 K.
Right: associated evolution of the distribution functions of ^Ek , full
kinetic energy (Ek) and ∣ ∣Ep .

Figure 10. Same as in figure 9, but for the lattice temperature
Ts=300 K.

Table 2. Initial sticking probability and contributions of trapped (NT)
and quasi-trapped (NQ) particles, see equation (4). Four incident
angles and three lattice temperatures, Ts, are compared. The incident
energies (in units of room temperature Tr) are
Ei/(kBTr/e0)=0.5(0°); 0.62(30°); 0.84(45°); 1.41(60°).

Ts θ 0° 30° 45° 60°

80 K NT 0.694 0.594 0.398 0.121
NQ 0.095 0.173 0.317 0.594
Rst 0.789 0.767 0.715 0.715

190 K NT 0.570 0.522 0.405 0.187
NQ 0.094 0.154 0.231 0.466
Rst 0.664 0.676 0.636 0.653

300 K NT 0.531 0.493 0.417 0.218
NQ 0.074 0.124 0.194 0.402
Rst 0.605 0.617 0.611 0.620
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to this macroscopic observable defined as

q q q= +( ) ( ) ( ) ( )R E t N E t N E t, , , , , , . 4i i ist T Q

The contributions of the trapped and quasi-trapped states
to the initial sticking coefficient after the first bounce, nb=1,
corresponding to t0.4t0≈2.6 ps are given in table 2. In
particular, it is found that the contribution of trapped particles
to Rst decreases with increasing incident angle (and energy),
while that of quasi-trapped particles increases at the
same time.

The temperature dependence of the initial sticking coef-
ficient for normal incidence (θ=0°) can be compared with
MD simulation results of Head-Gordon et al [40]. Using the
condition + <^E E 0k p as the trapping criterion, they report
Rst(80 K)=0.72, Rst(180 K)=0.62 and Rst(300 K)=0.58.
Our values are systematically larger by 3%... 10%. This dis-
crepancy most probably originates from the different model
used for the Pt–Pt and Ar–Pt interaction potentials. In [40] the
platinum surface was described by a harmonic nearest
neighbor and next-nearest-neighbor interaction, and the Ar–Pt
interaction by a 6–12 Lennard-Jones potential. Furthermore,
the normal incident energy in [40] was Ei=20.72 meV
compared to Ei=12.85 meV used in table 2.

4.1. Energy-resolved initial sticking coefficient (nb=1).
Comparison with experimental data

During a collision event, the parallel momentum for a flat
surface is conserved and does not play an important role in
the trapping. Therefore, it can be assumed that the sticking
probability depends solely on the energy exchange of the
normal component in this ideal case, and that it scales as

q ~ ^( ) ( )R E R E,i kst st with q=^E E cosk i
2 . If this assumption

is valid, the measured sticking probabilities, obtained for a
series of incident particle trajectories with the varying grazing
angle θ and energy Ei, fit well with a common curve, when
plotted as a function of ^( )R Ekst .

Possible deviations from this ‘normal scaling’ ( qcos2 )
imply that the scattering surface is corrugated, e.g. due to the
binary gas-surface atom interaction. The scaling q( )R E cosi

n
st

with n<2 indicates a dependence on the parallel momentum
as well, whereas the limit n=0 refers to the dependence of
Rst on the total energy exchange between an atom and the
surface.

Energy-resolved initial sticking coefficients obtained by
our MD simulations at the lattice temperatures of 80, 190 and
300 K are shown in figures 11–13, respectively. In our
simulations the sticking coefficients have been evaluated at
three angles, θ={30°, 45°, 60°}, as a function of the inci-
dent energy Ei. The incident atoms were initially randomly
distributed within the area of the simulation cell to provide an
average over the scattering events covering the whole area of
the simulated sample. The simulation results are compared
with experimental data reported in [38].

The sticking probability decreases with the incident
energy Ei as well as with the rescaled energy qE cosi

n . Fol-
lowing the experimental data of [38], we used the exponents
n=1.5, 1.0 and 0.5 for the temperatures Ts=80 K, 190 K,

and 300 K, respectively. As a result of these scalings, most
data points after the first bounce (nb=1) shown on the left
side of figures 11–13 nearly fall on a single curve for different
combinations of Ei and θ.

Furthermore, much better agreement with the MD
simulation results reported in [40] for θ=0° can be resolved
by the comparison with Rst(Ei, θ) reported in figures 11–13 at
the rescaled energy q ~E cos 20i

n meV. Due to the expected
universal dependence of Rst, the results reported for θ=30°
and 45° should agree with the ones of [40] for θ=0°. This
comparison shows good coincidence of the results and
demonstrates that both models provide a reasonable descrip-
tion of the gas-surface interaction energies and sticking in the
thermal regime.

Figure 11. Dependence of the sticking coefficient Rst(Ei, θ) for Ar on
Pt(111) on the incident angle and energy for a lattice temperature
Ts=80 K. Ei is rescaled with qcos1.5 . Full symbols: our
simulations. Open symbols: experimental data from [38]. Left: initial
sticking coefficient after the first bounce (nb=1). Right: sticking
coefficient after a delay time tD=10 ps (see text).

Figure 12. Same as figure 11, but for Ts=190 K and a different
energy scaling according to qE cosi . The sticking probability
measured with the delay time tD=10 ps (right panel) better agrees
with the experiment [38].
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However, there still is a systematic discrepancy between
our simulation results for the initial sticking coefficient after
the first bounce and the experimental results, in particular, for
the highest temperature (left side of figure 13). The origin of
these deviations is analyzed in the following section, and a
solution of this problem is presented.

4.2. Energy-resolved stationary sticking coefficient. Choice of
the delay time tD

The best agreement with the experimental data and the
assumed scaling is observed at Ts=80 K (figure 11). As it is
shown in figure 3 of paper I [37], the scattered and the trapped
states converge already after t∼2t0−3t0 corresponding to
13 ... 19 ps. The defined trapped fraction is preserved on a
long time scale according to the estimated quasi-equilibrium
desorption rates TCT and TCQ (see figure 9 in paper I). Hence,
there is less ambiguity in the definition of the trapped states
both experimentally and in the simulations.

An uncertainty arises at the higher temperatures
=T 190 Ks and =T 300 Ks (left sides of figures 12 and 13).

Once the desorption rates TCT and TCQ have finite values, the
number of trapped states steadily decreases on a time scale of
several picoseconds, t∼15 ps (see figures 5 and 7 in paper I).
Hence, the sticking fraction is dependent on a delay time tD
when the trapped particles can be desorbed at t�tD and
counted as scattered. It is difficult to specify this parameter in
the experiment. Thus, the question arises how to compare
experiment and theory (simulation), and for what specific
value of tD? In the following, we discuss this problem more in
detail.

First, we note that the assumed scaling q q=( )E E cosi i
n

with the value n used to fit the experimental data does not
hold correctly for the MD data after one bounce for higher
temperatures at large energies and incident angles. Similar to
the low-temperature case (Ts=80 K), we get quantitative
agreement with the experimental results for θ=30°. How-
ever, deviations appear systematically for θ=45° and 60°.
They increase at larger energies, i.e., for Ei(θ)>0.05 eV in

figure 12 (Ts=190 K) and for Ei(θ)>0.025 eV in figure 13
(Ts=300 K). The MD results (left panel) correspond to the
initial trapped fraction and, hence, they should provide an
upper bound for the trapped fraction measured with some
time delay (experimental data). This is indeed the case for
both the temperatures, and the difference between the pre-
dicted upper bound and the experimental data increases with θ
and Ei(θ). In particular, the deviations at a fixed value of Ei(θ)
are always larger for θ=60° than for θ=45°. Note that the
absolute energy Ei is larger for θ=60° due to the scaling
factor qcosn (n�1). If we now refer to the desorption rate
TQT(T, E) (see figure 9 in paper I), which corresponds to the
first stage in the desorption process  T Q C, we find that
its value increases with energy. Hence, the desorption fraction
accumulated during a fixed time delay becomes larger for
θ=60° than for θ=45°. In our opinion, this is the main
reason for the increase of deviations at larger θ and Ei(θ).

In order to make a proper comparison, we propose to
introduce a fit parameter tD, i.e., a delay time specific to a
given experiment and related to a setup used to identify the
desorbed (or the trapped) fraction. The sticking probability
defined in the experiment can be written as

q q» = -( ) ( ) ( ) ( )R E R E t N t, , , 1 , 5i i D Dst
exp

st
MD

C

= +( ) ( ) ( ) ( )N t N t N t td , , 6D DC C 1 C 1

ò=

+

( ) [ ( ) ( )

( ) ( )] ( )

N t t t T t N t

T t N t

d , d

, 7

D
t

t

C 1 CQ Q

CT T

D

1

where NC(t1) is the fraction of atoms which experience a
direct inelastic scattering to continuum by the first reflection
from the surface (at some average time t1), ( )N t td , DC 1 is the
contribution from the atoms, which have been initially trap-
ped but desorbed during the time interval t1<t�tD.
Equation (7) specifies the relation to the transition rates from
the quasi-trapped and trapped states to the continuum.

For the present analysis, we defined tD∼1.5t0∼10 ps
empirically from a fit of a single MD data point to a single
experimental point, taken at the specific lattice temperature,
Ts=190 K, the incident angle, θ=45°, and the energy,
Ei(θ)∼0.12 eV, i.e.,

q q=( ) ( ) ( )R E T R E t T, , , , , . 8i s i D sst
exp

st
MD

The sticking probability, defined via equation (5) with
the fixed delay time tD=1.5t0, is now compared with the
experimental data. This comparison is displayed in the right
panels of figures 11–13. In general, we observe much better
agreement taking into account that the value tD was not
adjusted separately in each case. The results for Ts=80 K
remain practically unchanged, as there is no noticeable ther-
mal desorption on the time scale t�tD. Much better agree-
ment is now observed for θ=45° and 60° at Ts=190 K
(figure 12) and for θ=45° at Ts=300 K (figure 13). The
remaining discrepancy for θ=60° and Ts=300 K can be
further reduced by choosing ~ ( )t t2 ... 3D 0.

Now we argue that a proper choice of tD should be the
quasi-equilibration time t E. This is related with the procedure,
how the trapped fraction is determined experimentally.

Figure 13. Same as in figure 12, but for Ts=300 K. The incident
energy is rescaled as qE cosi

0.5 .
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Typically, the procedure is well defined at low lattice tem-
peratures (∼80 K). The detected kinetic energy distribution in
the angle-resolved reflected flux shows a bimodal distribution
with one sharp and a second broad maxima. The first max-
imum is related with the specular reflection (corresponding to
one-two bounces with the surface), and its position shows a
strong correlation with the incidence conditions. In contrast,
the second maximum stays independent, and, therefore, is
related with the trapping-desorption contribution of particles
which are temporarily trapped near the surface and partially
equilibrate. The relative contribution of both varies strongly
with the detection angle [29, 48, 49]. By choosing the
detection angle far from the incident one (where the specular
reflection dominates), the measured intensity is mainly due to
the trapped and quasi-trapped states. By analyzing the tem-
poral evolution of the energy spectra related with the trap-
ping-desorption fraction, one can study its convergence to a
quasi-stationary form, and extract the quasi-equilibration time
t E. Then, the integrated intensity taken at t�t E(=t D) can
be used as a definition of the trapped fraction and the sticking
coefficient. The resolved characteristic time t E can be com-
pared versus the MD simulations. From the theoretical side,
the value of t E can be determined independently using several
of the criteria mentioned in the previous sections. This
includes the convergence of the kinetic energy distributions,
the convergence of the average kinetic energy, and the time
dependence of the transition rates, see paperI [37].

5. Conclusion and outlook for plasma-surface
interaction

One of the fundamental aspects of rare gas-metal surface
scattering experimental studies is the phenomenological
division [49–51] of this process into two distinct channels: the
direct inelastic and the trapping-desorption one. At shorter
times a beam energy-dependent peak is observed that is
attributed to direct inelastic scattering. On the other hand, at
longer time scales, the energy (time-of-flight) spectra exhibit a
second, beam energy-independent peak that is attributed to
the trapping-desorption scattering. It shows nearly Maxwel-
lian behavior at the surface temperature Ts. These exper-
imental findings get a firm confirmation from the present MD
simulations, where the adsorbate equilibration kinetics has
been studied in detail. By performing relatively long simu-
lations we are able to distinguish and quantify two char-
acteristic regimes. At shorter times, i.e., within the first 5–10
bounces with the surface, corresponding to a few picose-
conds, the EDFs of the adsorbate atoms exhibit fast changes.
Then, at later times they converge to a quasi-stationary form,
which stays practically unchanged until the end of the
simulations. This fact confirms that the phenomenological
assumption of the two types of scattering processes is indeed
valid. However, we also found that the corresponding time
scales, for which these processes can be well separated,
strongly depend on the incidence conditions of the atoms and
on the lattice temperature. It was one of the goals of the
present study to make quantitative predictions on such

relevant time scales. The results can be used for a better
interpretation of experimental energy-resolved (time-of-flight)
spectra.

The combination of the present MD simulations, based
on microscopic gas-surface and binary atom–atom interac-
tions, with the rate equation model, described in more detail
in paper I [37], allows us to directly analyze the temporal
evolution of the trapping-desorption fraction. This quantity is
difficult to access experimentally. Therefore, our combined
model allows for valuable predictions of the time scales when
the behavior of the trapping-desorption fraction changes from
a non-stationary one to a quasi-equilibrium state. This was
demonstrated on the example of several macroscopic
observables.

The temperature dependence of the ELDF has also been
analyzed. The half-width of the ELDF exhibits a linear
scaling with the lattice temperature Ts. In the quasi-equili-
brium regime (t>t E) the ELDF is symmetric with respect to
zero energy. This justifies that the probabilities of excitation
and de-excitation become equal due to the energy exchange
with the lattice. In this case the adsorbate average kinetic
energy fully accommodates to some effective temperature T
which is comparable to Ts. In general, we found that the
accommodation time increases with the population of the
quasi-trapped states NQ. The latter increases with the angle of
incidence of the gas atoms.

The convergence of the parallel and normal components
of the kinetic energy has been studied for several typical
incident angles and Ts values. In agreement with previous
studies [39, 41, 52], the parallel component always shows a
slower convergence. The time-resolved kinetic EDFs can be
fitted by a Maxwellian distribution at some effective temp-
erature, which typically shows a (subthermal) ‘lag’ with
respect to the lattice temperature.

Finally, we checked the quality of our model by com-
parison with experimental data of the sticking coefficient [38].
While the experimental results for low lattice temperature
(Ts=80 K) have been accurately reproduced, systematic
discrepancies are observed for higher temperatures (Ts=190
and 300 K). To get better agreement with the experimental
data, we proposed to introduce a delay time, tD, which takes
into account the fraction of atoms which have been initially
trapped, but have desorbed at t<tD and counted in the
experiment as scattered. The empirical choice of this fit
parameter, as tD∼t E (10–30 ps), i.e., of the order of the
quasi-equilibration time, brings our MD data into much better
agreement with the experiments. This fact most likely
explains similar discrepancies that were observed in other
numerical simulations as well, see [39, 41, 53].

In summary, we studied the trapping-desorption pro-
cesses, being the dominant mechanism for the scattering of
rare gas atoms from metal surfaces, for the case of thermal
and subthermal impact energy. The simulation results gen-
erally agree with the experimental data and provide estimates
of the characteristic quasi-equilibration times, the energy loss
and kinetic energy spectra. The effects of the lattice temper-
ature and incidence conditions have been analyzed in detail.
Our theory and simulations are expected to be a useful tool
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for the analysis of atomic and molecular scattering, when the
trapping-desorption mechanism or the initial trapping fraction
(relative to the direct-scattered fraction) dominate.

Our results are expected to be of particular interest for
low-temperature plasmas at low pressure for which the con-
sidered energy range is of relevance. Due to the low degree of
ionization the behavior of neutral gas atoms in the vicinity of
a solid surface is crucial both, for fundamental understanding
and for many applications, for a recent overview see [54].
First of all, our results for the sticking probability can be used
to compute improved sticking coefficients of rare gas atoms
on a metal surface for typical low-temperature plasma con-
ditions. To this end, the present results for monoenergetic
atoms can be averaged with the proper energy and angle
distribution of atoms. Moreover, the same procedure can be
applied to nonequilibrium conditions in the plasma sheath
which are resulting e.g. from charge-exchange collisions.

Second, our results could serve as an input for particle
based simulations, such as particle-in-cell, MD or kinetic
Monte Carlo simulations, see [55] and references therein. The
present energy and angle resolved sticking probabilities will
allow to answer the question how a surface changes the dis-
tribution function and the temperature of neutrals in a plasma.
This may be of similar importance as in the case of secondary
electrons the temperature of which may differ substantially
from that of the plasma electrons [4]. Energy resolution was
found important for neutrals with energies exceeding 20 eV,
as they strongly affect the SEE coefficient of many metals [6].
Having access to similar detailed description of neutrals in the
low-energy range will be important to simulate chemical
reactions on a surface, the onset of adsorption and film
growth. Thus this information should allow for much more
accurate kinetic simulations of surface processes that have
predictive capability.

Third, the present method can be easily extended to other
material combinations, in particular for metal surfaces, pro-
vided suitable ab initio pair potentials or force fields are
available that can be used as input for MD simulations.

Fourth, the capability of our combined MD-rate equation
approach to perform accurate long time simulations can be a
valuable starting point to study slow processes such as surface
modification due to sputtering or film growth. The interaction
of plasmas with non-ideal surfaces is crucial for realistic
applications. For example, SEE is known to be much
enhanced in case of a ‘dirty’ surface [7]. Similar effects are
known to occur in field emission and have been accounted for
by phenomenological enhancement factors [56]. Interestingly,
our approach is not limited to an ideal metal surface but could
be equally applied to a realistic corrugated surface that
includes steps or defects and provide information on the time
dependence of the sticking properties. Of course this would
increase the computational effort significantly. Instead of a
fully selfconsistent approach one could start by investigating
the effect of surface roughness by selecting typical
configurations.

Finally, our approach should, in principle, also allow for
an ab initio study of adsorption processes. Here, the main
difference compared to the present study is that sticking of

atoms is not independent of the state of the surface. Instead, it
is possible to track the pre-existing adsorbed atoms and
include their influence on the sticking of atoms that arrive at a
later point in time. The present MD simulations can be easily
extended by including proper atom–atom pair potentials. At
the same time, the present rate equation model [37] can be
straightforwardly extended to inhomogeneous systems and to
the computation of atomic pair distribution or triple correla-
tion functions [57]. This provides a suitable route to the
computation of structural properties of surfaces in low-
temperature plasmas and to the comparison with exper-
imental data.
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