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Abstract
A combination of first principle molecular dynamics (MD) simulations with a rate equation
model (MD-RE approach) is presented to study the trapping and the scattering of rare gas atoms
from metal surfaces. The temporal evolution of the atom fractions that are either adsorbed or
scattered into the continuum is investigated in detail. We demonstrate that for this description
one has to consider trapped, quasi-trapped and scattering states, and present an energetic
definition of these states. The rate equations contain the transition probabilities between the
states. We demonstrate how these rate equations can be derived from kinetic theory. Moreover,
we present a rigorous way to determine the transition probabilities from a microscopic analysis
of the particle trajectories generated by MD simulations. Once the system reaches quasi-
equilibrium, the rates converge to stationary values, and the subsequent thermal adsorption/
desorption dynamics is completely described by the rate equations without the need to perform
further time-consuming MD simulations. As a proof of concept of our approach, MD simulations
for argon atoms interacting with a platinum (111) surface are presented. A detailed deterministic
trajectory analysis is performed, and the transition rates are constructed. The dependence of the
rates on the incidence conditions and the lattice temperature is analyzed. Based on this example,
we analyze the time scale of the gas-surface system to approach the quasi-stationary state. The
MD-RE model has great relevance for the plasma-surface modeling as it makes an extension of
accurate simulations to long, experimentally relevant time scales possible. Its application to the
computation of atomic sticking probabilities is given in the second part (paper II).

Keywords: plasma-surface modeling, low-temperature plasma, gas-surface interaction,
adsorption and scattering of neutral particles, molecular dynamics, rate equations, transition rates

1. Introduction

Low-temperature plasma physics has seen remarkable pro-
gress over the last decade. This concerns both fundamental
science studies and technological applications ranging from
etching of solid surfaces to plasma chemistry and plasma
medicine. In each of these applications, the contact between
particles of the plasma and a solid plays a crucial role. This
contact is very complex and includes a large variety of fun-
damental physical processes such as secondary electron

emission, sputtering, neutralization and stopping of ions and
adsorption and scattering of neutral particles as well as che-
mical reactions. In the majority of previous studies in low-
temperature plasma physics, these processes have been
omitted or treated phenomenologically. For example, in many
state of the art kinetic simulations based on the Boltzmann
equation, e.g. [1, 2] or particle in cell (PIC) simulations, e.g.
[3, 4] neutrals are treated as a homogeneous background, and
their interaction with surfaces is not included in the descrip-
tion. The fact that energetic neutrals maybe crucial for
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secondary electron emission was demonstrated in PIC simu-
lations of Derszi et al where neutrals above a threshold energy
of 23 eV were traced [5]. They also took into account the
effect of the plasma-induced surface modification by using
modified cross sections [6]. Similarly, Li et al studied the
effect of surface roughness on the field emission by including
a phenomenological geometric enhancement factor [7]. Not
surprisingly, a better understanding of plasma-surface inter-
action, which would lead to predictive capability, has been
recognized to be a major bottleneck for further progress in the
field [8, 9].

The goal of the present work is to present a microscopic
theory-based approach to a specific problem of plasma-sur-
face interaction: the scattering, adsorption and sticking of rare
gas atoms from a plasma at a metal surface. This is expected
to be particularly important at low pressures where the neutral
fraction of heavy particles is by far dominating over the
ionized component. Our approach presents a combination of
microscopic modeling within a Langevin molecular dynamics
(MD) approach with an analytical model, formulated as rate
equations for relevant surface states. This coupled approach
has the advantage of opening the way towards ab initio based
long-time simulations, as we will explain in detail below.

We start with a brief overview on previous theoretical
works treating the interaction of gas atoms with solid surfaces
and summarize their strengths and limitations. The energy
transfer and the scattering of rarefied gases from different
surfaces have been the subject of multiple studies. Much
effort has been devoted to determine an accurate scattering
model for gas atoms at a solid surface and a realistic
description of the involved collision processes. Already
Maxwell [10] proposed a simple model in his studies of gas-
surface interactions, where the scattered gas atoms are sepa-
rated into two fractions: one that is reflected specularly and
exchanges no energy, and a second one that is accommodated
completely and, eventually, desorbs with an equilibrium
distribution. Other studies have been focused on the evalua-
tion of the thermal accommodation coefficients [11].

The angular distributions for different gas atoms (helium,
neon, argon, krypton, xenon, and deuterium) scattered by a
single-crystal tungsten (110) surface has been intensively
analyzed by Weinberg and Merrill [12]. A direct measure-
ment of the velocity distribution of argon atoms scattered
from poly-crystalline surfaces has been in the focus of the
work of Janda et al [13]. These measurements allowed to
reveal a dependence of the average kinetic energy of scattered
argon atoms on the average incident kinetic energy and sur-
face temperature.

A theoretical treatment of the interaction of Ar atoms
with a self-assembled monolayer on Ag(111) in terms of the
stochastic scattering theory, including direct scattering, trap-
ping, and desorption, has been reported by Fan and Manson
[14]. Gibson et al [15] presented a detailed study of Ar
scattered from an ordered 1-decanethiolAu(111) monolayer.

All these detailed experimental and theoretical studies
have proven that the use of atomic probes as scattering pro-
jectiles can be a useful experimental tool for studies of
structure and dynamical properties of surfaces. The scattered

intensities can be measured as a function of the final trans-
lation energy, scattered and incident angles. Furthermore,
such analyses provide important information on surface cor-
rugation and temperature effects.

Presently, there exist three main theoretical research
directions in this area. The first one is based on kinetic theory
where important contributions are due to Kreuzer and
Teshima [16] and Brenig [17, 18]. More recently Bronold
et al studied the sticking of electrons at a dielectric surface
[19] and the neutralization of ions at a gold surface [20].
Overall, the resulting kinetic equations provide a powerful
semi-analytical tool to compute (mainly) stationary properties
of gas atoms or charged particles scattering from a surface
within suitable many-body approximations.

The second direction is based on ab initio quantum
simulations, most importantly Born–Oppenheimer density
functional theory (DFT) or time-dependent DFT (TDDFT).
The main advantage of the latter is that the dynamics of the
electrons and the internal excitation of adsorbed atoms and
molecules can be incorporated on a full quantum level.
Among recent applications of TDDFT, we mention the ana-
lysis of the chemical reaction dynamics of hydrogen on a
silicon surface [21] and the energy loss (stopping power) of
ions on graphene and boron nitride sheets [22]. An alternative
ab initio approach is based on non-equilibrium Green func-
tions (NEGF) and is advantageous when electronic correla-
tions in the surface are of importance, e.g. [23, 24]. Recently
NEGF simulations of the stopping power of hydrogen and
helium ions on correlated two-dimensional materials were
presented [25].

The third approach is semiclassical MD simulations that
are extensively used in surface science. Here, the quality
depends on the accuracy of effective pair potentials (or force
fields) whereas details of the electron dynamics are not
resolved. As examples of recent applications, we mention the
simulation of metal cluster growth and diffusion [26, 27] and
of the dynamics of bi-metallic clusters [28].

The temporal evolution of the atoms trapped near the
surface is of particular interest for the understanding of the
adsorption and scattering of neutral atoms. Their equilibration
kinetics is of fundamental importance for the understanding
of the dependence of the sticking probabilities on the energy,
incident angle and lattice temperature. However, these time
dependences are typically out of the range of both kinetic
theories and ab initio quantum simulations. While the former
usually concentrate on stationary properties, TDDFT and
NEGF simulations are computationally extremely expensive
and are limited to very short times of the order of a picose-
cond and small spatial scales. Therefore, MD simulations
represent the only approach capable of resolving the
dynamics on sufficiently long-time and spatial scales being of
experimental relevance. Although the typically required time
step in these simulations is well below one femtosecond,
recent progress in computer power made it possible to
investigate the relevant surface effects on a microscopic level
reaching simulation times of several hundreds of picoseconds.

In the present work (paper I and paper II) we perform
extensive MD simulations to study the scattering and sticking
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of argon atoms at a platinum (111) surface in a time-resolved
fashion. In order to analyze the sticking and thermalization
behavior, we introduce a novel approach: the trajectories of
gas atoms that are near the surface are sub-divided into three
classes: trapped (T), quasi-trapped (Q) and continuum (C)
states. We demonstrate that these states are the relevant
observables to analyze the sticking problem with excellent
statistics, high accuracy and temporal resolution. Further-
more, we demonstrate that the fractions of atoms in trapped,
quasi-trapped and continuum states obey a simple system of
coupled rate equations. Its solution allows us to significantly
reduce the computational cost that is otherwise spent on the
temporal resolution of individual particle trajectories. More-
over, we demonstrate how the transition rates between the
three states can be accurately extracted from our MD simu-
lations transforming the rate equations into an, in principle,
exact description. The accuracy of the latter is only limited by
the accuracy of the used pair potentials. Finally, our analysis
of the temporal evolution reveals that after a characteristic
equilibration time these transition rates become stationary.
This means that the rate equations become sufficient to study
the dynamics of the systems for longer times without further
need of MD simulations. This provides the potential to sig-
nificantly extend the temporal and spatial scales of the
simulations without compromising the accuracy.

The main goal of the present paper is to introduce this
new combined MD-rate equation approach in detail and to
test it thoroughly on a representative example: the scattering
of argon atoms at a platinum (111) surface. Even though for
low-temperature plasma applications other metals are more
common, we chose platinum as a test case. Here extensive
experimental and theoretical data are available for compar-
ison, which allow us to critically assess the validity and
limitations of our model. A detailed analysis of the argon
sticking probability, its dependence on temperature, incident
energy and angle is presented in a separate paper (‘paper II’,
see [29]).

The paper is organized as follows. In section 2 we
introduce the microscopic model of the gas-surface interac-
tion. The setup of the MD simulations is explained in
section 3. The tracking of the particle trajectories provides a
direct access to time dependencies of the energy loss dis-
tribution functions and the average momentum (kinetic
energy). The time-resolved evolution of the trapped, quasi-
trapped, and continuum states and its dependence on the
lattice temperature and incident angle is discussed in detail in
section 4. In sections 5 and 6 we introduce the rate equation
model, which allows us to reproduce the MD results of
section 4, and, moreover, has a potential to extrapolate these
data to much longer times being not accessible by usual MD
simulations (see section 6.4). The conclusions are given in
section 7.

2. Effective gas-surface interaction

In a common approach, the global interaction potential Vi
g of

the ith gas atom (a) with the surface (s) is decomposed into a

sum of pair potentials Vas according to
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and the jth atom of the surface, Ns denotes the number of
surface atoms, and the set of coefficients C C, , ,0 6 8n a{ } used
for the parametrization of the Ar–Pt pair potential is specified
in table 1. The distance to the surface, Z=zi, in equation (1a)
is treated as a parameter

r Z x y Z z , 2ij ij ij j
2 2 2= + + -( ) ( ) ( )

while the lateral atom position (xi, yi) is kept fixed to analyze
the dependence of the gas-surface interaction on the adsorp-
tion site (see below). However, this lateral position can be
varied for the calculation of the potential energy sur-
face (PES).

Such type of global interaction potential and its decom-
position into pairwise terms for the Ar–Pt(111) system has
been recently reconstructed using the periodic DFT approach
[30]. Similar analyses have been performed for the interaction
between an argon atom and gold surfaces [31]. In general, the
computation of such interaction potentials is still a challen-
ging task, but it follows a standard scheme. Ab initio calcu-
lations are performed for relatively small surface clusters,
where the reconstructed pair potential(1b) can be cross-
checked to compare their performance with state-of-the-art
van der Waals-corrected periodic DFT approaches. As a
result, accurate pair potentials suitable for MD simulations
are derived. The parametrization values used for the present
Ar–Pt(111) system are listed in table 1.

The obtained global Ar–Pt surface interaction potential is
presented in figure 1 as a function of the height z above the
surface plane z=0. For the unrelaxed lattice the uppermost
layer is placed at z=0. The lateral position of the Ar atom
has been varied in the x–y-plane to analyze the corrugation of
the PES. Several sites according to the lattice symmetry
(‘atop’, ‘bridge’, ‘fcc’ and ‘hcp’) have been chosen, as also
specified in figure 1 for the fcc(111) lattice. The

Table 1. Parameters of the Ar–Pt (111) interaction potential used in
equation (1b), taken from [30]: 3 485.40 eV0n = , α=3.30 Å−1,
C6=64.92 eV Å6, C8=0.0 eV Å8. The equilibrium distance to the
plane z=0 and the interaction energy E V rg

0 0= ( ) at the different
adsorption sites (see figure 1) are evaluated for a (7×4×2) slab
(number of unit cells in the X, Y and Z directions, each with 6 Pt
atoms) at the surface temperature Ts=0. The values r0

 and E0


correspond to the relaxed lattice when the positions of a few upper
layers are optimized (see text).

hcp fcc atop Bridge

r0 (Å) 3.3576 3.3576 3.5058 3.3788
E0 (meV) −76.8951 −76.8876 −68.8091 −75.7618

r0
 (Å) 3.2412 3.2412 3.3894 3.2624

E0
 (meV) −78.1302 −78.1246 −69.8872 −76.9785
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corresponding potential energy minima and distance to the
surface are given in table 1. Their difference with respect to
the energy of the fcc site is additionally plotted in figure 1. It
characterizes the corrugation of the PES.

In figure 1 (top) we compare the results obtained for the
‘ideal’ (unrelaxed) lattice with the optimized (‘relaxed’) lat-
tice. The latter was reconstructed at the surface temperature
Ts=0 by minimization of the total energy of the
(7×4×2) Pt slab. It accounts for a shift of a few upper
layers to more negative values of the z-coordinate, where the
bottom three layers are kept fixed at the same position as in
the unrelaxed lattice. This fact can be seen in figure 1 by a
shift of the potential energy minima (see the curves labeled
‘rel’) to smaller heights relative to the plane z=0. The
estimated binding energy of −78 meV is in good agreement
with the total adsorption energy of about −80 meV reported
in the experimental work of Head-Gordon et al [32]. This
value is also used as the reference for the optimization of the
empirical potentials aimed to reproduce the experimental
results on the vertical Pt(111)–Ar harmonic vibrational fre-
quency of r 50w ~( ) meV and on the trapping, desorption
and scattering data [33–35]. For an overview of the most
commonly used empirical potentials we refer to the recent
work of Léonard et al [30].

In order to perform a diffusive motion on the frozen
surface, i.e., lattice atoms are fixed in their equilibrium
position, the kinetic energy of the adsorbate atom should
exceed the energy barrier ΔE at the bridge site. However, no
such restriction applies at finite temperatures as the adsorbate
atoms can continuously exchange energy with the lattice
atoms. In the following, three different lattice temperatures
are simulated: Ts=80, 190, and 300 K, corresponding to
6.90, 16.38, and 25.7 meV, respectively. Hence, the thermal
energy supplied from the lattice is significant to overcome the
energy barrier for the inter-site hops in all cases.

3. MD simulation of the lattice at finite temperature

We perform deterministic MD simulations to study the Ar–Pt
(111) system. A (7×4×2) platinum crystal slab of 336
atoms (consisting of 6 atomic layers) is used. The sample is
divided into three parts. Three lower layers form a static
crystal. The atoms in this part are frozen at their equilibrium
positions and serve as a basement for the dynamical upper
layers. The three uppermost layers are an active zone of the
crystal. They interact dynamically with the incoming gas
atoms. Two bottom layers in the active zone consist of the
atoms which are used as a boundary thermostat to realistically
treat the removal of energy from the active zone. In this way
the excess kinetic energy can dissipate from the active zone.
This removal of excess kinetic energy is simulated by
restoring the temperature of the heat bath atoms using Lan-
gevin dynamics [36]. The Langevin term keeps the kinetic
energy of the lattice atoms at the value specified by the lattice
temperature Ts. Finally, the Langevin term was switched off
for the uppermost layer, and only dynamical correlations due
to the gas-lattice (Ar–Pt) and lattice atoms (Pt–Pt) binary
interactions are retained.

The system of N=Na+Ns atoms is described by the
potential energy

r r r rV V V , 3
i

N

j

N
as

i j
i j

N
ss

i j
1 1

a s s

åå å= - + -
= = <

(∣ ∣) (∣ ∣) ( )

where Na is the number of gas atoms. The interactions
between the gas atoms are neglected, i.e., V r 0aa =( ) ,
assuming sufficiently low gas density. This situation is quite
typical for low-temperature and low-pressure plasmas. Also,
in our analysis we concentrate on the influence of the inci-
dence conditions and lattice temperature on the adsorption
process. Effects due to pre-existing adsorbed atoms, i.e.
related to a finite coverage of the surface are a topic on its
own and will be studied elsewhere. This will also require an
extension of the rate equation model presented in section 5 to
an inhomogeneous system.

Effective atom–atom pair potentials are used for both Ar–
Pt (see equation (1b)) and Pt–Pt interactions. The interactions
between the Pt atoms are modeled using the modified
embedded atom potential, which quite accurately reproduces
the spectrum of the transverse and longitudinal phonons [37].

Figure 1. Top: global interaction potential V Zg ( ) for Ar–Pt (111) for
a set of adsorption sites specified by the lattice symmetry. Unrelaxed
(‘unrel’) and relaxed (‘rel’) lattices are compared (see text). Bottom:
corrugation of the global potential ΔE plotted with respect to the
energy of the hcp-site.
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In the directions parallel to the surface (x–y plane) periodic
boundary conditions are applied.

At the beginning of the simulation, i.e., before introdu-
cing the Ar atom, the crystal is allowed to equilibrate to the
surface temperature Ts. This procedure takes about 6 ps. The
equilibration is monitored by the instantaneous lattice kinetic
energy. After the equilibration phase (t>6 ps) the distribu-
tion functions of the tangential (Ek

) and normal (Ek
^) com-

ponents of the kinetic energy for the atoms in the three
dynamical layers have been evaluated. They quite accurately
reproduce the expected (one-dimensional and two-dimen-
sional) Boltzmann distribution at the temperature Ts

P E
E T

E T
1

exp , 4k

k s

k s
p

= -^

^

^( ) ( ) ( )

P E
T

E T
1

exp . 5k
s

k s= - ( ) ( ) ( )

This procedure confirms the correct implementation of the
heat bath via Langevin MD.

After the lattice has approached steady state, an Ar atom
is introduced at a height z=20Åabove the surface outside
the cut-off radius of the potential Vas. The trajectories are
obtained by integrating the classical equations of motion
using a fourth-order propagator algorithm [36], to accurately
account for the effect of the random force (the Langevin
term). The integration time step is fixed at 0.06 fs. Trapping
probabilities, energy exchange calculations and energy dis-
tribution functions are evaluated based on samples of
1000–5000 trajectories. During an ‘elementary’ event, the
impinging gas atom interacts with all atoms within the cut-off
radius r 10c

Ar Pt ~- Å. A simulated trajectory is stopped when
(i) the gas atom leaves the surface after undergoing one or
more collisions with the surface (called ‘bounces’) and attains
a distance above the surface greater than z rc c

Ar Pt= - and (ii)
the gas atom experiences more than nb=40 bounces.

The value nb=40 of the number of bounces was chosen
empirically. By tracking the temporal evolution of trajectories
with nb�40, we observe in most cases the thermalization of
the adsorbate atoms to the lattice temperature and conv-
ergence of the energy distribution functions to their quasi-
stationary form on the corresponding time scale. In particular,
we analyzed the accommodation of the parallel and
perpendicular momentum components. Our MD simulations
at low and high temperatures reproduce the general trend of a
slower accommodation of the parallel momentum component,
as it was first pointed out by Hurst et al [38] and confirmed in
many other analyses [30, 39–41]. This thermalization analysis
for the system Ar on Pt (111) is presented in detail in
paperII [29].

4. Time-resolved trapped, quasi-trapped and
scattered fractions

In many physical systems a strong chemical bonding to the
surface is the dominant trapping mechanism. In contrast, in
the present system the trapping process occurs due to the

physisorption potential well described by a van der Waals-
type potential, seeequation (1b). Depending on the lattice
temperature, the trapped particles desorb after a finite resi-
dence time (see section 6.4). The central question is whether
this time is sufficient for the adsorbate atoms to equilibrate
with the surface so that they eventually desorb with a (quasi)
equilibrium energy distribution function. We underline that
this is not an academic question but one of practical impor-
tance. Indeed, the theoretical description is expected to sim-
plify significantly in cases where thermalization is observed.

This problem was first put forward by Maxwell in his
studies of gas-surface interactions [10] and was further taken
up by Knudsen [42]. The basic concept is based on the
thermal accommodation and the efficiency of energy
exchange at the gas-surface interface. The latter crucially
depends on both the incident gas parameters and surface
characteristics. In the special case of complete accommoda-
tion the desorbed particles leave the surface with a distribu-
tion function specified by the Knudsen flux [14]. This type of
assumption is frequently used to explain experimental data for
the sticking probabilities of the adsorbate and for the dis-
tribution functions of energy, momentum and flux vector of
the thermally desorbed atoms.

One of our goals is to test this assumption by micro-
scopic modeling of the gas-surface interactions and analyze
the equilibration kinetics. Using realistic calculations based
on the microscopic model introduced in sections 2 and 3, we
aim at reproducing the available experimental data for the
sticking probabilities [43] and at providing a general frame-
work for the analysis of the temporal evolution of the atom
states localized near the surface. While we treat the scattering
classically, quantum–mechanical effects are included by
means effective interaction potentials, which are constructed
from ground-state DFT calculations [30]. Inelastic effects
observed in the scattering events at large energies and high
surface temperature are fully taken into account by the Lan-
gevin MD scheme [36].

4.1. Classification of particle trajectories: trapped, quasi-
trapped, and scattering states

The scattering from the surface is modeled by using mono-
energetic gas atoms with fixed values of incident kinetic energy
Ei and angle θ. A single collision with the surface introduces a
transition from an initial momentum, pi, to a new momentum
state pf . The final states ‘f’ are distinguished by the surface

normal, pf
^, and parallel, pf

, components, i.e. p p pf f f= +^  .
Correspondingly, the kinetic energy Ek of a particle with
momentum k is split into two orthogonal contributions,

E E E a, 6k k k= +^  ( )

E
p

m
b

2
, 6k

2
=^

^( ) ( )

E
p

m
c

2
. 6k

2
=

( ) ( )

In addition, every particle moves in the potential landscape of
the surface atoms that is characterized by the local surface
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binding (physisorption) potential, V, giving rise to the total
energy

r r rE E V . 7k= +( ) ( ) ( ) ( )

In the following, the dependence of {E, Ek, V} on the local
atom position r is not explicitly specified. In addition, all
energies and their corresponding distribution functions are
evaluated at a minimum distance r from the surface, where
the total energy of a gas atom is approximately conserved.
The temporal evolution of the total energy E(t) is shown in
figure 2. Here and in the following, we use the value
t a m E10 6.53 ps0

3
0 Ar h= =· as a time unit, where a0 is

the Bohr radius, mAr denotes the atomic mass of the argon
atoms, and Eh=27. 211 eV is the Hartree energy. It becomes
clear that plateau regions of E(t) are well separated from the
energy ‘jumps’ corresponding to the inelastic collision pro-
cesses. During this inelastic process, there is a strong energy
exchange with the surface atoms and, therefore, the evaluation
of equation (7) becomes meaningless.

After interaction with the surface a fraction of particles is
scattered back, whereas another fraction is (temporally)
trapped. A classification of the states is straightforward by
analyzing the particle energy.

I. Scattering states: the condition to leave the surface due
to the momentum exchange is E V 0k + >^ . The back-
scattered (unbound) particles are referred to as ‘con-
tinuum’ (‘C’) states.

II. Bound states: particles with E V 0k + <^ remain
localized near the surface. The localization depends
solely on the normal component, while the parallel
component can be arbitrary. Therefore, depending on
the sign of the total energy(7), such states can be
further sub-divided into

a. Trapped (‘T’) states: these are particles with E<0.
b. Quasi-trapped (‘Q’) states: these are particles

with E�0.

These three categories of particles are characterized by the
particle numbers Cn , Tn and Qn , respectively, with the number
of atoms N T T Qn n n= + + . Even for a fixed value N, the
three contributions can vary with time and with the incidence
conditions and the surface parameters. In other words, an
analysis of the dynamics of Cn , Tn and Qn should provide
detailed information on the gas-surface interaction and on the
specific system.

It is generally expected that the quasi-trapped states (Q
states) dominate at large incident angles θ (with respect to the
surface normal) at first. The parallel momentum pP does not
change much during a single reflection event. A particle
accelerates towards the surface and gains a large normal
kinetic energy of E⊥∼80 meV by passing the depth of the
physisorption well E0 (see table 1). As a result, it collides with
the surface close to the surface normal when the parallel
momentum pP remains practically unchanged.

If a particle remains localized, its final momentum after
every subsequent reflection can be projected sufficiently close
to the surface plane, and, hence, the parallel momentum can
be strongly perturbed by scattering at the atoms in the upper
surface layer. Therefore, it is important to analyze the tem-
poral evolution of the T and Q states and their equilibration
mechanism.

As an example, the classification of surface states for
three dynamical trajectories is presented in figure 2. In addi-
tion to the temporal evolution of the total energy E(t), the
distance z(t) to the surface is displayed as a function of time.
It allows us to uniquely identify reflection events. Notice that
a relatively fast energy exchange with the surface takes place
at each reflection. Between the reflections the total energy is
nearly conserved and correlated with the increase of the
height z(t). Once a particle moves in the opposite direction
to the surface, it can be reflected back at the turning point
specified by the kinetic and potential energy at the right
boundary of the physisorption well. As our MD simulations
show, here the total energy is conserved and, hence, the
reflection can be treated as an elastic process.

4.2. Transitions between T, Q and C states

Furthermore, the transition between the states along a particle
trajectory is indicated by the line n(t) in figure 2. The three
values n={−1, 0, 1} are used to identify the three states
{T, Q, C}, respectively.

The continuum states (n(t)=1) are observed before the
first collision (t/t0�0.4) and for the final states with
E V 0k + >^( ) , where both energies are evaluated at the atom
position r. The corresponding trajectories have no turning
point and leave the surface region. In between, such trajec-
tories can experience multiple bounces and transitions
between the trapped (n(t)=−1) and quasi-trapped (n(t)=0)
states depending on the sign of the total energy E(t).

By analyzing a statistical ensemble of the trajectories of n
(t), a first ‘physically’ relevant observation can be made.

Figure 2. Temporal evolution of the surface states n(t) (see main
text) along three dynamical trajectories based on the sign of the total
energy E(t) and the trapping condition, E V 0k + <^ . The curve z(t)
shows the distance of the particle from the surface. The lattice
temperature equals Ts=300 K, and the incidence parameters of the
atoms are Ei=36.34 meV and θ=60°.
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Before a particle is desorbed, it typically gets excited to a
quasi-trapped state. The direct excitation probability from a
trapped to a continuum state is significantly reduced at low
lattice temperatures (e.g. Ts=80 K), but it steadily increases
with Ts, as will be shown in detail in section 6.

For large statistical ensembles of the trajectory states n(t)
we can explicitly evaluate the three fractions N t t Nj jn=( ) ( )
with j=T, Q, and C, where tjn ( ) is the number of trajectories
with n(t)=j at a given instant of time. They satisfy the
normalization condition NQ(t)+NT(t)+NC(t)=1.

Figure 3 shows the temporal evolution of these three
fractions of Ar atoms influencing a Pt(111) surface at
Ts=80 K for two conditions of incidence as well as the
corresponding average number of bounces and their variance,

nbs , on the same time scale. The value Rst(t)=NQ(t)+
NT(t)=1−NC(t) taken at 0.4�t/t0�0.6 defines the
initial sticking probability. Detailed results on the present
system can be found in paperII [29]. This quantity remains
unchanged until a second bounce takes place. On average,
this second bound occurs around t∼0.7t0.

At low lattice temperature and incident atom energy, the
initial sticking fraction remains quite large: Rst≈0.75(0.65)
for θ=30°(60)°. The continuum states NC(t) show a satur-
ation already for t�1.5t0 corresponding to 9.8 ps. Within
this period the trajectories experience on average nb∼5
bounces with the surface.

In contrast, the ‘pure’ trapped states show a convergent
behavior at much later times, mainly due to an exponential-
like decay of the quasi-trapped states. Within the time interval
0.4<t/t0<2.5 there is a fast drop of NQ(t) from 58% to 5%
for θ=60° due to a fast conversion into trapped states. This
can be seen from the increase in NT(t), which is accompanied
by a practically constant value of NC(t) confirming that the
particles remain localized near the surface.

The case θ=30° shows a similar trend, where only the
absolute values Ni(t) are different. The fraction of trapped
states is large: NT∼60% already after the first reflection.

This is to be expected, because less energy is carried by the
parallel component at smaller angles, i.e., E Ek k

^ . Hence,
once the trapping condition E V 0k + <^ is satisfied by the
normal component, the total energy is negative in most cases
(E V 0k + < ). For θ=30° the simulations predict that the
initial fraction of quasi-trapped states can reach only
NQ∼18% and NQ completely decays into trapped states
within t∼3t0.

We conclude from figure 3 that the trapping becomes
more efficient at smaller angles. At the lattice temperature
Ts=80 K the NQ fraction vanishes after t∼5t0 (33 ps),
while the NT fraction remains quasi-stationary with no
noticeable thermal desorption observed on the simulated time
scale t<6t0 (40 ps).

5. Derivation of rate equations from kinetic theory

In this section we give a brief derivation of the time-depen-
dent integral equations for the population of surface states.
The transition probabilities can be expressed via microscopic
quantities. Finally, we demonstrate how the kinetic equations
can be reduced to a simplified description in terms of a rate
equation model and energy-distribution-averaged transition
coefficients. As we show in section 6, such a model allows for
an efficient description of the time-resolved transitions
between the trapped and continuum states. It also makes it
possible to analyze the time, energy and temperature
dependence of the sticking probability and the desorption
rates.

Following the derivation presented by Brenig [17], we
start with a general definition of the quantum mechanical
transition probability between two states of the scattering
atom. The transition of an atom from an initial (‘i’) state at
time t to a final (‘f’) state at time t t+ is given in terms of the
transition matrix element of the quantum mechanical time
evolution operator T f T if i, m t n= á ñm n ∣ ˆ ( )∣ . Here, the two indi-
ces denote the states of an adsorbate atom, {i, f}, and of the
substrate, ,m n{ }. Due to the unitarity of the evolution
operator the transition probability obeys the general properties

f T i a1, 8
f ,

2å m t ná ñ =
m

∣ ∣ ˆ ( )∣ ∣ ( )

f T i b1. 8
i,

2å m t ná ñ =
n

∣ ∣ ˆ ( )∣ ∣ ( )

Starting from the initial state, the transition probability to
a final state can be defined as

f T i T E E 9f i f i
2

,
2  m t n d tá ñ = + - -m n m n∣ ∣ ˆ ( )∣ ∣ ∣ ∣ ( ) ( )

which depends linearly on τ and contains a delta function to
guarantee the energy conservation. While this probability has
the familiar form of Fermi’s golden rule, the underlying
assumptions should be recalled and critically assessed. First,
it is assumed that their are no correlations between the
adsorbate atom and the surface. This allows to write the total
kinetic energy in the initial and final states as a sum of
adsorbate kinetic energy and surface energy. Second, the

Figure 3. (a) Time dependence of the continuum (NC), trapped (NT)
and quasi-trapped (NQ) fractions of Ar atoms impacting a Pt(111)
surface. The atoms have an energy of Ei=15.93 meV for the
incident angle θ=30° and of Ei=36.34 meV for θ=60°,
respectively. The lattice temperature equals Ts=80 K. (b) Average
number of ‘bounces’, n tbá ñ( ) (full black line). Pairs of solid (dashed)
lines correspond to the upper/lower bounds given by the
variance: nb nbsá ñ  .
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linear dependence of the transition probability on τ is a result
of the perturbation theory and is valid for small time differ-
ences τ. Third, the fact that the probability depends only on τ

(and is independent of t) implicitly assumes that the system is
stationary. Finally, the appearance of the delta function is a
consequence of the Markov approximation which assumes
that the correlation time has passed, and the energy spectrum
has become stationary, see e.g. [23, 44]. All these assump-
tions are justified in case of a macroscopically stationary
surface which is only weakly perturbed by the scattering
process of the adsorbate atom.

In particular, we can safely assume for collisions of
atoms with thermal and subthermal energy that the initial and
final states of the substrate remain close to thermal equili-
brium. The recoil energy, initially transferred to the surface
layer, is rapidly dissipated to the bulk due to fast atomic
vibrations taking place with the Debye frequency and a strong
coupling between the substrate atoms when compared to the
coupling with the adsorbate atoms. As a result, a saturation to
the thermal equilibrium within the substrate is expected on
time scales much shorter than the adsorbate thermal accom-
modation time.

Hence, as a further simplification, we can introduce the
transition probabilities averaged over the initial states of the
substrate (specified by the Boltzmann factor rn)

T f T i . 10fi
,

2å m t n rá ñ = á ñ
m n

n∣ ∣ ∣ ∣ ˆ ( )∣ ∣ ( )

This allows us to obtain the temporal evolution of the system of
gas atoms alone, which is obtained with the Pauli-Ansatz [17]

n t T n t , 11f
i

fi iåt+ = á ñ( ) ∣ ∣ ( ) ( )

which assumes low gas atom density so that all scattering
events can be treated as independent of each other. Using
the definition of the kinetic coefficients according to
T Tfi fi t= á ñ¯ ∣ ∣ , we end up with the system of coupled kinetic
equations between the initial and final states

n t T n t , 12f
i

fi iå=˙ ( ) ¯ ( ) ( )

where the limit τ → 0 has been taken. This result is well
known and directly expresses the connection between micro-
scopic calculations [45, 46] and kinetic theory [47, 48].

As a next step, we explicitly specify the quantum num-
bers {f, i} of the gas atoms moving near the surface. Since
quantum diffraction effects can be neglected due to the large
mass of the gas atoms, a quasi-classical treatment can be used.
Thus, it is sufficient to specify the states by the initial and
final momenta p p,i f{ }, which are additionally split into a
tangential and parallel component relative to the surface.
Consequently, we introduce the following notations

p pn t n p t n t n p t, , , , , , 13i i i f f f= =^ ^ ( ) ( ) ( ) ( ) ( )

p pT T p p, , , 14fi f f i i= ^ ^ ¯ ¯ ( ) ( )

in the kinetic equations. Note that the averaged transition rate T̄
(14) depends solely on the incoming and outgoing momentum.

As a next step, we assume that the transition rate Tfi¯
has only a weak directional dependence on the angle
between the vectors pi

 and pf
 . Its main dependence results

from two scalars, namely the perpendicular and parallel
kinetic energy components of the adsorbate atom, i.e., Tfi »¯

T , , ,fi f f i i   ^ ^ ¯ ( ). This assumption is important for the
derivation of the rate equations presented below. It can be
justified by the theoretical treatment of a classical collision
from vibrating surfaces [49–51].

In particular, in [52, 53] an explicit expression for the
zeroth-order reflection coefficient R0 has been derived for an
atomic projectile colliding with a surface consisting of dis-
crete scattering centers (of mass M) whose initial momenta
are given by an equilibrium distribution at the lattice temp-
erature Ts. This expression is given by

p p pR

E

m

p k T E

E E E

k T E

d ,

d d 8

exp
4

, 15

f i

f f

f

i

fi
B s r

f i r

B s r

0 2

3 4
2

1 2

2

p
t

p
W

=
D

´ -
- + D

D

^

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ∣ ∣
∣ ∣

( )
( )

and shows a dependence on several key parameters. Here, pi
^

is the z-component of the incident momentum, fi
2t∣ ∣ is the

form factor of the scattering center, which depends on the
interaction potential, and Ef (i) is the kinetic energy after
(before) the collision. The only parameter, which contains a
directional dependence, is the recoil energy expressed as

p p p
E

M

p p

M

p p

M M2 2 2
.r

fi f i f i f i
2 2 2 2 2

D =
D

=
-

+
-

-
^ ^    ( ) ( )

Due to the inelastic and Brownian-like character of the scat-
tering processes, the contribution of the first two terms should
dominate. The directional dependence (third term) is expected
to be weak. Thus, we can use E E , , ,r r f f i i   D » D ^ ^ ( ).
Finally, it is assumed that the scattering amplitude fit∣ ∣ is a
constant, with a value derived for hard sphere scattering.

Now we can proceed and explicitly define the population
of surface states and the inter-state transition probabilities by
the dependence on the kinetic energy components

n t n t n t n t, , , , , , 16i i i f f f   = =^ ^ ( ) ( ) ( ) ( ) ( )

T T , , , . 17fi f f i i   = ^ ^ ¯ ¯ ( ) ( )

In the following we omit the subscripts ‘i’ and ‘f’ and indicate
the initial and final states, instead, by using different energy
symbols:

, , 18i i  = ^ { } ( )

, . 19f f  ¢ = ^ { } ( )
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Following the detailed discussion given in section 4, all
possible surface and scattering states can be classified into
three categories using energy criteria. Now, the trapped,
quasi-trapped and continuous particle fractions introduced in
section 4 can be explicitly defined via integration of the time-
dependent energy distribution functions, which define the
population of different surface states, according to

N t n t n t

a

d d , , d , ,

20

T

V V

0 0 T

     


ò ò ò= =^

-
^

W

^

 ( ) ( ) ( )

( )

∣ ∣

N t n t n t

b

d d , , d , ,

20

Q

V

V0 Q

     
ò ò ò= =^

-

¥
^

W^

 ( ) ( ) ( )

( )

∣ ∣

N t n t n t

c

d d , , d , .

20

C
V 0 C

     ò ò ò= =
¥

^
¥

^

W

 ( ) ( ) ( )

( )
∣ ∣

Here, we introduced the shorthand notation d
s
òW with

s=T, Q, C for the distinction of different states and the
integration limits. This energy integral always comprises a
double integration over the tangential and normal kinetic
energy components. The upper integration limit for the tan-
gential component specifies that the trapped and quasi-trap-
ped states stay localized (bound) near the surface due to the
condition V 0- + <^( ∣ ∣ ) (or V0  ^ ∣ ∣). Here,

rV V =∣ ∣ ∣ ( )∣ is the potential energy in the physisorption well
where the total particle energy is nearly conserved. The sec-
ond integral, i.e., that over the parallel component, introduces
a distinction between bound and continuous states.

Using the definitions (18) and (19) for the notation of the
initial and final state energies, we can rewrite the kinetic
equation (12) in the form

n t T n t

T n t

, d , ,

d , , .

0

0

    

   

ò

ò

= ¢ ¢ ¢

- ¢ ¢

¥

¥

˙ ( ) ( ) ( )

( ) ( )

This equation specifies the temporal evolution of the three
types of states introduced in equations (20a)–(20c) by taking
the time derivative. This yields the result

N t T n t T n td d , , , ,

21

s
0s

       ò ò= ¢ ¢ ¢ - ¢
W

¥
˙ ( ) [ ( ) ( ) ( ) ( )]

( )

with s=Q, T, C. The first term defines the incoming flux
from all possible states ò′ and the second term represent the
outgoing flux from the state ò. The inner integral over ò′ can
be splitted into the contribution of different surface states,

T Q C
ò ò ò ò= + +

W W W
. This allows to introduce the energy-

resolved inter-state transition rates, which carry the energy-
dependence of initial state (s′=Q, T, C) and are integrated
over the energy of the final state (s=Q, T, C) according to

T Td , ,ss
s

   ò¢ = ¢¢
W

( ) ( )

for s ¢ Î W ¢. The diagonal terms with s=s′ are mutually
canceled in equation (21) and, therefore, they can be excluded

from the consideration. We rewrite equation (21) to the form

N t T n t

T n t

d ,

d , 22

s
s s

ss

s s

s

s

  

  

ò

ò

å= ¢ ¢ ¢

-

¢¹ W
¢

W
¢

¢

⎡
⎣⎢

⎤
⎦⎥

˙ ( ) ( ) ( )

( ) ( ) ( )

and end up with a set of rate equations

N t T t N t T t N t 23s
s s

ss s s s så= -
¢¹

¢ ¢ ¢˙ ( ) [ ¯ ( ) ( ) ¯ ( ) ( )] ( )

for the final states with s=Q, T, C, where

T t
T n t

n t

d ,

d ,
24ss

ss
s

s

  

 

ò

ò
=

¢ ¢ ¢

¢ ¢
¢

W
¢

W

¢

¢

¯ ( )
( ) ( )

( )
( )

are the energy distribution-averaged transition coefficients.
This set of coupled equations can be further simplified,

once the system reaches a quasi-equilibrium state. This
regime can be identified from the convergence of the
momentum and energy distribution functions to a quasi-sta-
tionary form, n t t n t, , E g=( ) ( ) · ( ). The distribution
converges to the shape n t, E( ) specified by the quasi-equi-
libration time t E, and stays unchanged up to some time-
dependent scaling factor γ(t). In this regime the transition
rates(24) also become time-independent with the constant
values

T
T n t

n t

d ,

d ,
25ss

E
ss

E

E
s

s

  

 

ò

ò
=

¢ ¢ ¢

¢ ¢¢
W

¢

W

¢

¢

¯
( ) ( )

( )
( )

defined by the quasi-equilibrium energy distribution of the
system in the different surface states (e.g. s′=Q, T, C). This
result will be used in the next section, where we demonstrate
how these specific values can be derived from MD
simulations.

6. Rate equation model

Based on equation (23), the temporal evolution of the three
types of surface states can be analyzed on the quantitative
level by the set of rate equations

N T T N T N a, 26Q TQ CQ Q QT T= - + +˙ ( ) ( )

N T T N T N b, 26T QT CT T TQ Q= - + +˙ ( ) ( )

N N N T N T N c, 26C Q T CT T CQ Q= - + = +˙ ( ˙ ˙ ) ( )

where the backwards transitions from the continuous to the
bound states are assumed to be negligible. The fractions of
atoms in the three states change with time due to different
decay channels. For instance, the first two terms in
equation (26a) take into account the decay of the Q states into
T and C states with the transition rate TTQ and TCQ, respec-
tively. This means we use the notation Tαβ for transitions of
the type β→α. According to(24), the transition rates in the
set of equations (26a)–(26c) are generally time-dependent,
i.e., Tαβ=Tαβ(t). They crucially depend on the energy dis-
tribution function of the initial and final state in general.
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Hence, the energy distribution function is non-stationary as
well until the system reaches quasi-equilibrium.

6.1. Reconstruction of the transition rates from the MD
simulations

Now we demonstrate how the rates Tαβ(t) can be extracted
from the MD simulation data. In figure 4 we plot the change
in the population of three states (Q, T and C) due to the net
transition fluxes

N t T t N t t ad d , 27QT QT T=( ) ( ) ( ) ( )

N t T t N t t bd d , 27TQ TQ Q=( ) ( ) ( ) ( )

N t T t N t t cd d . 27CQ CQ Q=( ) ( ) ( ) ( )

Two incident conditions are compared, which correspond to
the energy Ei=15.93 meV at the angle θ=30° and
Ei=36.34 meV at θ=60°, respectively, for the lattice
temperature Ts of 80 K. Each of the decay channels can be
uniquely identified by analyzing the initial and final state
along the trajectory for every bounce event shown in figure 2
for several examples. The transition rate can be extracted by
performing the numerical differentiation

T t
N t

t N t

d

d

1
28=ab

ab

b
( )

( )
( )

( )

for the curves shown in figure 4.

The following procedure has been used. First, the MD
data have been smoothed by a Gaussian kernel

f t
G t

G t
f t

G t G t G t

,

e , , 29

G
j

N
j

j

j
j

N

j

1

1

t t j

h

2

2 2

å

å

=

= =

=

-

=

-

( )
( )
( )

( )

( ) ( ) ( ) ( )
( )

where h tn= D· ( 2 10n = ¼ ), and N is the total number of
points on the curve. The new values are evaluated using the
weighted contribution on neighboring points, and, hence, the
statistical fluctuations at each point tj are suppressed. The
differentiation of fG with respect to time leads to

t
f t

G t

G t

t t

h
f t f t

d

d
. 30G

j

N
j j

j G
1

2å= -
-

-
=

( )
( )
( )

[ ( ) ( )] ( )

The smoothness of the derivative can be controlled by the
parameter h and adjusted to give better agreement with the
MD data. Typically, the value 6n ~ was found to be a rea-
sonable choice.

Alternatively, the transition rates can be expressed via the
integral form

N t T N T N

N t T N t t

d d d ,

d 0, d , .

31

t t

t
E

t

t

E E E

0
E

E

Eò òt t t t t= +

= +

ab ab b ab b

ab ab b

>( )∣ ( ) ( ) ( )

( ) · ( )
( )

Here, we used the assumption that the system state b has
reached a quasi-equilibrium state for t�t E. Then, the
transition rate has only a weak time dependence, i.e.,
T Tt

E
Et »ab t ab( )∣ . For the example shown in figure 3, the

equilibration time t E is about 3t0. Finally, the quasi-equili-
brium transition rate can be determined from equation (31) as
the ratio of the integrated population of states

T t
N t N t

N t t

d d 0,

d ,
. 32E

E

E
=

-
ab

ab ab

b
( )

( ) ( )
( )

( )

By a proper choice of the equilibration time t E, the estimated
rate T tE

ab ( ) should exhibit only a weak time dependence and
represent the asymptotic limit of the more general time-
dependent rate in equation (28).

The data N Nd , dab b{ } are provided by the MD simula-
tions. To determine the transition rates and the population of
states more accurately, we have used the statistical averages
over several thousand trajectories. We performed the analysis
similar to figure 2 for each set of initial parameters (Ts, Ei, θ)
and determined the fluxes between different states.

6.2. Test of the approach

The comparison of the transition rates given by equations (28)
and (32) is demonstrated in figure 4. We choose the time of
equilibration t t4E

0= for the rate TQT and t t1.2E
0= for TTQ,

TCQ. The results of equation (28) are represented by the dots,
and those from equation (32) by the solid lines. Both should
match at t=t E. The choice of t E in each case needs some
adjustments, such that T E

ab should be nearly constant for

Figure 4. Left: time dependence of the transition rates Tαβ (t). The
mono-energetic beam has the energy Ei=15.93(36.34)meV for the
incident angle θ=30°(60)°. Lattice temperature: Ts=80 K. Right:
change in the population N td ab ( ) of the three states (a = Q, T, C)
with the normalization N t N t N t 1Q T C+ + =( ) ( ) ( ) due to the decay
channel b a . The dashed line, deviating from the MD data
(dotted curve) at small times, is the prediction of the rates at quasi-
equilibrium extrapolated to t tE .
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t tE> . The quality of the quasi-equilibrium approximation
can be checked on the right panel. The rates Tαβ(t), recon-
structed from equation (28), accurately fit the MD data (pre-
sented by the dotted curves) for all simulation times and the
changes in state populations ( Nd QT , Nd TQ and Nd CQ).

Due to a statistical noise present in the MD data, the
extracted rates exhibit artificial oscillations, see e.g. TCQ(t). At
longer times they can be successfully removed using the
equilibrium estimator equation (32), which is much less
influenced by the statistical noise. The corresponding equili-
brium rate T E

ab is shown by the horizontal dashed curves on
the left panels. In particular, the rate TE

QT for the incident angle
θ=30°(60°) can reproduce the change in the population of
quasi-trapped states, N td QT ( ), for t t3 0> (t t4 0> ). The left
panel in figure 4 shows that the corresponding non-equili-
brium rate TQT(t) actually converges slowly to TQT

E on a time
scale, which depends on the incident angle.

A similar analysis can be performed for TTQ
E and TCQ

E .
Here, we observe that the quasi-equilirium assumption can be
introduced at a significantly earlier moment. Using t t1.2E

0=
we can nearly exactly reproduce the MD data (see the right
panel) for the conversion of the quasi-trapped states to the
trapped state, i.e., N td TQ ( ), and with some deviations
observed at t t2 0< the desorption of the quasi-trapped states
to the continuum, i.e., N td CQ ( ). The rates TTQ(t) and TCQ(t)
stay practically constant over the entire simulation period,
starting at t∼t0. However, at t<t0 the rates drop to smaller
values. The later behavior is artificial and should be explained
by the smoothing procedure applied in equation (29). It per-
turbs the slope of the MD curve around the time of second
reflection from the surface (t t0.6 0~ ).

In summary, we have demonstrated the efficiency of the
rate equation model and provided the proof of convergence to
quasi-equilibrium after some transient time t E.

The next important point concerns the analysis of the
impact of the lattice temperature Ts. In figures 5 and 6 we
compare results for the two temperatures Ts=80 and 300 K.
The incident angle is θ=30° and the initial gas energy is
Ei=49.42 meV. Compared to the case with Ei=15.93 meV
shown in figure 3, we observe an increase by a factor of 3 in

NC(t) at t t0.4 0~ in figure 5 for Ts=80 K, i.e., a much
higher fraction of particles is reflected after the first bounce.
At the same time, the initial population of the trapped states is
reduced by factor 6 (from 0.6 to 0.09), while the population of
Q states is increased by 50% (from 0.18 to 0.29). During
t t4 0 the Q states practically vanish due to the decay
channel Q T . Furthermore, the trapped state NT(t)
demonstrate stability against the thermal desorption at this
lattice temperature of 80 K. However, the temporal evolution
of the state populations is very similar to the case with the
incident energy Ei=15.93 meV (figure 3).

The situation changes at the higher lattice temperature
Ts=300 K shown in figure 5. The initial reflection coeffi-
cient N tC t t0.4 0~( )∣ is similar to the low-temperature case
(Ts=80 K), but then it rapidly increases with two char-
acteristic rates. As shown in figure 6, a higher rate is found for

t t0.4 1.20  due to a fast decay of the Q states into the C
and T states: TCQ�3.5 and TTQ�9. Because TTQ is larger
than TCQ, the conversion to the trapped states is the dominant
process when the fraction NQ(t) is large.

This trend changes at t∼t0 (or after 2–3 bounces with
the surface). As it is becomes clear from figure 5 the NQ

fraction is reduced by a factor of 2, while the NT fraction
reaches a local maximum. For t∼t0 the trapped states
dominate and are steadily converted to the continuum states.
Note that the decay of the T states takes place much faster
than the decay of the Q states.

The NQ fraction first saturates around 4% and then slowly
decays to 2% at t t6 0» . This behavior can be explained on
basis of the rate equations. As shown in figure 6 for
Ts=300 K, the rates of the mutual conversion T↔Q
between the states T and Q differ by a factor of 4. However,
they contribute in the rate equations (26a) and (26b) being
multiplied by the population factors and, hence, all incoming
and outgoing net fluxes can be compensated for a given state
(e.g. N t 0Q »˙ ( ) ) if the detailed balance condition

T t N t T t T t N t 33QT T CQ TQ Q» +( ) ( ) [ ( ) ( )] ( ) ( )

Figure 5. a) Time dependence of the continuum (NC), trapped (NT)
and quasi-trapped (NQ) fractions for Pt(111). The mono-energetic
atoms have an energy of Ei=49.42 meV for the incident angle
θ=30°. The lattice temperatures are Ts=80 and 300 K. (b) Average
number of bounces n tbá ñ( ). Pairs of solid (dashed) lines correspond to
the upper/lower bounds given by the variance: nb nbsá ñ  .

Figure 6. Left: time dependence of the transition rates Tαβ (t) for the
conditions in figure 5. Right: change in the population, N td ab ( ), for
Ts=80 and 300 K.
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approximately holds. Indeed, this condition can be satisfied
for the case shown in figure 5 when the ratio of both popu-
lations increases to NT(t)/ NQ(t)�4 for t t2 0> . The proof
why the relation(33) should hold in general will be given in
section 6.4.

One can use the rates shown in figure 6 to analyze how
fast the system reaches quasi-equilibrium. Using the data for
TQT(t) and TTQ(t), we estimate t t1.5E

0» for Ts=300 K and
t t3E

0» for Ts=80 K. Hence, a higher lattice temperature
favors a faster adsorbate equilibration. A more quantitative
discussion of the convergence to quasi-equilibrium is pre-
sented in paperII [29].

The corresponding analysis of the temperature effects for
the larger incident angle θ=60° is shown in figures 7 and 8
for the two temperatures Ts=190 and 300 K. Due to the
larger incident angle, the initial population of quasi-trapped
states is above 40% and slightly decreases with increasing
temperature. The population of trapped states is around 20%
for both the surface temperatures. While the values specified
at the time of the first bounce (t t0.5 0 ) are similar, their
temporal evolution is quite different due to an enhanced
thermal desorption at the larger temperature Ts=300 K. This
can be clearly resolved from the temporal evolution of the
continuum states, given by the curves NC(t). The trapped
fraction NT(t) seems to saturate during the time interval

t t1.5 20  , and it subsequently decreases for t t2 0> due
to thermal desorption going faster at Ts=300 K. This can
also be identified by a faster increase of the continuum frac-
tion NC(t). During the period t t2 60  the NT(t) fraction
is reduced by a factor of 1.5 from 30% to 20%, while it is
reduced only by 2% at Ts=190 K.

In contrast, the Q states show only a weak dependence on
Ts. They decay with a similar slope for both lattice tem-
peratures. As in figure 5, we observe a fast conversion via the
two channels Q T and Q C at first. The first channel
dominates due to a high rate TTQ (see figure 8). Its value
decreases only slightly with increasing temperature, whereas
the asymptotic value of the two other rates TE

QT and TE
CQ at

quasi-equilibrium drops by a factor of 2 by lowering the

temperature from Ts=300 to 190 K. This finding seems
quite reasonable. The de-excitation transition takes place,
when an excited state (a quasi-trapped trajectory) releases an
energy to go into a lower energy state (a trapped trajectory).

In contrast, the two transitions T Q and Q C
require that a finite portion of energy should be supplied from
the lattice. In this case, the excitation probability should scale
with the population of phonon modes and depend on multi-
phonon excitations. Here, a strong temperature dependence is
expected. Indeed, the data for TQT and TCQ presented in
figures 6 and 8 confirm this expectation and demonstrate a
clear temperature dependence. However, if the rates are
compared at the same lattice temperature, but different inci-
dent angles (see θ=30° and 60° in figure 4), the difference
in the rates does not exceed 10%.

We can conclude that the rate equations provide a very
useful tool to analyze the non-equilibrium kinetics during the
first few picoseconds. The temporal evolution of the popu-
lation of different states can be successfully described by the
net fluxes in terms of a set of statistically averaged parameters
—the transition probabilities Tαβ(t). These transition rates can
be accurately extracted from the MD data by analyzing the
temporal behavior of the particle trajectories. Typically, we
observe that the saturation of the transition rates at their
equilibrium values can be reached within t t t3 6E

0 0~ - , i.e.,
20–40 ps, for incident energies below 100 meV. The equili-
bration takes longer for larger incident angles/energies and
lower lattice temperatures.

6.3. Temperature dependence of the transition rates

Results for the transition rates at quasi-equilibrium for various
incidence conditions, i.e., different incident energies Ei,
incident angles θ and surface temperatures Ts, are summarized
in figure 9.

First, we discuss the de-excitation transition from Q to T
states (Q T ). The corresponding rate TE

TQ exhibits only a
weak dependence on temperature and incident angle/energy.

Figure 7. (a) Time dependence of the continuum (NC), trapped (NT)
and quasi-trapped (NQ) fractions for Pt (111). The mono-energetic
beam has the energy E 36.34 meVi = and the incident angle
θ=60°. Two lattice temperatures are compared: Ts=190 K and
300 K. (b) Average number of bounces n tbá ñ( ). Pairs of solid (dash)
lines correspond to the upper and lower bounds given by the
variance: nb nbsá ñ  . Figure 8. Left: time dependence of the transition rates Tαβ (t) for the

case shown in figure 7. Lattice temperatures: Ts=190 and 300 K.
Right: change in the population N td ab ( ) for both temperatures.
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It stays practically unchanged for incident energies
E 130i  meV and θ=30° when the lattice temperature is
varied in the range K T K80 300s  . Hence, the binary
atom–atom collisions play a major role here, while surface
temperature effects are secondary.

The value TE
TQ increases when the incident angle is closer

to the surface normal. It is about 20%–30% larger for θ=30°
than for θ=60°. However, this comparison is performed at
different incident energies to guarantee that the initial sticking
probability is the same for both the incident angles. If the
rates TE

TQ are compared at similar incident energies, the
observed difference is reduced. This becomes obvious e.g.
when comparing the cases Ei=49 meV at 30° versus
36 meV at 60° or 131 meV at 30° versus 141 meV at 60° in
figure 9. A more detailed analysis of the (θ, Ei)-dependence
would require a larger set of data.

Now, we consider the transition rates to a higher energy
state: T Q , T C and Q C . They reveal a strong,
partially linear dependence on the lattice temperature. In
addition, the rate TE

QT shows a clear dependence on the initial
energy Ei, whereas the rate TCT is almost independent of Ei.
Such behavior originates from a different portion of energy
transferred from the lattice and required for each type of
excitation. Much less energy is required for the T Q
transition, when only the parallel component of kinetic energy
needs to be changed to make the total energy positive. The
most probable contribution is expected from the trapped states
in the high-energy tail of the distribution function. Here, some
correlations with Ek

 in the incident beam should be present. In
contrast, during the T C excitation the normal component
Ek

^ needs to be changed significantly by an amount com-
parable with the depth of the physisorption well E0∣ ∣ being
about 80 meV for Ar on Pt(111) to bring a particle to the
continuum. Here, the correlations with the incident energies
below E0∣ ∣ should be small. Note also that the transition

probability TE
CT is a factor of 3–4 smaller than that of TE

QT and
TE
CQ on the average. Therefore, the most probable excitation

to the continuum is a two stage process: T Q followed
by Q C .

The transition rates presented in figure 9 have a direct
practical application. In combination with the rate equations,
they can be used to extrapolate the temporal evolution of the
state populations to longer time scales being not accessible by
usual MD simulations. In particular, this is important for the
analysis of thermal desorption at low lattice temperatures,
such as Ts=80 K, when a significant depletion of the trapped
states can be observed only on the time scales exceeding
those that are used in the present simulations, i.e., for t t6 0
(40 ps). Some applications of this idea will be discussed more
in detail below.

6.4. Analytical solution of the rate equations

In the present section we present the analytical solution of the
rate equations introduced in section 6.1 and demonstrate its
efficiency to predict the temporal evolution for longer times.
In the end, we derive the estimator of the average residence
time of the adsorbate atoms trapped on the surface prior to
their thermal desorption.

In case the transition rates are time-independent, the rate
equation model reduces to a system of homogeneous linear
differential equations of first order and can be solved analy-
tically. Therefore, we rewrite equations (26a)–(26b) in matrix
notation according to

N
R N

t

t
t

d

d
. 34=

( ) · ( ) ( )

Here N t N t N t,1 2=( ) { ( ) ( )} is a column vector with the ele-
ments N t N t tT

E
1 = +( ) ( ), N t N t tQ

E
2 = +( ) ( ), and R is a

2×2 matrix of the transition rates with the elements

R T T R T

R T T R T

, ,

, . 35
CT QT TQ

CQ TQ QT

11 12

22 21

=- + =
=- + =

( )
( ) ( )

Notice that the fraction of continuum states is not considered
here as it follows directly from particle number conservation.

Once the matrix R is diagonalized, the eigenvalues {λi}
and the eigenvectors ni{ } with i=1, 2 define the complete
solution which can be written in the form

N nt C e . 36
i

i
t

i
1

2
iå= l

=

( ) ( )

The solution of the eigenvalue problem is given by

n n

R R

R R R R

R R R R

1

2

4 ,

, , , . 37

1 2 11 22

22 11
2

12 21

1 1 22 21 2 2 22 21

l

l l

=- +

- +

= - = -



⎡
⎣⎢

⎤
⎦⎥

∣ ∣ ∣ ∣

(∣ ∣ ∣ ∣) )

( ) ( ) ( )

( )

Here, we used explicitly the fact that the diagonal elements
are negative, R R11 11= -∣ ∣ and R R22 22= -∣ ∣, as it follows
directly from the definition(35).

Figure 9. Equilibrium transition rates TE
ab between different states

(trapped (T), quasi-trapped (Q) and continuum (C)) for different
incident energies Ei at the three lattice temperatures Ts=80, 190
and 300 K and two incident angles θ=30° (left panel) and 60°
(right panel).
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The expansion coefficients {Ci} in (36) can be found by
inverting the initial conditions

N nC

N N t N N t

0 ,

0 , 0 . 38
i

i i

T
E

Q
E

1

2

1 2

å=

= =
=

( )

( ) ( ) ( ) ( ) ( )

They depend on the population of the trapped and quasi-
trapped states at the quasi-equilibration time t E and read

C N R
N

R

1
0

0
.1 2

1 2
1 2 1 22

2

21l l
l= 

-
- -

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( ) ( )

We summarize the result by writing the complete temporal
evolution in the form

N t C R C R

N t C R C R

e e ,

e e . 39

t t

t t
1 1 1 22 2 2 22

2 1 21 2 21

1 2

1 2

l l= - + -
= +

l l

l l

( ) ( ) ( )
( ) ( )

These results can be further simplified by taking into account
that the transition rate TTQ has the largest value (see figure 9).
The relation T T T T, ,TQ CQ CT QT , in its turn, leads to
R R R R, ,22 11 12 21∣ ∣ ∣ ∣ which allow us to further simplify the
solution by an expansion in the small parameter
g R Rij 22= ∣ ∣. When considering only the leading terms, the
eigenvalues and eigenvectors become

R O R g a, 401 2 11 22 22
4l = - D +(∣ ∣ ) ( · ) ( )( ) ( )

R R
R R

R
b2 , , 4022 11

12 21

22
lD = - + D D =∣ ∣ ∣ ∣

∣ ∣
( )

n nR R c, , , , 401 21 2 21l= D - D = -D( ) ( ) ( )

C N
N

R
d

1
0

0
, 401 1

2

21l
=

D
+ D

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

C N
N

R
e

1
0

0
402 1

2

21l
l= -

D
- D - D

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

and the dynamics of N1,2(t) are given by

N t N
R

R
N

N t N
R

N

0 1 e e

1 0 e e ,

0 e 1 e

0 e e . 41

t t

t t

t t

t t

1 1

12

22
2

2 2

21
1

1 2

1 2

1 2

1 2

g g

g

g g

l

= - +

+ - -

= + -

+
D

-

l l

l l

l l

l l

( ) ( )[( ) ]

( )
∣ ∣

( )[ ]

( ) ( )[ ( ) ]

( )[ ] ( )

The leading terms are easily identified by the smallness of the
parameter γ=(Δ/Δλ)=1.

Using this representation (41), we analyze both the short-
time and the long-time behavior. The expansion around the
initial time t=0 yields

N t N R N t R N t
N t N R N t R N t

0 0 0 ,
0 0 0 , 42

1 1 11 1 12 2

2 2 22 2 21 1

= + +
= + +

( ) ( ) ( ) · ( ) ·
( ) ( ) ( ) · ( ) · ( )

showing that the populations increase linearly both with time
and the initial rate values.

To analyze the long-time behavior, we order the eigen-
values, 1 2l l<∣ ∣ ∣ ∣ which are assumed to be real and negative,

i il l= -∣ ∣. Due to the exponential decay, the transient pro-
cesses characterized by λ2 vanish for long times, and the
asymptotic behavior is governed by the smallest eigenvalue,

λ1. Thus, we obtain from equations (41) the result in the limit
t 2 1

1l l- - (∣ ∣ ∣ ∣) ,

N t N
R

R
N

N t N
R

N

1 e 0 0 ,

e 0 0 . 43

t

t

1 1
12

22
2

2 2
21

1

1

1

g

l

= - +

= +
D

l

l

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )
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( )

( ) ( ) ( ) ( )

Consequently, both states decay with the same exponential
factor and satisfy a more general detailed balance equation
that can be derived directly from equation (39), without any
approximation,

R N t R N t . 4421 1 1 22 2l» -· ( ) ( ) · ( ) ( )

Now we take into account that R R, 11 22D ∣ ∣ ∣ ∣ and
R2 22l l» D - D » ∣ ∣. Using the definition(35) and

equation (44) we obtain the detailed balance equation

T N t T T N t , 45QT T TQ CQ Q» +· ( ) ( ) · ( ) ( )

showing that the decay of the quasi-trapped states, Q C
and Q T , is balanced by the thermal excitation, T Q , of
the trapped states. This fact also confirms that the ratio
NQ(t)/NT(t) saturates and is uniquely determined by the
transition rates in the quasi-equilibrium phase.

To verify the validity of the analytical solution (41) for
N t1 2 ( )( ) , we compare them with the MD results, NT(Q)(t), in
figure 10. Obviously, the agreement is very good, for t�t E.
This confirms the main advantage of the rate equation model–
its simplicity and ability to provide explicit results at arbitrary
times beyond t E.

As a second important application of the analytical
solution (41), we estimate the residence time, t R, which
characterizes how long the adsorbate atoms stay trapped near
the surface prior to thermal desorption. The derived asymp-
totic behavior yields

t . 46R
1

1
1

l=l
-∣ ∣ ( )

A more quantitative definition of t R follows from the condi-
tion that the adsorbate concentration is reduced by some
factor ν during the time interval t t,E R[ ]. Using the asymptotic

Figure 10. (a) Comparison of the analytical solutions (solid lines),
Ni(t), (equations (39) or (43)) with the MD results for NT(t) and NQ(t)
for the lattice temperature Ts=190 K. (b) The same for Ts=300 K.
Incidence conditions: θ=30° and Ei=105 meV. In both cases the
initial populations, N t N t,T

E
Q

E( ) ( ), are specified at t t3 19.6E
0= =

ps. The analytical solution remains valid for t�t E.
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limit of both concentrations(43), the residence time can be
defined solely in terms of the initial concentrations and the
stationary transition rates

t
N N

N
a

1
ln

0 0
, 47R

1

1 2
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g

=
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⎝
⎞
⎠

[ ( ) ( )] ( )
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1

g
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D

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( )
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( )

( ) ( ) ( )

Note that the ratio of concentrations in the logarithmic term is
typically of the order of one so that the estimate(46) results
again from (47a) with e 1g = - .

Finally, we summarize our results for t R, and its
dependence on the incidence conditions and the lattice
temperature in table 2. As expected, t R depends only weakly
on the incidence conditions for the same lattice temperature,
where the variations are within the statistical errors. This
confirms that any memory of the incidence conditions is lost
within t t3 20E

0= » ps, and the analytical solutions(43),
constructed for t tE , accurately describe both the decay
of the adsorbate and its characteristic residence time.
Our simulations predicted that the residence times are
t R=(170–180) ps for Ts=190 K and 50 55-( ) ps for
Ts=300 K.

For Ts=80 K, we need to extend our simulations
beyond t t6 400= » ps to provide a more accurate estima-
tion of the transition rates Tij

E and t R. A noticeable decay of
the trapped fraction due to thermal desorption just starts at
40 ps and, therefore, the simulations need to be extended to at
least 100 ps to ensure that the constructed analytical solution
fits well the MD simulation data similar to the cases presented

in figure 10. Still some estimate can be given based on the
parametrization of the experimentally determined desorption
times by a Frenkel–Arrhenius formula

t t e . 48R
p

U k TB= ( )( )

Here the prefactor tp typically varies for physisorbed gases
from 105 ps for helium desorbing from constantan [54] to
10−2 ps for xenon desorbing from tungsten [55]. By expres-
sing the adatom desorption frequency as t1 Rn = , the pre-
factor tp can be interpreted as an average time between the
successive bounces on the surface, and the Boltzmann factor
e U k TB- ( ) as the static desorption probability, with U being
comparable with the depth of the surface potential E0. We
found that such interpretation applies very reasonable to our
system. We estimated tp=1.52 ps and U=61.7 meV, by
applying the fit(48) to our data for t R at Ts=190 and 300 K
(see table 2). The temperature T was chosen to be the effective
adsorbate temperature T  [29], where we have used
T 150 K = for Ts=190 and 200 K for Ts=300 K. The
obtained fit parameters well agree with the depth of physi-
sorption potential, E 780 ~∣ ∣ meV (see table 1), and the
average time between the bounces, which varies in the
range from 0.93 to 1.10 ps for the lattice temperature

T80 K 300 Ks  . Here, we have used the time dependence
of average bounce number n tbá ñ( ), presented in figure 5
and 7.

Finally, the extracted fit parameters, tp and U, allow to
estimate the residence time, t R∼11000 ps, at the lattice
temperature Ts=80 K (using T 80 K = ). This value agrees
quite well with the lower bound for t R presented in table 2.

7. Conclusion

The studied kinetics of adsorption and desorption of atomic
projectiles physisorbed on solid metallic surfaces is the most
elementary process serving as a starting point for a detailed
understanding of more complex processes, i.e. for the che-
misorbed species which can undergo substantial structural
and electronic modifications. In the present study, we
restricted ourselves to physisorption at low coverage so that
the interaction between gas particles in the adsorbate can be
neglected.

Our main motivation was to explore the capabilities of
accurate MD simulations for the sticking of argon atoms on a
metal surface. However, the main obstacle is the enormous
difference in the time scales of the atomic motion being about
10−13 s which has to resolved in the simulations and of the
desorption processes ranging from 10−6 to few seconds in
experiments. These scales cannot be reached with MD
simulations, even on supercomputing hardware, without fur-
ther approximations. Therefore, we developed a new
approach that couples MD simulations to an analytical rate
equations model which has allowed us to extend the calcu-
lations to several hundreds of picoseconds, and further
extensions are possible as well. The rate equations are not
trivial, as one first has to realize that atoms near the surface
after the first scattering event have to be classified into three

Table 2. Residence time of Ar on Pt (111) estimated from
equation (47a) (with e 1g = - ) for different incidence conditions
(θ and Ei) and lattice temperature Ts. The last column shows the
deviation from a more simple estimate(46).

Ts θ Ei (meV) t R (ps) t tR R
1l

80 K 30° 15.9 >7900 0.99
60° 36.3 >8000 0.98

190 K 0° 12.8 184(10) 0.95
30° 15.9 179(10) 0.95

49.4 165(10) 0.92
105.3 182(10) 0.88

60° 36.3 163(10) 0.91
112.7 169(10) 0.80

300 K 0° 12.8 57(5) 0.90
30° 15.9 56(5) 0.90

49.4 52(5) 0.87
105.3 50(5) 0.85
131.1 49(5) 0.85

45° 21.6 55(5) 0.90
100.7 46(5) 0.82

60° 36.3 56(5) 0.86
112.7 50(5) 0.78
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possible categories: continuum (desorbed), quasi-trapped
state (moving in the surface plain) and trapped ones.

Most importantly, we have demonstrated that this
combination of MD and rate equations can be performed
successfully without loss of accuracy, for times exceeding
the equilibration time t E. The key is that the time t E and
all relevant input parameters to the rate equations–the
transition rates between the particle categories—are directly
extracted from the MD data for which a reliable procedure
has been developed. The rates are found to have a strong
time dependence, during the initial period, until they
saturate for times t around the equilibration time t E,
after which they remain constant. i.e. T t Tt t

E
E »ab ab>( )∣ .

These stationary values are determined by the shape of the
quasi-equilibrium energy distribution function of the atoms
in contact with the surface which is discussed in detail in
paperII [29].

Let us now critically discuss limitations and possible
improvements. First, our statistical approach, of course, does
not contain a microscopic treatment of the individual quantum
scattering events. The dynamics were treated semi-classically
by adopting binary interaction potentials that reconstruct the
PES precalculated by state-of-the-art DFT calculations [30].
Further improvements are possible by using more accurate
force-fields in the MD simulations.

Second, the derivation of the rate equations in section 5
was based on several assumptions: our starting equation (9)
for the transition probability was based on a standard Mar-
kovian approximation for the interaction with the dissipative
subsystem. Specifically, we ignored possible correlations
between different adsorbate states, i.e., the memory effects for
inter-state transitions. Next, we have assumed that the pho-
non-induced transitions dominate, while thermal excitations
of the solid are rapidly dissipated due to fast vibrations and
the coupling of the substrate atoms. At the same time, the
excellent agreement with the MD simulations provides strong
support for these assumptions. On the other hand, we
underline, that our rate equations are valid only at low cov-
erage with adsorbate atoms. At higher coverage, surface states
will be blocked by adsorbed atoms. These effects can be
straightforwardly included into the rate equations which then
become nonlinear in the concentration. Such extensions will
be presented in a future study.

Third, the rate equations description becomes very effi-
cient once the total system of gas plus surface has reached
thermal equilibrium. The main requirement is that the
relaxation time for an atom on the surface to reach local
equilibrium is much less than the typical residence time of an
atom on the surface. In this regime, the gas atoms lose
memory of their initial state and become randomized with
respect to energy and momentum. Interestingly, this situation
is particularly well fulfilled at low lattice temperatures,
Ts�80 K, when the thermal desorption is extremely slow
presenting a challenge to MD simulations. The particle tra-
jectories must then be integrated during a very long residence
time. Moreover, to obtain a good statistics over the desorption
rates, the angular and velocity distributions, thousands of
trajectories must be sampled. To make the problem tractable,

techniques for treating ‘rare events’ have been proposed
[56, 57], for an overview see [58]. In particular, studies of the
thermal desorption of Ar and Xe from Pt(111) have been
conducted by means of the stochastic classical trajectory
approach [59, 60] when the residence time exceeds 1 s.

Finally, the present simulations did only consider the
scattering of single atoms, one at a time. In the case of
plasmas in contact with a surface this is justified at suffi-
ciently low pressures and particle fluxes to the surface. As a
consequence, at long times the fraction of trapped and quasi-
trapped atoms is slowly decreasing, see figure 10. For the
computation of the sticking probability [29] and of the resi-
dence time these time scales are not essential. However, for
other applications such as the growth dynamics of an adsor-
bate layer the long-time behavior is of direct interest. In that
case it is expected that the decay of the adsorbed fractions is
compensated by the continuous influx of atoms from the
plasma leading to a quasi-stationary state. The present rate
equations model can be straightforwardly extended to include
this flux as a source term. This will enable one to study these
processes systematically in dependence on the plasma
conditions.
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