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Abstract

The physical processes at the interface of a low-temperature plasma and a solid are extremely

complex. They involve a huge number of elementary processes in the plasma, in the solid as

well as charge, momentum and energy transfer across the interface. In the majority of plasma

simulations these surface processes are either neglected or treated via phenomenological

parameters such as sticking coefficients, sputter rates or secondary electron emission

coefficients. However, those parameters are known only in some cases, so such an approach is

very inaccurate and does not have predictive capability. Therefore, improvements are highly

needed. In this paper we briefly summarize relevant theoretical methods from solid state and

surface physics that are able to contribute to an improved simulation of plasma-surface

interaction in the near future. Even though the (quantum–mechanical) equations of motion for

the participating charged and neutral particles are known, in principle, full ab initio quantum

simulations are feasible only for extremely short times and/or small system sizes. A

substantial simplification is achieved when electronic quantum effects are not treated

explicitly. Then one arrives at much simpler semi-classical molecular dynamics (MD)

simulations for the heavy particles that have become the main workhorse in surface science

simulations. Using microscopically (i.e., density functional theory) founded potentials and

force fields as an input, these MD simulations approach the quality of ab initio simulations, in

many cases. However, despite their simplified nature, these simulations require a time step

that is of the order or below one femtosecond making it prohibitive to reach experimentally

relevant scales of seconds or minutes and system sizes of micrometers. To bridge this gap in

length and time scales without compromising the first principles character and predictive

power of the simulations, many physical and computational strategies have been put forward

in surface science. This paper presents a brief overview on different methods and their

underlying physical ideas, and we compare their strengths and weaknesses. Finally, we

discuss their potential relevance for future plasma-surface simulations. The first class are

‘acceleration’ techniques that include metadynamics, hyperdynamics, temperature accelerated

dynamics, collective variable driven hyperdynamics and others. Recently we have presented a

novel approach: selective process acceleration (Abraham et al 2016 J. Appl. Phys. 119

185301) which we discuss in some more detail. The second promising route to longer

accurate simulations is dynamical freeze out of dominant modes which we have introduced

recently for the simulation of neutral atom sticking on a metal surface (Filinov et al 2018 this

issue arXiv:1802.03466). In this article we give a more general view on this method that
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allows to accurately combine first principles MD simulations with semi-analytical models and

discuss possible applications that are of potential relevance for plasma physics.

Keywords: plasma-surface interaction, molecular dynamics, ab initio simulation, multi-scale

modeling

1. Introduction

Recent progress in low-temperature plasma physics, both, in

experiments and applications [1, 2], creates an urgent need for

accurate simulations of the plasma-solid interface. Even

though there have been remarkable recent advances, both, in

plasma modeling and surface science simulations, the com-

bination of the two is still at an early stage. Current simula-

tions in low-temperature plasma physics, often omit plasma-

surface processes or treat them phenomenologically. Let us

take as an example the treatment of neutrals. In advanced

kinetic simulations based on the Boltzmann equation, e.g.

[3, 4] or particle in cell (PIC-MCC) simulations, e.g. [5, 6]

neutrals are treated as a homogeneous background, and their

interaction with surfaces is not included in the description.

However, the effect of energetic neutrals maybe crucial for

secondary electron emission (SEE), as was demonstrated in

PIC simulations of Derszi et al where neutrals above a

threshold energy of 23 eV were traced [7]. The second

example is the impact of the properties of the surface, such as

surface roughness or oxidation or coverage by an adsorbate,

on the behavior of the plasma. Using realistic surface prop-

erties–as they emerge upon contact with a plasma–drastically

alters the plasma-surface interaction compared to the case of

an ideal (i.e. clean and perfect) surface. This has been studied

in great detail for the case of SEE by Phelps and Petrovic [8],

and this was taken into account in PIC simulations via

modified cross sections in [7]. In this work it was found that a

realistic (‘dirty’ [8]) surface gives rise to a significant increase

of the ion density, even far away from the electrode. The data

of [8] suggest that there remain substantial uncertainties in the

values of the SEE coefficient. In a real plasma treatment

experiment a ‘clean’ surface may correspond to the initial

state of an electrode which, ultimately, turns into a ‘dirty’

metal that is covered by adsorbates or an oxide layer.

Similarly, Li et al studied the effect of surface roughness

on the field emission by including a phenomenological geo-

metric enhancement factor [9]. The third example is related to

plasma electrons hitting a solid surface. The standard

assumption in simulations is that these electrons are lost

without reflection, e.g. [10], and only recently a microscopic

calculation of the electron sticking coefficient was performed

by Bronold and Fehske [11]. They also studied the charge

transfer when a strontium ion from the plasma approaches a

gold surface [12].

The latter quantum–mechanics based approaches are very

promising but they are still at a very early stage of develop-

ment. While they clearly indicate the importance of an

accurate treatment of plasma-surface processes, they cannot

yet make reliable predictions. The reason is that a huge

variety of complex physical and chemical processes occur at

the plasma-solid interface, which include SEE, sputtering,

neutralization and stopping of ions, adsorption and desorption

of neutral particles as well as chemical reactions, for an

illustration, see figure 1. Moreover, the typical particle den-

sities in the plasma and the solid differ by many orders of

magnitude and to completely different physics active on both

sides of the interface: low-density gas-like behavior in the

plasma versus quantum dynamics of electrons in the solid.

Furthermore, the density gap gives rise to a huge gap in

relevant space and time scales, seefigure 2.

The first step to tackle these problems is to have a look at

the theoretical approaches that have been developed in solid

state physics to describe a surface that is exposed to a

plasma. These methods are based on density functional

theory (DFT) and various additional many-body methods

that allow to treat correlated materials. However, these

methods typically focus on the ground state properties of

the solid. In contrast, in the presence of a plasma, particle

and energy fluxes to and from the solid occur giving rise to

nonequilibrium effects and high excitation. Therefore,

as the second step, one has to consider nonequilibrium

methods that describe the solid and the plasma-solid

interface under these conditions. These include time-

dependent ab initio (quantum) methods DFT, nonequili-

brium Green functions (NEGF), and quantum kinetic

theory. However, these approaches are extremely time

consuming and allow one to cover only small systems for a

few femtoseconds. Therefore,

the third step consists in additional simplifications, mostly,

in eliminating the quantum effects from the dynamics of the

interface. This leads to semi-classical molecular dynamics

simulations for the heavy particles where all quantum

effects are being ‘absorbed’ into effective pair interaction

potentials or force fields. With accurate force fields

(typically based on ab initio DFT simulations) the resulting

MD simulations are very accurate and of first principle

character (fully solving Newton’s equations). This is still

very challenging computationally because stable solution of

these equations requires a time step of about one

femtosecond. Therefore, there is no straight way to reach

experimentally relevant time and length scales, even on

supercomputers. This leads to

step four: invoking additional physical ideas that allow one

to either accelerate or extend these first principles MD

simulations, without compromising the accuracy, to the

time scales of interest. Even though this may seem

impossible, a number of powerful and successful concepts

have been developed in Statistical physics, many-body

physics, quantum chemistry and surface science. One of the

goals of this paper is to present an overview on those
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concepts that might be of relevance for plasma-surface

simulations in the near future.

This paper is organized as follows. In section 2 we give a

brief summary on the theoretical methods that are required to

accurately simulate plasma-surface processes and discuss

their problems. In section 3 we give a brief overview on the

acceleration approaches that are of potential relevance for

plasma-surface interaction. The first group of methods—

acceleration of phase space sampling—is discussed in

section 4 whereas the second method—coarse graining

approaches—is the context of section 5. Then we discuss in

more detail one of the latter approaches—dynamical freeze

out of dominant modes—in section 6. The conclusions are

given in section 7.

2. Challenges in the simulation of plasma-solid

interaction

An accurate simulation of plasma-surface processes, first of all,

requires a reliable description of the solid (step one above). To

this one first of all needs to obtain the ground state properties of

the solid–the energy spectrum (band structure) and the Kohn–

Sham orbitals—which is done by DFT simulations, see right

part of figure 2. However, DFT is known to have problems, in

particular, in treating materials with strong electronic correla-

tions including various oxides. Here, many-body approaches

are being used that include the Bethe–Salpeter equation,

dynamical mean field theory of quantum Monte Carlo.

If the solid comes in contact with a low-temperature

plasma (step two above), energetic electrons and ions may

excite the electrons of the solid and the lattice. This is already

not captured by ground state DFT but requires time-dependent

extensions, see the approaches listed in the central box of

figure 2. role. Recently some elementary processes such as the

impact of ions (stopping power) and neutralization of ions at a

surface and chemical reactions were studied by ab initio

quantum simulations. This includes Born–Oppenheimer MD

(coupling of DFT for the electrons to MD for the ions) and

time-dependent DFT (TDDFT), e.g. [14, 15]. Ab initio NEGF

simulations are an alternative that allow for a more accurate

treatment of electronic correlations [16–18]. For completeness,

we also mention ab initio NEGF—a recent combination of

ground state DFT and NEGF [19]. However, TDDFT, NEGF

and AI-NEGF simulations are extremely CPU-time demanding

and can treat only small systems for short time scales. For

example, Born–Oppenheimer MD simulation requires a time

step around 0.1 fs, which allows to treat on the order

100...1000 atoms for 1 ... 100 ps, during a week of simulations

on massively parallel hardware, e.g. [20]. The demand for

TDDFT and NEGF is several orders of magnitude larger.

At the same time for many processes an explicit quantum

modeling of the electron dynamics is not necessary. This

concerns, in particular, the dynamics of neutral particles on a

surface: diffusion, adsorption and desorption or many che-

mical reactions. Here, often a semi-classical MD simulation is

performed (step three above)—a technique that is well

developed in surface science and in theoretical chemistry, e.g.

[21]. Similarly, MD simulations are well established in low-

temperature plasmas, e.g. to compute first principle structural

properties of dust particles [22] or the diffusion coefficient in

a strongly correlated magnetized plasma [23]. In each case,

the quality of the MD results depends on the accuracy of

effective pair potentials or force fields that are usually derived

from microscopic quantum simulations or are adjusted to

reproduce experimental data. These MD simulations are not

ab initio anymore (they neglect quantum effects in the

dynamics), but still carry first principle character (they solve

Newton’s equations exactly), so they will be referred to as

first principle MD simulations below. Typically they require a

time step of the order of 1 fs and can treat huge systems. For

example [24], reported simulations of a system containing

1011 atoms that reach times of the order of several milli-

seconds. However, this is presently only possible on the lar-

gest supercomputers or on dedicated hardware, e.g. [25].

Despite these impressive records, it is clear that in the

near future MD simulations for plasma-surface processes will

remain many orders of magnitude short of system sizes and

length scales needed to compare with experiments. In plasma

physics, these are minutes and (at least) micrometers,

respectively. Therefore, additional strategies are needed. One

way is of course the use of additional approximations leading

to simplified models at the expense of accuracy and relia-

bility. Here, we discuss another approach, which aims at

retaining the first principles character of the MD simulations

(step four above). The idea is to invoke additional information

on the system properties that allow one to effectively accel-

erate the simulations and/or to extend them to larger scales

without loosing accuracy.

There exists a variety of acceleration strategies including

hyperdynamics [26], metadynamics [27] or temperature

accelerated dynamics (TAD) [28]. A more recent concept is

collective variable driven hyperdynamics (CVHD) [29] that

was reported to achieve, for some applications, speed-ups of

the order of nine orders of magnitude. Another approach

Figure 1. Sketch of the plasma-solid interface which comprises the
plasma sheath and plasma facing layers of the solid [13]. Among the
relevant processes are diffusion, adsorption (‘sticking’) and
desorption of neutrals, penetration (stopping) of ions and electron
transfer between solid and plasma. Typically, in plasma simulations
the effect of the surface is described by empirical parameters such as
the SEE coefficient, sticking coefficients, sputter rates etc. The
mutual influence of the plasma on the solid and vice versa is a major
challenge for a predictive theoretical treatment and require a
combination of various theoretical approaches, see figure 2.

3

Plasma Sources Sci. Technol. 00 (2018) 000000 M Bonitz et al



developed by the present authors [30, 31] uses a selective

acceleration of some relevant processes and also achieved

speed-ups exceeding a factor 109. Another direction of

developments does not aim at accelerating the ab initio

simulations but to extend them to longer times by a suitable

combination with analytical models [32, 33]. These methods

will be called below dynamical freeze out of dominant modes

(DFDM). The goal of this article is to present an overview on

these very diverse acceleration/extension developments, to

discuss their respective strengths and limitations and to out-

line future improvements and extensions for applications in

plasma-surface interaction.

3. Concepts to accelerate and/or extend ab initio MD

simulations

As discussed in the introduction, first principles MD is based

on the use of accurate pair potentials or force fields. The

steepness of these force fields leads to a rather small time step

of the order of one femtosecond that has to be used to achieve

convergent simulations. As a consequence, the total simula-

tion duration is far away from experimentally relevant times

of seconds and even minutes and, therefore, acceleration

strategies are of high interest. This problem is not specific to

plasma-surface interaction, but also occurs in the study of

phase transitions, the chemistry of macromolecules, biology,

in surface physics and surface chemistry.

These different and diverse communities developed a

large number of strategies to accelerate MD simulations, to

improve the treatment of rare events or to extrapolate to

longer times or larger systems. These strategies can be loosely

grouped into two classes, which are depicted in figure 3. The

first group (left column) includes methods that accelerate MD

simulations by overcoming bottlenecks, such as rare events or

trajectories being trapped in local potential minima. The

second group of methods has been termed ‘coarse graining’

approaches (right column in figure 3). Here the idea is to

average over fast processes or small length scales that are not

of interest for the physical observables. This is com-

plementary to the first group and promising for plasma-sur-

face simulations.

4. Acceleration of phase space sampling

We start by discussing the concepts listed in the left column

of figure 3. The approaches discussed in this section are used

to treat systems which reside in local energy minima for a

long time before any event of interest occurs. Metadynamics

is represented in section 4.1. The methods presented in

sections 4.2–4.4—hyperdynamics, TAD and parallel replica

Figure 2. Theoretical methods for the description of the plasma-solid interface [13], as sketched in figure 1. Some of the processes of interest
are listed in the figure. Note the dramatically different length scales and the very different properties of plasma and solid requiring totally
different methods to be applied on the plasma and the solid side. Standard methods for the bulk solid are density functional theory (DFT),
Bethe–Salpeter equation (BSE), dynamical mean field theory (DMFT), and quantum Monte Carlo (QMC). To simulate surface processes
(central box), additional non-adiabatic (time-dependent) approaches are required: molecular dynamics (MD), kinetic Monte Carlo (KMC),
quantum kinetics, Born–Oppenheimer MD (BO-MD), time-dependent DFT (TDDFT), nonequilibrium Green functions (NEGF) and ab initio
NEGF (AI-NEGF). To account for the complex interactions between plasma and solid, the corresponding methods have to be properly
linked: plasma simulations should provide the momentum dependent fluxes Ja

p of all species ‘a’ to the surface whereas surface simulations

deliver the corresponding fluxes Ja
s that leave the surface. Bulk solid simulations provide the band structure òλ and reactive force fields (FF),

whereas surface simulations return the updated surface morphology ‘SM’, chemical modifications etc. For details see section 2. This paper
focuses on the MD approach and on the question how to increase its efficiency and provides examples for the fluxes of atoms JA

s (section 6.3)

and time-dependent surface morphology (section 4.5).
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dynamics—have been proposed by Voter and co-workers.

They have in common that they aim at an effective reduction

of the waiting time between successive infrequent events. A

different approach has been introduced in [30]. It relies on

treating the diffusive motion of atoms on surfaces exclusively

with Langevin dynamics. This method allows for a selective

process acceleration (SPA) and is discussed in section 4.5. In

the following, we give a brief overview of these methods; for

further details, we refer to recent reviews [34–38].

4.1. Metadynamics

Metadynamics is a technique to enhance the computation of a

multidimensional free energy surface (FES) of a many-body

system. In most cases the FES is far too complicated to be

directly computed. Laio and Parrinello in 2002 introduced a

method that allows for an efficient computation of the FES by

means of molecular dynamics [27] which has become a

widely used tool in computational (bio-)physics, chemistry

and material science. An overview is given e.g. in [39].

The first key idea (and fundamental assumption) of the

method is that the free energy F of a system with a set of

coordinates x, the potential V(x) and the inverse temperature

β=1/(kBT) can be expressed as a function of just a few

collective variables S SS , , d1� y( ) according to

F V x S S x x
1
ln exp d . 1¨C

C E� � � �( )[ ( )] [ ( )] ( )

If the collective variables provide an adequate representation

of the whole configuration space, the FES can be efficiently

explored by performing MD simulation where a second key

idea is applied: a history-dependent small ‘bias potential’ ΔV

is added, i.e. V V Vl � % . This potential successively

enforces the system to leave every occurring minimum in the

FES, thus, avoiding bottlenecks due to rare events. In a very

simple fashion, this bias potential can be constructed as a sum

of weighted Gaussian functions,

V t w
S t S t

s
S, exp

2
, 2

t i

d
i i

i1

2

2
,

� �% � �
� a
%a� �

⎛

⎝
⎜

⎞

⎠
⎟( )

[ ( ) ( )]

( )
( )

where the set , comprises all times t′ before the time t, at

which the sum of Gaussian functions has been extended by

one term. The interval between successive creations of new

Gaussian functions as well as their weights w and widths Δsi
should be chosen such that a compromise between compu-

tation time and accuracy is achieved. After a sufficiently long

simulation time the potential landscape V+ΔV levels out

and becomes flat. This can be recognized in the simulation by

the ‘diffusive’ behavior of the considered collective variables

[39]. Then the inverse of the final bias potential ΔV provides

an accurate estimator of the free energy F.

In contrast to the methods discussed below, the use of

metadynamics alone does not yield correct state-to-state

dynamics. Nevertheless, it can be utilized for that purpose if it

is combined with other methods, such as the CVHD described

in section 4.2. Metadynamics is a versatile method and it

allows for a relatively easy implementation. Hiwever, the

choice of the collective variables can be very difficult.

4.2. Hyperdynamics

Using hyperdynamics [40], the state-to-state dynamics of an

infrequent event system is accelerated by adding a space-

dependent bias potential ΔV(r) to the potential energy surface

V(r). Thereby, the energy barriers between different states are

reduced so that transitions occur more often. For the applic-

ability of the method, it is required that both the unbiased and

the biased system dynamics obey the so-called transition state

theory (TST) [41, 42]. Furthermore, the bias potential ΔV(r)

must be zero at all dividing surfaces, and it must be chosen

such that the correct relative probabilities of the transitions are

maintained.

The construction of an appropriate bias potential can be

an elaborate task in many cases. In the original publication

[40], the diffusion of an Ag10 cluster on an Ag(111) surface

was investigated by constructing ΔV as a function of the

lowest eigenvalue of the Hessian matrix. At this, boost factors

of roughly 8× 103 were achieved.

Another approach introduced by Fichthorn et al [43], the

so-called bond-boost method, is to let ΔV be a function of the

nearest-neighbor bond lengths in a solid. In a study of the

diffusion of Cu atoms on a Cu(001) surface in the temperature

range between 230 and 600 K, boost factors of up to 106

could be achieved [44].

Even higher boost factors of up to 109 were obtained for

the same system using the CVHD method introduced by Bal

and Neyts [29]. The idea of this method is to use the concept

of metadynamics for an incremental build-up of a bias

potential depending on just one collective variable, i.e.,

a variable that describes the relevant processes in the

system. The CVHD method can be applied whenever the

requirements of hyperdynamics are fulfilled and an appro-

priate collective variable can be found. Even though the latter

may be difficult in some cases, the CVHD method has the

potential to be applied to many kinds of different systems. For

Figure 3. Main potential strategies to accelerate/extend first

principles (semi-classical) MD simulations for plasma-surface
applications. This method is primarily applicable to the dynamics of
neutral particles. The left column contains common approaches in
surface science MD. The right column sketches strategies that are
motivated by many-body theory and plasma physics. The red items
are discussed in detail in this paper.
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example, it has already been used to study the folding of a

polymer chain model [29] and the pyrolysis and oxidation of

n-dodecane [45].

4.3. Temperature accelerated dynamics

The idea of TAD [28] is to make transitions occur more often

by performing the simulation at an elevated temperature Thigh
instead of the temperature of interest Tlow. Because this pro-

cedure alone would induce wrong ratios of escape prob-

abilities, an additional mechanism is applied to correct for

this. The method can only be applied if the system obeys the

harmonic TST (HTST). Thus, it is more restrictive than

hyperdynamics and parallel replica dynamics (section 4.4),

for which the harmonic approximation is not necessary.

TAD is carried out by performing ‘basin constrained

molecular dynamics’ (BCMD) for each system state. When-

ever a transition occurs at Thigh, the escape path and the

corresponding escape time are stored, but the involved par-

ticles are reflected back to their initial energy basin and the

dynamics is continued. For each observed transition at time

thigh, the transition time is extrapolated to the lower temper-

ature according to

t t E
k T k T

exp
1 1

, 3low high a
B low B high

� �
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟

⎫
⎬
⎭

( )

where Ea is the energy barrier of the transition. The BCMD

routine is stopped when the simulation time reaches

t
tln 1

ln 1
, 4

T T

high
min

min low,min
low high

E

O

O

E
�

⎛

⎝
⎜

⎞

⎠
⎟˜

( )

( )
( )

where tlow,min is the minimum of the extrapolated transition

times at Tlow, νmin is a guess for a lower bound of the pre-

exponential factors occurring in the formulas for all possible

transitions, and δ is a pre-defined limit for the probability to

observe every transition after thigh˜ that would replace the

transition at the current minimum tlow,min. As a result of the

procedure, the simulation time is advanced by tlow,min, and the

process corresponding to this time is executed.

The boost factor that can be achieved by means of TAD

depends critically on the ratio of Thigh to Tlow. As one cannot

choose arbitrarily high values of Thigh without breaking the

requirements of HTST, the method is particularly effective for

systems at low-temperature. For example, a boost factor of

107 was achieved in a simulation of the growth of a Cu(100)

surface at Tlow= 77 K [38]. A recent example for a simula-

tion at a higher temperature of T 500 Klow � can be found in

[46], where the sputter deposition of Mg–Al–O films was

studied.

4.4. Parallel replica dynamics

While standard parallelization techniques are usually applied

to extend the accessible system sizes, parallel replica

dynamics (ParRep) allows one to use parallel computing to

extend the time scales, too [47]. Among the three methods

hyperdynamics, TAD and ParRep, ParRep is the most

accurate one, and a higher boost can be trivially achieved by

increasing the number of processors Np [36, 37]. ParRep can

be applied to any infrequent event system with first-order

kinetics, i.e., with exponentially distributed first-escape times

of all occurring processes,

f t texp . 5M M� �( ) ( ) ( )

The ParRep procedure starts by replicating and dephas-

ing the system on each available processor. Each copy of the

system is propagated independently and in parallel on each

processor until a transition is detected on one of the pro-

cessors. Then, the system clock is advanced by the sum of the

Np individual simulation times, and the global system state is

set to the state reached after the observed transition. Subse-

quently, a short serial run is performed to allow for the

occurrence of correlated events. After that, the whole proce-

dure is repeated.

As the number of processors is one limiting factor of the

achievable speed-up, the ParRep method is often less effec-

tive than hyperdynamics and TAD. Nevertheless, it is simple

to implement, and it can be combined with other acceleration

methods. Therefore, ParRep has become a valuable tool in the

field of computational materials science [48]. For example, it

has been applied to simulate the diffusion of H2 in crystalline

C60 [49], the diffusion of lithium in amorphous polyethylene

oxide [50], and the crack-tip behavior in metals [51].

4.5. Selective process acceleration (SPA). MD simulation of

gold film growth on a polymer surface

In some cases, it is reasonable to assume that the motion of

atoms on a surface or in a medium is approximately Brow-

nian. This type of motion can be generated by solely per-

forming Langevin dynamics for the particles of interest, while

the other atoms and molecules of the background medium do

not have to be explicitly included in the simulations. Here we

consider, as an example, the deposition of gold atoms onto a

polymer surface. The MD simulations tracked each individual

atom, its diffusion on the surface, the emergence and growth

of clusters and, eventually the coalescence of the latter. A

typical example is presented in figure 4 and shows the cluster

configuration at an early moment (top) and a later time point

(bottom).

The influence of the plasma environment is mostly due to

the impact of energetic ions. This leads to the formation of

surface defects that trap incoming atoms and prevent their

diffusion. The figure compares the cases of a weak plasma

effect (right column, the fraction of atoms trapped equals

γ=0.001) and a stronger effect (left column, γ=0.05.) In
the former case, a small number of large clusters is being

formed, due to cluster coalescence, whereas in the latter case

the film is much more homogeneous, containing a much

larger number of smaller clusters [52].

We underline that the lower snapshots in the figure refer

to a film thickness of about one nanometer which requires a

deposition time of about two minutes. This is impossible to

achieve with first principle MD simulations. The key to

achieve this extreme simulation duration and to compare to
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experiments was SPA. The main ideas of the approach are

explained in the following.

In the MD simulations the isotropic Langevin equation of

motion for all gold particles with the mass m and spatial

coordinates r r r, ,1 2� y( ) are solved:

m U
m

t

mk T

t
r r r R¨

2
, 6

damp

B

damp

� �� � �( ) ˙ ( )

where the potential U describes the interaction between gold

particles. For this potential ab initio force field data are being

used (the MD simulations used the LAMMPS package).

Further, tdamp has the role of a damping parameter, and R is a

delta-correlated Gaussian random process. This random force

and the viscous damping simulate the effect of the polymer on

the heavy gold particles. If only neighborless atoms are

considered, i.e., ∇U ≡ 0 , the combination of the last two

terms on the right side of equation (6) induces a diffusive

motion with the diffusion coefficient

D
m
k Tt

1
. 7B damp� ( )

Thus, it is clear that the utilization of the Langevin dynamics

allows one to control the speed of the surface diffusion and

bulk by choosing a specific combination of the temperature T

and the damping parameter tdamp. An anisotropic diffusive

motion can be generated if one generalizes equation (6) by

separately defining damping parameters t xdamp, t
y
damp and t zdamp

for each of the three spatial directions. Beyond that, it is

possible to add a spatial dependence to the diffusion coeffi-

cient if one lets the damping parameters depend on the

position of the particle.

Based on the above considerations, Abraham et al [30]

developed a procedure to simulate the growth of nanogranular

gold structures on a thin polymer film. Instead of simulating

the polymer with explicit particle models, their method relies

on performing Langevin dynamics for the gold atoms with the

simulation box being partitioned into three parts representing

the upper part of the polymer bulk (I), the surface of the

polymer (II) and the region above the surface (III). By

choosing appropriate ratios of the damping parameters, one

can make sure that the atoms spend most of the time in the

surface layer (II), where they perform a random walk which is

restricted to a small range of possible z-coordinates. The use

of Langevin dynamics is restricted to regions (I) and (II); in

region (III), the dynamics is purely microscopic. This allows

one to add particles to the system by creating particles at the

top of the simulation box and assigning them a negative initial

velocity. Therefore, it is possible to perform the simulation

with values of the deposition rates Jsim and diffusion coeffi-

cients Dsim that are much higher than the values in typical

experiments.

In [30], it was argued that the simulations yield an ade-

quate description of a real experimental deposition process if

the ratio Jsim/Dsim is equal to the ratio Jexp/Dexp of the

corresponding quantities in the experiment. The idea behind

that is that—at least at the early stage of the deposition pro-

cess—the growth should be essentially determined by the

average distance an atom travels on the surface between

successive depositions of atoms. Hence, the absolute time of

the process is assumed to be irrelevant. The results presented

in [30] were obtained with a time step of 1 fs, and a damping

parameter for the diffusion in x- and y-directions of 1 ps. The

temperature and the deposition rate were set to match the

conditions of the experimental results in [53] for the sputter

deposition of gold on polystyrene. Using these parameters,

the direct MD simulation time for the growth of a thin gold

film is roughly 109 times shorter than the corresponding time

in the experiment. Or in other words, the duration of the MD

simulations could be extended by nine orders of magnitude.

To verify the validity of such a dramatic shift of the time

scales, comprehensive tests of the method were performed,

see also [34, 52] for a discussion. In particular, as one

accelerates only selected processes, i.e., the deposition of

atoms and the diffusion of atoms on the surface, one has to

make sure that the neglect of other processes, e.g., the

relaxation of a cluster structure, does not lead to artifacts in

the simulation results. In [30], the method was tested by

comparing several quantities describing the evolution of the

gold film morphology with the results of time-resolved in situ

grazing incidence x-ray scattering experiments of Schwartz-

kopf et al [53]. It turned out that many of the experimentally

observed features could be reproduced for film thicknesses up

to 3 nm. This thickness corresponds to an impressive effective

simulation time of 367 s which is directly suited for com-

parison with measurements. As an example of the compared

quantities, figure 5 shows the number density of metal clus-

ters on the polymer surface. The comparison between

experimental data and simulation results shows very good

agreement, at least up to a time of about 350 s. For longer

times, the simulation start to deviate from the measurements

indicating that the procedure is no longer applicable.

The present approach of selective acceleration of domi-

nant processes can be generalized to other systems as well. A

recent application concerned the deposition and growth of bi-

metallic clusters on a polymer surface [31] where the

Figure 4. Time evolution of the gold film morphology deposited on a
polystyrene substrate from accelerated MD simulations. Figures
show the 3D-cluster configuration in real space. Top row: early time
corresponding to a film thickness of 0.03 nm. Bottom row: later
time, see also figure 5. The influence of the plasma is varied from the
left to the right column. Right: defect fraction due to energetic ions,
γ=0.001. Left: γ=0.05. From [52].
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acceleration allowed one to study the very slow process of

demixing of the two metals. Applications of this approach to

various plasma processes should be possible as well. One

effect that has already been studied is the creation of defects

by ion impact. The main effect is trapping of clusters [54]

case, at the defect locations which reduces their diffusion and

limits cluster coalescence, see figure 4 above. In addition to

the deposition of neutral atoms, the method also allows one to

describe the impact of ions and the growth of charged

clusters.

In concluding this section we mention that similar pro-

blems of rare events appear not only in MD simulations but

also in statistical approaches such as Monte Carlo simula-

tions. Some strategies are discussed in [55], where further

references are given as well.

5. Coarse graining approaches

5.1. General idea

We now discuss the approaches listed in the right column of

figure 3. The main idea of the coarse graining approaches is to

perform an analysis of the different length and time scales that

exist in a many-particle system—such as the plasma-surface

system—driven out of equilibrium (one example could be a

dense system of ions that is excited by an electric field pulse.

Another example could be an ensemble of neutrals from the

plasma that impact a solid surface and equilibrate there due to

collisions with the lattice atoms). Depending on the type of

excitation and on the properties of the system, the relaxation

towards equilibrium typically proceeds in a number of steps.

Even though this is a highly complex process in general, it is

often possible to identify a sequence of relaxation processes

or even a hierarchy.

A situation typical of gases and plasmas is sketched in

table 1. Here, four relaxation stages are distinguished which

are separated by the following characteristic time scales: the

hydrodynamic time scale thyd, as well as the kinetic time

scales trel (relaxation time) and τcor (correlation time). The

latter is directly related to an equilibration of pair, gab (triple,

gabc, and higher) correlations, trel denotes the time necessary

to establish a Maxwell (equilibrium) distribution f EQ, and thyd
is associated with the decay of density, velocity or temper-

ature fluctuations or inhomogeneities or similar large-scale

excitations. At each of these stages the system is adequately

described by a specific set of quantities, and their dynamics is

governed by specific equations: hydrodynamic equations

(Stage III), kinetic equations (Stage II) and generalized non-

Markovian kinetic equations or ab initio simulations (Stage I),

respectively.

Even though each of these equations is an approximation

to the full many-body equations, these equations are accurate

within their respective stages and time scales. Thereby, the

accuracy of these models is typically not limited by the

equations themselves (e.g. resulting from the omission of

higher-order terms) but by the parameters entering these

models. For example, these parameters are the transport or

hydrodynamic coefficients (determined by the distribution

function) in hydrodynamic equations. In the case of kinetic

equations, these parameters are cross sections or collision

integrals. Of course, approximation schemes are used in

practice for these parameters. But here we consider a different

(although hypothetical) situation: if these input quantities

would be known exactly, the underlying model equations

would be exact, within their Q1respective range of applicability4.

Of course, this requires the application of rigorous coarse

graining procedures for the derivation of these equations,

some examples and properties of which we will discuss in

sections 5.3–5.5.

The existence of formally exact coarse grained equations

is at the heart of this work and is explored in the remainder of

this paper. In particular, our main idea is to obtain these exact

input quantities for models from first principle MD simula-

tions and thereby realize our goal to significantly extend the

duration of first principle simulations. Since the coarse

grained equations (Stages II–IV) emerge dynamically in the

course of the equilibration, this novel method is called

DFDM. We demonstrate it for simple examples in section 6.

5.2. Time dependencies during equilibration

An observation of interest for the following discussion is that

the distribution function fa(R, p, t) (a could denote ions or

neutrals, in the examples above) is still time- and space-

dependent, even after its equilibration. However, this

dependence is only implicit and arises exclusively from the

(slower) time evolution and weaker space dependence of the

macroscopic fields entering the function

f t f n t t T tR p R u R R, , , , , , , , 8a a
EQ�( ) [ ( ) ( ) ( )] ( )

Figure 5. Number density of gold clusters on a polymer film as a
function of the effective film thickness. The data has been taken from
[30] where results of MD simulations with SPA are compared with
data from GISAXS experiments[53]. The upper horizontal axis of
the plot shows the impressiv effective simulation time reached by
accelerating the deposition of atoms and the diffusion of atoms on
the surface.

4
This means we consider here only models that have this property.
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i.e., the density n, the mean velocity u and the mean energy

(temperature T). By contrast, the momentum dependence is

fixed by the Maxwellian form. This applies to the hydro-

dynamic Stage (III), see table 1, whereas the distribution

carries, in addition, an explicit time dependence, on the kin-

etic stage (II). This concept is based on the functional

hypothesis of Bogolyubov [57]. Close to the border of the two

stages, i.e. for t slightly below trel, the deviations of f from the

distribution function f EQ at equilibrium are small, and the

time derivative of f (the collision integral, see equation (14))

can be approximated by the linear relation

I t
t

f t f
1

. 9f

rel

EQx � �( ) [ ( ) ] ( )

This is nothing but the familiar relaxation time approximation

(or Bhatnagar–Gross–Krook (BGK) collision integral [58]),

where the relaxation time is usually taken from equilibrium

models of the system which have limited accuracy. In cases

where ab initio simulation data are available, as we assume

here, the MD simulation results can be used to extract an

ab initio relaxation time which transforms equation (9) into an

exact relation. This also requires to use the MD data for the

equilibrium distribution that may be modified in the presence

of correlations between the particles. This improved

description also allows for a more accurate modeling of the

hydrodynamic stage. We mention for the sake of complete-

ness, that a similar crossover can also be studied between

stages I and II. In that case, the pair correlation function
reaches its equilibrium form gEQ around the correlation time

t∼τcor and retains only an implicit time dependence via the

distribution functions g(t)=gEQ[f (t)] (see table 1) thereafter.

Similar to the relaxation time approximation, here one can use

a correlation time approximation to describe the final

approach to the equilibrium correlations [56, 59].

5.3. Averaging over time and/or length scales

As a simple example, we consider the second order differ-

ential equation

A

t

A

t
k t A

d

d

d

d
0, 10

2

2
H� � �

ˆ ˆ
ˆ ( ) ˆ ( )

which represents e.g. a Newtonian equation of motion. Here,

γ is a dissipation coefficient, and k tˆ ( ) denotes a quickly

fluctuating force constant or frequency. This could be a dust

particle in a complex plasma that experiences collisions with

plasma neutrals, ions or electrons. Another example could be

a large molecule on a solid surface that undergoes collisions

with the lattice atoms. A frequent situation is that

k t k kE� �ˆ ( ) ˆ, where k kw � §ˆ , and the brackets denote time

Table 1. Characteristic scales and relaxation processes in correlated many-particle systems (schematic). Typical examples are the relaxation
of electrons in a plasma following local ionization or excitation by a short electric field pulse or the thermalization of atoms from the plasma
on a solid surface. Beginning at the initial time t0, the evolution goes (from bottom to top) through several time stages and extends from small
to larger length scales. This can be viewed as successive coarse graining, see figure 3. Accordingly, the relevant observables and concepts for
a statistical description change. For explanations and details, see section 5. Adapted from [56].

Hierarchy of scales and relaxation processes in many-body systems

Time and length scales Stage, Effects Quantities Theory

IV Equilibrium na
EQ, TEQ, pEQ Equilibrium theory

p p n n T, ...,1 2� ( ) Equation of state

t>thyd n n n n T, ...,a a 1 2� ( ) Mass action law

Correlated equilibrium, or p=pideal+pcor, etc

l>lhyd Stationary nonequilibrium state na -( ), T -( ), p -( ) Quasi-equilibrium theory

in an external field R-( )

III Hydrodynamic stage na(Rt), ua(Rt), Ta(Rt) Hydrodynamic equations

t t t,rel hyd� [ ] Local equilibrium f f n t t T tR u R R, ,a a
EQ� ( ( ) ( ) ( )) Gas-dynamic equations

l l l,mfp hyd� [ ] Reaction-diffusion eqs.

Correlation corrections n t n t n tR R Ra a a
ideal cor� �( ) ( ) ( ) Rate equations

etc Master equation

II Kinetic stage fa(pR, t) Kinetic theory/
fa(t0) Relaxation time

tä[tcor, trel] Functional hypothesis approximation

Equilibrium correlations g g f tab ab
EQ� ({ ( )}) Markov limit (M) +

lä[lcor, lmfp] Kinetic energy conservation g g ...
ab ab,0
M

,1
M� � � Correlation corrections

I Initial stage gab(paRapbRb, t) Generalized

Initial correlations g tab 0( ) kinetic equations

tä[t0, τcor] Correlation buildup Correlation time approx.

Total energy conservation

l<lcor Higher correlations gabc, g , ...abcd First principle simulations
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averaging over the period of the fast oscillations or rapid

dynamics of the light particles. Correspondingly, the

dynamics of the variable Â can be split into a slowly changing

term and a rapidly oscillating contribution according to

A t A AE� �ˆ ( ) ˆ, where A A� � §ˆ obeys the equation of

motion

A

t

A

t
k t A k t A t I

d

d

d

d
. 11A

2

2
H E E� � � �� § �( ) ˆ ( ) ˆ ( ) ( )

This equation describes the ‘coarse grained dynamics’

where the fast ‘random fluctuations’ seem to be eliminated,

and indeed, the left-hand side of this equation coincides with

the original equation (10). However, the fast processes leave

a trace on the slow dynamics via the new term on the right

side, which is the correlation function of two fluctuating

quantities. If the right-hand side is known, equation (11)

will still be exact. In fact, it is not difficult to derive the

equation of motion for k t A tE E� §ˆ ( ) ˆ ( ) by first finding the

equation for A tE ˆ ( ), see e.g. [60, 61]. However, it is easy to

see that this equation is not closed as well, and couples to a

new quantity, k t k t A tE E E� §ˆ ( ) ˆ ( ) ˆ ( ) , which obeys its own

equation of motion. Thus, an infinite hierarchy of equations

emerges which is the direct consequence of the averaging

procedure.

The common solution is to decouple this hierarchy by

invoking additional assumptions on the fast dynamics. A

common approximation is to assume t 0k
AcorU lE ˆ

which

means that the correlation time of the rapid process (i.e. of the

light particles) is vanishingly small compared to the char-

acteristic time scale of A (the heavy particle). In that case, the

term on the right side of equation (11) becomes a delta cor-

related random process, and one recovers a Langevin-type

equation with a Gaussian white noise term.

The above model is representative for a large variety of

problems containing multiple time scales. A similar situation

appears in the case of multiple length scales, where a spatial

averaging leads to a coarse grained description.

A further example for a coarse grained description is

many-body dynamics in phase space, which is described by a

generalized distribution function N tr p, ,ˆ ( )—the microscopic

phase space density introduced by Klimontovich [60]. This

distribution function obeys a mean field type equation

t
N tv F r p, , 0, 12r p

s
s
� � � � �{ }· ˆ · ˆ ( ) ( )

where F̂ denotes the total force on the particles which

includes all external and induced forces. In general, the force

also contains rapid and slow contributions. Thus, we can

write again F F FE� �ˆ ˆ , and the above coarse graining

procedure can be repeated. In fact, this procedure leads to the

well-known Boltzmann-type kinetic equations for the one-

particle distribution function f t N tr p r p, , , ,w � §( ) ˆ ( ) . It has

the same form as equation (12) and reads

t
f t I tv F r p r p, , , , . 13fr p

s
s
� � � � �{ }· · ( ) ( ) ( )

However, it contains the collision integral If on the right-hand

side in addition, which is directly determined by the corre-

lation function

I t Nr p F, , 14f pE E� �� � §( ) ˆ · ˆ ( )

of the fluctuations. As before, the collision term is an

unknown quantity, and one can derive an equation of motion

for it. Again it includes a higher-order correlation function,

and the whole system turns into an infinite hierarchy of

equations. The standard solution is to use physical approx-

imations for the choice of the collision integral If using e.g.

the Boltzmann collision integral or improvements such as the

Balescu–Lenard integral [56].

Now, let us discuss how the idea of the present paper can

be applied here. In cases where we have first principle

simulation data at our disposal, there exists a straightforward

way how the hierarchies of equations discussed above can be

decoupled. When performing MD simulations of a classical

system, every observable can be computed. For example, it is

possible to evaluate the right-hand side of equation (11)

during a MD simulation. However, the result for k t A tE Eˆ ( ) ˆ ( ) is

random, depending on the choice of the initial conditions for

the particle trajectories. The simple solution consists in run-

ning many independent MD simulations. Thereby, the initial

conditions have to be chosen with a proper probability dis-

tribution given by the ensemble over which the averaging in

the collision term IA is performed. Then, the first principle

MD result for IA follows by averaging over M realizations

according to

I t
M

k t A tlim
1

. 15A
M

l

M
l

1

� E E�
ld �

( ) ( ˆ ( ) ˆ ( )) ( )( )

This method is in principle exact for a classical system. The

efficiency crucially depends on the cost of the MD simulation

and on the number M of trajectories needed to obtain a

converged result. At the same time, the fluctuation around the

result (15) gives an estimate of the statistical uncertainty. A

similar approach can be applied to the kinetic equation (13)

and the collision integral If, equation (14).

Of course, the question arises what is gained by this

approach compared to performing only MD simulations

without resorting to the many-body equation (11) or the

kinetic equation (13) at all. The point is that accurate MD

simulations are typically substantially more costly than the

latter approaches. Therefore, an advantageous compromise

between accuracy and computational effort consists in per-

forming MD simulations, for short time scales, and in con-

tinuing the simulation by solving a kinetic equation, for

longer times. For the latter, the use of the MD input for the

collision integral, as explained by equation (15), could yield a

significant increase in accuracy and, it could eventually offer

a way to extend first principle simulations to longer times. We

return to this issue in section 6.

Notice that similar approaches exist also for quantum

systems. An example is the ‘Stochastic mean field’ approach,

see [62] and references therein. Instead of MD simulations,

here time-dependent Hartree–Fock simulations are performed
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over which the averaging is carried out. The result of this

procedure turned out to be very encouraging when compared

to exact simulation results, at least for short and intermediate

time scales [62].

5.4. Averaging over ‘environmental’ degrees of freedom

Another application of coarse graining concepts is frequently

used for particles in contact with a reservoir or ‘bath’. Again

this can be heavy dust particles in contact with lighter plasma

particles or a macromolecule in a plasma or on a surface. The

complete state of the system of N particles and NB bath par-

ticles is described by the phase space distribution function F

(R, P; RB, PB), where we use the compact notation

R r r r, ... N1 2� and P p p p, ... N1 2� for the particles and
similar notations for the bath particles and restrict ourselves to

classical particles. It is easy to formulate the equations of

motion for the whole system, but the solution for the N+NB

particles is extremely costly. More importantly, one is typi-

cally not interested in the details of the dynamics of the bath

particles, where usually N NB � .

Therefore, the standard procedure is to switch to a

‘reduced’ description, which resolves only the degrees of

freedom of the system, by integrating over the bath para-

meters according to

f FR P R P R P R P, d d , ; , .B B B B¨w( ) ( )

If the bath is in thermodynamic equilibrium at temperature TB,

this coarse graining procedure transforms the dynamics of the

system of particles from the microcanonical ensemble into the

canonical or grand-canonical ensemble. The corresponding

equations of motion can then be solved by Langevin MD

simulation or by using a Nose–Hoover thermostat [63].

Here, the main assumption is of course the equilibrium of

the bath. This neglects the influence of the dynamics of the

system particles on the bath particles which might be ques-

tionable, in particular at strong excitation conditions. In that

case, an alternative strategy consists in performing short-time

MD simulations including the bath dynamics by using dif-

ferent realizations of the bath over which an averaging is

performed, in analogy to equation (15). This accurate proce-

dure is computationally expensive and cannot be extended to

long times. Thus, strategies can be developed, where one

switches to the equilibrium description of the bath at times

exceeding the thermalization time tB
rel of the bath. A similar

procedure is used in the simulation of disordered systems

where an average over different realizations of the disorder is

performed.

Such a strategy should be applicable to certain plasma-

surface simulations such as scattering of plasma particles

from a surface or diffusion of an adsorbate atom or molecule

on a surface. In that case it can be justified to treat the surface

as a ‘bath’ at sufficiently long time scales. In contrast, the

initial time period of the interaction of a plasma particle with

the surface requires a full dynamic treatment of the adsorbate

and the surface atoms. A similar idea is realized in

section 6.3.

5.5. Reduced distribution functions. Bogoliubov–Born–Green–

Kirkwood–Yvon (BBGKY) hierarchy

Finally, we discuss an important approach to treat correlated

many-particle systems which is based on the concept of

reduced distribution functions. A typical example is the

dynamics of electrons following a strong excitation and their

subsequent thermalization, due to electron–electron colli-

sions. The dynamics of a classical N-particle system can be

treated by first principle MD simulations or, equivalently, by

the N-particle distribution function F x x x, , ...N N1 2( ) where

xi=(ri, pi) and FN obeys the Liouville equation

f x x
N

N s

x x F x x

...

d ... d ... . 16

s s

s N N N

1

1 1¨

�
�

q �

( )
!

( )!

( ) ( )

The equation of motion for fs follows directly from the ori-

ginal equation for FN by integration over the remaining

variables, as in the definition (16) of fs. The resulting equation

for fs is not closed but involves contributions from fs+1 giving

rise to a hierarchy of equations—the BBGKY hierarchy,

which is discussed in detail e.g. in [56].

If the system is non-interacting, the s-particle distribution

is a product of s single-particle factors, e.g.

f x x f x f x,2 1 2 1 1 1 2�( ) ( ) ( ). Here, we do not consider quantum
exchange effects. In case of correlations between the particles,

this relation is generalized to

f x x f x f x g x x, , , 172 1 2 1 1 1 2 2 1 2� �( ) ( ) ( ) ( ) ( )

where g2 is the pair correlation function. The BBGKY hier-

archy is decoupled by invoking physically motivated

approximations e.g. for the pair correlation function

g x x t g f x x t, , ; , , , 182 1 2 2
app

1 1 2l( ) ([ ] ) ( )

which is a given functional of the one-particle distribution

function. As a result one obtains a closed equation for f1—the

kinetic equation—where the pair correlation function deter-

mines the collision integral I I gf f 2
app� [ ], which coincides

with the previous result given by equation (14).

In the spirit of the present paper, we underline that the

resulting equation for f1 is a dramatic simplification compared

to the description of the full dynamics of all N particles, in

particular when N is macroscopically large. This is the result

of a very efficient coarse graining procedure. However, the

quality of the result depends on the accuracy of the approx-

imation, g f x x t; , ,
2
app

1 1 2([ ] ). As discussed above, reliable

approximations exist for limiting cases, e.g. when the pro-

blem contains small parameters (such as for weak interaction)

and for long times t cor. U . However, for the initial time

period, t0 cor- U� , the standard (Markovian) results for g
2
app

are known to fail, e.g. [56, 59]. Here, the concept of the

present paper can be utilized again: perform MD simulations

at short time scales, use their result to reconstruct the exact

functions g2([f1], t), and extend this result to longer times

using the kinetic equation for f1.

Such a procedure has not yet been realized so far for

kinetic equations. For this reason it is interesting to look at

other examples where this concept has been tested.
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6. Dynamical freeze out of dominant modes (DFDM)

Let us now turn to the final approach listed in figure 3 under

coarse graining concepts, right column.

6.1. Coupled DFT-master equation approach for molecule

diffusion on a metal surface

Franke and Pehlke performed extensive DFT simulations of

the diffusion of a 1,4-butaneditiol molecule on a gold surface

[32]. They found the local adsorption energy minima of the

molecule and then applied the nudged elastic band approach

[64] to compute the transition rates between them. This

allowed them to record the entire ‘network’ of atomic scale

diffusion paths of the molecule on the surface. There is a large

number of processes that are analyzed in [32]. Here, we are

not concerned with the details of the associated diffusion

hops, [32]—but focus on the coarse graining idea.

In order to connect the ab initio short-time diffusion

simulations to the long time behavior Franke and Pehlke

considered a master equation [32]

p t

t
p t p t

p t p t

d

d
,

0 1, 1, 19

i

j i

j i j i j i

i

i

i- -

�

�

� ( � (

�
v

l l
( )

{ ( ) ( )}

( ) ( ) ( )

where i is a multi-index numbering the configurations of the

molecule which have a probability pi(t), and Γa→b are the

transition rates (probability per unit time) from state a to b.

The first term on the right side of equation (19) describes

processes which increase the probability to realize state i

(‘gain’), whereas the second term describes the analogous loss

processes. For the computation of the transition rates the

authors used standard TST [65],

e . 20a b a b
E k T0 a b BO( �l l

�% l ( )

Here, Ea b% l is the energy barrier for the transition

between states a and b which is computed using DFT, and ν0

is the attempt frequency which is of the order of 1012 s−1
[32].

The authors of this reference consider two stages of the

evolution: the initial stage, corresponding to stage I in table 1,

and the asymptotic hydrodynamic state, corresponding to

stage III. In stage I the dynamics depend strongly on the

initial configuration of the molecule, and the diffusion retains

a memory of the initial state being anisotropic. In contrast,

one expects spatially isotropic motion of the molecule in stage

III, where averaging over many initial configurations is

assumed, since all memory of the initial state has been lost.

Correspondingly, it is expected that the standard diffusion

equation

n t

t
D n t

r
r

,
, , 21

s
s

� %
( )

( ) ( )

holds with the well-known time-dependent solution of the

initial value problem for the initial condition n(r,

0)=Nδ(r−r0),

n t
N

Dt
r,

4
e . 22Dtr r 40

2

Q
� � �( ) ( )( ) ( )

The solution (22) was recovered in [32] by mapping of the pi(t)

on the associated spatial coordinates of the center of mass of

the molecule, giving rise to the space-dependent probability

density P(r, t). P(r, t)=n(r,t)/N is proportional to the

particle density n(r, t), where N is the total number of

molecules (number of initial configurations). In the long time

limit, an exponential temperature dependence of the diffusion

coefficient results, i.e., an Arrhenius law

D T a e , 23E k T
0
2 BO� �%( ) ( )( )

which made it possible to recover the effective attempt fre-

quency ν and effective diffusion energy barrier ΔE. In (23),

a0 is the surface lattice constant.

To summarize, ab initio results for the elementary dif-

fusion motions of a molecule on a surface have been obtained

in this example. While it provides a complete microscopic

picture of surface diffusion, this information is far too detailed

for many purposes, in particular, for comparisons with mea-

surements. In order to characterize the mobility of the mole-

cules, the main interest concerns the long time behavior,

which is governed by much simpler physics described by the

classical diffusion equation (21). This reduced dynamics

emerges dynamically during the course of the evolution of the

system due to self-averaging effects. The main advantage of

this approach is that the involved diffusion coefficient can be

obtained exactly from ab initio DFT data instead of using

standard approximate results from transport models.

At the same time the present combination of DFT and a

master equation approach is in principle able to provide

additional information, beyond that presented in [32]. First of

all, it would be possible to establish the equilibration time

scale trel, when the system reaches the isotropic diffusion

regime (stage III in table 1). Furthermore, it should be pos-

sible to investigate the transient behavior being relevant at

shorter time (stage II) as well, and this might give rise to a

modified diffusion equation.

Finally, we note that similar master equation based

approaches have been applied to the computation of chemical

reaction rates, see [66, 67] and references therein. In the

context of plasma-surface interaction, diffusion and chemical

reaction rates in the presence of a plasma are of high interest.

Therefore, the present approach might be useful to derive

improved surface diffusion and reaction models that take into

the influence of a plasma.

6.2. Discussion of the validity of the master equation

At this point, a first assessment of the concept to couple first

principles data with an analytical model is given. The central

question concerns, of course, the validity limits of the master

equation. Let us summarize the corresponding requirements.

(i) First, it is known that TST is the basis for the transition

rates(20), and it assumes that the surface is in thermal

equilibrium.

(ii) All energy barriers have to be large compared to the

thermal energy.
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(iii) The transition probabilities in the master equation (19)

depend linearly on the current occupation probabilities,

i.e., the rates Γa→b are independent of all pi(t).

(iv) The master equation is Markovian, i.e., the transition

probabilities depend only on the current state of the

system (no memory).

(v) The transition rates Γa→b in the master equation are

time-independent.

Let us ask the question now, how important these conditions

are and which of them can eventually be relaxed, if we would

have first principle simulation data at our disposal. First of all,

conditions (i) and (ii) can be easily dropped and the rates can

be replaced by numerical simulation results, a b a b
sim( (l l⟶ .

Second, the restrictions (iii)–(v) on the master equation can be

dropped as well in favor of numerical results p t,a b i
sim( l ({ } ),

which are updated during the simulation. Obviously, these

rates depend generally on the probabilities as well.

In fact, such a generalized version of the master equation

which takes into account memory of the previous system

states, is nothing but a generalized non-Markovian kinetic

equation [56], which can be derived rigorously from the

fundamental equations of many-body physics, such as the

BBGKY-hierarchy, see section 5.5. The necessary require-

ments to such a generalized master equation are:

A. The microstates of the many-body system are mapped

onto a complete set of events ‘i’ with well defined

probabilities, i.e. p t 1i i� �( ) , and p t0 1,i- -( ) for
all i and all times.

B. There has to be a rigorous and numerically stable

procedure how to identify these states and to assure

ergodicity.

C. There has to be a consistent, stable and sufficiently

accurate procedure how to determine the corresponding

probabilities and transition rates ‘on the fly’ during a

simulation.

A first example how to realize such a procedure is given in the

following section 6.3.

6.3. Coupled molecular dynamics-rate equation approach for

atom adsorption on a metal surface

Filinov et al [33, 68] presented a first application of the pro-

cedure outlined above to the adsorption dynamics and sticking

probability of argon atoms on a platinum surface. They per-

formed semi-classical MD simulations of the atom dynamics

using ab initio pair potentials. These simulations yield the

complete information on the particle trajectories xi(t)={ri(t),

pi(t)} with i N1 ...� . These trajectories depend on the initial

conditions such as the incident energy Ei(0) and angle θi(0),

and position ri(0). All observables of interest can in principle

be computed from these trajectories (microstates) without

resorting to additional approximations such as in TST (20).

Using the procedure described below, Filinov et al

computed the sticking coefficient of argon atoms, as a func-

tion of time and obtained very good agreement with experi-

ments [68], as is illustrated in figure 6. Interestingly, the

results provide energy and angle resolved data for the prob-

ability that an impacting atom will be adsorbed at the surface

(or be reflected). This is valuable input information for

microscopic plasma simulations.

Let us now return to the idea of this paper—how to

extend these simulations to longer times. Even though for the

present problem of computing the sticking probability MD

simulations of 10 ... 40 ps duration are sufficient and no

extensions are required, it is very instructive to analyze the

potential of this scheme. First, it is clear that macroscopic

properties such as the sticking coefficient do not require the

complete microscopic information of all particle trajectories.

Therefore, we attempt to map this microscopic information on

a finite set of many-body states that are distinguished by the

energy of the atoms.

The kinetic energy Ep contains two orthogonal con-

tributions and reads

E E E E
p

m
a,

2
. 24p p p p

,
, 2

� � �? ?
?

& &
&( )

( )

In addition, each particle moves in the potential landscape of

all surface atoms V giving rise to the total energy

r r rE E V . 25t p� �( ) ( ) ( ) ( )

All trajectories of the atoms can be uniquely classified by

their energy at every time: (1) There are atoms with positive

surface-normal energy, i.e., E V 0p � �? . These particles are

desorbed from the surface and their fraction is denoted as NC

(continuum states). (2) The remaining atoms have

E V 0p -�? and belong into two fractions. The first fraction

has a positive total energy, i.e., Et>0. These atoms can

freely move across the surface and are denoted by NQ (frac-

tion of ‘quasi-trapped’ atoms). (3) The remaining atoms have

a negative total energy (Et<0). That is they are trapped in

local potential minima, and their fraction is denoted by NT.

An example of such a trajectory is depicted in figure 7(a).

There, an atom approaches the surface (being in a continuum

state) and by colliding with the surface atoms, rapidly looses a

Figure 6. Sticking coefficient of argon atoms from first principle MD
simulations, as a function of time for two incident angles Θ and
several impact energies Ei, for a lattice temperature Ts=300 K. The
experimental data (symbols [69]) are placed at the equilibration time,
tD=1.5t0=10 ps obtained in the simulations. For details see [68].
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large fraction of its energy, becoming trapped. Afterwards it

gains again energy from another collision with the surface

(thereby being transferred to a quasi-trapped state) until it is

eventually desorbed (returning to a continuum state C).

The main advantage of this mapping approach is that a

large statistical ensemble of trajectories is available for suf-

ficiently many atoms leading to an excellent accuracy of the

results. We underline that this classification of all atoms

into just three categories (three ‘states’) is unique, i.e.,

N t N t N t 1Q T C� � �( ) ( ) ( ) , in agreement with the condition
A listed in section 6.2. In fact, these fractions can be under-

stood as occupation probabilities pi with i={C, Q, T} of the

three distinct macro-states.

The three fractions of atoms are time-dependent and

change during the time the atoms spend on the surface. The

time dependence is governed by the system of rate equations

[33]

N T T N T N a, 26Q TQ CQ Q QT T� � � �˙ ( ) ( )

N T T N T N b, 26T QT CT T TQ Q� � � �˙ ( ) ( )

N N N T N T N c, 26C Q T CT T CQ Q� � � � �˙ ( ˙ ˙ ) ( )

that is, in fact, just an example of the master equation dis-

cussed in section 6.2, and the transition rates Tαβ [α, β={C,
Q, T}] are just the coefficients (B Cl occurring in the latter.

In the terms used in table 1, this system of rate equations

corresponds to the methods listed for the hydrodynamic stage

(stage III). But, nothing prevents us of course from using

these equations also for earlier time scales, i.e., for the kinetic

and initial stages (stage II and I, respectively). As discussed in

section 6.2, to be applicable at earlier times, we have to

permit a dependence of the rates on time and on the individual

probabilities in that case, i.e., T T N N N t, , ;C Q T�BC BC ( ).

Furthermore, it was shown in [33] that these rates depend

sensitively on the energy distribution function of the gas

atoms F E E t, ;? &( ), which themselves evolve with the time

duration atoms spend on the surface before they are desorbed.

In [33] it was demonstrated in detail, how the complete

information from the MD trajectories and it was demonstrated

how the MD data can be used to explicitly reconstruct the

rates Tαβ for all times. This means that the conditions B and C

of section 6.2 are also realized. Furthermore, the analysis

revealed that the gas atom–surface interaction proceeds in two

stages. At first, the energy distribution functions thermalize

within the relaxation time t 20 ... 40rel x ( ) ps, which depends

on the energy and angle of incidence of the atom. During this

period of time the transition rates also reach their equilibrium

form, Tαβ(t)→ TEQαβ , and remain practically constant for times

t>trel. This can be seen infigure 7(b). This first time interval

corresponds to the stages I and II in table 1. The subsequent

temporal evolution corresponds to stage III and turns out to be

accurately described by the rate equations (26a)–(26c) with

constant transition rates.

This behavior is verified by a comparison of MD simu-

lation data with the analytical solutions of the rate

equations (26a)–(26c). The corresponding results are shown

Figure 7. Illustration of the combined MD-rate equations approach for atom sticking [33]. (a): Example of an Ar-atom trajectory at a platinum
surface at temperature Ts=300 K. z(t): height above the surface (in Angstroms). E(t): total energy of the atom (in 10 meV). Incident
conditions (energy and angle): Ei=21.6 meV and θi=45°. Depending on the energy the atom belongs to one of the three categories:

continuum (C), quasi-trapped (Q) or trapped (T). (b): Time evolution of the three dominant transition rates (in units t0
1� ). The rate Tαβ denotes

the transition C Bl . The smallest rate, TCT≈0.093, is not shown. (c): Fraction of trapped and quasi-trapped atoms as a function of time.

Dashed and dotted lines: MD simulation data. N1 and N2 are the associated solutions of the rate equations using stationary transition rates.
The time unit is t0=6.53 ps.
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in figure 7(c). While the analytical results differ qualitatively

from the MD simulation results, for short times, the analytical

fractions of trapped and quasi-trapped atoms practically

coincide with the MD data, for times larger than about

5t0≈33 ps. This is approximately the time, where the

transition rates have saturated (figure 7(b)).

In other words, the set of three occupation probabilities

(fractions) N N,C Q and NT is sufficient to capture the entire
sticking and desorption properties of the gas atoms, for times

t trel. . These three collective variables have emerged

dynamically during the temporal evolution and the associated

coarse graining dynamics. Thus, the system of rate equations

is sufficient to describe the mean adsorption/desorption
dynamics for a sufficiently large ensemble of atoms at longer

times. The solution of these equations is computationally

cheap and allows one to propagate the system, in principle, to

arbitrarily long times. This could be of relevance for experi-

ments where the surface properties change in time, e.g. due to

an AC field or in the course of continuous sputter deposition.

Note that the transition rates TEQ
BC obtained from the MD

simulations are not approximations but have first principle

quality, in principle.

7. Conclusion and outlook

The dramatic increase of computation power holds high pro-

mises for an improved simulation of plasma-surface interaction

processes. This has the potential for major advances of this

field because most current models are phenomenological using

surface coefficients that are poorly known both experimentally

and theoretically. Moreover, these parameter—even if they

exist—may carry an (unknown) dependence on the surface

conditions or the plasma parameters.

Here, we discussed the application of first principle

simulations to plasma-surface interaction where we con-

centrated on semi-classical molecular dynamics simulations

where electronic degrees of freedom are not explicitly

resolved. This is well justified for processes involving neutral

particles of low energy where excitation or ionization can be

neglected. Such MD simulations using accurate force fields as

an input have been successfully used for more than two

decades. However, the required small time steps (of the order

of one femtosecond) prohibits, in most cases, to achieve time

scales for which experimental data are available or which are

of relevance for low-temperature plasma experiments.

In this paper we discussed strategies how to overcome

this limitation, see figure 3. As a first concept, we briefly

reviewed acceleration techniques and presented one recent

example—SPA [30]—which is capable of achieving a boost

factor of more than 109. This was applied to cluster growth on

a polymer substrate during sputter deposition. It was

demonstrated that a controlled increase of the deposition and

diffusion rates, such that ratio remains constant and on the

level of the experiment, allows for a remarkable acceleration

without loss of accuracy, for times up to about four minutes.

These simulations can be an important piece of future plasma-

surface simulations, using plasma data for the deposition rates

(the flux JA
p in figure 2), as an input and delivering the time-

dependent modifications of the surface morphology (labeled

‘SM’ in figure 2) as an output for surface physics simulations.

Our second and main focus was on coarse graining

techniques that attempt to combine two (or more) descriptions

of different spatial and temporal resolution. Such concepts

have existed for many years in physics, chemistry, material

science and technology and are often summarized under the

headline multi-scale modeling. For example, recent progress

in the field of chemistry has been reviewed in the Nobel

lectures of Levitt, Karplus and Warshel who shared the Nobel

prize in chemistry in 2013.

The method we have been advocating in this paper—

DFDM—concentrates on the idea of extending first principle

MD simulations to long time scales without loss of accuracy.

This method requires the derivation of model equations that

are formally exact, at sufficiently long time scales. For-

tunately, generations of researchers have provided us with

ample candidates for such equations which include kinetic

equations, hydrodynamic equations, rate equations or a master

equation. An (incomplete) overview was presented in table 1.

While these models are traditionally being used within certain

approximation schemes for the relevant parameters, here we

suggest to avoid any approximation. Instead we suggest to use

exact input data for the relevant transport coefficients or

transition rates and to provide them by MD simulations.

The idea of DFDM was demonstrated for the example of

atom scattering from a metal surface, section 6.3. It was

shown that the use of MD input data in a system of rate

equations allows to describe the sticking dynamics practically

exactly. The first principle MD solutions go over smoothly

into the result of the rate equations which can be extended to

macroscopic time scales. The main requirement for our

approach to be feasible is that the time scale after which the

model is valid is short enough to be accessible by MD

simulations. In the case of atom sticking this time is the

relaxation time trel. Recalling again the overview given in

figure 2, these simulations are capable of using the fluxes JA
p ,

of atoms as an input from a plasma simulation and to return,

as an output, the energy or momentum resolved fluxes JA
s of

atoms that leave the surface.

There are various ways how to extend the present idea. If

the surface is inhomogeneous, a straightforward general-

ization would be to include the space dependence into the

densities and the rates. Then, the rate equations turn into

hydrodynamic equations. Furthermore, the effect of a plasma

environment, such as characteristic particle fluxes or an

adsorbate-covered surface, are straightforwardly included into

our scheme, as discussed in [33].

To go beyond the problem of neutral atom sticking, the

present theoretical idea can be straightforwardly extended

also to other analytical models, which are listed in table 1.

One example are hydrodynamic equations for the particle

densities and fluxes, e.g. in the plasma bulk or in the sheath.

Instead of using an approximate decoupling, e.g. by using a

model equation of state, one can use MD data as an input

again. Finally, the idea of DFDM can also be extended to

quantum systems where the dynamics are treated by quantum
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molecular dynamics or TDDFT. These ab initio input data

can again be linked to macroscopic model equations such as

diffusion equation, as in [32], hydrodynamic equations or

quantum hydrodynamics, e.g. [70, 71].

Finally, let us return to the overview on theoretical

methods for the plasma-solid interface that was sketched in

figure 2. While, in this paper, we have concentrated on

molecular dynamics, the box in the center indicates that there

is a much broader arsenal of tools available. In fact there is no

unique method that allows to describe all processes. In part-

icular for the description of electrons and ions crossing the

interface, semi-classical MD fails, and quantum approaches are

necessary. This concerns the neutralization of low energy ions,

e.g. [12] and their stopping in the solid, as well as the electron

dynamics across the interface, e.g. [11]. Here nonequlibrium

quantum methods such as TDDFT or nonequlibrium Green

functions simulations, e.g. [15, 16, 72] have to be used. These

methods are extremely expensive, and the goal will have to be

to use their results as input to simpler approaches such as

quantum kinetic equations [56] or improved molecular

dynamics simulations. Moreover, to properly capture the

influence of the plasma on the solid, these surface simulations

have to be linked to fluid or kinetic simulations of the plasma,

as indicated by the arrows in figure 2.

This connection maybe summarized by adding a fifth

step to the list of section 1, meaning that plasma simulations

will have to be supplied with accurate fluxes of electrons, ions

and neutrals leaving the surface and, at the same time, provide

those fluxes that impact the solid, to surface simulations. As a

result of the fluxes across the interface, the specific plasma

conditions are expected to influence the surface properties,

such as surface roughness, morphology or chemical reactiv-

ity. Ultimately, an integrated modeling of the plasma and the

solid surface will be required [13] to overcome the trial and

error character of many experiments and to achieve a pre-

dictive modeling of the relevant processes.
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