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Time-reversal symmetry is a fundamental property of many quantum mechani-

cal systems. The relation between statistical physics and time reversal is subtle,

and not all statistical theories conserve this particular symmetry—most notably,

hydrodynamic equations and kinetic equations such as the Boltzmann equation.

Here, we consider quantum kinetic generalizations of the Boltzmann equation using

the method of reduced density operators, leading to the quantum generalization

of the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. We demon-

strate that all commonly used approximations, including Vlasov; Hartree-Fock; and

the non-Markovian generalizations of the Landau, T-matrix, and Lenard-Balescu

equations, are originally time-reversal invariant, and we formulate a general criterion

for time reversibility of approximations to the quantum BBGKY hierarchy. Finally,

we illustrate, through the example of the Born approximation, how irreversibility is

introduced into quantum kinetic theory via the Markov limit, making the connec-

tion with the standard Boltzmann equation. This paper is a complement to paper I

(Scharnke et al., J. Math. Phys., 2017, 58, 061903), where the time-reversal invari-

ance of quantum kinetic equations was analysed in the frame of the independent

non-equilibrium Green functions formalism.
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1 INTRODUCTION

The time evolution of quantum many-body systems is of great interest currently in many areas of modern physics and chem-Q2

istry, for example, in the context of laser–matter interaction, non-stationary transport, or dynamics following an interaction or

confinement quench. The theoretical concepts used to study these dynamics are fairly broad and include (but are not limited

to) wave function-based approaches, density functional theory, and quantum kinetic theory. The latter treats the time dynamics

of the Wigner distribution or, more generally, the density matrix and captures the relaxation towards an equilibrium state (see,

e.g., Refs. 1–4). The most famous example of a kinetic equation is the Boltzmann equation, along with quantum generaliza-

tion, but this equation is known to not be applicable to the short-time dynamics. For this reason, generalized quantum kinetic

equations were derived that are non-Markovian in nature (e.g., Refs. 1, 3, 5–9) and that have a number of remarkable properties,

including the conservation of total energy, in contrast to kinetic energy conservation in the Boltzmann equation. It was recently

demonstrated that these generalized quantum kinetic equations are well suited to study the relaxation dynamics of weakly and

moderately correlated quantum systems, in very good agreement with experiments with ultra-cold atoms (e.g., Refs. 10, 11)

and first-principle density matrix renormalization group methods.[12]
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2 BONITZ ET AL.

This success of generalized quantum kinetic equations warrants a more detailed theoretical analysis of their properties. Despite

extensive work over recent decades, the aspect of time reversibility was not studied in detail. The relation between time-reversal

symmetry and statistical physics is generally subtle, and not all statistical theories are invariant under time reversal, the most

famous counterexample being the above-mentioned Boltzmann equation of classical statistical mechanics and its quantum

generalization. In contrast, the non-Markovian generalizations of the Boltzmann equation, which can be used to improve theQ3

Boltzmann equation and consist of the latter as a limiting case, are expected to be time-reversal invariant because of the under-

lying quantum mechanical system. But then, questions arise about where exactly time-reversal invariance is lost, how this is

related to common many-body approximations, and so on.

Among the well-established approaches to derive these generalized quantum kinetic equations, we mention density operator

concepts—see, for example, Ref. 3 for an overview—and non-equilibrium Green functions (NEGF). We recently analysed the

question of time-reversal invariance within the NEGF formalism in paper I.[13] It is the goal of the present article to complement

the NEGF results of that paper with an analysis of the independent and technically very different density operator formalism.

In this paper, we briefly recall the derivation of the quantum Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy

in section 2. As the BBGKY hierarchy can be directly derived from the Heisenberg equation (von Neumann equation) for the

N-particle density operator, which is time-reversal invariant, it should be expected that this hierarchy has the same symmetry

properties. Nevertheless, general proof is usually missing in the literature, for example, Refs. 1–4, and a successful procedure

is presented in section 4. We then demonstrate, in section 5, that important standard closure approximations to the BBGKY

hierarchy also preserve time-reversal symmetry. In section 6, we demonstrate, as an example, the transition from a time-reversal

invariant generalized kinetic equation to an irreversible equation of the Boltzmann type by performing the Markov limit and

the weakening of initial conditions. We conclude with a summary in section 7.

2 BBGKY HIERARCHY FOR THE REDUCED-DENSITY OPERATORS

Here, we briefly recall the basic equations of the density operator theory following Ref. 3. The generic Hamiltonian of an

interacting N-particle system is given by a sum of a single particle and an interaction term

Ĥ =
N∑

i=1

Ĥi +
∑

1≤i<j≤N
V̂𝑖𝑗 , (1)

Ĥi(t) =
p̂2

i

2mi
+ Ûi(t). (2)

The solutions of the time-dependent N-particle Schrödinger equation with this Hamiltonian are denoted by ∣𝜓 (1)⟩… ∣𝜓 (M)⟩
and form a complete orthonormal basis:

⟨𝜓 (k)|𝜓 (l)⟩ = 𝛿k,l, (3)

M∑
k=1

∣ 𝜓 (k)⟩⟨𝜓 (k) ∣= 1. (4)

The central quantity for the construction of quantum kinetic equations is the N-particle density operator:

𝜌 =
M∑

k=1

Wk ∣ 𝜓 (k)⟩⟨𝜓 (k) ∣, (5)

where Wk are positive real probabilities, and 0≤Wk ≤ 1, with
M∑

k=1

Wk = 1, and we restrict ourselves to the case of

time-independent probabilities. The density operator obeys the von Neumann equation

iℏ 𝜕
𝜕t
𝜌 − [Ĥ, 𝜌] = 0. (6)

In order to derive the quantum BBGKY hierarchy, we introduce the reduced s-particle density operator (s= 1…N − 1)

F̂1…s = CN
s Trs+1…N 𝜌, Tr1…sF̂1…s = CN

s , (7)

where CN
s = N!

(N−s)!
. The equations of motion for the reduced density operators follow directly from the von Neumann Equation 6

and the definition 7:

iℏ 𝜕
𝜕t

F̂1…s − [Ĥ1…s, F̂1…s] = Trs+1

s∑
i=1

[V̂i,s+1, F̂1…s+1], (8)
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BONITZ ET AL. 3

where Ĥ1…s is the s-particle Hamilton operator, which follows from the N-particle Hamiltonian, Equation 1, by substituting

N → s. The system 8 with s= 1…N − 1 constitutes the quantum generalization of the BBGKY hierarchy.

In order to specify decoupling approximations to the hierarchy, we introduce the correlation operators:

F̂12 = F̂1F̂2 + ĝ12, (9)

F̂123 = F̂1F̂2F̂3 + ĝ23F̂1 + ĝ13F̂2 + ĝ12F̂3 + ĝ123, (10)

where ĝ12 describes pair correlations, ĝ123 three-particle correlations, and so on, which are due to interaction effects beyondQ4

the mean field. In contrast, mean field (Vlasov, Hartree-Fock) terms are contained in the products of single-particle density

operators and appear via the mean field potential ÛH
i = TrjV̂𝑖𝑗F̂j, leading to the renormalization of the single-particle and

two-particle Hamiltonians Ĥi →
̂Hi = Ĥi + ÛH

i , Ĥ𝑖𝑗 →
̂H𝑖𝑗 =

̂Hi +
̂Hj + V̂𝑖𝑗 , and so on. The BBGKY hierarchy, rewritten in

terms of the correlation operators, then becomes:

iℏ 𝜕
𝜕t

F̂1 − [ ̂H1, F̂1] = Tr2[V̂12, ĝ12], (11)

iℏi 𝜕
𝜕t

ĝ12 − [ ̂H12, ĝ12] = [V̂12, F̂1F̂2]+

+Tr3{[V̂13, F̂1ĝ23] + [V̂23, F̂2ĝ13] + [V̂13 + V̂23, ĝ123]}, (12)

and this is also applicable for the higher-order operators. Standard many-body approximations are easily identified fromQ5

Equations 11 and 12, cf. for example, Ref. 3:

1. The mean field (Hartree or Hartree-Fock) approximation that leads to the non-linear Vlasov equation (or to the

time-dependent Hartree-Fock) follows from letting ĝ12 → 0 in Equation 11.

2. The second-order Born approximation, leading to the Landau equation, follows from neglecting V̂12 in
̂H12 on the left and

ĝ23 = ĝ13 = ĝ123 → 0 on the right side in Equation 12.

3. The T-matrix or ladder approximation follows from setting ĝ23 = ĝ13 = ĝ123 → 0 on the right side in Equation 12.

4. The polarization approximation that is related to the GW approximation of Green functions theory and leads to the

Lenard-Balescu equation follows from neglecting V̂12 in
̂H12 on the left and ĝ123 → 0 on the right side in Equation 12.

5. The screened ladder approximation that is related to the parquet approximation (or “FLEX”) in Green functions theory

follows from ĝ123 → 0 on the right side in Equation 12.

In a similar manner, higher-order decoupling schemes for the BBGKY hierarchy are introduced on the level of the equation of

motion for g123. Typically, approximations are derived by omitting terms of the form [Â, B̂], where Â is a contribution to the full

Hamiltonian 1 (typically an interaction potential), and B̂ are contributions to the cluster expansion 10. This will be discussed in

more detail in section 5.

Finally, we note that the cluster expansion 10 is written without an explicit account of the spin statistics. A direct

(anti-)symmetrization of the hierarchy, for the case of bosons (fermions), is straightforwardly achieved by replacing the density

operators according to[14] (Figure 1)

F̂1…s → F̂1…sΛ±1…s, (13)

where the (anti-)symmetrization operators are given by

Λ±
12

= 1±P12,

Λ±
123

= 1±P12±P13±P23 + P12P13 + P12P23,

and so on, where Pij is the permutation operator of particles i and j, and the upper (lower) sign refers to bosons (fermions).

(Anti-)symmetrization is then achieved by applying the s-particle operator Λ±
1…s to the s-th equation of the BBGKY hierar-

chy, term by term. We illustrate this procedure for the (anti-)symmetrization of the Hartree mean field term on the l.h.s. of

FIGURE 1 Illustration of the forward and backward solutions of the time-dependent

Schrödinger equation. Upper trajectory: forward solution |𝜓𝜎(t)⟩. Lower trajectory:

backward solution |𝜓 ′
−𝜎(t′)⟩. Note that we choose the limits of the forward trajectory as

t=−t0 and t= 0, whereas the backward one runs from t′ = 0 to t′ = t0. The time reversal

occurs at t= 0
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4 BONITZ ET AL.

Equation 11, which is obtained by replacing F̂1F̂2 → F̂1F̂2Λ±12
:

[ÛH
1
, F̂1] → [ÛHF

1
, F̂1] = Tr2[V̂12, F̂1F̂2Λ±12

],

with ÛHF
i = TrjV̂𝑖𝑗F̂jΛ±𝑖𝑗 , (14)

The full (anti-)symmetrized equations are given in Ref. [3]. However, we will not need these equations below. This is because

the (anti-)symmetrization operators commute with the time-reversal operator T̂ , cf. section 3. Therefore, (anti-)symmetrization

does not affect the time-reversal properties of the resulting equations and approximations, allowing us to restrict ourselves toQ6

the simpler Equations 11, 12 in this study.

3 TIME-REVERSAL INVARIANCE IN QUANTUM MANY-BODY THEORY

3.1 Time-reversal invariance of the equations of motion of quantum mechanics

Let us recall the concept of time reversibility as was discussed in Ref. 13; for text book discussions, see Refs. 15, 16. Consider

the time-dependent N-particle Schrödinger equation on an arbitrary finite interval of time, − t0 ≤ t≤ 0, with a given initial

condition |𝜓0⟩:
iℏ𝜕t ∣ 𝜓(t)⟩ = Ĥ ∣ 𝜓(t)⟩ , (15)

∣ 𝜓(−t0)⟩ =∣ 𝜓0⟩. (16)

This equation is called time-reversal invariant if:

i. for any solution |𝜓(t)⟩, there exists another solution |𝜓 ′(t′)⟩ with t′∈ [0, t0] and t′ =−t and

ii. there exists a unique relation between the two:

∣ 𝜓 ′(t′)⟩ = T̂ ∣ 𝜓(t)⟩, (17)

for which the time-reversal operator T̂ will be specified below. Both solutions describe the same physical state; therefore, the

associated probability densities must coincide:

||𝜓𝜎(t)⟩|2 =||𝜓 ′
−𝜎(−t)⟩|2, (18)

where we indicated explicitly that, on the backward trajectory |𝜓 ′(t′)⟩, the spin projections 𝜎 of all particles are inverted.

Analogously, momenta and angular momenta (their eigenvalues) are inverted, as in classical mechanics. To motivate the choice

of T̂ , we rewrite the Schrödinger dynamics 15 in terms of the standard time-evolution operator Û:

∣ 𝜓(t)⟩ = Û(t,−t0) ∣ 𝜓0⟩, (19)

Û(t, t′) = 𝑇 𝑒−
i

ℏ
∫ t

t′ dt ̂H(t). (20)

Backward evolution in time is, obviously, achieved by the complex conjugation of U. This brings us to the following choice

of the time-reversal operator T̂ , which is originally due to Wigner[17]:

T̂ is an anti-unitary operator, that is, T̂ = K̂Ŵ, where Ŵ is a unitary operator that assures the spin flip in Equation 18, and K̂
performs complex conjugation. Here, we will not treat the spin explicitly and will, therefore, use Ŵ → 1. As a result, Equation 17

becomes:

∣ 𝜓 ′(t′)⟩ = T̂ ∣ 𝜓(t)⟩ =∣ 𝜓(−t)⟩∗, (21)

An operator Â′ acting on the time-reversed solution is obtained from the original operator Â via

Â′ = T̂ÂT̂−1 (22)

T̂ is anti-linear, that is,

T̂{|𝜓1⟩ + i|𝜓2⟩} = T̂ ∣ 𝜓1⟩ − iT̂ ∣ 𝜓2⟩, (23)

T̂{Â + iB̂}T̂−1 = T̂ÂT̂−1 − iT̂B̂T̂−1, (24)

for any two states and any two operators.
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BONITZ ET AL. 5

FIGURE 2 Illustration of the forward and backward solutions of the quantum BBGKY

hierarchy. Upper trajectory: forward solution {F1(t), g12(t), …} on the interval −t0 ≤ t≤ 0.

Lower trajectory: backward solution {F′
1
(t′), g′

12
(t′),…} on the same interval with

0≤ t’ ≤ t0, Time reversal occurs at t= 0, cf. Figure 1

As a test, we apply the operator T̂ to both sides of Equation 15:

T̂iℏ𝜕t ∣ 𝜓⟩ = T̂Ĥ ∣ 𝜓⟩
⇐⇒ −iℏ𝜕t

⏟⏟⏟
iℏ𝜕(−t)

T̂ ∣ 𝜓⟩ = T̂ĤT̂−1T̂ ∣ 𝜓⟩ , (25)

which means that, indeed, ∣ 𝜓 ′⟩ = T̂ ∣ 𝜓⟩ solves the time-reversed Schrödinger equation

iℏ𝜕(−t) ∣ 𝜓 ′⟩ = Ĥ ∣ 𝜓 ′⟩ (26)

if and only if

Ĥ = T̂ĤT̂−1. (27)

This is equivalent to [T̂ , Ĥ] = 0, and we obtain a result found in many text books. However, we will see in section 4 that

condition 27 is, in fact, not sufficient.

Next, we find the time-reversed values of the coordinate and momentum operators using the coordinate representation:Q7

r̂′ = T̂ r̂T̂−1 = r̂T̂T̂−1 = r̂, (28)

as r̂ is real, and

p̂′ = T̂p̂T̂−1 = −p̂, (29)

as p̂ = ℏ

i
𝛻 is purely imaginary. This is again consistent with the time-reversal properties of classical mechanics. Furthermore,

Equation 29 also shows that relation 27 excludes certain classes of Hamiltonians, such as those containing odd powers of the

momentum (Figure 2).Q8

4 TIME-REVERSAL INVARIANCE OF THE BBGKY HIERARCHY

The N-particle density operator 𝜌, defined by Equation 5, extends the concept of the time-dependent Schrödinger equation to a

thermodynamic ensemble while containing the dynamics of a pure state |𝜓 (l)⟩ as a special case, when Wk = 𝛿k, l.

Let us now analyse the time-reversal symmetry of the von Neumann Equation 6 by applying the T̂ operator, introduced above,

from the left and its inverse from the right:

T̂iℏ𝜕t𝜌T̂−1 = T̂(𝜌Ĥ − Ĥ𝜌)T̂−1

−iℏ𝜕tT̂𝜌T̂−1 = T̂𝜌T̂−1T̂ĤT̂−1 − T̂ĤT̂−1T̂𝜌T̂−1 ,

which is equivalent to the time-reversed equation

iℏ𝜕−t𝜌
′ = [𝜌′, Ĥ], (30)

again, if and only if condition 27 is fulfilled, as in the case of the Schrödinger equation. Here, we introduced the solution of the

time-reversed von Neumann equation:

𝜌′(−t) = T̂𝜌(t)T̂−1

=
∑

k
WkT̂ ∣ 𝜓 (k)(t)⟩⟨𝜓 (k)(t) ∣ T̂−1

=
∑

k
Wk ∣ 𝜓 (k)′ (−t)⟩⟨𝜓 (k)′ (−t) ∣, (31)

which is consistent with the definition of the density operator 5 in terms of the solutions of the time-reversed Schrödinger

equation. Let us now return to the BBGKY hierarchy 8. Its time reversibility follows immediately from the reversibility of the

von Neumann Equation 6 that was demonstrated above. Nevertheless, it is instructive to verify the time reversibility explicitly
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6 BONITZ ET AL.

as this will be useful for the analysis of approximations to the hierarchy in section 5. Applying the operators T̂ and T̂−1 from

the left and right, respectively, we obtain:

iℏ 𝜕
𝜕(−t)

F̂′
1…s − [Ĥ′

1…s(−t), F̂′
1…s(−t)]

= Trs+1

s∑
i=1

[V̂ ′
i,s+1

, F̂′
1…s+1

(−t)], (32)

where we used the fact that the definition 7 is a real linear operation

T̂F̂1…s(t)T̂−1 = CN
s Trs+1…NT̂𝜌(t)T̂−1 =

= CN
s Trs+1…N𝜌

′(−t) = F̂′
1…s(−t), (33)

such that F̂′
1…s(−t) is, indeed, the solution of the time-reversed hierarchy equation if the following conditions hold:

Ĥ′
1…s(−t) ≡ T̂Ĥ1…s(t)T̂−1 = Ĥ1…s(t), (34)

V̂ ′
𝑖𝑗 ≡ T̂V̂𝑖𝑗 T̂−1 = V̂𝑖𝑗 , (35)

for all i≠ j ∈ [1, N] and all s= 1…N − 1, simultaneously. While for typical distance-dependent real potentials, Equation 35 is

always fulfilled, Equation 34 places clear restrictions on the contributions to the system Hamiltonian.

Based on these results, we conclude that time-reversal invariance of the exact BBGKY hierarchy requires not only the time

reversal symmetry of the full N-particle Hamiltonian 1, as in the case of the Schrödinger equation, cf. condition 27, but also

that each of the contributions to the Hamiltonian have to obey this symmetry separately. This is, of course, a much stronger

condition than 27.

5 TIME-REVERSAL INVARIANCE OF APPROXIMATIONS TO THE HIERARCHY

As the solution of the BBGKY hierarchy is usually possible only with suitable approximations, the important question is which

approximations retain the time-reversal properties of the exact system. We subsequently demonstrate that a very broad class ofQ9

approximations retains time-reversal invariance. Therefore, we will restrict ourselves to real-valued Hamiltonians, Ĥ∗ = Ĥ.

We start by rewriting the first two equations of the BBGKY hierarchy in terms of the correlation operators, Equations 11, 12,

in a different form:

iℏ 𝜕
𝜕t

F̂1 = Ĵ1 = Ĵapp

1
+ Ô1, (36)

iℏ 𝜕
𝜕t

ĝ12 = Ĵ12 = Ĵapp

12
+ Ô12, (37)

where Ĵ1 and Ĵ12 comprise all the remaining terms in Equations 11, 12. A decoupling approximation to the hierarchy can then

be defined by specifying approximate expressions, Ĵapp

1
and Ĵapp

12
, where the remainders, Ô1 and Ô12, are being omitted. The

same procedure can be applied to decoupling approximations on the level of the third or higher-order hierarchy equations. To

answer the question of whether a given decoupling approximation, Ĵapp = {Ĵapp

1
, Ĵapp

12
,…}, is time reversible, we either have

to analyse the resulting equations directly or, alternatively, investigate the time-reversal properties of the omitted operators,

Ô = {Ô1, Ô12,…}, as the exact equations are known to be time-reversal invariant. Here, it will be advantageous to use the latter

approach.

In the following, we answer this question for the approximations that were introduced in section 2, starting by specifying the

corresponding operators Ô.

1. The mean field approximation is given by the choice Ô ≡ ÔHF
1

= Tr2[V̂12, ĝ12].
2. The second-order Born approximation is given by Ô ≡ Ô2B

12
= [V̂12, ĝ12]+𝑇 𝑟3{[V̂13, F̂1ĝ23]+[V̂23, F̂2ĝ13]+[V̂13+V̂23, ĝ123]}.

3. The T-matrix or ladder approximation is given by Ô ≡ ÔT
12

= 𝑇 𝑟3{[V̂13, F̂1ĝ23] + [V̂23, F̂2ĝ13] + [V̂13 + V̂23, ĝ123]}.

4. The polarization approximation is given by Ô ≡ ÔPOL
12

= [V̂12, ĝ12] + Tr3[V̂13 + V̂23, ĝ123].
5. The screened ladder approximation is given by Ô ≡ ÔSCT

12
= Tr3[V̂13 + V̂23, ĝ123].

Aside from their different physical characters, all these approximations have a common mathematical structure. They are

given by a functional relation of the formQ10

Ô(t) = R[V̂𝑖𝑗 , F̂k(t), ĝ𝑙𝑚(t), ĝ𝑛𝑜𝑝(t),…], R ∈ R, (38)
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BONITZ ET AL. 7

where the indices are i, j, k, l, m, n, o, p∈ 1…N, and R is a real function. The properties of expression 38 under time

reversal are easily obtained. First, due to its real character, the functional form of R obviously does not change, that

is, T̂RT̂−1 = R. Second, the properties of the arguments of R are known: as we have discussed above, standard pair

potentials are always time-reversal invariant, T̂V̂𝑖𝑗 T̂−1 = V̂𝑖𝑗 . Next, the time-reversal invariance of the single-particle

density operator was demonstrated in Equation 33. Finally, based on property 33, together with the cluster expansionQ11

(9, 10, …), which is a real functional relation, we easily conclude (iteratively) that all correlation operators are time-reversal

invariant:

T̂ĝ1…s(t)T̂−1 = ĝ1…s(−t), s = 1…N − 1. (39)

Summarizing these results, we conclude that the operator 38 is time-reversal invariant:

T̂Ô(t)T̂−1 = Ô(−t). (40)

This means that each of the approximations that were listed above (and the corresponding non-Markovian quantum kinetic

equations)—time-dependent Hartree-Fock (non-linear quantum Vlasov equation), second-order Born approximation (quantum

Landau equation), T-matrix (quantum Boltzmann equation), polarization approximation (quantum Lenárd-Balescu equation),

and the screened ladder approximation—are time-reversal invariant. We emphasize that condition 38 is much more gen-Q12

eral than those approximations, including a broad range of decoupling schemes of the hierarchy that were proposed in

the literature.

6 BREAKING THE TIME-REVERSAL SYMMETRY: EXAMPLE OF THE BORN
APPROXIMATION

The emergence of time irreversibility, starting from reversible quantum dynamics, has been discussed in great detail since the

appearance of the Boltzmann kinetic Equation 18. Using our formalism, we can trace this emergence particularly clearly for the

case of the quantum Landau equation that corresponds to the following first two hierarchy equations:

iℏ 𝜕
𝜕t

F̂1 − [ ̂H1, F̂1] = Tr2[V̂12, ĝ12], (41)

iℏ 𝜕
𝜕t

ĝ12 − [ ̂H12, ĝ12] = [V̂12, F̂1F̂2]± = Ĵ2B
12
(t), (42)

F̂1(−t0) = F̂0
1
, ĝ12(−t0) = ĝ0

12
, t ∈ [−t0, 0], (43)

where we added the initial conditions for both operators. These coupled, time-local equations can be numerically solved directly.

The alternative route that leads to a quantum kinetic equation consists of, first, formally solving the equation for ĝ12 analytically

and then inserting the result into the r.h.s. of Equation 41. This is the approach we will use here. The solution of the initial value

problem 41–43 is easily found[3] and consists of an initial value term (solution of the homogeneous equation) and a collision

term

ĝ12(t) = ĝIC
12
(t) + ĝcoll

12
(t), (44)

ĝIC
12
(t) = Û0

12
(t,−t0)ĝ0

12
Û0†

12
(t,−t0), (45)

ĝcoll
12

(t) = 1

iℏ ∫
t

−t0
dtÛ0

12
(t, t)Ĵ0

12
(t)Û0†

12
(t, t), (46)

where the two-particle propagator factorizes into single-particle Hartree-Fock propagators, Û0
12
(t, t′) = Û1(t, t′)Û2(t, t′), with

{
iℏ 𝜕
𝜕t

− ̂H1(t)
}

Û1(t, t′) = 0, Û1(t, t) = 1, (47)

the solution for which is analogous to that of the Schrödinger equation, cf. Equation 20. The quantum kinetic equation that is

associated with the solution 44 contains two collision integrals: the first, involving ĝIC
12
(t), is due to correlations existing in the

system at the initial time moment, whereas the second is due to correlations being formed as a result of two-particle collisions

while being absent at the initial moment. The characteristic feature of the latter collision integral is its non-Markovian character

(i.e., the presence of the time integral), which is in striking contrast to the traditional Boltzmann equation that involves only

distribution functions taken at the current time t.
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8 BONITZ ET AL.

To analyse the transition from the former to the latter and, thereby, from time reversibility to irreversibility, we switch from

the operator form of the solution 44 to an instantaneous Hartree-Fock basis {|n⟩}, given by
̂H1 ∣ n⟩ = En ∣ n⟩. Then, the first

hierarchy Equation 41 becomes

iℏ 𝜕
𝜕t

Fn1,n1′ − (En1
− En′

1
)Fn1,n1′ =

=
∑
n2

∑
n1n2

{Vn,ngn,n′ − gn,nVn,n′ }
||||||n2′ =n2

, (48)

where we introduced the short notations n≡ (n1, n2), n′ ≡ (n1
′
, n2

′
), and n ≡ (n1, n2). This is a generalized quantum kinetic

equation that describes the probability of transitions between different single-particle states (dynamics of Fn1,n1′ with n1 ≠ n1′),

as well as the dynamics of the occupations of state n1 (given by Fn1
≡ Fn1,n1

). Here, we focus on the latter as it is directly related

to the evolution towards an equilibrium state. Furthermore, the emergence of irreversibility in the dynamics of Fn is sufficient

for the transition of the whole system of coupled equations from reversible to irreversible.

The corresponding dynamics of the diagonal matrix elements are given by

iℏ 𝜕
𝜕t

Fn1
(t) = 2i

∑
n2

∑
n1n2

Vn,nIm gn,n(t), (49)

where we used gn,n′ = g∗
n′,n and Vn,n′ = Vn′,n. To compute Imgn,n(t), we first write down the solution of Equation 47, which is

given by a diagonal matrix:

⟨n1|Û(tt′)|n′
1
⟩ = Un1

(t − t′)𝛿n1,n1′ ,

Un1
(𝜏) = e−

i

ℏ
En1

𝜏 , (50)

and the matrix of the pair correlation operator 44 becomes

Im gn,n′ (t) = Im gIC
n,n′ (t) + Im gcoll

n,n′ (t), (51)

Im gIC
n,n′ (t) = Im{e−i𝜔n,n′ [t−(−t0)]g0

n,n′ } (52)

Im gcoll
n,n′ (t) = − 1

ℏ ∫
t

−t0
dt cos[𝜔n,n′ (t − t)]J2B

n,n′ (t) (53)

where we defined ℏ𝜔n,n′ ≡ En1 + En2 − En1′ − En2′ and used J2B∗
n,n′ = J2B

n,n′.

Let us now investigate the time-reversal symmetry of the kinetic Equation 48, that is, we apply the time-reversal operators T̂
and T̂−1 from the left and right, respectively, as before:

iℏ 𝜕
𝜕(−t)

F′
n1,n1′

(t) − (En1
− En′

1
)F′

n1,n1′
(t) =

=
∑
n2

∑
n1n2

{Vn,ng′
n,n′ (t) − g′

n,n(t)Vn,n′ }
||||||n2′ =n2

,

where F′
is the solution of the time-reversed equation. Time-reversal symmetry again requires fulfilment of F′

n1,n1′
(t) ≡

T̂Fn1,n1′ (t)T̂
−1 = Fn1,n1′ (−t) and is observed only when the time-reversed solution of the second equation obeys

Im g′
n,n′ (t) ≡ T̂Im gn1,n1′ (t)T̂

−1 = Im gn,n′ (−t). (54)

This is easily verified by writing down the solution g′(t) noticing that application of the operators T̂ and T̂−1, from the leftQ13

and right, to the second hierarchy equation again changes the sign of the time derivative, which is equivalent to replacing

𝜔n, n’ → −𝜔n, n’, and J2B
n,n′ → J2B

n,n′, and the solution 52, 53 changes into

ImgIC′

n,n′ (t) = Im{e+i𝜔n,n′ [t−(−t0)]g0
n,n′ } (55)

Im gcoll′

n,n′ (t) = − 1

ℏ ∫
t

−t0
dt cos[−𝜔n,n′ (t − t)][−J2B

n,n′ (t)]

= − 1

ℏ ∫
t0

−t
dt cos[𝜔n,n′ (−t − t)]J2B

n,n′ (−t). (56)

It is obvious that the solutions g and g’ fulfil 54, which can be seen by changing (t, −t0)→ (−t, t0), in gIC′
, and (t,−t0, t) →

(−t, t0,−t), in gcoll′ .
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BONITZ ET AL. 9

The mathematical transition to the conventional (quantum) Boltzmann collision integral that contains a delta function, 𝛿(En1
+

En2
− En′

1
− En′

2
), of the single-particle energies before and after the collision involves three steps:

Decoupling of the time scales of the single-particle and two-particle dynamics. The argument here is that, during a collision,

when the two-particle correlations are formed (during the correlation time 𝜏cor), the occupation of the single-particle states

changes only weakly. Its relaxation towards an equilibrium distribution involves many collisions and, therefore, requires a

relaxation time that is much larger

trel ≫ 𝜏cor. (57)

This justifies the expansion Fn(t), and with it J2B
n,n′ (t), under the time integral in 53 around its value at the upper limit (the

Q14
current time),

J2B
n,n′ (t) = J2B

n,n′ (t) +
∑
k=1

(t − t)k

k!
dk

dtk J2B
n,n′ (t). (58)

Truncating this retardation expansion 3 at the first term (0-th-order retardation approximation) leads to the following result

for the pair correlations:

Imgcoll(0)
n,n′ (t) = −

J2B
n,n′ (t)
ℏ

sin[𝜔n,n′ (t − (−t0))]
𝜔n,n′

= Imgcoll(0)
n,n′ (t, [F(t)]). (59)

This expression is, of course, a drastic distortion of the original result, and its accuracy depends on the fulfilment of

condition 57. In fact, it is well known that, for weakly coupled systems, the two times are related by
𝜏cor

trel

∼ Γ ≪ 1, where Γ is

the relevant coupling parameter. In the second line of 59, we noted explicitly that the pair correlation functions have a twofoldQ15

time dependence: an explicit one (via the sine function, which is fast, for increasing time, particularly for high frequencies) and

a slow one via the evolution of F(t).
Note that this is still a proper (although distorted) solution of the initial value problem. It is also consistent with an (arbitrary)

initial condition g0
n,n′ (−t0) because the collision term exactly vanishes for t→−t0. Interestingly, despite the approximate charac-

ter of gcoll(0)
n,n′ (t), it is easily seen (by performing the retardation expansion in 56) that it still satisfies the time-reversal invariance

condition 54.

Markov limit. The limit of an infinitely remote initial state, −t0 → −∞, is usually motivated by the assumption that two

particles enter a scattering process in an uncorrelated manner. The result for the Markovian pair correlations is then:

Imgcoll(M)
n,n′ (t) ≡
−

J2B
n,n′ (t)
ℏ

lim
−t0→−∞

sin[𝜔n,n′ (t − (−t0))]
𝜔n,n′

= −
J2B

n,n′ (t)
ℏ

𝛿(𝜔n,n′ ). (60)

Note that it is assumed that the single-particle operators (i.e., the slow time dependence of gcoll [0]) are not affected by theQ16

limit, which means that the limit Γ→ 0 has been considered first.

Weakening of initial correlations. Motivated by the argument that the state of the system cannot remember (and, hence, be

influenced by) its infinitely remote history, particularly its correlations, the Markov limit is accompanied by the suppression of

initial correlations:

lim
−t0→−∞

g0
n,n′ (−t0) → 0. (61)

This is consistent with the Markov limit because, after the procedure leading to 61, gn,n′ [F(t)] does not obey an initial value

problem that starts from an arbitrary initial state anymore but only adiabatically follows the dynamics of F(t), according to the

prescription 60. This concept is due to Bogolyubov[4] (“functional hypothesis”; “weakening of initial correlations”) and has

been generalized to situations where there exists a subclass of long-living correlations (such as those related to bound states or

long range order; partial weakening of initial correlations) by Kremp et al.[18]

With the result 61, the collision integral due to initial correlations (the term gIC) vanishes, and only the collision integral

involving Im gcoll(M)
n,n′ , Equation 60, remains, which is of the conventional Boltzmann-type form.

To summarize, time-reversal symmetry is lost at step 2. While the result of step 1, Im gcoll(0)
n,n′ (t), is time-reversal invariant for

any finite value− t0, no matter how far back in the past, this property vanishes with the limit −t0 → −∞. With this limit, the

unitary operator structure that is still present in the sine function is lost together with the explicit time dependence of the pair

correlations (this is particularly clear when the single-particle operators F are exactly stationary.)

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110



U
N

C
O

RR
EC

TE
D

PR
O

O
F

10 BONITZ ET AL.

7 SUMMARY AND DISCUSSION

In this paper, we analysed the question of the time reversibility of generalized quantum kinetic equations that are derived within

the reduced density operator formalism. The governing equations of the density operator theory are given by the quantum

BBGKY hierarchy. Here, we demonstrated that the exact BBGKY hierarchy and the associated quantum kinetic equations are

time reversible. This behaviour is in striking contrast to the conventional Boltzmann-type kinetic equations that are known to

be irreversible and describe the relaxation of a many-body system to an equilibrium state, which is accompanied by an increase

of its entropy (H-theorem). This is traditionally achieved by means of ad hoc assumptions, such as about “molecular chaos”,[19]

via Boltzmann’s “Stoßzahlansatz”[20] or by similar procedures.

Although the derivation of generalized non-Markovian quantum kinetic equations goes back almost seven decades, in many

communities, the existence of a systematic kinetic theory beyond the Boltzmann equation is poorly known, which warrants a

detailed reconsideration of some mathematical aspects on the way from a reversible to an irreversible kinetic theory. Here, we

have presented a simple procedure that allows one to directly verify the time-reversal property of the exact BBGKY hierachy

and of important closure relations, as well as the transition to the conventional Boltzmann equation. Our approach is based

on the use of Wigner’s anti-unitary time-reversal operator T̂ [17] that translates the solution of the Schrödinger equation into

the time-reversed equation and is a mathematically well-controlled procedure that replaces the traditional heuristic arguments

mentioned above.

Let us summarize our main results:

1. Our proof of time-reversal invariance of the exact quantum BBGKY hierarchy revealed a much stronger condition,

Equations 34 and 35, than the commonly used condition for time reversibility of the N-particle Schrödinger equation, that is,

Equation 27. We have shown that not only does the total Hamiltonian have to obey T̂ĤT̂−1 = Ĥ, but each of its single-particle,Q17

two-particle, and higher contributions, separately. This might seem surprising as Equation 27 is known to be necessary and

sufficient for the Schrödinger and von Neumann equations. However, the N-particle dynamics have to always be consistent

with the quantum dynamics of sub-complexes (of N − 1…1 particles), which follow directly from the partial integration

of the N-particle equations. It is clearly impossible that the N-particles dynamics are reversible, whereas the N-s-particle

dynamics are not.

2. We presented a very general condition for time-reversal invariance of approximate solutions to the BBGKY hierarchy,

Equation 38, and demonstrated that it applies to many of the commonly used many-body approximations. Moreover, this

condition goes far beyond those approximations, including a broad range of additional decoupling schemes of the hierar-

chy. This is not limited to approximations that are motivated by physical considerations and violate conservation laws. For

example, the choice of the omitted term Ô = Ô12 ≠ Ô21 would violate the conservation of total energy, cf. Ref. 3, while still

being time-reversal invariant.

3. Our results allow us to analyse the interesting question posed in Ref. 13 of how total energy conservation and time reversibility

are related. While in most cases of practical relevance, both phenomena are fulfilled (or violated) simultaneously, their areas

of validity are not equivalent. As shown above, there exist time-reversible models that violate energy conservation. On the

other hand, there exist model Hamiltonians (e.g., those that contain odd powers of the momentum) that conserve energy but

violate condition 27 and, therefore, time-reversal symmetry.

4. Our analysis of the transition to the conventional Boltzmann equation involved three successive approximations. The first

one—the decoupling of the relaxation time scales of single-particle trel and two-particle dynamics (𝜏cor) by means of a

retardation expansion—allowed us to perform the memory integral and obtain a time-local result for the pair correlations,

Equation 59. This result (“completed collision approximation” or “energy broadening approximation”) not only conserves

total energy,[3] but, here, we also demonstrated that it preserves time-reversal symmetry. The same analysis also applies to

higher-order approximations in the retardation expansion 58.

5. We have demonstrated that time reversibility is lost only at the second step—the Markov limit, that is, with the shift of

the initial time to the infinitely remote past, −t0 → −∞. This destroys the unitary character of the dynamics of the pair

correlations and introduces a preferred “arrow” of time because there is no possibility of the system ever returning to this

state.

6. Our analysis also shows that the commonly used argument, that irreversibility is introduced into the theory via the assumption

of “molecular chaos”[19] or the “Stoßzahlansatz”,[20] has to be stated with some care. The requirement that the two-particle

probabilities factorize and particles enter the collision uncorrelatedly—that is, in our notation, F12 =F1F2 or g12 ≡ 0—is

not sufficient. First, transition to irreversibility is also possible in a strongly correlated system where this factorization is

not possible, for example, Ref. 3. Second, the example of the Born approximation that we discussed in section 5 applied

to a weakly coupled system. Choosing, as the initial condition, an uncorrelated system, that is, g(−t0)= g0 = 0, we would

formally satisfy those assumptions. Nevertheless, the resulting dynamics would still be given by Equation 44 without the
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initial correlation term, but it would be perfectly time reversible. The crucial point for the emergence of irreversibility is

again that the factorization is introduced not at a finite initial time but in the infinitely remote past.

With the generalized quantum kinetic equations that were discussed above at our disposal, one may ask whether it is necessary

at all to force the transition to conventional irreversible Boltzmann-type kinetic equations given the rather crude approximations

involved. The argument for the latter has always been that macroscopic many-particle dynamics, such as transport (diffusion,

heat conduction, viscosity, fluid dynamics etc.), is dissipative, and the dynamics are expected to approach thermodynamic

equilibrium—the state of maximum entropy. The answer is clearly “No”. Experience in solving the generalized quantum kinetic

equations (e.g., Ref. 3), which are derived either from the BBGKY hierarchy or from non-equilibrium Green functions, for

a sufficiently long time clearly reveals that these solutions exhibit an irreversible trend towards an asymptotic state that is

consistent with thermodynamic equilibrium. However, this state is different from a Maxwellian, Fermi, or Bose momentum

distribution as a result of correlations. Certainly, the present reversible dynamics will return to the initial state; however the

associated Poincaré recurrence time increases exponentially with particle number. This behaviour is in complete agreement with

simulation results for classical systems: solutions of the reversible equations of classical mechanics of a many-particle system

by means of microcanonical molecular dynamics show perfect relaxation trends to (correlated) thermodynamic equilibrium.

Therefore, the choice between the irreversible Boltzmann-type kinetic equations and reversible generalized kinetic equations

is mainly governed by the substantially increased computational effort involved in the solution of the latter. Here, in fact, proof

of time reversibility of the relevant approximations that was given in this paper is of high practical value as it provides a sensitive

test for the numerical accuracy and convergence, for example, Ref. 21. Time reversibility is also of importance for “echo”-type

experiments (e.g., Loschmidt echo,[22] spin echo, Rabi flop etc.) where time reversal is being forced by an external pulse. The

analysis of the forward and backward dynamics gives important insights into the internal properties (e.g., dissipation channels)

of a many-body system, and the present generalized quantum kinetic equations are well suited for such investigation. For a

recent theoretical analysis, see Ref. 23.
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