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Correlation-induced homogeneous density-distribution and attractors”

N. Schlünzen, J.-P. Joost, and M. Bonitz
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

(Received 16 May 2016; published 18 September 2017)

In a recent Rapid Communication [A. Stan, Phys. Rev. B 93, 041103(R) (2016)], the reliability of the
Keldysh-Kadanoff-Baym equations (KBE) using correlated self-energy approximations applied to linear and
nonlinear response has been questioned. In particular, the existence of a universal attractor has been predicted
that would drive the dynamics of any correlated system towards an unphysical homogeneous density distribution
regardless of the system type, the interaction, and the many-body approximation. Moreover, it was conjectured
that even the mean-field dynamics would be damped. Here, by performing accurate solutions of the KBE for
situations studied in that paper, we prove these claims wrong, being caused by numerical inaccuracies.
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The dynamics of correlated quantum many-body systems
has been in the focus of experimental and theoretical studies
over the recent two decades. Applications span (but are not
limited to) nuclear physics, semiconductor optics and trans-
port, dense plasmas and, more recently, strongly correlated
materials and ultracold atoms [1]. A very popular tool to
describe these systems theoretically has been the method of
nonequilibrium Green functions (NEGF) [2,3] due to their
internal consistency and conserving properties. For recent text-
book discussions see Refs. [4–7]. Direct numerical solutions
of their equations of motion—the Keldysh-Kadanoff-Baym
equations (KBE)—have been performed for macroscopic,
spatially homogeneous systems such as nuclear matter [8],
dense plasmas and electron-hole plasmas (e.g., Refs. [9,10]), or
the correlated electron gas [11]. More recently, finite spatially
inhomogeneous systems were treated, including atoms and
small molecules [12–14], electrons in quantum dots [15], or
finite Hubbard clusters [16–18]. For an overview see Ref. [7].

Given the high success of numerical solutions of the KBE,
which includes excellent agreement with time-resolved optical
experiments in semiconductor optics, excitonic features and
transport [4] and, recently, with experiments on the expansion
dynamics of fermionic atoms [19,20], it came as a surprise
when unphysical behaviors were reported in applications to
small systems. Von Friesen, Verdozzi, and Almbladh demon-
strated [16,17] that, in small Hubbard clusters, cf. Eq. (1),
subjected to a strong external potential, the nonlinear density
evolution suffers from an unphysical damping, eventually
leading to a steady state, in striking contrast to the exact
solution. The authors explained this behavior by the highly
nonlinear structure of the correlation self energies entering the
KBE giving rise to an infinite sum of diagrams during a self-
consistent solution of the KBE. Due to the partial summation
schemes of the many-body approximations, the order-by-order
balance of the exact solution can be violated which leads to
an artificial energy reservoir that can cause damping. This
explanation was supported by modified approximations where
the degree of self consistency was reduced [17]. Another
confirmation and, at the same time, a more systematic approach
to this problem is the application of the generalized Kadanoff-
Baym ansatz (GKBA) [21] that practically eliminates the
artificial damping [22].

In view of the importance and popularity of the KBE, a
detailed investigation of the issue of unphysical solutions and
a clear mapping out of the range of validity of the KBE is, of
course, of high interest. Such an analysis has been attempted
by Stan [23] who concludes that unphysical solutions are
universal when solving the KBE with a correlation self energy,
thereby “[...]drastically restricting the parameter space for
which the method can give physically meaningful insights.” It
is the purpose of this Comment to analyze these far-reaching
statements.

The author of Ref. [23] considers a one-band Hubbard
model with the Hamiltonian [24]

H (t) = −
∑
〈s,s ′〉

∑
σ=↑,↓

ĉ
†
s,σ ĉs ′,σ + U

∑
s

ĉ
†
s,↑ĉs,↑ĉ

†
s,↓ĉs,↓

+
∑

s

∑
σ=↑,↓

fs(t)ĉ
†
s,σ ĉs,σ , (1)

with 〈s,s ′〉 being the summation over next neighbors and U

being the on-site Hubbard interaction. As a second example,
he considers a Hubbard lattice with Coulomb interaction. The
analysis focuses on a simple system: two lattice sites occupied
by two electrons (Hubbard dimer), except for one case where
a four-site system is simulated. Furthermore, the interaction
strength U (in units of the hopping rate) is varied between 0
and 5 and the system is treated using weak coupling many-
body approximations: the second Born self energy (2B, except
for one case where also GW results are shown). To study
the electron dynamics following an external excitation, the
author considers two variants of the time-dependent single-
particle field fs(t): first, a steplike form, fs(t) = w0δs,1θ (t),

and, second, an instantaneous excitation: fs(t) = k0δs,1δ(t),
both acting only on site 1. Varying the field amplitude between
0.01 and 5 the linear and nonlinear response are investigated.

Based on the simulation results for this limited set of
systems and situations, the author draws the following con-
clusions that are termed “universal,” i.e., are claimed to be
valid regardless of the system size, the interaction type, the
interaction strength, and the many-body approximation:

(1) The density dynamics obtained from the KBE in the
case of strong excitation is damped, in agreement with previous
studies [16,17].
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FIG. 1. Density evolution on the first Hubbard site of the dimer
with U = 4 after the switch-on of a constant excitation with w0 = 5
at site 1, which is shown in the lower left inset. The insets on the right-
hand-side show the asymptotic density distributions of Ref. [23] (top)
and the present work (bottom). Solutions of the KBE in self-consistent
second Born approximation. The time step in our simulation is �t =
10−3.

(2) For sufficiently long propagation time, a state with
artificial homogeneous density distribution (HDD) is reached,
indicating the existence of an attractor.

(3) In addition to previous observations, the unphysical
damping occurs also for weak excitation (linear response
regime).

(4) For an uncorrelated system (Hartree or Hartree-Fock
self energies), damping occurs as well, although no artificial
HDD is approached.

We underline that item (1) is relevant only for small
finite systems, i.e., the damping effect vanishes quickly with
increasing system size. According to the author of Ref. [23],
the reason why the new points (2)–(4) have been “missed” by
previous studies is due to the insufficient propagation durations
in the latter. In the remainder of this Comment, we carefully
test the above new claims for several relevant cases.

Let us start with item (2) and analyze the results presented
in Fig. 1 of Ref. [23]. There the author studies the nonlinear
response of a correlated dimer (U = 4) to a strong steplike
excitation (w0 = 5). His result for the density on site 1 is
reprinted in our Fig. 1 by the dashed line [25] indicating that
the density approaches unity (the same value as on the other
site, cf. upper inset), i.e., the dynamics approach a spatially
homogeneous state (HDD). Now, compare this to our result
[26] shown by the full line. Both simulations are in agreement
for short times, t � 2, after which we observe a qualitatively
different behavior. Even though we also find the unphysical
damping known from Refs. [16,17], the asymptotic value is
very different from the one of Stan. Regardless of how far the
simulations are continued, no alleged HDD state emerges. We
note that the time step in our simulations is �t = 10−3 whereas
Stan reports the value [23] �t � 10−2. [A precise value for
the time step is missing from his paper.] We underline that this
is a typical case. In converged simulations we never found a
homogeneous density.

Item (3) concerns the case of a very weak external excitation
(linear response). Results for a two-site system were presented
in Fig. 2 of Ref. [23]. Here, we concentrate on the example of

FIG. 2. Density evolution at site 1 of a Hubbard dimer (U = 3),
following a very weak (w0 = 0.05) steplike excitation at site 1. Black
dashed line: result of Ref. [23]. Full red line: present result, using a
time step of �t = 10−3.

a Hubbard system at U = 3 excited by a weak external field
(amplitude w0 = 0.05) that is turned on at time t = 0 at site
1. While the exact dynamics show undamped oscillations [cf.
Figs. 2(a) and 2(b) of Ref. [23]], Stan’s second order Born
result for the density at site 1 shows strong damping initially
and, after t ∼ 10, approaches the homogeneous density value
n = 1, cf. the black dashed curve in Fig. 2. Our result is shown
by the full red line and shows undamped oscillations as the
exact solution. We note that the amplitude and frequency of
our result show small deviations from the exact data which is a
consequence of the failure of the second Born approximation
for U exceeding unity [19,22].

Let us now turn to item (4) of the above list, which concerns
the mean-field dynamics. In Fig. 5 of Ref. [23], a strongly
interacting (U = 5) dimer is considered in Hartree and
Hartree-Fock (HF) approximations. The corresponding results
of Stan for the densities on the two sites are reproduced in Fig. 3
(cf. the red and black curves) and exhibit a damping towards
constant (slightly different) values. This relaxation behavior is
very surprising since mean-field dynamics are nondissipative
[27]. We, therefore, repeated the Hartree simulations with our

FIG. 3. Mean field (Hartree) density evolution of a Hubbard
dimer with U = 5 following the switch-on of a constant excitation
with w0 = 0.01 on site 1. The results of Ref. [23] are shown by the
red and black lines and exhibit damping, whereas our results are
undamped (orange and brown lines). The high-frequency oscillations
of the density are illustrated in the inset (the resolution of the results
of Ref. [23] does not allow to resolve these oscillations).
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code for the same parameters. The results are plotted by the
orange and brown curves and show no damping. We also note
that in our simulations the density exhibits high-frequency
oscillations (see inset).

Summarizing our numerical simulations (cf. Figs. 1–3) we
found that the statements (2)–(4) of the above list cannot be
reproduced within converged calculations. By “converged”
we denote simulations the result of which does not change
anymore upon further reduction of the time step in the
discretization of the KBE. To understand possible sources of
damping in the linear response regime and the emergence of an
artificial HDD state we now analyze the convergence behavior
in detail. The numerical solution of the KBE basically invokes
two time integration procedures [20,28]:

(A) the evaluation of the collision integral [cf. integral
expression in Eq. (1) of Ref. [23]] and

(B) the time propagation of the entire (integro)differential
equations (time stepping).

Obviously, for any discretization procedure, the exact
integrodifferential equation will be recovered when the time
step �t vanishes. For practical simulations, however, a finite
value �t has to be used, so the question arises, which values
are acceptable. For converged solutions, all values �t less or
equal to some threshold �tc are expected to yield the same
result, at least for a given propagation duration T (�tc may
depend on T ). A key question is how to determine the threshold
�tc. Since the answer to these questions strongly depends on
the specific scheme used to perform the integrations (A) and
(B), we consider two typical cases:

(I) The collision integral (A) is evaluated in the lowest pos-
sible order using the trapezoidal rule whereas the integration
(B) is performed by a fourth order Runge-Kutta method.

(II) The integral evaluation (A) is performed using a higher
order scheme (see Ref. [20] for details), and the integration (B)
is done with an explicit Euler method which is known to be
less accurate than Runge-Kutta.

In both cases convergence can be achieved, however, the
threshold values �tc may be different.

In the following, we analyze these issues for the setup
presented in Fig. 2 [i.e., a dimer (U = 3) with a weak
steplike excitation (w0 = 0.05) at site 1], but the results
are representative for all examples considered in this paper.
Figure 4(a) shows the density evolution using method I and
different time steps �t ranging from �t = 0.3 to �t = 0.01.
In (b) the convergence behavior for the density is shown for
method II for time steps in the range �t = 6 × 10−5 . . . 0.01.
In both cases convergence is observed: undamped density
oscillations that are in exact agreement with each other (see
also our result in Fig. 2) and are depicted by the green curve.
Since the two implementations are independent of each other,
this provides a strong test of the numerics. At the same time,
both methods have a very different numerical efficiency that
is reflected by the threshold time steps: In the case of method
I, �tIc ≈ 0.01, whereas for method II, �tII

c ≈ 6 × 10−5.
Let us now analyze the behavior of the simulations when

the time step exceeds �tc. The figure clearly demonstrates
that then the dynamics strongly deviate from the converged
behavior where the type of density response and of deviation
from the converged result is very different for methods I and
II. In case II [Fig. 4(b)] not-converged simulations lead to an

FIG. 4. Demonstration of the convergence behavior for a Hub-
bard dimer (U = 3), following a very weak (w0 = 0.05) steplike
excitation at site 1. (a)/(b): density evolution at site 1 for different time
steps �t . Simulations in (a) [(b)] are done with method I (method II).
(c) Quality of energy conservation corresponding to the results in (a).
(d). Different energy contributions for �t = 3 × 10−1 in (a) and (c).
We note that in (b) the time steps only refer to the integration (B).
The collision integral (A) is solved with �t = 10−2.

increase of the oscillation amplitude in time and, eventually,
the simulations become unstable. Increasing the time step
leads to an earlier onset of the instability and a more rapid
density increase. In case of method I [Fig. 4(a)], we observe
the opposite behavior, for �t > �tIc : The density rapidly
decays (cf. the yellow and green curves), a trend that sets in
earlier when �t increases. If �t is increased to 0.1 or beyond,
however, the behavior changes: After a short decay interval
the density increases again and approaches a constant value
n1 = n2 = 1, i.e., we exactly recover the trends reported by
Stan in Ref. [23] and that he termed “emergence of the HDD”
or of a “universal attractor.”

From the above observations, we conclude that, indeed, an
artificial HDD can be found, however, only if the time step
significantly exceeds the critical time step and only for certain
discretization schemes. Therefore, this observation is clearly a
consequence of nonconverged simulation and is not an inherent
property of the KBE.

One may now ask how such erroneous simulations can be
avoided. The final test is always a verification of convergence,
i.e., a repetition of the simulations with systematic reduction
of the time step �t . In case of the KBE, fortunately, this
procedure may be simplified essentially by monitoring the
conservation laws of density and total energy. While the former
is usually well maintained, the latter is quickly violated if
the time step is chosen too large. We, therefore, present in
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Fig. 4(c) the time dependence of total energy for method I,
for different time steps (the behavior is similar for method
II). While for �t � �tc energy is perfectly conserved (green
curve), for larger time steps this conservation is violated, and
the deviations increase with �t . Comparison with figure (a)
clearly shows that an occurrence of damping goes together
with a crucial violation of energy conservation [29]. We
also observe that the emergence of the artificial HDD is
connected to a convergence of the total energy to an unphysical
value (cf. red curve). This can be understood from the fact
that the trapezoidal rule systematically underestimates the
result of the integration of oscillating functions, such as the
integrand of the collision integral (see Appendix A for details).
Together with the self-consistent structure of the KBE, this
results in an ongoing damping, up to the point when the
collision integral completely vanishes. This is explored in
more detail in Fig. 4(d) where the different contributions
to the energy are shown for the time step �t = 3 × 10−1.
The potential and the HF energy are stable since they only
depend on the density which is conserved due to the accurate
solution of the differential equation (B). However, the kinetic
and correlation energy, which are connected to the collision
integral, tend to zero, leaving the system in a completely
uncorrelated stationary state that has nothing to do with the
Hamiltonian. Thus, for practical purposes, monitoring total
energy conservation is a strong quality test giving a necessary
(though not sufficient) criterion of convergence.

Another useful test of the accuracy of the simulations is
the verification of time reversal symmetry—a known property
of the KBE. This can be done in two ways. First, if after
a propagation duration t1, the times are inverted, t → −t ,
a numerically correct scheme will return to the initial state
after a time 2t1. This behavior was verified by Stan in the
Supplemental Material to Ref. [23], but this only proves that
the time step for integrating the differential equation (B)
is sufficiently small, but it is independent of the accuracy
of evaluation of the collision integral (A), as we show in
Appendix B. Therefore, a more sensitive approach to time
reversal is to change, at time t1, instead, the sign of the
Hamiltonian, H (t) → −H (−t) and of all its contributions.
Any converged solution will return to the initial state at
t = 2t1. In contrast, in case of a nonconverged evaluation of the
collision integral (A), time reversal symmetry is violated (there
is a loss of information). This is demonstrated in Appendix B
where we also show that the damped dynamics in the case of
strong excitation of a small system (a known property of the
KBE, cf. Refs. [16,17]) are completely time reversible, if the
simulation is converged.

Let us summarize our results. We have repeated a repre-
sentative part of the simulations of Ref. [23] and presented
the results in Figs. 1–3. Our results are in disagreement with
Ref. [23] on all the above points, (2)–(4). In particular, we do
not observe the alleged HDD state in any of our simulations.
Our results have been obtained by two independent methods
(method I and II) and have also been confirmed by another
program [30]. In the second part of the paper we have analyzed
possible reasons of the disagreement with Ref. [23]. A detailed
analysis of the convergence behavior of numerical solutions
of the KBE has been summarized in Figs. 4, 5, and 6. We
presented numerical evidence that our results are converged. In

contrast, the author of Ref. [23] did not present such evidence.
The data for the density conservation and time reversal in that
paper are not conclusive and the crucial checks of total energy
conservation and convergence with respect to the time step are
missing. Finally, by analyzing various numerical schemes and
their convergence properties we were, indeed, able to recover
the emergence of an artificial HDD state of Ref. [23], however,
only if we use method I together with a substantially too large
time step. Thus, the predictions of Stan are wrong, being a
numerical artifact (most likely arising from an inaccurate time
integration of the collision integral, cf. Fig. 4). The impressive
properties of the Keldysh-Kadanoff-Baym equations remain
fully intact.

Note added in proof. Recently, two papers have been
published that confirm the results of our Comment: A detailed
comparison of NEGF simulations with ab initio density
matrix renormalization group calculations [31] confirmed
the excellent accuracy of our results; and the time-reversal
invariance of NEGF theory was proven directly for phi-
derivable approximations in Ref. [32].

We thank A.-M. Uimonen for independent numerical
confirmation of our results. We acknowledge stimulating
discussions with S. Hermanns, G. Stefanucci, R. van Leeuwen,
and C. Verdozzi and financial support by the Deutsche
Forschungsgemeinschaft via Grant No. BO 1366/9.

APPENDIX A: DETAILS ON THE NUMERICAL ERROR OF
THE TRAPEZOIDAL RULE

To understand the fact that numerical integration applying
the trapezoidal rule can lead to an artificial damping in the
solution of the KBE, it is instructive to look at the shape of
the collision integral and its integrand, respectively. Figure 5
shows a typical t̄ dependence of Im[�(t,t̄)G(t̄ ,t ′)] (red). As
one can see the integrand oscillates around zero alternating
between concave and convex pieces, depending on the sign.
The blue line shows how the integrand is approximated with
the trapezoidal rule integration. It is apparent that the absolute

FIG. 5. Illustration of the trapezoidal rule for a typical calculation
of the collision integral. The red line shows a realistic example of
the integrand in Eq. (1) of Ref. [23] during a converged simulation.
The blue curve corresponds to the respective approximation of the
trapezoidal rule for a large time step �t = 0.3.
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value of the integrand is systematically underestimated for
every t̄ . During the evaluation of the integral, after the
cancellation of the areas with opposite sign, this leads to
an underestimation of the collision integral. Due to the self-
consistent structure of the KBE this systematic numerical error
results in a progressive damping during the time evolution
eventually leading to vanishing kinetic and correlation energy,
cf. Fig. 4(d).

The damping property for the integration of oscillating
functions can also be understood from a mathematical point
of view. The error of the extended trapezoidal rule, E(I ), for
the integral

∫ b

a
f (x)dx is given by [33]

E(I ) = −h2

12
[f ′(b) − f ′(a)] + O(h3) , (A1)

where h is the integration step. The behavior of oscillating
integrands can be easily demonstrated for the example of
a cosine function. For I (x) = ∫ x

0 cos (x̄)dx̄ it immediately
follows that

Itrapez(x) = sin(x)

[
1 − h2

12

]
+ O(h3), (A2)

where the reduction of the amplitude is evident. We note that
this systematic underestimation of the oscillations is inherent
only for the trapezoidal rule. Higher order interpolation
polynomials do not have this clear trend and, therefore, never
result in an “amplitude death.”

APPENDIX B: TIME REVERSIBILITY

Beside the conservation of the particle number and the total
energy, a very important accuracy test for the propagation
of the KBE is provided by the time reversal symmetry. As
mentioned in the main text, time reversal can be realized either
by changing the direction of time or by changing the sign of
the Hamiltonian at some time t1.

In Figs. 6(a) and 6(b) time reversibility tests are performed
for linear response, cf. Figs. 2 and 4(a). In Fig. 6(a) method
I is used, with a time step of �t = 3 × 10−1 which was
shown to result in a nonconverged density evolution associated
with damping and emergence of the artificial HDD. While
in the case of the backwards propagation (t → −t , dashed
brown curve), time reversal symmetry holds due to the
accurate treatment of the time-stepping (B), this symmetry
is completely broken if one applies the sign change of the
Hamiltonian (solid yellow curve). This is a clear indication of
a too large time step in the integral (A). In Fig. 6(b) the behavior
is shown for a converged calculation with �t = 10−2, resulting
in an undamped density evolution. As expected, the results for

FIG. 6. Time reversal properties of the density on the first site for a
Hubbard dimer with steplike excitation. Solid yellow (dashed brown)
lines correspond to simulations where Ĥ (t) → −Ĥ (−t) (t → −t)
is being applied. All calculations are performed via method I. Parts
(a) and (b) show the density for linear response (w0 = 0.05) and
U = 3. The time step in (a) is �t = 3 × 10−1 (not converged), while
in (b) it is �t = 10−2 (converged). Part (c) shows the time reversal
behavior for a strong excitation (w0 = 5) with U = 4 and a time step
of �t = 2.5 × 10−3 (converged).

both ways of performing the time reversal coincide and the
system properly returns to the initial state.

Finally, in Fig. 6(c) we analyze the case of a strong
excitation (w0 = 5), where unphysical damping of the density
occurs in a converged solution (cf. Fig. 1). As one can see,
even though the oscillation amplitude is drastically reduced,
the propagation is entirely time reversal symmetric, even if the
sign of the Hamiltonian is changed. Compared to Fig. 6(a),
this again confirms the substantial difference between the
artificial damping for strongly excited systems (which is
inherent to the KBE) and the damping caused by numerical
inaccuracies.
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