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The nonequilibrium dynamics of strongly-correlated fermions in lattice systems have attracted considerable
interest in the condensed matter and ultracold atomic-gas communities. While experiments have made remarkable
progress in recent years, there remains a need for the further development of theoretical tools that can account for
both the nonequilibrium conditions and strong correlations. For instance, time-dependent theoretical quantum
approaches based on the density matrix renormalization group (DMRG) methods have been primarily applied to
one-dimensional setups. Recently, two-dimensional quantum simulations of the expansion of fermions based on
nonequilibrium Green functions (NEGF) have been presented [Schlünzen et al., Phys. Rev. B 93, 035107 (2016)]
that showed excellent agreement with the experiments. Here we present an extensive comparison of the NEGF
approach to numerically accurate DMRG results. The results indicate that NEGF are a reliable theoretical tool
for weak to intermediate coupling strengths in arbitrary dimensions and make long simulations possible. This is
complementary to DMRG simulations which are particularly efficient at strong coupling.
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I. INTRODUCTION

Experiments addressing the nonequilibrium dynamics of
quantum many-body systems have made remarkable progress
in recent years, both probing ultrafast dynamics in strongly
correlated materials [1,2] and quantum quenches in interacting
quantum gases (see Refs. [3–5] for a review). Among the many
ultracold quantum-gas experiments with fermions we mention
the study of the expansion dynamics of strongly-correlated
fermions in a two-dimensional optical lattice [6], the collapse
and revival dynamics of Fermi-Bose mixtures [7], and the
real-time decay of a density wave in one-dimensional lattices
[8]. Very recently, several experimental groups reported
the successful implementation of fermionic quantum-gas
microscopes [9–17], which will give unprecedented access
to both equilibrium and nonequilibrium properties of the
Fermi-Hubbard model. Given the tremendous success of
the earlier bosonic quantum-gas microscopes in exploring
the nonequilibrium realm [18–22], a considerable experi-
mental activity in studying quantum-quench dynamics in the
Fermi-Hubbard model can be expected in the near future.
Quantum-gas microscopes operate with two-dimensional sys-
tems which will push the efforts into this most challenging
regime (see also Ref. [23]) while also allowing one to study
one-dimensional systems [17].

A large body of theoretical work has concentrated on
one-dimensional systems, the reason being both experiments
[18,24–29] as well as the availability of powerful theoretical
tools based on field theory [30], integrability [31], or numerical
methods. While exact diagonalization (ED) is still an indis-
pensable tool (see, e.g., Refs. [32–34]), it is limited to small
systems. Nonetheless, for problems restricted to the dynamics
of a single charge carrier coupled to spin or phonon degrees of
freedom, there exist Krylov-space approaches that operate in
a subspace of the full Hilbert space constructed by selecting
only those states accessible by the Hamiltonian dynamics [35].
Such an exact diagonalization in a limited functional space has

been applied quite extensively to two-dimensional problems
as well (see, e.g., Refs. [36–39]).

Time-dependent density matrix renormalization group
(DMRG) methods [40–42] have been very widely applied
to nonequilibrium problems and yield numerically accurate
results but are limited by the accessible timescales and are
primarily useful for one-dimensional systems. A recent variant
of the method [43] has been tailored for long-range interactions
and is thus better suited for coupled one-dimensional and
two-dimensional systems [43,44] but cannot overcome the
exponential scaling of a matrix-product states ansatz with the
number of coupled chains. The application of time-dependent
tensor network approaches that are based on ansatz states
suitable for two-dimensional systems such as the projected
entangled pair states has been very little explored [45–47].

Apart from time-dependent DMRG methods, there are
other many-body methods for the real-time evolution includ-
ing continuous-time quantum Monte Carlo [48] and time-
dependent dynamical mean-field theory approaches [49–51].
The former, while being able to achieve essentially exact
results for short evolution times, can suffer from a dynamical
sign problem [48]. The latter method often utilizes continuous-
time quantum Monte Carlo as an impurity solver, while in more
recent developments, time-dependent DMRG has also been
successfully used for this purpose [52,53]. Time-dependent
DMFT methods are not exact in two dimensions either but
are argued to capture better the physics of strongly-correlated
systems in higher dimensions, leading to a wide range
of applications in the context of nonequilibrium dynamics
in the Hubbard model (see, e.g., Ref. [51]). Finally, the
iterative equation-of-motion method for operators provides
an alternative approach [54], which has also been applied to
quantum quench problems in the 2D Fermi-Hubbard model
[55].

Despite all these efforts, there still is a significant gap
between the rapidly progressing experiments in the field of
ultracold atoms and accurate quantum dynamics simulations
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when it comes to correlated systems in two dimensions.
To contribute towards closing this gap, two of us have
applied an alternative approach to the quantum simulation
of the nonequilibrium mass transport of correlated fermions
studied in the experiment of Ref. [6]: nonequilibrium Green
functions (NEGF). Previously, this theory has been success-
fully applied to a variety of many-particle systems including
the correlated electron gas [56], electron-hole plasmas [57],
nuclear matter [58], and electrons in quantum dots [59,60],
for a recent overview, see Ref. [61]. Extensive applications
to finite Hubbard clusters were presented in Ref. [62] and
first applications of NEGF to mass transport in small lattice
systems of correlated fermions were shown in Ref. [63].
Finally, in Ref. [64] these simulations were extended to
strong coupling by using T -matrix self energies as well as to
substantially larger systems. Applying an extrapolation to the
thermodynamic limit the nonequilibrium correlated quantum
mass transport in two-dimensional fermion ensembles could be
directly compared to the experiments of Ref. [6] and excellent
agreement was observed. For an overview on the NEGF
approach and its application to inhomogeneous Hubbard
clusters, see Ref. [65].

Even though NEGF simulations are computationally de-
manding, they have a number of remarkable advantages. First,
they do not exhibit an exponential scaling with system size, as
is the case for exact diagonalization, and they do not have a
dynamical sign problem as continuous time QMC methods.
Second, they are not limited with respect to the system
dimensionality, as opposed to matrix-product state methods.
At the same time, in contrast to ED, NEGF simulations are
not a first-principle method since they involve a many-body
approximation—the self energy—which determines the accu-
racy and the quality of the results, similar to the approximate
exchange-correlation energy in density functional theory.
DMRG, on the other hand, also involves an approximation
but the numerical errors depend on a control parameter, the
discarded weight, and whenever this can be made sufficiently
small, the results can become essentially exact for system sizes
larger than what is accessible to ED [66,67].

The accuracy of NEGF simulations of spatially inhomo-
geneous fermion systems was tested before for few-electron
atoms [68] and small Hubbard clusters [69] where exact
diagonalization results are available. This analysis was ex-
tended to larger Hubbard systems, on the order of 10 sites
in Refs. [62,70], revealing a high accuracy of simulations
with second-order Born self energies, for weak coupling and
moderate times (on the order of 20 inverse hopping times).
However, the quality of the results for larger systems has
remained open until now, due to the lack of reliable benchmark
data. On the other hand, for small Hubbard clusters, also
problems were reported: In the case of a strong excitation, two-
time NEGF simulations were found to exhibit an unphysical
damping of the dynamics [69,71]. The origin of this behavior
has been traced back to the self-consistent nature of the used
approximations. These deficiencies could be removed to a
large extent by making the transition to single-time dynamics
with the help of the generalized Kadanoff-Baym ansatz [72]
with Hartree-Fock propagators (HF-GKBA) [62].

Thus, there is a clear need to further study the question
of accuracy and predictive capability of NEGF simulations,

(a) symmetric expansion (b) asymmetric expansion

(c) asymmetric expansion on a ladder (d) charge density wave

FIG. 1. Initial states of the nonequilibrium problems studied in
this paper: (a) Symmetric 1D sudden expansion from a band insulator
(BI). (b) Asymmetric 1D expansion from a BI. (c) Sudden expansion
on a two-leg ladder. (d) Relaxation dynamics from a charge-density
wave state |ψ0〉 = |2,0,2,0,2,0, . . . 〉 in 1D. The open circles indicate
empty sites, the filled circles represent an initial occupation with two
fermions, i.e., a doublon.

in particular, for systems larger than those studied so far,
for longer simulation times and beyond the weak-coupling
limit. The goal of this paper is to present such an analysis
by benchmarking NEGF results using a variety of different
self-energy approximations, in a two-time as well as in a
single-time formalism (i.e., using the GKBA), against DMRG
results. Due to the inherent properties of matrix-product states
[67], these comparisons have to focus on 1D fermion systems.
We choose a set of four nontrivial cases of nonequilibrium
dynamics in the Fermi-Hubbard model for which correlations
play a crucial role.

The Hamiltonian of the Fermi-Hubbard chain is

H = −J
∑
〈s,s′〉

∑
σ=↑,↓

(ĉ†s,σ ĉs′,σ + H.c.) + U
∑

s

n̂↑
s n̂

↓
s , (1)

where ĉ
†
s,σ creates a fermion with spin σ =↑ , ↓ in site s and

n̂
σ
s = ĉ

†
s,σ ĉs,σ . J is the hopping matrix element (set to unity in

our simulations), U denotes the onsite interaction, and L is the
number of sites (the lattice spacing and h̄ are set to unity). The
cases studied include (i) the symmetric and (ii) asymmetric
expansion from a band insulator into an empty lattice, (iii) the
expansion from a band insulator in a quasi-1D situation on a
two-leg ladder, and (iv) the decay of an ideal charge-density
wave state. These four initial situations are sketched in Fig. 1.

As a result of this analysis, the applicability range of NEGF
simulations and relevant approximations is being mapped
out. Our main results are the following: NEGF simulations
with the HF-GKBA are reliable also for moderate coupling,
U/J � 4, if the proper self energies are being used. These
are the T -matrix self energy—for small or large filling—and
the third-order self energy (including all diagrams of third
order, cf. Sec. II A)—close to half filling. In all cases, two-time
simulations are less accurate (due to the unphysical damping
mentioned above) but they can be used to estimate the
deviations of the HF-GKBA from the exact result as typically
the latter is enclosed between single-time and two-time NEGF
results. Finally, NEGF simulations fill the gap left open by
DMRG by being capable to treat large systems (of any
dimensionality) and to achieve long simulation times, for weak
and moderate coupling, whereas the DMRG is advantageous
and more efficient for strong coupling.

The remainder of this paper is as follows: in Sec. II we give
a brief introduction into NEGF and time-dependent DMRG
simulations. This is followed in Sec. III by numerical results.
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There we study the four cases introduced above and depicted
in Fig. 1: a symmetric and asymmetric sudden expansion
(confinement quench) in 1D, Secs. III A and III B, respectively,
the sudden expansion in a two-leg ladder, Sec. III C, and a
charge-density-wave initial state, Sec. III D.

II. METHODS

A. Nonequilibrium Green functions (NEGF)

The central quantity in the nonequilibrium Green functions
theory is the (single-particle) Green function G. It is defined
on the Schwinger-Keldysh contour [73,74] C via the time-
ordering operator TC ,

G
σ

ss′(z,z′) = − i

h̄
〈TC ĉs,σ (z)ĉ†s′,σ (z′)〉, (2)

where 〈. . .〉 denotes the ensemble average. The Green function
can be understood as a generalization of the nonequilibrium
single-particle density matrix, nσ

s,s′ = 〈n̂σ
s,s′ 〉, onto the two-

time plane. Therefore, G provides easy access not only to
the observables related to n

σ

s,s′ but, in addition, also to the
spectral properties of the system. However, the full N -particle
information is not directly available from G, although, for
example, the pair correlation function can be reconstructed
from G [75].

The equations of motion for the single-particle Green
function are the Keldysh-Kadanoff-Baym equations [76],(

ih̄
∂

∂z
δs,s̄ − h

σ
ss̄

)
G

σ

s̄s′(z,z′)

= δC(z − z′)δs,s′ +
∫
C

dz̄ �
σ
ss̄(z,z̄)Gσ

s̄s′ (z̄,z′), (3)

together with the adjoint equation (h denotes the matrix
element of the single-particle Hamiltonian). � denotes the
self energy which is the only unknown of the theory, and
with an exact � the method would be exact. In practice,
the self energy has to be approximated for which systematic
many-body schemes (e.g., Feynman diagrams) exist that are
applicable in equilibrium as well as in nonequilibrium, via the
use of the time contour.

In the following we list the self energies that are used
in the present paper. The contribution of the first order in
the interaction is given by the Hartree-Fock (mean field) self
energy,

�
HF,↑(↓)
ss′ (z,z′) = UδC(z − z′)δs,s′n

↓(↑)
s (z) , (4)

which is contained in each of the approximations used below.
Many-body approximations that go beyond the mean field level
(that are of higher than first order in U ) contain, in addition, a
correlation self energy, i.e., �

σ

ss′ =: �
HF,σ

ss′ + �
cor,σ
ss′ .

The first correlation correction is of second order and works
well for weak coupling, i.e., U � J , for a discussion see
Ref. [62]. Here we want to go beyond the weak coupling
regime. Therefore, we focus on two higher order many-body
approximations. The first is the T -matrix approximation
(TMA) in the particle-particle channel and yields a self energy
�

cor,σ
ss′ which accounts for scattering processes up to infinite

order (see Ref. [65] for a detailed discussion). This is realized
by the self-consistent, recursive structure of the T matrix which

(a) TMA

· · ·

(b) TOA

FIG. 2. Feynman diagrams of the considered self-energy ap-
proximations: (a) Diagram series of the particle-particle T -matrix
approximation (TMA). (b) Diagrams contained in the third-order
approximation (TOA), see text.

can be understood as an effective interaction that obeys its
own equation of motion (the Lippmann-Schwinger equation),
Eq. (6),

�
TMA,↑(↓)
ss′ (z,z′) = ih̄ Tss′ (z,z′) G

↓(↑)
s′s (z′,z) , (5)

Tss′(z,z′) = −ih̄ U 2 G
↑
ss′(z,z′) G

↓
ss′(z,z′)

+ ih̄ U

∫
C

dz̄ G
↑
ss̄(z,z̄) G

↓
ss̄(z,z̄)Ts̄s′(z̄,z′). (6)

The corresponding Feynman diagrams are shown in Fig. 2(a).
The TMA is known to perform best in the limit of small
(or large) density [65,71,77], i.e., when the interaction in
the system is dominated by electron-electron or hole-hole
scattering events. Around half filling, however, electron-hole
scattering gains in importance which is not captured by the
particle-particle TMA. Therefore, we introduce, in addition,
the third-order approximation (TOA) which contains all self-
energy contributions up to O(U 3). In this approximation the
correlation self energy, �cor,σ

ss′ , attains the following form [77],

�
TOA,↑(↓)
ss′ (z,z′)

= −(ih̄)2 U 2G
↑
ss′(z,z′) G

↓
ss′(z,z′) G

↓(↑)
s′s (z′,z)

− (ih̄)3 U 3
∫
C

dz̄ G
↑
ss̄(z,z̄) G

↓
ss̄(z,z̄)

G
↑
s̄s′(z̄,z′) G

↓
s̄s′(z̄,z′) G

↓(↑)
s′s (z′,z)

− (ih̄)3 U 3
∫
C

dz̄ G
↑(↓)
ss̄ (z,z̄) G

↓(↑)
s̄s (z̄,z)

G
↑(↓)
s̄s′ (z̄,z′) G

↓(↑)
s′ s̄ (z′,z̄) G

↓(↑)
ss′ (z,z′). (7)

The corresponding diagrams are shown in Fig. 2(b). In the
TOA, particle-particle and electron-hole scattering processes
are considered on equal footing, yet only to third order
inclusively. Both the TMA and TOA approach have been
found to perform well for weak to moderate coupling strengths
as long as the respective density conditions are fulfilled
[62–65,69,71,71,77,78].
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Finally, we introduce the generalized Kadanoff-Baym
ansatz (GKBA) which is an approximation that reduces the
complexity of the time structure of NEGF theory by separating
the time-diagonal Green functions from the off-diagonal ones.
The full KBE of Eq. (3) is solved only for z = z′, while,
for z �= z′, the Green function is reconstructed from its time-
diagonal values, i.e., from the single-particle density matrix.
For the latter, the less and greater component of G which
originate from the mapping of the time contour onto the real
time axis [79] are reconstructed according to [72],

G
≷,σ

ss′ (t,t ′) ≈ −[
G

R,σ
ss̄ (t,t ′)n≷,σ

s̄s′ (t ′) − n
≷,σ

ss̄ (t)GA,σ

s̄s′ (t,t ′)
]
, (8)

where n
<,σ
ss′ (t) = n

σ

s,s′(t) and n
>,σ
ss′ (t) = n

σ

s,s′(t) − δs,s′ . The
GKBA does not violate the attractive properties of the NEGF
method, as it retains density and energy conservation, as well
as time reversibility [80]. When using the GKBA, still the
question remains how the retarded and advanced propagators
GR/A [81] are approximated. Here, we concentrate on Hartree-
Fock propagators—the resulting approximation will be called
HF-GKBA [62]. This approximation has been shown to elimi-
nate (or drastically reduce) the artificial damping properties
of two-time simulations for strongly excited systems and,
at the same time, substantially improving the computational
performance.

B. Time-dependent density matrix renormalization
group method (DMRG)

The density matrix renormalization group method
[66,67,82] relies on approximating many-body wave functions
|ψ〉 via matrix-product states of a finite bond dimension m. A
matrix-product state can be written as

|ψ〉 =
∑

σ1...σL

Aσ1Aσ2 . . . AσL |σ1 . . . σL〉 , (9)

where σ� are the local degrees of freedom at site � and Aσ�

are matrices of dimensions m × m (for details and the role of
boundary conditions, see Ref. [67]). Any wave function |ψ〉
can be brought into the form Eq. (9) by a sequence of singular
value decompositions where in general, the bond dimension
of the matrices will scale exponentially in system size. To
illustrate this procedure, consider a one-dimensional system
that is cut into two parts A and B. By denoting complete basis
sets in the parts A and B by |a〉A and |b〉B , we can express a
many-body wave function as

|ψ〉 =
∑
a,b

ψa,b|a〉A|b〉B . (10)

By means of a singular value decomposition of the rectangular
matrix ψa,b, this can be reexpressed in terms of new basis sets
in A and B with a single index α

|ψ〉 =
s∑

α=1

sα|α〉A|α〉B, (11)

where the sα are the singular values and s is the Schmidt
number, which in general scales exponentially with system
size. At the heart of the approximation used in DMRG and
matrix-product states methods in general is a truncation in the
number of states used to represent |ψ〉 by keeping only those

m states |α〉A with the largest Schmidt coefficients s2
1 � s2

2 �
s2
m � · · · � s2

s , i.e.,

|ψ〉 ≈
m∑

α=1

sα|α〉A|α〉B . (12)

This is equivalent to diagonalizing the reduced density matrix
of part A and truncating in its eigenspectrum, which was
White’s original formulation [82]

ρA = trB |ψ〉〈ψ | =
∑

α

s2
α|α〉AA〈α| . (13)

While actual algorithms are described comprehensively
in Ref. [67], we here want to explain for which many-body
states Eq. (12) provides a useful approximation in the sense
that few states (order of m ∼ 100,1000) suffice to obtain
numerically accurate results for observables 〈Ô〉 = 〈ψ |Ô|ψ〉.
This obviously depends on how quickly the eigenvalues s2

α

of the reduced density matrix decay. A correct intuition can
be gained from relating the decay of s2

α to the entanglement
entropy

SvN = −tr[ρAlogρA] = −
∑

α

s2
αlogs2

α . (14)

A fast decay of s2
α translates into a weakly entangled wave

function and vice versa. The crucial question is the scaling
of the entanglement entropy with the system size. For ground
states of gapped Hamiltonians with short-range interactions,
an area law holds [83]

SvN ∝ LD−1
A , (15)

where LA is the linear dimension of subsystem A and D is
the dimension. Scaling in LA translates directly into scaling
in L, i.e., the linear dimension of the full system. In D = 1,
we obtain SvN = const for L � ξ where ξ is the correlation
length and this implies that the numerical effort (i.e., the
number of states m used to approximate |ψ〉) does not increase
with system size since m � exp(SvN(L)) [67]. For critical
systems in one dimension, the entanglement entropy acquires
a logarithmic correction (see Refs. [67,83] and references
therein). This reasoning explains why matrix-product states
based techniques work primarily for one-dimensional systems
since in 2D, even if an area law holds, the scaling is exponential
in the width of the system [84]. The other important issue is
whether an efficient algorithm can be formulated based on
matrix-product states. It turns out that most matrix-product
state methods including DMRG scale as m3 and linearly in L

[67].
For real-time evolutions |ψ(t)〉 = exp(−iHt)|ψ(t = 0)〉,

the application of the time-evolution operator can be efficiently
implemented via a Trotter-Suzuki decomposition (using H =∑

� h�,�+1) into operators exp(−ih�,�+1δt) which is just a local
two-site gate affecting two A matrices in Eq. (9) (δt is the
time step) [40–42]. In general, a time-propagated many-body
state |ψ(t)〉 will develop volume law like entanglement even
if the initial state was a product state [67]. For global quantum
quenches [such as the time evolution from a product state such
as our case (iv), see Fig. 1(d)], the entanglement grows linearly
in time SvN ∝ t , implying that the number of states m needed
to maintain the same quality of approximation to the true
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|ψ(t)〉 will increase exponentially. This limits the accessible
times in global quenches to about t � O(10/J ), while in local
quenches, geometric quenches such as the sudden expansion
considered in examples (i)–(iii) or for slow parameter changes,
a milder entanglement increase occurs.

The two main parameters that control the accuracy of time-
dependent DMRG simulations are the time step δt and the
discarded weight δρ [67,85]. The latter is defined as

δρ =
s∑

α=m+1

s2
α , (16)

which is a measure for the error made per truncation. The
quality of DMRG data has to be analyzed as a function of both
δt and δρ, with the latter the dominant parameter since the
dependence of the error on δt can be reduced by using higher-
order Trotter-Suzuki decompositions [67]. In this work, we
use a time-dependent DMRG implementation as introduced in
Refs. [41,42] and we varied the time step between 0.02/J �
δt � 0.1/J and the discarded weight 10−7 � δρ � 10−4 with
a maximum number of 2000 states.

III. NUMERICAL RESULTS

In our simulations we consider four different nonequilib-
rium setups. The corresponding initial states are depicted in
Fig. 1. In all cases, the incipient configuration consists of both
doubly occupied and empty Hubbard sites. In the first setup,
the occupied sites are arranged on a straight line to form a
one-dimensional band insulator (BI). During time propagation,
and in the absence of any further potential, the density starts
to expand symmetrically towards the left and right edges
of the Hubbard chain, cf. Fig. 1(a). Next, in order to also
investigate an asymmetric expansion dynamics the initial BI
is placed onto the leftmost sites of the chain allowing the
density to escape only to the right, see Fig. 1(b). Further,
to analyze the effect of the dimensionality of the system we
extend the asymmetric setup to a two-leg Hubbard ladder the
leftmost rungs of which are initially doubly occupied, Fig. 1(c).
The dynamics on such ladders is often used to investigate
the 1D-to-2D crossover. Finally, we consider a setup that
generates a final state at a constant and large density where
correlation effects are expected to manifest themselves even
stronger, cf. Fig. 1(d). Here, the initial state consists of a
one-dimensional Hubbard chain with alternating occupation
ns = 0,2. During the evolution from this charge-density wave
(CDW), the particles quickly form an entangled many-body
state in which correlations play a crucial role. These four setups
will be analyzed in detail in Secs. III A–III D.

A. Sudden expansion in 1D: symmetric case

We start the numerical analysis by considering a confine-
ment quench giving rise to a sudden symmetric expansion of an
ensemble of fermions into an empty lattice [see Fig. 1(a)]. This
setup has been studied in many papers, including experimental
studies [6,29,86,87], and theoretically using DMRG methods
[44,88–94] and NEGF [64]. We exclusively study an initial
density of n = 2 on the sites that are occupied at t = 0, which
was previously considered in Refs. [64,90,95] such that the
general properties are well understood.
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FIG. 3. Symmetric 1D sudden expansion of a Hubbard chain of
N = 34 fermions at U = J . Time evolution of (a) density ns and
(b) double occupancy ds for six times (from bottom to top): tJ =
0,2,4,6,8,10. Solid lines: DMRG, long dashes: NEGF (two-time T

matrix), dashed lines: T matrix with HF-GKBA.

Here, we focus on the quantitative details of the time dy-
namics and compare our NEGF results to DMRG. We consider
a chain of length L = 75 with N = 34 particles for U = J .
The evolution of the respective density profiles is shown in
Fig. 3(a) for six consecutive times tJ = 0,2,4,6,8,10. The
solid black lines correspond to the DMRG results and the
dashed green lines belong to the NEGF calculations using
the T -matrix approximation (TMA) while the orange lines are
obtained by additionally invoking the HF-GKBA, cf. Sec. II A.
As expected, the general trend of the density is to propagate
outwards resulting in a bell-shaped profile which can be
seen from all considered descriptions. For times exceeding
5J−1, the site occupations start to deviate slightly in the three
simulations. In the full two-time NEGF calculation the fermion
expansion is slightly faster than in the DMRG, while in the
HF-GKBA simulation the particles stay closer to the center
and are in very good agreement with the DMRG.

A quantity more sensitive to correlations is the double
occupancy,

ds := n↑↓
s = 〈ĉ†s,↑ĉs,↑ĉ

†
s,↓ĉs,↓〉, (17)

the dynamics of which are displayed in Fig. 3(b). It is evident
that it follows the trend of the density by which it is dominated.
Again, in the full two-time NEGF calculation ds expands faster
than in the DMRG result, where the deviations are larger than
for the density. In contrast, the HF-GKBA is again very close
to the latter.

To better quantify the discrepancies between DMRG and
the two NEGF approaches we introduce the total density
deviation between the two methods in the following way,

�n(t) :=
∑

s

∣∣nI
s(t) − nII

s (t)
∣∣ , (18)
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NEGF and (b) DMRG and HF-GKBA, for the symmetric 1D sudden
expansion. Simulations as in Fig. 3 with N = 34 particles, but for
four different values of U indicated in the figure.

where I and II denote the respective method. This quantity
allows us to analyze the time dependent difference of the
density profiles. It should be noted that the quantitative value of
�n has no direct interpretation. Instead, by dividing by the total
number of Hubbard sites L, one gets the average deviation per
site. Adopting DMRG as the reference method, we investigate
the dependence of the deviation on the interaction strength
U and time by calculating the total deviations for the two-
time TMA simulation and the HF-GKBA results which are
displayed in Figs. 4(a) and 4(b), respectively. As expected,
the total deviation grows in time for all cases. Interestingly,
however, the deviations saturate around t = 10J−1. A closer
look reveals that, during the early propagation period, the
growth appears to be superlinear, followed by a receding
phase after which the growth becomes more fluctuating.
The lengths of these time periods strongly depends on the
interaction strength, as they become shorter for larger U . As
a consequence, for times around tJ = 1 the total deviation
increases with the interaction strength while for times around
tJ = 9 it decreases with U . The overall trend is common
between the full TMA results and the HF-GKBA simulations.
The only noticeable difference is that �n remains a little
smaller for larger times and small U in the HF-GKBA
calculations.

To better understand how the density deviations vary with
U and t , we replot these quantities in Fig. 5(a) for the two
time points, tJ = 1 and tJ = 9. In addition, we compute the
total deviation of the double occupancy which is defined, by
analogy to Eq. (18), as

�d(t) :=
∑

s

∣∣d (1)
s (t) − d (2)

s (t)
∣∣ , (19)

which is shown in Fig. 5(b). While for tJ = 1 all results
confirm the trend that the deviations grow with increasing U ,
for tJ = 9 the dependence is more irregular. In the latter case,
the deviations between HF-GKBA and DMRG, in particular,
are nearly independent of the interaction strength. The two-
time NEGF results for the double occupancy, however, show
large deviations for small U . The decrease of �n and �d with
increasing U for later times can be understood from the direct
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FIG. 5. Symmetric 1D sudden expansion. Total deviation of (a)
the density and (b) the double occupancy between DMRG and NEGF
(long dashed lines) and DMRG and HF-GKBA (dashed lines) at
tJ = 1 and tJ = 9, for N = 34.

dynamics of the density profiles. Since for large U the particles
predominantly remain in the center of the system the growth of
the deviations is limited due to the absence of moving particles.

From the presented results, it turns out that the DMRG result
is typically enclosed between the HF-GKBA and the two-time
NEGF result in T -matrix approximation. At the same time the
HF-GKBA data are slightly closer to the DMRG results.

To further analyze the expansion behavior following a 1D
sudden confinement switch, it is instructive to analyze the
expansion velocity of the fermion cloud which is defined
according to [64]

vexp(t) = d

dt
D(t), with D(t) =

√
R2(t) − R2(0),

R2(t) = 1

N

∑
s

ns(t) ‖s − s0‖2 , s0 = 1

N

∑
s

ns(0) s.

(20)

This quantity measures the temporal growth of the particle
cloud which has a mean square radius R(t) from which the
initial size is subtracted. This quantity was analyzed in detail
for 1D, 2D, and 3D systems and a broad range of system
size N in Ref. [64]. Here we focus on the time evolution
of vexp for 1D systems and compare again DMRG, two-time
NEGF simulations, and HF-GKBA. The results are shown
in Fig. 6 for U/J = 1,2,5. As one can see, for all cases
vexp starts from the same value vexp(0) = vmax = √

2DJ =√
2J which is the largest expansion velocity in an empty

lattice (cf. Refs. [6,64,91]). A noninteracting gas expands
with a constant vexp(0) = vmax = √

2DJ [6]. For U > 0, vexp

decreases from its initial value until it slowly converges to an
approximately constant value once U/J becomes comparable
to the bandwidth.

This behavior is explained by the large effective mass of
doublons in the limit U � 4J , where perturbation theory
results in an effective hopping matrix elements Jdoublon ∝
J 2/U for U � J (see, e.g., Ref. [96]). As a consequence,
the doublons become inert on the accessible time scales and
the system remains largely in a weakly-correlated state that
is essentially a product state in the core region [89,90,92]
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(see also Refs. [97–99]). Therefore, vexp is dominated by the
few atoms that expand after some doublons have dissolved into
single particles [90] and at long times, the expansion velocity
is dominated by these fast atoms while the slow doublons do
not contribute [93].

For the applicability of the NEGF methods, this dynamical
freezing of a build-up of correlations as U/J � 4 implies that
the methods become more accurate again, since the wave
functions acquire a simpler structure than at weak U/J .
This explains the a priori counterintuitive observation that
the numerical deviations of the NEGF methods compared to
DMRG (see the discussion of Figs. 4 and 5) become smaller
as U/J increases, even though the NEGF techniques are by
construction weak-coupling methods [100]. The regime of
U/J � 4 can much easier be accessed by DMRG with longer
times becoming accessible [89], demonstrating the usefulness
of NEGF and DMRG as complementary approaches for weak
and strong coupling, respectively.

Interestingly, for large interaction strength both DMRG
and the HF-GKBA propagation show oscillations in the
expansion velocity with similar frequency. In contrast, for the
two-time TMA calculations an onset of oscillations is seen
only for U/J = 5, in all other cases the expansion velocity
quickly decays monotonically approaching an asymptotic
value. This is consistent with earlier observations that two-time
propagations of the KBEs for strongly excited small Hubbard
systems can be accompanied by an unphysical damping in the
density evolution [62,69,71], as was noted in the introduction
Sec. I. Since the initial confinement quench in our simulations
constitutes such a strong excitation it is very likely that the
missing of the oscillations of the expansion velocity in the two-
time simulations are associated with this artificial damping.

On the other hand, the HF-GKBA is known to remove
the artificial damping in strongly excited small systems [62].
Therefore, it is not surprising that in the present setup, the
HF-GKBA simulations exhibit better agreement with the
DMRG for intermediate times, including the reproduction of
the oscillations of the expansion velocity. This is particularly
the case for small and moderate couplings, U � 3J . For
larger couplings, the long-time asymptotics of the expansion
velocity of the two-time simulations is closer to the DMRG

than the HF-GKBA result. This behavior is also consistent
with the earlier observations for the evolution of the density
profile and the double occupancy. This complementarity of
the performance of the two-time and the HF-GKBA NEGF
simulations are a particularly attractive feature.

Therefore, having both NEGF results at hand, allows one to
estimate, e.g., the value of the asymptotic expansion velocity.
For all U , the DMRG solution of this asymptotic value lies
within the NEGF results. Utilizing this observation, one can
extract the exact value of limt→∞ vexp(t) with a relative error
of �30%, for all U .

The experiment [6] used a different measure for the
expansion velocity derived from the time evolution of the half
width at half maximum, called core expansion velocity. In
Ref. [64], a direct comparison of numerical results for this
core expansion velocity to experimental data of Ref. [6] was
presented, with a very good agreement. Our analysis of the
errors of densities as a function of U/J and time in the different
NEGF schemes further corroborates the validity of the NEGF
data used in that comparison.

It should be mentioned that, in the present case, the choice
of the TOA self energy in the NEGF description leads to an
overestimation of the expansion by a factor of �2 (not shown).
This indicates that the stability of the correlated doublon cloud
at the center of the system is only sufficiently described if
higher order scattering diagrams are considered, as in TMA.
Additionally, throughout the early dynamics the lattice sites
are predominantly either empty or nearly fully occupied which
supports the validity of the TMA (cf. Sec. II A).

We close this discussion by noting that in principle, it should
be possible to compute the asymptotic expansion velocities
from the Bethe ansatz, along the lines of Refs. [92,94]. For
instance, limt→∞ vexp(t) was computed for n � 1 with an
excellent agreement with DMRG results [94]. The extension
of Ref. [94] to initial densities n � 1 is left for future research.

B. Sudden expansion in 1D: asymmetric case

It is now interesting to further investigate whether the
observed accuracy and the complementary behavior of single-
time and two-time NEGF simulations is just a special case
of the symmetric expansion. To this end we now consider a
modified setup [cf. Fig. 1(b)] where the confinement quench
gives rise to a density expansion in only one direction. The
results are presented in Fig. 7(a) for N = 20 fermions and
U = J . The respective evolution of the double occupancy
is shown in Fig. 7(b). As one can see, the results obtained
by all considered methods lie very close to each other. To
better distinguish between the particular profiles, we show
the deviations to the DMRG results in Fig. 8. The subfigures
Figs. 8(a)–8(d) correspond to different interaction strengths
U/J = 1,2,4,8. As in the symmetric 1D setup we observe
a complementary behavior of the two-time result and the
HF-GKBA. First, it is striking that again both approximations
exhibit opposite deviations from the DMRG: While the two-
time results show a slightly too fast expansion, the HF-GKBA
results are retarded. Correspondingly, the deviations of the
local densities from the DMRG results have opposite signs:
The HF-GKBA (two-time TMA) densities are above (below)
the DMRG result, on the originally doubly occupied sites,
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and, vice versa, for the unoccupied sites. Also, the deviations
have a similar dependence on the coupling strength as in
the symmetric case, Sec. III A: For the HF-GKBA that
exhibits smaller density deviations than the two-time result
for all considered U , the maximum deviation is found for
intermediate coupling strengths (2J � U � 4J ). In contrast,
for U = 8J , the two-time result shows large deviations at the
edge of the occupied region.

After considering the densities we again compute the
width of the expanding particle cloud, using Eq. (20) [see
Fig. 9(a)]. This quantity confirms the observations made before
for the density: Compared to the DMRG, the expansion of
the particle cloud is slightly accelerated (decelerated) for
the two-time (GKBA) simulations. With increasing U the
two-time result becomes more accurate than the HF-GKBA.
For large couplings, U � 6J , the deviations between two-time
and single-time approximations vanish. In this limit, also the
two-time result for the expansion is retarded, in comparison
to the DMRG. This analysis indicates that for U � 6J a
combination of two-time and single-time simulations is able
to reproduce the cloud size with a relative error not exceeding
20%. However, for large couplings, the inaccuracies grow and
appear to arise from the inadequacy of the underlying T -matrix
approximation in the particle-particle channel. This makes it
necessary to study additional many-body approximations.

The considered system of L = 20 sites and L0 = L/2 = 10
initially doubly occupied sites obeys a high symmetry [101]
between the electron (hole) density on site s and the hole
(electron) density on site L − s. To generalize our findings,
we also present results for a system of L0 = 2L/5 = 8
initially occupied sites, for which this symmetry is bro-
ken. The corresponding widths of the particle cloud are
shown in Fig. 9(b). As one can see, all trends agree with
the previous results and especially the enclosing behavior
of the NEGF methods seems not to depend on the symmetry
of the system.

C. Asymmetric sudden expansion on a two-leg ladder

As mentioned before, the generalization to higher system
dimensions constitutes a challenging problem to DMRG due
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to the additional degrees of freedom in the correlation growth.
Therefore, only simple 2D toy models have been simulated so
far with time-dependent DMRG, including the expansion of
strongly interacting bosons on few-leg ladders and in small 2D
clusters [44]. Since the NEGF method is not restricted with
respect to dimensionality it is very interesting to compare the
performance of both methods on a two-leg ladder to see if the
good agreement of the previous 1D analysis can be confirmed
for higher dimension.

As in Sec. III B, we consider an asymmetric expansion
setup, now with a ladder of ten rungs, the leftmost five of which
are initially doubly occupied [cf. Fig. 1(c)]. The resulting
density evolution is illustrated in Fig. 10(a) where the density
distributions for several times tJ = 0,1,2,3 are shown in a
simulation using the HF-GKBA+TMA approach with U = J .
As in the 1D case, the particles tend to move to the right. To
quantify the growth of the width of the particle cloud we again
use the reduced radius D(t) of Eq. (20) the time evolution
of which is shown in Fig. 10(b) for all considered methods
and U/J = 1,2,3,5. As one can see, the behavior is very
similar to the 1D case (cf. Fig. 9). The slowing down of the
expansion for increasing interaction strength is well predicted
by all considered methods for small interaction strengths,
whereas for larger U , the DMRG curve lies between the NEGF
results.

It should be mentioned that the evolutions of the reduced
radius for all U share a common short-time phase (this is also
present in 1D but becomes more apparent on the ladder), for
which D(t) behaves like the ideal system. This phase shortens
with increasing interaction strength, which is due to the build-
up of correlations. The behavior is similar for the symmetric
expansion setup (cf. Sec. III A) for which the dependence of
the early expansion phases and the connection to the onset of
correlations are analyzed in detail in Refs. [64,65].

D. Relaxation of charge-density-wave state of doublons

We now turn to the fourth setup that is depicted in Fig. 1(d),
an alternating sequence of doubly occupied and empty states
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N = 20. (a) Density imbalance, Eq. (21). (b) Total double occupancy∑
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corresponding to a charge-density wave. There have been a
number of experiments starting from similar initial states with
both fermions [8] or bosons [28], but mostly of the |ψ0〉 =
|1,0,1,0, . . . 〉 type. Theoretically, there is much interest in the
decay of charge-density waves or initial states with perfect
Néel order in the Fermi-Hubbard model, with previous work
on both its 1D version [102,103] and for higher-dimensional
systems (see, e.g., Ref. [104]). The decay from the bosonic
version of our initial state |ψ0〉 = |2,0,2,0, . . . 〉 was studied
in Ref. [105].

Here the dynamics is governed by a short-time process
in which particles move into the empty sites, provided that
U < 4J , which is the bandwidth. After that, a spreading and
build-up of correlations sets in, for which the relevant velocity
is typically strongly dependent on U/J [18,102,103].

A useful quantity for the dynamics is the density imbalance
which is defined as the difference of the densities on all even
and all odd sites,

I(t) = Neven(t) − Nodd(t)

L
, (21)

where Neven (Nodd) sums up all densities of the even (odd)
sites. The imbalance starts from N/L and is then expected
to decay. The results for N = 20 fermions and five different
couplings are shown in Fig. 11(a). In the figure we compare
DMRG results to NEGF simulations using a third-order
approximation for the self energy. We show results for the
single-time limit, i.e., after applying the HF-GKBA [106]. The
agreement is excellent for small and moderate couplings. Only
once the interaction strength becomes as large as U/J = 3,
small deviations are visible which grow for U = 4J . This
is not surprising because the third-order approximation does
not capture higher order corrections. It contains, however,
the third-order electron-hole diagram (cf. Fig. 2) which
becomes essentially important at half filling. Therefore, TOA
simulations are superior to the T -matrix calculations with
respect to the description of CDW dynamics. Similar trends
are seen in the total double occupancy which is displayed in
Fig. 11(b). The dependence of errors of the NEGF methods on
U/J (i.e., an increase as U/J becomes order of the bandwidth)
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in this example is the expected generic behavior since
these methods are by construction weak-coupling approaches.
DMRG works particularly well for U/J > 4 in such problems
[102], illustrating the complementary strength of NEGF versus
DMRG time evolutions.

IV. SUMMARY AND OUTLOOK

A. Summary of main results

In this paper we thoroughly investigated the accuracy
and applicability range of NEGF-based approaches in the
description of the complex and correlated electron dynamics
in strongly excited large Hubbard chains. The basis for this
benchmark analysis were DMRG simulations performed for
the same setups. Based on this analysis for the selected four
setups we may conclude that NEGF simulations are reliable
and accurate, thereby fully confirming earlier comparisons to
exact diagonalization results for small clusters. Thus, NEGF
simulations have predictive power, far beyond the present
systems and situations. More precisely, our conclusions can
be summarized as follows:

(1) The quality of the NEGF results crucially depends on
the choice of the self energy, �, which is clearly dictated by
the physical situation. For weak coupling, U < J (not studied
here, cf. [62]), the second Born approximation is adequate.
For moderate coupling, U � 2J , proper approximations are
the particle-particle T -matrix (TMA) and the third-order
approximation (TOA).

(2) For U � 2J , the choice of � depends on the local
densities (filling): For densities close to zero (or close to
one), TMA is appropriate, confirming earlier results for small
clusters [71], whereas near half filling TOA is significantly
more accurate, as it contains contributions neglected in TMA.

(3) For the present system sizes the HF-GKBA (with the
relevant self energy) yields more accurate results compared to
the corresponding two-time simulations (due to the artificial
damping observed in the latter). While the envelopes of global
dynamical quantities (energies, cloud size, expansion velocity,
density imbalance, etc.) are captured very accurately, oscilla-
tions of these quantities are reproduced only qualitatively, for
U � 2J .

(4) Full two-time NEGF simulations can be used as a
support of the HF-GKBA data, as typically the exact result
is enclosed between the single-time and two-time simulations.
One half of the difference of the two yields a (conservative)
estimate of the numerical error, at least for couplings U � 6J .

Based on this analysis of the NEGF capabilities, the main
outcome of this paper is that NEGF and DMRG have, to a large
degree, complementary strengths and limitations, with respect
to the interaction strength. If U does not exceed the bandwidth
of the system, the NEGF approach has predictive power even
for long-time propagations, and it is directly applicable to 2D
and 3D systems [64]. In contrast, the exponential spreading
of entanglement narrows the DMRG approach to very short
1D simulations (somewhat larger times can be reached than
presented here by using more states and possibly also by using
variants of the algorithm [46,102]). On the other hand, if U is
larger than the bandwidth, the NEGF approach, in its present
form, does not describe the dynamics properly, due to the
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FIG. 12. Relaxation of a CDW state of doublons. System-size
dependence and long-time evolution of the average double occupancy,
Eq. (22), for (a) U = J , (b) U = 4J , and (c) U = 10J (DMRG results
only) for chains of length L = 6,12,20,24,36. Full lines: DMRG,
short dashes: HF-GKBA+TMA. The insets, in addition, show HF-
GKBA+TOA results (long dashes). For better visibility, curves for
different L are shifted vertically by 0.1.

built-in perturbative character of the approximations, whereas
the DMRG method provides the exact dynamics for rather long
times, although being limited to 1D and small 2D systems.

B. Complementarity of NEGF and DMRG simulations:
A case study

To illustrate this complementarity and the reach of the two
methods, we have performed additional long-time simulations
and investigated the system-size dependence of the simula-
tions, for the CDW setup (cf. Sec. III D). As a particularly
sensitive quantity, we introduce the average double occupation

davg(t) = L−1
∑

s

ds(t). (22)

The time evolution of davg is shown in Fig. 12 for different
chain lengths L, ranging from 6 to 36, corresponding to
6, . . . ,36 particles, for (a) U = J , (b) U = 4J , and (c) U =
10J . The NEGF simulations use the HF-GKBA with T -matrix
self energies. TOA simulations had a stability problem and are
included only for shorter times (see insets).

Starting from the case of U = J [cf. Fig. 12(a)], one can see
that the short-time dynamics (tJ < 3) of all considered chains
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are very similar. After the transient oscillations have decayed a
quasistationary regime is observed. However, at some time the
double occupation abruptly increases again [cf. Fig. 12(a)].
These revivals occur periodically, becoming weaker with
increasing system size L, and their periods increase nearly
linearly with L. This indicates particles with a critical velocity
that pass through the entire system. It should be noted that, after
the revivals, davg starts to fluctuate inhomogeneously with an
amplitude that decreases with L. We note that similar revivals
and system-size dependencies were reported in Ref. [107].
While for U = J the DMRG simulations are restricted to very
short times, e.g., tJ ∼ 20 for L = 6 (tJ ∼ 5 for L = 12), the
NEGF simulations easily allow us to reach tJ = 50 and more,
for all chain lengths. The excellent agreement with DMRG is
striking, suggesting that also the long time results are reliable.

Consider now the case U = 4J , Fig. 12(b). Here the
complementary behavior of the two approaches becomes
particularly obvious. While DMRG simulations show an
improved performance compared to U = J and reach times of
the order of tJ ∼ 20, for L = 6 (tJ ∼ 12, for L = 12), NEGF
simulations still reach times of the order of tJ = 50, however,
it is more difficult to achieve convergence. Simulations with the
most accurate TOA self energy are stable only for short times,
on the order of tJ ∼ 4, for L = 20, similar to DMRG, and are
in good agreement with the latter [cf. inset of Fig. 12(b)].
Long-time simulations are presently possible only with
T -matrix self energies which, however, exhibit a small upshift,
compared to DMRG. Interestingly, the L-dependent revivals
that were observed in the NEGF simulations for U = J are
confirmed here as well by the NEGF results and, even more
clearly in the DMRG runs.

Finally, in Fig. 12(c) we show results for U = 10J . Here,
accurate long-time evolutions for small systems can be easily
performed with the DMRG method. In contrast, the available
NEGF approximations are not accurate enough and show poor
convergence for long times (results from NEGF simulations
not included in the figure).

C. Outlook

After this analysis of the NEGF approach and the illus-
tration of the interesting complementarity with DMRG we
briefly discuss questions that will be of interest for future
developments. First, it will be very important to extend the
arsenal of self energies. One important improvement will be
achieved by extending the T -matrix approximation by includ-
ing electron-hole contributions and by including dynamical
screening effects (FLEX approximation [77]). These choices
for the self energy will help to extend the interaction range
where NEGF properly describes the dynamics. Another way
to access larger U is to derive novel self energies via a
perturbation expansion with respect to U−1, i.e., by starting
from a Hamiltonian that includes doublons directly. Finally, it
would be interesting to further improve the GKBA. While it
was found to cure the artificial damping problems of two-time
simulations, the dynamics is often too weakly damped. This
behavior should improve if one uses correlated propagators
instead of HF-propagators [57,81].

While in this paper, 1D and small quasi-1D systems have
been investigated for uncorrelated initial states, it will be
interesting to extend the present method comparison to more
complex, correlated initial states (including the ground states)
as well as to larger 2D and 3D systems. It will also be
interesting to analyze the dependence of the dynamics on
the sign of the interaction [6,64], to investigate disordered
setups [108–111] and to compare the fermionic simulations
to those for bosonic lattice systems. Finally, the access of
long simulation times by NEGF and DMRG for weak and
strong coupling, respectively, should allow one to study
interesting features of the quantum-quench dynamics such as
prethermalization [112–114].
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[38] J. Bonča, M. Mierzejewski, and L. Vidmar, Phys. Rev. Lett.
109, 156404 (2012).
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