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Time Reversal Invariance of quantum kinetic equations:
Nonequilibrium Green Functions Formalism
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Time reversal symmetry is a fundamental property of m uanttm mechani-
cal systems. The relation between statistical physics and&time/reversal is subtle
and not all statistical theories conserve this particula try, most notably
hydrodynamic equations and kinetic equations such as t 1ann equation.
In this article it is shown analytically that quantumfkinetic gemeralizations of the
Boltzmann equation that are derived using the nonequilibriwm Green functions for-
malism as well as all approximations that stem<fremn erivable selfenergies are

time reversal invariant. 5

C
l. Introduction ‘)

L -

The nonequilibrium Green functions (NE )\g&i 1 provides an ab initio description
of strongly interacting quantum many p, r&m far from equilibrium. It has gained
much importance in the last two deca .‘ma.i.l\LEl)oecause it is now possible to solve the
two-time Keldysh—-Kadanoff-Baym equations (KBE) numerically. NEGFs have been suc-
cessfully used to describe a huge va ?yﬁ systems and phenomena, such as Bose conden-
sation, quantum and molecular -+ and femtosecond spectroscopy, carrier dynamics
in quantum dots and quantum w _ laser exciation of small atoms™, nuclear collisions?,
intense laser-plasma interaction”, elesis in cosmology® and much more. Within the
Green functions formalism ther ists an elegant diagrammatic method for constructing
approximations that conserve enéxgy, momentum, angular momentum and particle number,
by using so-called ®-derivable selfenérgies. It is the purpose of this paper to show that those
approximations as wéll as theexact equations of motion of the Green functions formalism
are invariant undep/timegeversal.

The relation cefl time Teversal symmetry and statistical physics is subtle and not all
statistical thegries a 'nva{iant under time reversal, the most famous counterexample being
the Boltzmann equation«of classical statistical mechanics and its quantum generalization.

Therefor ensive work has been done over the recent seven decades to derive non-
Markovidn generalizations of the Boltzmann equation that are time-reversal invariant as
the udderlyimg quantum mechanical system. Among the well established approaches we

lon dénsityupperator concepts, see e.g. [9) for an overview, and nonequilibrium Green
i [10] #for a recent text book discussion, see [I1]. Despite recent activities in this
not aware of a general analysis of the time reversal properties of the resulting
d quantum kinetic equations. Since these equations are usually solved with the
of certain many-body approximations, it is even more important to understand under
conditions time reversal invariance is retained.

h

Sis the goal of the present article to solve these questions for the NEGF formalism

ich we briefly recall in Sec. [} Since the Kadanoff-Baym equations can be directly de-

“Tived from the equations of motion of the field operators in second quantization which are
time-reversal invariant, it should be expected that the KBE have the same symmetry prop-
erties. It is, nonetheless, not trivial to show this directly in full generality, and a successful
procedure is presented in Sec. [[V] We then demonstrate in Sec. [V] that an important class
of approximations—the so-called ®-derivable approximations—also preserve time reversal
symmetry. We conclude with a summary in Sec. [VI] where we also outline the time reversal
invariance conditions of the generalized Kadanoff-Baym ansatz2.
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FIG. 1. Hlustration of the two real-time branches of the Keldysh contour. 214 causal branch
C_ is earlier on the contour than z2 on the anti-causal branch C., alth e physical time t;
corresponding to z; is later than the physical time t2 corresponding to

Il.  Nonequilibrium Green Functions )
'M\

The n-particle Green function G(™ is defined element-wfise as t nsemble average of the
n-particle correlator in second quantization

where é}k and ¢;, are second quantizatio creﬁﬂg nnihilation operators with respect to
a complete orthonormal basis of single—p&hcqmtﬂs {|¢:)} obeying the (anti-)commutation

relations for bosons (fermions)

Further, 7-6 is the time ordering“eperator on the Keldysh time contour C, as illustrated in

Fig.

The dynamics of th n% Green function are described by the Martin—Schwinger
rchy

hierarchy—a coupled hi f equations of motion (we leave out the orbital indices for
brevity): y

[ih@zk - h(oz/ G 1/.. iRy 2n) = (3)

+ ih/ ‘@ki) GV (2. znz 2, 2 2 + Z(:l:l)k+p6¢(zkz;)G(”_l)(z1 R

p=1

and
4
ﬁ
() (2 4) 252y e 2h) [—ih%z; - h(o)(z,’f)] = (4)

S where W (z1, z3) = dc(21, 22)w(z1) and w(z1) is the instantaneous two-particle interaction
operator. The Dirac delta function dc acts on contour times z and h(?) denotes the matrix
element of the single-particle Hamiltonian. The first-order hierarchy equations can be for-
mally closed by introducing the selfenergy 3, reducing the description to the dynamics of
the single-particle Green function G():

(70, — h(2)] GM(22') = 6 (22') 1 + /c dz2(zz) GW(z2) , (5)

n
+ \8 2G5 2772 2 2 W (B2 + Z(:I:l)k+péc(zpz,’€)(}("_1)(z1 S Xg i Z e
p=1
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(a) (b)
FIG. 2. The Hartree (a) and Fock (b) diagrams contributing to the Hart ock potentlal oM,

A full (wiggly) line corresponds to a Green function (interaction pote

and its adjoint,
[—ihd. — h(z)] GW(22") = b¢(22')1 + ’G(l)bé)E(éz’) . (6)

C
These equations are the Keldysh—Kadanoff— Bay g)uatlon It is theoretically possible to
write ¥ as a functional of G() such that Eqs. 1D d @ are still exact. The main challenge

of the Green functions formalism is to find s table roximations for the selfenergy. One
important class of selfenergy approxmlatl nstr cted as the functional derivative of

a scalar function ® (“®-derivable appro 1ma

These approximations conserve icle number, momentum, energy, and angular momen-
tum, if ® is invariant underdgaugestramsformations, space and time translations, and ro-
tations, respectively. This is if is the amplitude of a scattering process (since
every scattering process satlsﬁes ese conservation requirements). Therefore, it is possible

to construct conservin ar potentials diagrammatically. For example, the potential ®HF
corresponding to th% Fock approximation consists of two diagrams, as illustrated

in Fig. [2}

Prigf= + 2 a(c] + Tat() ®)
5\Q(a)[G] = /Cdz1sz G215 2 )W (215 22) G223 25 ) 9)
o) [G] = / dz1dzg G(z1; 29 )W (215 22)G(225 21 ) (10)

/ c

sulting té Hartree-Fock selfenergy

— SEHF (22") =+ ihdc (27 /de (22)GW (z21) + ihGW (22 YW (2T 2') . (11)

\J

Otheér ®-derivable approximations are the second order and third order Born approxima-

tions, the GW-approximation and the T-matrix (ladder) approximation, cf. e.g. Ref. [I1].
e

Ill. Time Reversal Invariance in Quantum Many-Body Theory

Here, we briefly recall the notion of time reversibility inctroducing the time reversal
operator T'. We first illustrate this for the N-particle Schrodinger equation and then extend
the concept to many-body theory within second quantization.
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A. Time Reversal Invariance of the Schrodinger Equation

The Schrodinger equation is called symmetric with regard to time reversal if, (i) for any
solution [t(t)), there exists another solution |¢'(¢')) with ¢ = —t, and if (ii) there exists a
unique relation between the two: 4f') = T|4)), for some operator TE' It can be shown that
T must not only be a linear operator, but an anti-unitary one. Thus, 1t n be expressed as

the product of complex conjugation and some unitary operator U. The m mechamcal
equivalent to classical conventional time reversal is obtained by c ' ]1 so that
|1) = [¥)".
Let us illustrate this for the time-dependent Schréodinger equatl
in|y) = H) . 12)
Applying T to both sides yields:
T ih at |’lb
— —ih Bt T [y = (13)
1h3( ) ’)
which means that T|w) solves the time reve d% er equation
iho t) ™ (14)

if (and only if) H =THT'. This result is*w hd for an arbitrary interacting many-particle

system. \
=

B. Time Reversal Invariance f nb rg Equation
The Heisenberg equation for anwoperator Ay is equivalent to the Schrodinger equation
and should, therefore 5s the same reversibility properties. This is straightforwardly
shown applying the perat3 introduced above from left and right:
/ 1 tAH = [AH,IA{} (15)
/ i An T = 7 (Aufl - A A) 7
vgﬁatTAHT—l =TAgT*THT > —~THT ' TAgT™', (16)

whichfis equivalent to

4

— y. ho_TAnT ' = [TAHT—l, H} (17)

nd oay if H = THT-'. This means that, if a Heisenberg operator Ag(t) solves the

" “Heis rg equation, then TAuT—" solves the time-reversed Heisenberg equation.

)

Time Reversal Invariance of the Equations of Motion of the Field Operators of Second
"¢ Quantization

The equation of motion of the annihilation operator in an arbitrary single-particle basis

{|¢i)} [cf. Sec. readd™
ih0y¢i(t) = Z ( ik + v (t ) )+ Zwukl e (t)ew(t) (18)

k jkl
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where t;;, and v;j (wijkl) are matrix elements computed with the respective single-particle
(two-particle product) basis states. For the purpose of analyzing time reversal symmetry,
it is convenient to consider that Eq. is derived from and equivalent to the Heisenberg
equation for ¢;(t),

and, as such, possesses the same symmetry properties that H doe BAObviously
holds for the creation operator éj

IV. Time Reversal Invariance of the Martin—Schwinger Hierar. y)\

—

The Martin—Schwinger hierarchy follows from t kiﬁE th emble average of the

formally equivalent hierarchy of equations of motion of the n-particle correlators G(™). The
latter, in turn, follows from the equations of motion*of t d operators , @ and,
therefore, must satisfy the same symmetry propertiessas-the field operators. Nonetheless

it is instructive to prove the time reversal inv&'gr:;of the Martin—Schwinger hierarchy

directly. To this end, it is important to undegstan wthe contour-s-distribution behaves
under time reversal. Since § is even withﬁi&ct to its argument, i.e., 6(z) = 0(—=2), it
t

might be expected that S = 67 =dc. at, ¢ver, cannot be true, as the following
considerations show: \\‘
/dzéc(z) 1?) :/d(—z) oc(2)
c ~ c
—dc . (20)

A
\K % b =

This means that the J-distri W respect to contour time arguments changes its sign

under time reversal, in analogy tedifferential and integral operators.

Component-wise, t &Sder erarchy equations for the correlators read
.. 0
Z [1h—5ik hgol (m) (22 zy)
Zk }

or
i1...l...in;j1... n

4 . A(n+1) YA g

mn (26 2)Go o gy (B2 Zi 2] 22T

~N(n—1
ikjpac(zkz;)agl")L..in;j“&”jn(zl Sz ..Z;L)} (21

= w(z)dc(z2'), it immediately follows that Ww="==2" — _W . Therefore,

ince
e timesrev rsed equations read
o 9 ©) (3] A
5 [—iha—%&-kl =Ny, (zk)} Gi?...l...z'n;jl...jn (2120321 - 2h)
1

\J

&N = :I:ihz /c dz {Wiklmn(zki) Gg?.firz...inn;jl.“jnl(zl e ZnZ 2y z;,?*)}

Ilmn
_ Z {(:tl)kﬂ’dikjpéc(zkz;) CA;ET_;:\%JI%\J” (2192 Zi&"’;)} . (22)
p=1

The question remains whether these reversed equations have a solution and what the relation
between this solution and the solution of the original (non-reversed) equations is. Applying
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T from the left and 7! from the right on both sides of Eq. , and omitting the time
arguments for brevity, yields

o 0 n -
Z[—lha—%@kl h) (= )] TG, o T
l

- q:th/dZ Wiimn(212)T G(n+; g Jan_l /\

lmn

& A(n—1
+ E:l (£1) k+p5ikjp5C(ZkZ;)TGz(‘1...')...‘
-

This is not equivalent to Eq. (22), therefore TG\,

~~~~~~ iniJ1e--Jn
equations. —
We, therefore, use a different approach which takes advantage oSth fact that G(n_)__ Levsinigi e
6, Con51der1ng that 7'¢, T

and Té;f‘l solve the reversed equations of motion comipared to ¢; and ¢ cj, it could be ex-

equationsjis given by the same functional

can be interpreted as a functional of ¢;,, ..., ¢, & - .-
uat

pected that the solution to the reversed hierarc

(n) [e -1
G“mlmzm]1 n of T¢;T use
e
i1 0ednsge gn

=7 { <_%)n%éil(m) G,

_ nA(n)

_( ) sz.-l.--indl Jn
_. A(n)

- ( )nGzl...l,..zn 1

(n)
Gz?---lu-znm Jn (25)
) > n+1) A(n—1
+11 Z C z WZklmn(ZkZ)G( ML T Jnl Z :l:l k+p5“‘7]1’ (Zkz )Gl:b }\k)\ it }R Jn ’

lmn

whic V&/ﬁen ivided by (—1)", is equivalent to Eq. (22)). From this it follows directly,
y taking $hé ensemble average of both sides, that G(™) TéT_l,TéTT_l} satisfies the re-

sed n'?-order equations of the Martin—Schwinger hierarchy in the same way. Thus, we
onstrated that the exact Martin-Schwinger hierarchy is time reversal invariant, as
expScted.

S “M. Time Reversal Invariance of ®-derivable Approximations

Since the solution of the Martin-Schwinger hierarchy is usually possible only with suitable
approximations, the important question arises which approximations retain the time reversal
properties of the exact system. In the following we demonstrate that any ®-derivable
selfenergy leads to time reversal invariance. Thereby we will restrict ourselves to real-valued
Hamiltonians, H* = H.
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A. Time Reversal Symmetry Condition for the Selfenergy

Let us recall the first Kadanoff-Baym equation,

[ihaz — h(z)] G[é](zz/) = 5C(zz’)1 —+ /C dz E[G[a]](zf)G[é](Z/) s (26)

’ (27)

and take the complex conjugate of both sides,

[—ihd. — h(2)] Gy (22") = dc(22")1 + /C dz ZFG[&] (z

where GE‘E](ZZ') = —Ge+)(22") and, therefore,

— [0, — h(2)] Gje+)(22) = bc(22")1 — (28)
This means that G|s+] solves the reversed equati n(-"
[—1h0. — h(2)] Ge (22) = '\Z (29)
if the following holds true for the selfener
(30)

where the superscript denotgs that the'sign of both z and 2’ is inverted.

B. ®-derived selfener p}
Consider the impg@rtant c selfenergies that are expressed as a functional derivative of
. Lo

& mplex conjugation of both sides of Eq. @) yields

a scalar potenf
O*[G 0P*[Gs
\ . 0D*[G] [Gg] ’ (31)

0G* 0G e
and, A£herefor

the ctional

condition for the selfenergy translates into the following condition for

()]

* 25—z
5 O [G) =@* 7 [Gle] - (32)
['he governing the construction of valid functionals @ dictate [I1] that a n*'-order
dia%am includes 2n contour-time integrals, 2n single-particle Green functions G, n inter-
rticle interactions W and a factor (ih)™. This means that

<

[Glg] = (=1)" @G| = (=1)" @[~ Glex]
— (—1)*®[Ge] = @7 [Glany] - (33)
The last equivalence is true because of the delta-functions in the n interparticle interactions

and the 2n contour-time integrals that lead to 3n sign changes under time-reversal. Thus
we have shown that any ®-derivable NEGF approximation is time reversal invariant.
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C. Example: Hartree—Fock selfenergy

The simplest example of a ®-derivable selfenergy is Hartree-Fock. Nevertheless, it is instruc-
tive to explicitly verify that " satisfies equation (30). To this end we take the complex
conjugate of both sides of equation :

dz W (zz) [—Gfélf](zﬁ)} +(—i)h[—GE<]/ O W(zt2)

C

ZHF’*<ZZ/) — i(—i)h&:(zz/)/

c
1)

~

— Lihde(22) / azW(=2) G
C

= +ik [—Sc(zz')} /c d(~2) [—W(zz)} all) (2= MZ
~

HF, 252
[Grax] )

(22%) +ihG{) (22) W

~ (34)

()

where § = 6" ==*" and W = w="—~—= 1 it’an be checked that ®HY¥

satisfies Eq. (33): o

Pl =+ (_Tl) /c /c dz1dzy [~Gler (21 HQ W (R152)] [~Glev (225 23)]
i)

+'(2 /C [ dzde, [—M-

[e*] W(ZHZQ)G[@](ZQ;z;)
G>Z1>;) W (21; 22) Gawy (225 2)
= - (215 27) | =W (21; (e 2t
= :|:2 /c/c (‘% ) G[c*](Zth ) [ W(Zl,ZQ)] G[C ](22,2;2 )

d(—2z1)d(—22) G[é*](Zl;Z;_) {—W(zl; 22):| G[a*](ZQ;zf')

VI. Summa/
In thi pa%!ix been explicitly shown that the governing equations of the nonequi-
e functions formalism, the exact Martin—Schwinger hierarchy and the as-
m-kinetic equations are time reversible. This is in striking contrast to
zmann-type kinetic equations where irreversibility is introduced by the
nsatz” or similar procedures. The existence of generalized quantum kinetic equa-
ions that rétain the reversibility of the underlying quantum-mechanical equations is known
a 101;3 time. Here we have presented a simple procedure that allows to verify this prop-

is based on use of the anti-unitary time-reversal operator 7' that translates the
solition of the Schrodinger equation into the time-reversed equation.
then turned to approximate solutions to the NEGF formalism that are based on
approximations of the selfenergy. We have demonstrated that any selfenergy that is &-
“derivable is symmetric with respect to time reversal, as long as the (single particle) Hamil-
tonian possesses an anti-unitary symmetry H = THT~'. These approximations include
the well-known Hartree—Fock, second Born and T-Matrix approximations as well as many
others.
Aside from the ®-derivable selfenergy approximations discussed above, in recent years an-
other class of approximations has attracted high interest: the generalized Kadanoff-Baym
ansatz (GKBA). It replaces the two-time Green function by a single-time approximation.
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The GKBA was originally derived by Lipavsky et al. [12], and a rigorous derivation from
density operator theory was given in Ref. [9]. In a detailed investigation by Hermanns et
al. [15] it was shown that the GKBA retains the conservation properties of the original
two-time equations if the approximation for the retarded Green function G* is conserving
as well. The same reasoning can be applied to the issue of time reversal invariance. The
result is that use of a ®-derivable approximation for G® (which may diffepffrom the approx-
imation for the selfenergy) will retain the time reversal properties of tg riginal two-time
approximation. Using the GKBA it is also straightforward to per rmMnsition to
conventional “Boltzmann-type” kinetic equations that are known go bejirreversible. The
analysis shows that reversibility is lost upon performing the Mar
initial correlations. This issue is studied in detail in Ref19.,
An interesting outcome of our analysis is that ®-derivable
ergy are both conserving and time reversible. It remains to i
also to other classes of approximations. Finally, proof of timesrever
mation is also of high practical value in numerical solu ons of th
sensitive test for the numerical accuracy and convergen

ility of an approxi-
BE as this provides a
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