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In a recent Letter [T. Dornheim et al., Phys. Rev. Lett. 117, 156403 (2016)], we presented the first
quantum Monte Carlo (QMC) results for the warm dense electron gas in the thermodynamic limit.
However, a complete parametrization of the exchange-correlation free energy with respect to density,
temperature, and spin polarization remained out of reach due to the absence of (i) accurate QMC results
below θ ¼ kBT=EF ¼ 0.5 and (ii) QMC results for spin polarizations different from the paramagnetic
case. Here we overcome both remaining limitations. By closing the gap to the ground state and by
performing extensive QMC simulations for different spin polarizations, we are able to obtain the first
completely ab initio exchange-correlation free energy functional; the accuracy achieved is an unprec-
edented ∼0.3%. This also allows us to quantify the accuracy and systematic errors of various previous
approximate functionals.
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The past decade has witnessed a rapid growth of interest
in matter under extreme excitation or compression, as in
laser-excited solids [1] and inertial confinement fusion
targets [2–5]. Astrophysical examples such as white dwarf
atmospheres and planet interiors [6,7] provide further
motivation. More down-to-earth examples appear in radi-
ation damage cascades in the walls of fission or fusion
reactors [8]. Plasmonic catalysts use hot electrons
created by the decay of plasmons in otherwise cold metallic
nanoparticles to accelerate chemical reactions [9,10].
Systems such as these, with thermal energies kBT compa-
rable to the Fermi energy EF and densities comparable to or
greater than those of ordinary solids, are said to be in the
“warm dense matter” (WDM) regime [11]. Because the
degeneracy parameterΘ ¼ kBT=EF is of the order of unity,
neither the Pauli exclusion principle nor electronic excita-
tions can be ignored and there are no small parameters in
which to expand. This makes WDM challenging to under-
stand theoretically.
The density functional theory (DFT) is by far the most

important computational approach used to study molecules
and solids at low temperatures [12–14] but relies for its
success on the availability of good approximations to the
unknown exchange-correlation (XC) energy functional. The
development in the early 1980s of accurate parametrizations
[15,16] of the ground-state local density approximation to
this functional played a decisive role in the ensuing rise of
the DFT.
The DFTwas generalized to finite temperatures [17] soon

after its invention, but applications to warm dense systems
are a recent development. In part, this is because the finite-
temperature equivalent of the local density approximation is

not known accurately. This Letter presents the first accurate
and fully ab initio calculation and parametrization of the XC
free energy per electron, fxc, as a functional of the temper-
ature, density, and spin polarization, covering the entire
range of conditions of interest in applications. The result is
the natural generalization of Perdew and Zunger’s famous
zero-temperature functional [16]. It is key input not only to
the thermal DFT [17–19] but also for quantum hydro-
dynamics [20,21] and the construction of equations of state
for astrophysical objects [22–24].
The local density approximation is based on properties

of the uniform electron gas (UEG), one of the seminal
model systems in physics [25]. Studies of the UEG led to
key insights such as the Fermi liquid theory [26,27], the
quasiparticle picture of collective excitations [28,29], and
the theory of superconductivity [30]. Accurate parametri-
zations of its ground-state properties [15,16,31–34] based
on quantum Monte Carlo (QMC) simulations [35–39] have
sparked many applications [40–42] in addition to facilitat-
ing the remarkable successes of the DFT [12–14].
QMC methods for the warm dense electron gas are much

less developed, so the first parametrizations of fxc were
based instead on uncontrolled approximations such as
interpolations between known limits [43], semiempirical
quantum-classical mappings [41,44], and dielectric (linear
response) methods [45–49]. To overcome the severe limi-
tations imposed by the fermion sign problem [50,51], the
pioneering QMC simulations of the UEG by Brown et al.
[52] used the approximate restricted path integral
Monte Carlo (RPIMC) approach, in which the nodal
structure of the density matrix is assumed. These data were
used as input for several parametrizations of fxc [46,53,54],
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the most sophisticated being that of Karasiev, Sjostrom,
Dufty, and Trickey (KSDT) [53], but were later shown to be
inaccurate [55]. The errors were ∼10% near rs ¼ 1, where
rs ≡ r̄=aB, r̄ is the radius of a sphere containing one electron
on average, and aB is the Bohr radius. Unsurprisingly, the
aforementioned models for fxc disagree substantially
(cf. Fig. 1) in the WDM regime [56].
This unsatisfactory situation has sparked much recent

work on finite-temperature fermionic QMC algorithms
[55,57–65]. By developing three complementary new
methods—configuration PIMC [55], permutation blocking
PIMC [62,63], and density matrix QMC [64,65]—we are
now able to overcome the sign problem in a broad
parameter range without relying on a fixed-node approxi-
mation [66,67]. In a recent Letter [61], we presented an
improved procedure to extrapolate the QMC results to
the thermodynamic limit and thereby obtained data for the
unpolarized UEG with an unprecedented accuracy of the
order of 0.1%. At that time, however, the construction of a
complete parametrization of fxc with respect to rs, θ, and
ξ ¼ ðN↑ − N↓Þ=ðN↑ þ N↓Þ, where N↑ (N↓) is the number
of spin-up (spin-down) electrons, was not possible. The
fermion sign problem prevented us from performing QMC
simulations for 0 < θ < 0.5. Further, we had no results for
spin polarizations other than ξ ¼ 0. The polarization
dependence of fxc is used, for example, in DFT calcu-
lations in the local spin-density approximation, which
require the evaluation of fxc at arbitrary ξ.

Here we solve these problems and present a new func-
tional. Inspired by Tanaka and Ichimaru [48,49] and the
impressive accuracy of the Singwi-Tosi-Land-Sjölander
(STLS) formalism [45,46] in the warm dense regime
[56], we bridge the gap between θ ¼ 0 and θ ¼ 0.25 by
adding the (small) temperature dependence of the STLS
interaction energy,

ΔSTLS
θ ðrs; θ; ξÞ ≔ vSTLSðrs; θ; ξÞ − vSTLSðrs; 0; ξÞ; ð1Þ

to the ground-state QMC interaction energy, which is
known very accurately [39]. Second, we carry out extensive
QMC simulations of the warm dense UEG for ξ ¼ 1=3, 0.6,
and 1 (179 data points in the ranges 0.1 ≤ rs ≤ 20 and
0.5 ≤ θ ≤ 8; see Table III in the Supplemental Material
[68]). In combination with the results from Ref. [61], this
allows us to construct the first complete ab initio para-
metrization of the XC free energy, fxcðrs; θ; ξÞ, and to attain
an unprecedented accuracy of ∼0.3%. The high quality of
our new results is verified by various cross-checks and
compared to the widely used parametrizations by KSDT
[53], Perrot and Dharma-wardana [44], Ichimaru, Iyetomi,
and Tanaka (IIT [48,49]), and the recent improved dielectric
approach by Tanaka [47].
Parametrization of fxc for ξ ¼ 0 and ξ ¼ 1.—Following

Refs. [48,49], we obtain fξxc from our QMC data for
the electron-electron interaction energy vξðrs; θÞ via the
coupling-constant integration formula

FIG. 1. Temperature dependence of the XC free energy and potential energy—the top row shows fxc (dashed lines) from this work
(red), KSDT (blue [53]), IIT (black [48,49]), Tanaka (green [47]), and Perrot–Dharma-wardana (yellow dashed line and triangles, PDW
[44]), as well as the corresponding interaction energy v (solid lines) from this work, KSDT, and the restricted PIMC results by Brown
et al. (blue dots [52]). The red rhombs correspond to ground-state QMC results plus a temperature correction function obtained from the
STLS theory. The inset corresponds to an enlargement of the gray box. The bottom row displays the relative deviations of the different
models of fxc with respect to our new parametrization.
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fξxcðrs; θÞ ¼
1

r2s

Z
rs

0

dr̄sr̄svξðr̄s; θÞ ð2Þ

⇒ vξðrs; θÞ ¼ 2fξxcðrs; θÞ þ rs
∂fξxcðrs; θÞ

∂rs
����
θ

: ð3Þ

We employ Padé representations of f1xc and f0xc
(see Supplemental Material [68], which includes
Refs. [69,70]) and fit the right-hand side of Eq. (3) to our
combined data for v1;0. To ensure the correct ground-state
behavior, we note that limθ→0f

ξ
xcðrs; θÞ ¼ eξxcðrs; 0Þ and fit

the zero-temperature limit of our Padé formula to the recent
ground-state QMC results of Spink, Needs, and Drummond
[39]. In addition, the classical Debye-Hückel limit for large
θ and the Hartree-Fock limit fHFxc ðrs; θÞ ¼ aðθÞ=rs ≡
aHFðθÞ=rs [71] for rs → 0 are exactly incorporated.
The new results for fξxcðrs; θÞ are depicted in Fig. 1 (red

dashed line) and compared to various approximations.
While all curves exhibit a qualitatively similar behavior
with respect to the temperature, there are deviations of 5%–
12% for intermediate θ (bottom row). The IIT parametri-
zation exhibits the smallest errors when ξ ¼ 0, whereas, for
ξ ¼ 1, the Perrot–Dharma-wardana points are superior,
although the IIT curve is of a similar quality. The recent
parametrization by Tanaka (green) does not constitute an
improvement compared to IIT. Finally, the KSDT curves are
relatively accurate at low θ but systematically deviate for
θ ≳ 0.5, especially at a high density (rs ≲ 4 [68]). The
deviation ofΔf=f ∼ 10% at itsmaximumcan be traced to an
inappropriate finite-size correction of the QMC data by
Brown et al. [52]; see Ref. [61]. The deviations are even
more severe for ξ ¼ 1, in agreement with previous findings
about the systematic bias in the RPIMC input data [66,67]
and with recent investigations [47,49] of fxc itself. Also
notice the pronounced bump off0xc occurring for large rs and
a low temperature (see the inset in the middle panel), which
induces an unphysical negative total entropy [72] in the
KSDT fit.
Consider now our results for the interaction energy,

shown as red rhombs and crosses in Fig. 1. We observe a
smooth connection between our QMC data for θ ≥ 0.5
(crosses) and the temperature-corrected ground-state data
(rhombs) in all three parts of the figure. The connection is
equally smooth at all other densities investigated. The solid
red line depicts the fit to vξ [Eq. (3)]. The Padé ansatz
proves an excellent fitting function, able to reproduce the
input data (vξ) for ξ ¼ 0 (ξ ¼ 1) with a mean and maximum
deviation of 0.12% and 0.68% (0.17% and 0.63%),
respectively [73].
To further illustrate the high quality of our XC functional

and to verify the accuracy of the applied temperature
correction at low θ, we carried out extensive new QMC
simulations for the XC internal energy per particle, exc, for
rs ¼ 1 and ξ ¼ 1, over the entire range of temperatures
down to θ ¼ 0.0625 (see Ref. [68] for details). The

finite-size-corrected data are compared to exc reconstructed
from our parametrization of fξxcðrs; θÞ via [53]

eξxcðrs; θÞ ¼ fξxcðrs; θÞ − θ
∂fξxcðrs; θÞ

∂θ
����
rs

: ð4Þ

This allows us to gauge not only the accuracy of fxc itself
but also its temperature derivative, which is directly linked
to the XC entropy. The results are presented in Fig. 2 and
demonstrate excellent agreement between our parametriza-
tion (red solid line) and the independent new QMC data
(red dots) over the entire range of θ. Since the new data for
exc were not used for our fit, this constitutes a strong
confirmation of the accuracy of the low-temperature results
obtained by using the STLS theory to correct the T ¼ 0 XC
energy and demonstrates the consistency of our paramet-
rization. Other functionals are much less consistent (see
blue symbols and line) [73,74].
Spin interpolation.—To obtain an accurate parametriza-

tion of fxc at arbitrary spin polarization 0 ≤ ξ ≤ 1, we
employ the ansatz [44]

fxcðrs; θ; ξÞ ¼ f0xcðrs; θ0Þ þ ½f1xcðrs; θ0 · 2−2=3Þ
− f0xcðrs; θ0Þ�Φðrs; θ0; ξÞ; ð5Þ

with θ0 ¼ θð1þ ξÞ2=3. The form and fitting procedure used
for the interpolation function Φðrs; θ0; ξÞ are described in
the Supplemental Material [68]. Interestingly, we find that a
single fitting parameter is sufficient to capture the full
temperature dependence of Φ for all values of ξ, with a
mean and maximum deviation from the QMC data at
intermediate ξ of 0.15% and 0.8%, respectively.
Note that this is the first time that Φðrs; θ; ξÞ has been

obtained accurately from ab initio data. A comparison of the

FIG. 2. Cross-check of our parametrization (ξ ¼ 1, rs ¼ 1).
The XC energy per electron (red line), as calculated from our
Padé function for fxc (dashed line), is compared to new,
independent finite-size-corrected QMC data (red dots) [68].
While our functional has been constructed solely using the
interaction energy v [cf. Eq. (3)], the KSDT curve [53] (solid
blue) was fitted to the restricted PIMC data [52] for exc (blue
circles, BCDC).
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ξ dependence of fxc with various earlier parametrizations is
depicted in Fig. 3. The IITandTanaka curves, which utilize a
different functional form for the spin interpolation [75],
exhibit the largest deviations at intermediate temperatures.
Our spin-interpolation function has the same form [68] as
that employed in the KSDT parametrization. However, due
to the absence of restricted PIMC data for intermediate ξ,
KSDT used the classical mapping of Ref. [44] to determine
the coefficients ofΦ. Overall, the KSDT fit is closest to our
parametrization at low θ, while for θ > 1 the IIT curve is
more accurate. Nevertheless, we conclude that no previous
model satisfactorily captures the ξ dependence uncovered by
our data.
Summary and discussion.—In summary, we have pre-

sented the first accurate and fully ab initio XC free energy
functional for the UEG at WDM conditions, achieving an
unprecedented precision of Δfxc=fxc ∼ 0.3%. To cover the
entire parameter range relevant to experiments, we carried
out extensive QMC simulations for multiple spin polar-
izations at 0.1 ≤ rs ≤ 20 and 0.5 ≤ θ ≤ 8. In addition, we
obtained accurate data for 0.0625 ≤ θ ≤ 0.25 by combin-
ing ground-state QMC results with a small STLS-based
temperature correction. All of our results are tabulated in
the Supplemental Material [68] and provide benchmarks
for the development of new theories and simulation
schemes as well as for the improvement of existing models.
The first step in our construction of the complete XC

functional, fxcðrs; θ; ξÞ, was to parametrize the completely
polarized and unpolarized cases. This was achieved by
fitting the right-hand side of Eq. (3) to our new data for the
interaction energy, vξ, for ξ ¼ 0 and ξ ¼ 1. The resulting
parametrization reproduces the input data with a mean
deviation of 0.17%, better by at least an order of magnitude
than the KSDT fit. As an additional test of our parametriza-
tion, we performed independent QMC calculations of exc
(the XC energy per electron) for a wide range of values of θ

down to θ ¼ 0.0625 and compared the results with values of
exc calculated using our functional for fxc. The striking
agreement obtained constitutes strong evidence for the
accuracy of the STLS-based corrections used at a low
temperature and for the consistency of our work, in general.
Equipped with our new XC functional, we have also

investigated the systematic errors of previous parametri-
zations. Overall, the functional by Ichimaru, Iyetomi, and
Tanaka [48,49] deviates the least from our results, although
at ξ ¼ 1 the classical mapping results by Perrot and
Dharma-wardana [44] are similarly accurate. The KSDT
parametrization exhibits large deviations exceeding 10%at
a high temperature and density. At low temperatures,
however, it performs surprisingly well, in part because it
does not reproduce the systematic biases in the restricted
PIMC data on which it was based.
The construction of the first ab initio spin-interpolation

function Φðrs; θ; ξÞ at WDM conditions constitutes the
capstone of this work. Surprisingly, we find that a one-
parameter fit is sufficient to capture the whole temperature
dependence of the spin-interpolation function. Furthermore,
we show that no previously suggested spin interpolation
gives the correct ξ dependence throughout theWDM regime.
We are confident that our extensive QMC data set and

accurate parametrization of the thermodynamic functions of
the warm dense electron gas will be useful in many
applications. Given recent developments in the thermal
Kohn-Sham DFT [76,77], time-dependent Kohn-Sham
DFT [78], and orbital-free DFT [79,80], our parametrization
of fxc is directly applicable for calculations in the local spin-
density approximation. Furthermore, our functional can be
used as a basis for gradient expansions [81,82] or as a
benchmark for nonlocal functionals based on the fluctuation-
dissipation theorem [83]. In addition, it can be straightfor-
wardly incorporated into widely used approximations in
quantum hydrodynamics [20,21] or for the equations of state
of astrophysical objects [22–24]. Finally, our XC functional
should help resolve several exciting and controversial issues
in warm dense matter physics, such as the existence and
locations of the phase transitions in warm dense hydrogen
[84–86] or details of hydrogen-helium demixing [87].
Computational implementations of our XC functional (in

FORTRAN, C++, and PYTHON) are available online [88].
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