
Configuration Path Integral Monte Carlo Approach
to the Static Density Response of the Warm Dense
Electron Gas

Simon Groth,1, a) Tobias Dornheim,1 and Michael Bonitz1

Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel,
D-24098 Kiel, Germany

(Dated: October 4, 2017)

Precise knowledge of the static density response function (SDRF) of the uniform
electron gas (UEG) serves as key input for numerous applications, most importantly
for density functional theory beyond generalized gradient approximations. Here
we extend the configuration path integral Monte Carlo (CPIMC) formalism that
was previously applied to the spatially uniform electron gas to the case of an
inhomogeneous electron gas by adding a spatially periodic external potential. This
procedure has recently been successfully used in permutation blocking path integral
Monte Carlo simulations (PB-PIMC) of the warm dense electron gas [Dornheim
et al., Phys. Rev. E 96, 023203 (2017)], but this method is restricted to low and
moderate densities. Implementing this procedure into CPIMC allows us to obtain
highly accurate finite temperature results for the SDRF of the electron gas at high to
moderate densities closing the gap left open by the PB-PIMC data. In this paper we
demonstrate how the CPIMC formalism can be efficiently extended to the spatially
inhomogeneous electron gas and present the first data points. Finally, we discuss
finite size errors involved in the quantum Monte Carlo results for the SDRF in
detail and present a solution how to remove them that is based on a generalization
of ground state techniques.

I. INTRODUCTION

The uniform electron gas (UEG) is one of the most important model systems of quantum
physics and chemistry1,2. It is composed of electrons embedded in a uniform positive
background – to ensure charge neutrality. Thus, the UEG is well suited for thorough studies of
physical effects induced by the long range Coulomb interaction of electrons in infinite quantum
systems, such as collective excitations3,4 or the emergence of superconductivity5. The
equilibrium state of the UEG is commonly determined by three parameters: (1) the density
(Brueckner) parameter rs = [3/(4πn)]1/3/aB, with aB being the Bohr radius and n, the
total density of spin-up and spin-down electrons, n = n↑ + n↓; (2) the degeneracy parameter
θ = kBT/EF, with the Fermi energy6 EF; and (3) the spin-polarization, ξ = (n↑ − n↓)/n,
where, in this work, we focus on the most relevant case ξ = 0, i.e., the unpolarized
(paramagnetic) electron gas. Of particular current importance is the so-called “warm dense
matter” regime7 where the thermal energy is of the order of the Fermi energy (θ ∼ 1) while
the densities are of the order of those found in solids (rs ∼ 1) or higher. Prominent examples
for such extreme conditions are astrophysical applications9,10, dense quantum plasmas11–13,
inertial confinement fusion experiments14–17, or laser or ion beam excited solids18,19.

The static density response function (SDRF), χ(q), governs the density response to an
external harmonic excitation of low amplitude A and wave vector q, φq(r) = 2A cos(r · q),

〈n̂(r)〉A − 〈n̂(r)〉0 = χ(q)φq(r) .

The SDRF (or longitudinal polarization function11) is closely related to the static limit of
the dielectric function and contains a wealth of information on the correlations and collective
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properties. Therefore, the SDRF is a key property of any correlated many-body system, for
details, see Sec. II A.

In particular, the SDRF of the UEG at warm dense matter conditions constitutes a key
ingredient for finite temperature density functional theory7,8 (FTDFT) simulations within the
adiabatic-connection fluctuation-dissipation formulation20–22, the currently most promising
way to improve DFT beyond the wide-spread generalized gradient approximation23,24 and
thereby enhance its predictive capabilities. In addition, the SDRF of the UEG can be used
to directly compute the dynamic structure factor within the Born-Mermin-approach25–28,
which is nowadays routinely measured for systems at warm dense matter conditions via
X-ray Thomson scattering experiments. Moreover, knowledge of the exact SDRF of the UEG
is highly useful for the computation of energy transfer rates29,30, electrical conductivity31,
as well as for the construction of effective potentials32–35.

In the ground state, ab-initio results for the SDRF36–40, including a subsequent parametriza-
tion over a wide range of densities41, have been obtained long ago via diffusion Monte-Carlo
simulations of the UEG subject to a weak periodic perturbation. However, even though the
UEG effectively represents a one-component system, its simulation at warm dense matter
conditions is highly challenging due to the fermion sign problem42,44 (FSP), which is partic-
ularly severe at finite temperature (cf. Sec. II B for a detailed discussion of the FSP). Within
the last years significant progress in this field could be achieved45–49 via the introduction of
two novel quantum Monte-Carlo (QMC) methods, which excel at complementary parameter
regimes: permutation blocking path integral Monte-Carlo (PB-PIMC)50–52 is most efficient
at low densities and strong coupling, whereas the configuration path integral Monte-Carlo
(CPIMC) approach53–56 has no FSP at high densities, i.e., at weak coupling. Only recently,
the PB-PIMC approach has been used to compute the first ab-initio results for the SDRF
of the strongly coupled UEG at finite temperature57. However, these results are limited to
density parameters of the order of rs = 1 and larger and cannot access the important regime
of higher densities.

Therefore, in this work, we turn to the complementary CPIMC approach53 to compute the
SDRF of the high density warm electron gas. This means, we extend the CPIMC formalism
from the homogeneous to the inhomogeneous electron gas such that it allows for the exact
inclusion of an (in principle arbitrarily strong) periodic external potential. This allows
us to obtain the first ab initio data for the SDRF in the high-density regime (rs = 0.5; 1,
0.0625 ≤ Θ ≤ 1) and opens the way for systematic studies in the near future.

Moreover, since the simulations are restricted to finite systems with a few tens of electrons
in a finite simulation volume V , we provide a detailed discussion of and a highly efficient
solution to the problem of finite size errors involved in the SDRF. This is crucial because one is
actually interested in the thermodynamic limit (TDL) properties, N →∞ at N/V = const..
Finally, we compare our exact result for the SDRF in the TDL with dielectric approaches
such as the random phase approximation58 and the self-consistent scheme proposed by
Singwi, Tosi, Land and Sjölander (STLS)59,60.

This paper is structured as follows: in Sec. II A we briefly discuss the model Hamiltonian
of the inhomogeneous electron gas and the basic linear response equations that are utilized
for the computation of the SDRF. Thereafter, Sec. II B continues with a detailed introduction
to the general quantum Monte-Carlo approach including the origin and consequences of the
FSP, followed by the generalization of the CPIMC formalism to the inhomogenous electron
gas in Secs. II C and II D. We proceed with a discussion of the CPIMC results for the SDRF
of the ideal and non-ideal electron gas in Sec. III A and III B. In Sec. III C, finite size errors
are investigated in detail, and an effective solution is presented to obtain the exact SDRF in
the TDL from CPIMC simulations.

http://dx.doi.org/10.1063/1.4999907


3

II. THEORETICAL BASIS OF THE CPIMC APPROACH TO THE INHOMOGENEOUS
ELECTRON GAS

A. Linear Response Theory of the Uniform Electron Gas

The model system of the unperturbed UEG consists of N electrons in a finite volume
V = L3 subject to periodic boundary conditions, where a positive homogeneous background
is assumed to ensure charge neutrality. The Hamiltonian of this system in Hartree atomic
units reads

Ĥ0 = −1

2

N∑
i=1

∇2
i +

1

2

N∑
i=1

N∑
j 6=i

ΨE(ri, rj) +
N

2
ξM , (1)

with ΨE(r, s) being the Ewald pair potential and ξM the Madelung constant, see, e.g., Ref. 61.
For the purpose of computing the SDRF of the UEG we apply a weak periodic external
potential of the form36–40

Ĥext(A) =
∑N
i=1 2A cos (r̂i · q), (2)

with q = 2π
L m, m ∈ Z3, so that the (total) perturbed Hamiltonian is given by

ĤA = Ĥ0 + Ĥext(A) . (3)

In the linear response regime, i.e., for sufficiently small amplitudes A, the induced density
modulation is entirely determined by the SDRF2 χ:

〈n̂(r)〉A − 〈n̂(r)〉0 = χ(q) 2A cos(r · q) , (4)

where 〈n̂(r)〉0 = n0 = N
V is the electron density of the unperturbed UEG. Hence, one may

obtain χ(q) by computing the expectation value of the density operator n̂(r) =
∑N
i=1 δ(r− r̂i)

in the perturbed system and then fit the RHS of Eq. (4) to the LHS (see e.g. Ref. 57).
However, it turns out to be more convenient to compute χ directly from the Fourier transform

of the density operator ρ̂q = 1
V

∑N
i=1 e

−iqri via the well-known relation2,39

χ(q) =
1

A
〈ρ̂q〉A . (5)

In practice, we carry out several simulations for different amplitudes A of the external field
and then perform a linear fit to 〈ρ̂q〉A in dependence of A where the resulting slope is χ.

B. Path integral Monte Carlo and the fermion Sign Problem

Throughout this work we are interested in the computation of thermodynamic expectation
values in the canonical ensemble, i.e., at fixed electron number N , volume V and temperature
T . For this task path integral Monte Carlo (PIMC) methods have proven to be a very
powerful tool. The general idea of all existing PIMC approaches is to find a suitable
expansion of the partition function of the form

Z = Tre−βĤ =
∑
C

W (C) , (6)

where β = 1/kBT and C denotes some high-dimensional multi-variable with an associated
weight W (C) ∈ R that is readily evaluated. In the context of QMC, we commonly refer to C
as being a configuration. Given some concrete expansion of Z, thermodynamic expectation
values of an arbitrary observable Ô are written as

〈Ô〉 =
1

Z

∑
C

O(C)W (C) , (7)
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with O(C) being the so-called estimator. If the weight function is strictly positive for a
all configurations, W (C) > 0 ∀ C, such expressions can be efficiently computed via the
Metropolis algorithm62. The strength of this algorithm is that it allows to randomly sample
configurations {C0, C1, . . . , CNC} with the correct probability P (C) = 1

ZW (C) without
knowing the normalization constant Z. Starting from some initial configuration C0 this is
achieved by proposing a transition from Ci to some randomly chosen C ′ and accepting this
change, i.e., setting Ci+1 = C ′, with the probability

A(C → C ′) = min

{
1,
W (C ′)

W (C)

}
. (8)

Having properly sampled the configurations in the described way, an asymptotically exact
estimator of the expectation value Eq. (7) is immediately given by the average

〈Ô〉 = lim
NC→∞

1

NC

NC∑
i=1

O(Ci) . (9)

In practice we are of course restricted to a finite number of sampled configurations Ci so
that the results are generally afflicted with a statistical uncertainty that can, in principle,
be made arbitrarily small by increasing the computation time (see Eq. (14)). Therefore, one
may refer to Monte-Carlo methods as being “quasi-exact”.

However, to this day there exists no exact expansion of the form Eq. (6) for generic
fermionic quantum systems with a strictly positive weight function, and hence, it cannot
be interpreted as a probability. To nevertheless utilize the Metropolis algorithm one can
circumvent this issue by defining a modified (artificial) partition function

Z ′ =
∑
C

|W (C)| , (10)

and rewrite the expectation values as

〈O〉 =
〈Os〉′

〈s〉′
, (11)

where s = sign(W ) so that

〈s〉′ =
1

Z ′

∑
C

sign(W )|W (C)| = Z

Z ′
, (12)

is simply the average sign of all sampled configurations in the modified configuration space.
It is easy to see that the relative statistical uncertainty of expectation values computed in
this way is inversely proportional to the average sign. Further, with Z = e−βNf , where f is
the free energy per particle, it is

〈s〉′ = e−βN(f−f ′) . (13)

Consequently, the relative statistical error of observables grows exponentially with the
particle number N and the inverse temperature β, while it can only be reduced with the
square root of the number of generated samples NC (see e.g. Ref. 43):

∆O

〈O〉
∼ 1√

NC
eβN(f−f ′) . (14)

This is the manifestation of the well-known fermion sign problem, which causes the simulation
of fermions to be a highly demanding task even in thermodynamic equilibrium. Moreover,
the sign problem may even be NP-hard44. However, this has only been shown for a small
subclass of Hamiltonians not subject to this paper.

In the standard PIMC approach63, the utilized expansion of the partition function
is obtained by evaluating the trace in Eq. (6) in coordinate representation, leading to

http://dx.doi.org/10.1063/1.4999907


5

configurations C that can be interpreted as paths or trajectories of all N particles in
imaginary time. In this formulation, the required anti-symmetrization of the density
operator to correctly account for the Fermi statistics is the source of the sign changes in
the weight function, and hence, of the FSP itself. Fortunately, the permutation blocking
PIMC (PB-PIMC) method50–52, developed by one of us, significantly reduces the FSP
through a sophisticated rewriting of the partition function whereby paths with a different
sign are combined into a single configuration. However, due to the formulation in coordinate
representation, the PB-PIMC approach excels at strong coupling but still suffers from an
increasing FSP towards lower temperature, preventing simulations of the UEG below half
the Fermi temperature.

An alternative strategy, which is pursued in this paper, is given by the configuration
path integral Monte Carlo (CPIMC) approach53–56. In contrast to standard PIMC, this
method is formulated in Fock-space, which leads to a FSP that is complementary to that of
PB-PIMC: there is no sign problem at all for the ideal fermi gas but the FSP increases with
coupling. For this reason, CPIMC has been highly valuable regarding the simulation of the
(unperturbed) UEG at densities rs . 1, practically across the entire relevant temperature
range55. In the next section, the CPIMC formalism will be generalized to the perturbed
(inhomogeneous) electron gas described by the Hamiltonian Eq. (3).

C. CPIMC Approach to the Inhomogeneous Electron Gas

For the CPIMC formulation of the electron gas, we switch to second quantization with
respect to plane wave spin orbitals 〈rσ |kiσi〉 = 1

L3/2 e
iki·rδσ,σi with k = 2π

L m, m ∈ Z3 and
σi ∈ {↑, ↓}. The N -particle states are then given by Slater determinants in Fock space

|{n}〉 = |n1, n2, . . . 〉 , (15)

with the fermionic occupation number ni ∈ {0, 1} of the i-th plane wave spin-orbital naturally
satisfying

∑
i ni = N . In this representation, the Hamiltonian is expressed in terms of the

creation (â†i ) and annihilation (âi) operators, which, when acting on the states [Eq. (15)],
create or annihilate a particle in the spin-orbital i. These operators satisfy the usual fermionic
anti-commutation relations, thereby automatically incorporating the correct Fermi statistics.
The UEG Hamiltonian Eq. (1) takes the explicit form2

Ĥ0 =
1

2

∑
i

k2
i â
†
i âi +

∑
i<j,k<l
i 6=k,j 6=l

w−ijklâ
†
i â
†
j âlâk +N

ξM
2
, (16)

with the antisymmetrized two-electron integrals w−ijkl = wijkl − wijlk, where

wijkl =
4πe2

L3(ki − kk)2
δki+kj ,kk+klδσi,σkδσj ,σl . (17)

Likewise, for the external potential Eq. (2) we have

Ĥext =
∑
i 6=j

aij â
†
i âi , (18)

with the corresponding one-electron integrals

aij = Aδσiσj (δkj−ki,q + δkj−ki,−q) . (19)

The main idea of CPIMC is to split the total Hamiltonian into an off-diagonal (Ŷ ) and

diagonal part (D̂) with rsepect to the Fock states, Eq. (15), so that ĤA = Ĥ0 +Ĥext = D̂+ Ŷ .
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The matrix elements of these operators are readily computed according to the well-known
Slater-Condon rules53

D{n} =
1

2

∑
l

k2
l nl +

1

2

∑
l<k

w−lklknlnk , (20)

Y{n},{n̄} =

{
aij(−1)α{n},pq , {n} = {n̄}pq
w−pqrs(−1)α{n},pq+α{n̄},rs , {n} = {n̄}p<qr<s

with the fermionic phase factor

α{n},pq =

max(p,q)−1∑
l=min(p,q)+1

nl . (21)

The notation {n}pq describes an excitation from an occupied orbital q to a free orbital p in
the state |{n}〉. Hence, we observe that there are only two possibilities for non-vanishing
off-diagonal elements: the states |{n}〉 and |{n̄}〉 can differ in either exactly two (pq) or
four orbitals (pqrs). This is a direct consequence of the fact that the Hamiltonian only
contains strings of two or four creation and annihilation operators. For completeness, we
mention that for the general case of an arbitrary system Hamiltonian there is an additional
contribution to the off-diagonal elements where {n} = {n̄}pq :

Y{n},{n̄} =
∑
i=0
i 6=p,q

w−ipiqni(−1)α{n},pq . (22)

For the electron gas this contribution vanishes since here the two-particle integrals with only
two equal indices are always zero due to the Kronecker delta in Eq. (17), which ensures that
the total momentum of the two particles before and after the excitation is conserved.

After having split the Hamiltonian into its diagonal and off-diagonal part, we switch to
the interaction picture in imaginary time with respect to D̂ and make use of the identity:

e−βĤ = e−βD̂T̂τe
−

∫ β
0
Ŷ (τ)dτ ,

Ŷ (τ) = eτD̂Ŷ e−τD̂ , (23)

with T̂τ being the time-ordering operator. Plugging this identity into Eq. (6) and computing
the trace using the Slater determinants, Eq. (15), finally yields53

Z =

∞∑
K=0,
K 6=1

∑
{n}

∑
s1...sK−1

β∫
0

dτ1

β∫
τ1

dτ2 . . .

β∫
τK−1

dτK (24)

(−1)Ke
−

K∑
i=0

D{n(i)}(τi+1−τi)
K∏
i=1

Y{n(i)},{n(i−1)}(si) .

Here, we have introduced the multi-index si which defines the two or four orbitals in which
the states |{n(i)}〉 and |{n(i−1)}〉 differ, i.e. si = (pq) or si = (pqrs). Further, all non-
vanishing contributions in Eq. (24) obey the condition {n} = {n(0)} = {n(K)}. This way
we have transformed the partition function, Eq. (6), into an exact infinite perturbation
expansion with respect to the off-diagonal part of the Hamiltonian.

Comparing Eq. (24) with Eq. (6) we straightforwardly identify the multi-variable C of
each configuration contributing to the partition function:

C = (K, {n}, s1, . . . , sK−1, τ1, . . . , τK) (25)

http://dx.doi.org/10.1063/1.4999907
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s1 = (3, 5, 1, 4) s5 = (1, 5)

Figure 1. Typical “path” in a CPIMC simulation of N = 3 particles: the starting Slater determinant
at time τ0 = 0 with the set of occupation numbers {n} = {110010 . . .} undergoes five different one-
or two-particle excitations of type si at times τi, i = 1 . . . 5.

Figure 2. Diagram for exciting a whole occupied orbital i (from τ = 0 to τ = β) to an unoccupied
orbital j.

with the corresponding weight function

W (C) = (−1)K e
−

K∑
i=0

D{n(i)}(τi+1−τi)
(26)

×
K∏
i=1

Y{n(i)},{n(i−1)}(si) .

Each configuration C can be visualized as a β−periodic “path in imaginary time”. But in
contrast to standard PIMC which is formulated in coordinate space, here the path proceeds
in Fock space and can be understood as follows: starting from an initial set of occupation
numbers {n} at τ0 = 0 one subsequently applies one- or two-particle excitations at times τi,
where the involved orbitals are defined by the multi-index si. An example of a typical path
for a system of N = 3 particles is shown in Fig. 1.

According to the number of involved orbitals we refer to one- and two-particle excitations as
“kinks” of type 2 and 4, respectively. Hence, in CPIMC, one randomly samples all possible
closed paths with their associated weight, i.e., the modulus of Eq. (26), and computes
observables via Eq. (11). This is achieved by a highly complex set of Monte Carlo steps in
which one proposes to add, remove, and change a single kink or pairs of kinks and accept or
reject those changes with the Metropolis acceptance probability Eq. (8). Starting from an
initial path without kinks one can propose three changes: 1) one can simply excite a whole
occupied orbital (from τ = 0 to τ = β), which is illustrated in in Fig. 2. 2) one can propose
to add a pair of type 2 kinks or 3) a pair of type 4 kinks via a one- or two-particle excitation
(see Fig. 3). Adding a single kink is not possible since this would violate the condition of
β−periodicity, {n(0)} = {n(K)}.

Once one has successfully added a pair of kinks, one can also add a single kink by
changing another. A careful analysis reveals that there are in total 14 elementary diagrams
for adding a single kink via a one- or two-particle excitation, which are all depicted in
Fig. 13 in the Appendix. Naturally, to maximize the efficiency of the CPIMC simulation
one only proposes to add such kinks that are associated with a non-vanishing off-diagonal

Figure 3. Diagrams for adding a pair of type 2 (top) or type 4 kinks (bottom) via a one- or
two-particle excitation, respectively.
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Figure 4. Top panels: Dependence of the induced density 〈ρ̂q〉 for q = 2π
L

(1, 0, 0)T on the
amplitude of the external field. Shown are CPIMC results (red crosses) for the ideal electron gas
with N = 4 electrons at rs = 1 for two different temperatures: (a) θ = 0.0625 and (b) θ = 1 (right).
The blue curve represents a fit of Eq. (32) to the CPIMC data. The black dotted line corresponds
to the exact LR behavior computed from Eq. (40). Bottom panels: Dependence of the average
number of type 2 kinks on the amplitude of the external field.

matrix element, Eq. (20), i.e., which have a non-vanishing one- or two-electron integral. For
example, when randomly choosing the two orbitals q and p for a one-particle excitation, one
ensures that |kp − kq| = |q| with q being the wave vector of the periodic external potential,
Eq. (18). Likewise, whenever proposing to add a type 4 kink one makes sure that momentum
conservation is fulfilled.

Finally, we point out that the major difference between the previous CPIMC formulation
for the (unperturbed) UEG54 and the present extension to the inhomogeneous electron gas
lies in the occurrence of type 2 kinks (one-particle excitations), which are solely induced
by the one-particle matrix elements aij of the external potential in Eq. (20). In case of the
UEG, aij = 0, and hence, there are only momentum conserving type 4 kinks. This causes a
large simplification of the algorithm since the 14 elementary diagrams of adding a single
kink (see Fig. 13) reduce to only three, i.e., those containing solely type 4 kinks.

D. CPIMC Estimator for the Static Responce Function

To compute the SDRF with CPIMC via Eq. (5), we need to derive an estimator for the
Fourier transform of the density operator, ρ̂q, in correspondence to the CPIMC expansion
of the partition function Eq. (24), i.e., we have to write its expectation value in the form of
Eq. (7). Taking into account that 〈ρ̂−q〉 = 〈ρ̂q〉, its second quantization representation is
given by

〈ρ̂q〉 =
1

2V

∑
i6=j

δσiσj (δkj−ki,q + δkj−ki,−q) 〈â†i âj〉 , (27)

and we immediately see that it can be computed directly from the off-diagonal elements of
the one-particle density matrix 〈â†pâq〉. An estimator for these elements is readily obtained
by using the relation

〈â†pâq〉 =
1

Z
Tr
{
â†pâqe

−βĤ
}

= − 1

β

1

Z

∂Z

∂apq
, (28)
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and carrying out the derivative with the CPIMC expansion of the partition function, Eq. (24).
This yields

〈â†pâq〉 =
1

Z

∑
C

(
− 1

β

K∑
i=1

1

apq
δsi,(pq)

)
W (C) , (29)

where the abbreviation

∑
C

:=

∞∑
K=0,
K 6=1

∑
{n}

∑
s1...sK−1

β∫
0

dτ1

β∫
τ1

dτ2 . . .

β∫
τK−1

dτK (30)

has been used. By inserting Eqs. (29) and (19) into (27) the estimator reduces to

〈ρ̂q〉 =
1

Z

∑
C

(
− 1

2V β

K∑
i=1

1

A
δsi,sT2

)
W (C) , (31)

where δsi,sT2
ensures that only those kinks contribute which are of type 2. Simply speaking,

we just have to average over the number of type 2 kinks in all sampled paths and divide by
−2V βA.

III. CPIMC SIMULATION RESULTS

A. Ideal Electron Gas

Besides being highly valuable for the finite size correction of the SDRF discussed in
Sec. III C, the ideal Fermi system constitutes the natural first test case for CPIMC due to
its formulation as an exact perturbation expansion in second quantization. It is realized
by setting all two-particle matrix elements Eq. (17) to zero. In case of the (unperturbed)
UEG there are, consequently, no kinks at all, so that the weight function [Eq. (26)] is
always positive, meaning that the average sign is always one. However, in simulations of
the perturbed ideal electron gas, the sampled paths contain type 2 kinks induced by the
external field, where each of them may cause up to two sign changes in the weight function
Eq. (26) through: (1) the factor (−1)K and (2) the phase factor Eq. (21) occurring in its
matrix element Eq. (20). Yet, the average sign still remains unity. This is because, in the
absence of type 4 kinks, type 2 kinks can only be added and removed in symmetric pairs as
shown in Fig. 3—this is a simple consequence of the fact that all type 2 kinks s = (pq) must
fulfill |kp − kq| = |q|. The induced sign changes of such pairs exactly compensate each other
so that the strict positive definiteness of the weight function remains preserved, and hence,
the FSP remains absent, in striking contrast to standard PIMC in coordinate space.

As a first demonstration, we perform CPIMC simulations of the unpolarized ideal electron
gas at rs = 1 with N = 4 particles for different amplitudes A of the external field with a
wave vector q = 2π

L (1, 0, 0)T. Fig. 4 shows the results for the induced density 〈ρ̂q〉 (top)
and the average number of type 2 kinks (bottom) in dependence of the amplitude for two
different temperatures θ = 0.0625 (left) and θ = 1 (right). As a cross-check, the dotted black
line has been computed from the unperturbed ideal UEG according to Eq. (40) as discussed
in Sec. III C. In the linear response regime, both results must coincide, which is observed for
A . 0.2 at θ = 0.0625, while at θ = 1 the linear response regime remains valid for much
larger amplitudes, i.e., up to A ∼ 0.5. This behaviour is also reflected in the average number
of type 2 kinks for the same amplitude which is reduced by about two orders of magnitude
at θ = 1 compared to θ = 0.0625. Interestingly, in both cases the linear regime is reached
where 〈KT2〉 . 1. In addition, since the next order beyond the linear regime is given by the
cubic response function37 χ(3), we also perform a cubic fit (blue line) of the form

〈ρ̂q〉 = χ(q)A+ χ(3)(q)A3 (32)
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Figure 5. Top panels: Dependence of the induced density 〈ρ̂q〉 for q = 2π
L

(1, 0, 0)T on the
amplitude of the external field. Shown are CPIMC results (red crosses) for the interacting electron
gas with N = 4 electrons at rs = 1 for two different temperatures: (a) θ = 0.0625 and (b) θ = 1.
The blue (black dotted) curve represents a cubic (linear) fit (cf. Eq. (32)) to the CPIMC data. The
grey solid line shows the ideal LR behavior computed from Eq. (40). For comparison, at θ = 1, we
also plot the PB-PIMC results (green diamonds). Bottom panels: Dependence of the average
number of type 2 kinks (red), type 4 kinks (green), and the average sign (orange) on the amplitude
of the external field.

to the CPIMC data up to A = 0.25, for θ = 0.0625 and A = 0.5, for θ = 1, respec-
tively. Clearly, also the cubic regime remains valid for much larger amplitudes at higher
temperatures.

B. Interacting Electron Gas

Next, we perform the same CPIMC simulations for the interacting system (identical
system parameters) as for the ideal case discussed in Section III A. The results are shown
in Fig. 5 where a linear (dotted black) and a cubic fit (solid blue) to the CPIMC data are
depicted. For these parameters, we observe that the range of amplitudes for which the linear
and cubic response regimes are valid is similar to that found for the ideal system. This is
because the response of N = 4 particles at rs = 1 is comparable to that of the ideal system
(grey line). In addition, in the bottom panels the average number of type 4 kinks (green
curve) is depicted, which are induced solely by the Coulomb interaction and which cause
the average sign (orange curve) to deviate from one. In the linear regime, the dependence of
the number of type 4 kinks on the amplitude is negligible.

However, for larger values of A not only the average number of type 2 kinks becomes very
large but also the number of type 4 kinks increases significantly. The main reason for this
behavior is the substantial increase of the configuration space with increasing amplitude.
In particular, at θ = 0.0625 (left graphic) the average sign drops below 10−3 at A > 1 and,
according to Eq. (14), the statistical error of the corresponding CPIMC results is clearly
enhanced. As a further cross-check of the correctness of the presented algorithm, at θ = 1 we
also compare with the PB-PIMC method (green diamonds), which are in perfect agreement
with CPIMC, as expected.

In Fig. 6, a similar investigation is carried out for a larger system containing N = 14
electrons at rs = 0.5 and θ = 0.5. For these system parameters, the average sign (orange
curve in the bottom panel) does not drop below 0.1, even up to values of the amplitude
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Figure 6. Top panel: Dependence of the induced density 〈ρ̂q〉 for q = 2π
L

(1, 0, 0)T on the amplitude
of the external field. Shown are CPIMC results (red crosses) for N = 14 electrons at rs = 0.5 and
θ = 0.5. The dotted black line corresponds to a linear fit. For comparison, we also plot the ideal LR
behaviour (grey solid line). Bottom panel: Dependence of the average number of type 2 kinks
(red), type 4 kinks (green), and the average sign (orange) on the amplitude of the external field.

A ∼ 1.5. Thus, very precise CPIMC results for the induced density can be obtained. In
comparison to the smaller system of N = 4 electrons in Fig. 5 the linear response regime
is valid up to about twice as large amplitudes so that the SDRF χ, given by the slope of
the linear fit (dotted black line), can be obtained with a relative accuracy of up to 0.02%.
Further, we observe that the average number of type 2 kinks 〈KT2〉 (red curve in the bottom
panel) is significantly larger than one for amplitudes A > 1.5, and still, the deviation from
the LR behaviour is only minor. Recalling that, for the smaller N = 4 system in Fig. 5, the
LR regime is valid for 〈KT2〉 . 1 we conclude that the average number of type 2 kinks alone
is not a reliable indicator for the validity of the linear response regime.

When further increasing the system size to N = 20, while keeping the density and
degeneracy parameters unchanged at rs = 0.5 and θ = 0.5, the CPIMC simulations become
significantly more demanding. This is demonstrated in Fig. 7, where we artificially restricted
the simulation to those configurations containing a maximum of 40 (blue), 60 (red), or
arbitrarily many (green) kinks. More precisely, once a path with K = Kmax kinks is realized,
we do not propose to add any further kinks. First, for the result obtained without any
restrictions (green), we see that these data are afflicted with a clearly visible statistical noise,
which is due to an average sign (bottom panel, dash-dot) that is smaller than 0.1 even in
the homogeneous case (A = 0). Naturally, the resulting value for the SDRF from a linear fit
to these data (not depicted) would only be of very poor quality. However, by restricting the
total maximum number of kinks (blue and red curves), the average number of kinks (bottom
panel, solid and dotted lines) is reduced by an order of magnitude, whereby the average sign
is increased by an order of magnitude (dash-dotted lines).

Normally, one would expect this procedure to bias the result for the density response
since by imposing these restrictions, one only samples paths from a small region of the
total configuration space. Instead, one observes that, within statistical error bars, all three
simulations are in perfect agreement, both for large and small amplitudes A (see inset in
the upper panel). This very favourable behaviour is explained by a complete cancellation of
all contributions from paths with a number of kinks larger than the maximum. In other
words, due to the sign changes in the weight function Eq. (26) the expansion of the physical
partition function Eq. (24) converges for much smaller values of K than the simulated
primed partition function Eq. (10).

A similar observation has already been reported for the total energy of the homogeneous
(unperturbed) electron gas in Ref. 56. There, a systematic extrapolation over the maximum
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Figure 7. Top panel: Dependence of the induced density 〈ρ̂q〉 for q = 2π
L

(1, 0, 0)T on thfe amplitude
of the external field. Shown are CPIMC results for N = 20 electrons at rs = 0.5 and θ = 0.5, where
the maximum total number of kinks in the sampled paths has been restricted to Kmax = 40 (blue),
Kmax = 60 (red), and Kmax =∞, i.e. no restriction (green). The solid blue line corresponds to a
linear fit to the data for Kmax = 40. The black dotted line shows the ideal LR behaviour. Bottom
panel: Dependence of the average number of type 2 kinks (solid lines), type 4 kinks (dotted lines),
and the average sign (dash-dot lines) on the amplitude of the external field. The colors correspond
to the restrictions on the maximum number of kinks as labeled in the top panel.

number of kinks (to the exact result) was conveniently realized by the use of an auxiliary
kink potential:

Vκ(K) =
1

e−(κ−K+0.5) + 1
, (33)

that depends on the number of kinks K of a configuration and the maximum number κ.
The procedure works as follows: the weight function W (C), Eq. (26), is replaced by

Wκ(C) = W (C) · Vκ(K), (34)

and one performs simulations for fixed values of κ. Since it is limκ→∞ Vκ(K) = 1, the exact
partition function (and hence the exact result) is recovered by an extrapolation to κ→∞.
This is demonstrated in Fig. 8, where we have increased the system size to N = 38 electrons
(again at θ = 0.5 and rs = 0.5). First, we focus on the blue data points, which have been
obtained from a complete CPIMC simulation with a fixed value of the parameter κ in the
artificially modified weight function Wκ(C). Here, the kink potential acts as a smooth but
exponentially increasing penalty for all paths that contain a total number of kinks larger
than κ. As expected, the results for the SDRF (Fig. 8. a) converge for sufficiently large
κ, in this case at about κ & 10. And since the average number of kinks [panels (b) and
(d)], and consequently, the average sign [panel (c)] are clearly not converged for κ ∼ 10, we
can indeed conclude that all contributions from paths containing more than some critical
number of kinks seem to completely cancel.

We again stress that the difference between CPIMC simulations of the homogeneous and
perturbed electron gas lies in the existence of type 2 kinks in the latter. In particular, the

http://dx.doi.org/10.1063/1.4999907


13

−0.24

−0.22

−0.20

−0.18

−0.16

−0.14

−0.12

χ

(a) 0 0.05 0.1 0.15
−0.232
−0.230
−0.228
−0.226

1
2
3
4
5

〈K
T

4〉 CPIMC Vκ

CPIMC V
T4

κ
Extrapolated(b)

0.0
0.1
0.2
0.3
0.4

〈S
〉 (c)

0.0 0.1 0.2 0.3 0.4 0.5
1/κ

0.02
0.06
0.10

〈K
T

2〉

(d)

262.0

262.5

263.0

E

(e)
0 0.05 0.1 0.15

261.9

261.95

262

262.05

265
266
267
268

D

CPIMC Vκ

CPIMC V
T4

κ
Extrapolated

(f)

0.0 0.1 0.2 0.3 0.4 0.5
1/κ

−4
−5
−6

Y

(g)

Figure 8. Kink potential extrapolation of (a) the SDRF and (e) the total energy to the exact
limit, κ→∞. Shown are the results from CPIMC simulations of the inhomogeneous electron gas
containing N = 38 electrons at θ = 0.5 and rs = 0.5. The amplitude of the external field has been
set to A = 0.2 with a wave-vector q = 2π

L
(1, 1, 1)T. Each data point has been obtained from a

complete simulation with a fixed value for the parameter κ in the kink potential Eq. (33). Red
points: the kink potential is applied solely to the type 4 kinks (no restriction on the number of
type 2 kinks) in the sampled paths. Blue crosses: the kink potential has been applied to the total
number of type 2 and 4 kinks. Green line: linear fit to the last red data points. In addition, for both
potentials the dependence on the parameter κ is plotted for the average number of type 4 kinks (b),
average sign (c), type 2 kinks (d), diagonal (f), and off-diagonal contribution to the energy (g).

SDRF is solely computed from the type 2 kinks [cf. its estimator, Eq. (31)]. In the LR regime
the average number of type 2 kinks, 〈KT2〉, is significantly smaller than 〈KT4〉 meaning that
its practical influence on the sign is negligible. Therefore, it is reasonable to apply the kink
potential only to the type 4 kinks and impose no restriction on the number of type 2 kinks.
Recalling that the type 4 kinks are solely due to the Coulomb correlations, this procedure is
equivalent to extrapolating the true static response with respect to the correlations in the
system—this procedure converges to the exact result with increasing κ. The result is shown
by the red dots in Fig. 8. Evidently, the convergence with κ is greatly accelerated. Even at
κ = 2, the result for the response function has only a small bias of a few percent. In contrast,
when also restricting the type 2 kinks (blue crosses), the result is off by roughly a factor 2.

We now analyze the total energy of the inhomogeneous electron gas. Here the convergence
behaviour with respect to the kink parameter κ is different [see Fig. 8 (e)]. Here, imposing
no restrictions on the type 2 kinks (red points) seemingly slows down the convergence with
κ. This is due to a coincidental error cancellation of the diagonal [panel (f)] and off-diagonal
contributions [panel (g)] to the total energy, E = D + Y . Both contributions, at fixed κ, are
closer to the exact result when leaving the number of type 2 kinks unrestricted. Moreover,
even in the case where one is particularly interested in the total energy the potential V T4

κ

(red dots) should still be used since only this potential ensures a monotonic convergence
of the energy with κ. Naturally, a monotonic convergence is preferred when performing a
reliable extrapolation to κ→∞.

From the investigations in this section we conclude that the general concept of an auxiliary
kink potential to enhance the performance of CPIMC simulations that has been previously
introduced for the unperturbed UEG55,56, can be used in a similar way for the inhomogeneous
electron gas. At fixed temperature and density, this allows us to obtain the SDRF for twice
as large systems. This is an impressive efficiency gain when considering that the FSP
increases exponentially with the system size, cf. Eq. (14). For the presented example with
θ = 0.5 and rs = 0.5, CPIMC simulations without the kink potential are feasible for up to
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N ∼ 20 electrons whereas, with the kink potential, simulations of N = 38 particles pose
no problem. On the other hand, for fixed temperature and electron number, use of the
kink potential roughly doubles the accessible rs-range, which corresponds to a factor 8 in
the density. Most importantly, it turns out that, in the LR regime, the number of type
2 kinks is small compared to the number of type 4 kinks so that their practical influence
on the average sign is negligible. For this reason, the accessible parameter range regarding
particle number, temperature and density for which the SDRF can be computed by means
of CPIMC simulations of the inhomogeneous electron gas is almost identical to the range of
applicability of CPIMC to the unperturbed spatially homogeneous electron gas.

C. Finite Size Correction of the Static Density Response Function

1. Theory

In this section, the issue of finite size errors in the computation of the SDRF χ and ways
to correct them are discussed in detail. These errors are a direct consequence of the fact that
Monte Carlo simulations can only be performed for a finite particle number N in a finite
simulation box with volume V . This often causes the resulting functional form of χN (q) to
differ significantly from its thermodynamic limit

χ(q) = lim
N→∞

N/V=const.

χN (q) . (35)

In particular when simulating fermionic systems with Monte Carlo methods, one is usually
limited to rather small systems, due to the FSP, so that finite size errors are not negligible.
In addition, q−dependent quantities can only be computed for q−vectors that satisfy the
natural condition of momentum quantization in the simulation box, q = 2π

L m with m ∈ Z3.

Thus, standard techniques to reduce finite size errors, e.g. those for the total energy45, which
are all based on an extrapolation of the finite−N results to N →∞ (at constant density)
cannot be used for the correction of χ.

In the ground state, the most sophisticated approach to tackle finite size errors is based
on the assumption that the so-called static local field correction (LFC) G(q) is only weakly
dependent on the system size37. The LFC is commonly defined by the equation64,65

χ(q) =
χ0(q)

1− vq[1−G(q)]χ0(q)
, (36)

where χ0 denotes the ideal response function and vq = 4π/q2. The random phase approxi-
mation (RPA)58 χRPA is obtained by setting G = 0 in Eq. (36). Hence, the LFC contains
all information beyond the RPA and should thus be dominated by short-range correlations,
which are expected to be captured sufficiently well in a finite simulation cell. Naturally,
instead of computing the LFC from the ideal response function in the TDL, χ0(q)2, i.e. via

GN (q) =
1

vq

(
1

χN (q)
− 1

χ0(q)

)
+ 1 , (37)

it is important to obtain it consistently from the corresponding finite-N ideal response
function χ0

N (q),

GFSC
N (q) =

1

vq

(
1

χN (q)
− 1

χ0
N (q)

)
+ 1 . (38)

Assuming that the finite size errors in this consistent LFC are negligible, i.e., GFSC
N (q) ≈ G(q),

the finite size corrected response function is given by

χFSC(q) =
χ0(q)

1 +
[

1
χN (q) −

1
χ0
N (q)

]
χ0(q)

. (39)
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Figure 9. Comparison of different ways to compute the ideal response function for the UEG with
N = 4 electrons at θ = 1 and rs = 1. The orange squares correspond to the evaluation of Eq. (41).

The blue diamonds show the result from Eq. (44) for a small twist-angle t = 0.01·(1/e, 1/π, 1/
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(2))T .
The red dots correspond to Eq. (46). For comparison, the result obtained from CPIMC simulations
of the perturbed ideal electron gas, as discussed in Sec. III A, is depicted by the green crosses. The
bottom panel shows the relative deviation to this exact data. The black solid line corresponds to
the ideal response function in the TDL.
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Figure 10. Dependence of the ideal response function on the particle number at rs = 1 and three
different temperatures: θ = 0.0625 (a), θ = 0.25 (b), and θ = 0.5 (c). The results for finite particle
numbers have been computed via Eq. (44) from the CPIMC result of the corresponding finite−N
momentum distribution. For comparison black dotted curves show the TDL result of the ideal
response function.

Therefore, in addition to the response function of the interacting finite-N system, χN (q),
we also need precise data for the corresponding ideal response function χ0

N (q). In principle,
these can be obtained from a complete CPIMC simulation of the ideal perturbed electron
gas for each q−vector and particle number N , as was demonstrated in Sec. III A. A more
convenient way to achieve this is given by making use of the spectral representation of the
ideal response function, which, in case of the UEG, takes the form2

χ0
N (q) =

1

V

∑
p,σ

nσ(p + q)− nσ(p)

εp+q − εp
, (40)

where εp = p2/2, and nσ(p) = 〈n̂p,σ〉 is the momentum distribution of the unperturbed
ideal UEG, which converges to the Fermi distribution, in the TDL, and constitutes a natural
observable that is straightforwardly computed observable within the CPIMC formalism.
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Thus, Eq. (40) in principle enables us to gain access to all q−vectors of the ideal response
function from a single CPIMC simulation of the unperturbed UEG.

However, the concrete evaluation of Eq. (40) has to be done carefully because there are
terms in which both the numerator and denominator vanish, i.e., where |p + q| = |p|. In
the ground state it is correct to simply set those terms to zero2 and to rewrite

χ0
∗,N (q) =

1

V

∑
p,σ

|p+q|6=|p|

nσ(p + q)− nσ(p)

εp+q − εp
. (41)

However, at finite temperature66 this leads to completely wrong results, which is illustrated
in Fig. 9, where the ideal response function of N = 4 electrons at θ = 1 and rs = 1 is
shown. The green crosses correspond to the exact result obtained from simulations of the
perturbed ideal electron gas as discussed in Sec. III A. The orange squares, which correspond
to the evaluation of Eq. (41), exhibit a large bias for every second q−vector, while every
other is in perfect agreement with the result from the unperturbed system (see deviation in
the bottom panel of Fig. 9). This is due to the fact that the condition |p + q| = |p| can
only be fulfilled if q̃2 = q2L2/(2π)2 is an even number (in what follows the tilde denotes
dimensionless q−vectors with the components q̃i ∈ Z). The proof is obvious when rewriting
said condition as

p̃2 = p̃2 + q̃2 + 2p̃q̃ (42)

⇔ q̃2 = −2p̃q̃ . (43)

Since the factor 2 ensures that the RHS is always an even number the equality can only be
fulfilled if q̃2 is also even. Thus, there ara no critical (diverging) terms in the evaluation of
Eq. (40) for odd q̃2.

To determine the proper contribution of the critical terms for even q̃2, we may write Eq. (40)
for the UEG Hamiltonian, Eq. (1), subject to generalized periodic boundary conditions.
Following Refs. 67 and 68, this is realized by shifting the entire q−grid of our simulation
box by a so-called twist-angle t ∈ R3 so that the modified momentum quantization reads
q = 2π

L m + t, with m ∈ Z3. For the ideal response function we then have

χ0
t,N (q) =

1

V

∑
p,σ

nσ(p + t + q)− nσ(p + t)

εp+t+q − εp+t
, (44)

where, in this notation, the sum still runs over all p−vectors with p = 2π
L m, where m ∈ Z3.

Obviously, the condition for a vanishing denominator now reads

|p + t + q| = |p + t| , (45)

which cannot be fulfilled if the components of the twist-angle ti are irrational and linearly
independent, e.g. for the choice t = (1/e, 1/π, 1/

√
2)T . In addition, for a sufficiently small

modulus of the twist-angle we can expect the induced bias to be negligible. The blue
diamonds in Fig. 9 clearly show that this is indeed the case since they perfectly agree with
the exact result (see bottom panel).

Finally, we determine the contribution of the critical terms in Eq. (40) by performing the
limit |t→ 0| of those terms in Eq. (44) with the aid of L’Hospitals’s rule yielding:

χ0
N (q) = χ0

∗,N (q)− β

V

∑
p,σ

|p+q|=|p|

[
nσ(p)− n2

σ(p)
]
. (46)

The corresponding result is depicted by the red dots in Fig. 9. Evidently, compared to
simply omitting the contribution of the critical terms (orange squares) the improvement
is substantial. Yet, the relative deviation to the exact result is still of the order of a few
percent (bottom panel).
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Figure 11. Finite size correction of the density response function of the UEG at θ = 0.5 and
rs = 0.5. Top panel: Shown are the uncorrected CPIMC results for different electron numbers in
the simulation box: 4 (purple crosses), 14 (orange squares), 20 (blue diamonds), and 38 (red dots).
The black symbols correspond to the finite size corrected results computed via Eq. (39), and the
green curve shows a smooth spline fit through these data with N > 4. For comparison, the ideal
(solid black), RPA (dotted black), and STLS (brown) results are plotted. Bottom panel: Zoom
into the minimum regime of the response function.

The residual bias is explained as follows: mathematically it is only valid to use L’Hospital’s
rule if the functional form of the momentum distribution does not change with the twist-
angle. This condition only holds in good approximation for large particle numbers, but is
increasingly violated for smaller system sizes. Since a systematic error of a few percent in the
ideal response function is not sufficient for a reliable finite size correction, we conclude that
Eq. (46) cannot be used to achieve this. Nevertheless, we can instead use Eq. (44), which has
been demonstrated to be asymptotically correct for small twist-angles, to efficiently compute
the finite-N ideal response function of the UEG with high accuracy. For completeness we
mention that the L’Hospital terms vanish in the ground state, and the functional form of the
momentum distribution is independent of the twist-angle here, since it is always given by a
step function at the Fermi vector kF. Hence, Eq. (41) is indeed correct in the ground state.
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Figure 12. Local field correction of the UEG at θ = 0.5 and rs = 0.5 for different particle numbers
indicated in the legend (subscripts). Colored filled symbols: LFC computed from the ideal response
function in the TDL, Eq. (37). Black symbols: LFC obtained from the finite−N ideal response
function according to Eq. (38). Green curve: spline fit to the finite size corrected LFC. Brown curve:
STLS local field correction.

2. CPIMC results

At high densities, we expect the finite size errors involved in the response function of the
interacting system to be comparable to those of the ideal system. Therefore, Fig. 10 shows
the dependence of the ideal response function on the particle number at three different
temperatures. At θ = 0.0625 [panel (a)], which is close to the ground state, the finite size
errors are extremely large even for N = 54 electrons (blue), and are most pronounced for
small q−vectors, which correspond to large distances in real space that are not sufficiently
described in small simulation cells. It is only at a few hundred electrons (red) where the
convergence of the functional form eventually becomes visible. With increasing temperature
these finite size errors are significantly reduced; yet the relative bias of e.g. N = 14 electrons
at θ = 0.5 [green dots in panel (c)] is still substantial. This reduction of finite size errors is
due to the fact that shell effects, which also cause quantities like the total energy to converge
non-monotonically towards the TDL, vanish with increasing temperature.

Finally, in Fig. 11 the wave-vector dependence of the interacting response function of
the UEG is depicted for θ = 0.5 and rs = 0.5. The colored symbols show the uncorrected
CPIMC results for N=4,14,20, and 38 electrons, which have been obtained as discussed in
Sec. III B. For N = 38, the extrapolation technique with the kink potential has been used.
First, we clearly see that the uncorrected results do not lie on a smooth curve. In particular
for N = 4 and N = 14 electrons the finite size errors are of the order of a few percent when
zooming into the minimum region of the response function (bottom panel). Before applying
the presented finite size correction to χ, we check if the underlying assumption regarding
the weak finite size dependence of the LFC is actually valid. For this purpose, in Fig. 12
we plot the LFC of the UEG for the same parameters. Evidently, using the ideal response
function in the TDL to compute the LFC according to Eq. (37) leads to substantial finite
size errors in its functional form. However, when consistently using our computed CPIMC
result for the finite−N ideal response function (cf. Eq. (38)), the functional form of the LFC
is indeed indistinguishable for all three particle numbers so that a smooth spline can be
fitted through these data (green line). For comparison, we also plot the LFC obtained from
the Singwi-Tosi-Land-Sjölander (STLS) scheme, which is of good quality for q/kF . 1 but
deviates by up to a factor of two from the exact CPIMC result, for larger q−vectors.

Now we use the consistent LFC to correct the SDRF according to Eq. (39). The result is
shown by the black symbols in Fig. 11. Clearly, for N > 4 all results lie on a smooth curve,
which is demonstrated by a smooth spline fit through these data (green curve). Even though
for N = 4 (black crosses) the correction is not quite sufficient to describe the TDL behavior,
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the reduction of the bias is still impressive (cf. purple crosses). In addition, we plot the
response function in RPA (dotted black) and STLS (solid brown) approximation. While the
RPA exhibits systematic errors of a few percent the STLS approximation is accurate up to
about one percent. In particular, STLS exhibits no resolvable bias for q/kF . 1, which is in
agreement with its accuracy regarding the LFC (cf. Fig 12) in this regime. However, even
though at q/kF & 2 the systematic error of the STLS result for the LFC is nearly a factor
two, the influence of the LFC on the total response function is suppressed by the factor
vq = 4π/q2 in Eq. (36) so that for q →∞ the response function becomes equal to the ideal
case.

We conclude that the ground state finite size correction of the LFC and the SDRF can be
generalized to finite temperatures, as presented in this section. The benefit of this correction
is dramatic: it allows one to obtain accurate results for the thermodynamic limit from
CPIMC simulations for systems as small as N = 14 electrons. The price one has to pay is
to compute highly accurate results of the finite−N ideal response function. This can be
efficiently achieved via CPIMC simulations of the unperturbed UEG by using its spectral
representation. However, in contrast to the ground state, the correct evaluation of the
spectral representation is only possible when switching to a system subject to generalized
boundary conditions, which has been verified by cross-checks to the exact result obtained
from simulations of the perturbed electron gas. Finally, we mention that the presented finite
size correction is not only highly valuable for CPIMC but can be used for finite−N data
obtained with any other finite temperature method.

IV. SUMMARY AND DISCUSSION

In summary, we have successfully generalized the CPIMC formalism from the homogeneous
electron gas to the general inhomogeneous case. We have shown that the applied external
periodic potential results in the occurrence of type 2 kinks that correspond to one-particle
excitations in the simulated imaginary time paths. This leads to numerous additional
diagrams, which have to be taken into account, so that the complexity of the algorithm
is significantly increased. Next, we have demonstrated that the technique of an artificial
kink-potential, which had been introduced in Refs. 55 and 56 to mitigate the FSP regarding
the computation of the energy of the UEG, is similarly effective for the computation of
the SDRF. This concept may even be improved when being applied solely to the type 4
kinks while imposing no restrictions on the type 2 kinks. Interestingly, we observed that the
induced type 2 kinks only influence the fermion sign problem of CPIMC for large amplitudes
of the external potential. For amplitudes that are sufficiently small for the linear response
theory to be valid their influence is negligible. Therefore, the presented CPIMC algorithm
can be used to compute the SDRF for the same parameters (density, temperature and
electron number) that are accessible for the simulation of the UEG without the external
potential.

A further achievement of this work consists in the extension of ground state finite size
corrections for the SDRF to finite temperature. We have demonstrated that the SDRF
obtained from quantum Monte-Carlo simulations of finite systems, i.e., a finite number
of electrons in a finite simulation box, may differ substantially from the TDL result. For
the investigated example of intermediate temperature (θ = 0.5) and rather high density
(rs = 0.5) the finite size errors are of the order of several percent. Similarly to previous
findings in the ground state, the finite size effects are almost exclusively ascribed to the
ideal part of the SDRF, whereas the LFC is remarkably well converged with system size
even for small N , i.e. GFSC

N (q) ≈ G(q).

To compute GFSC
N from the QMC data for the SDRF we found that it is crucial to use the

ideal SDRF for the same finite number of electrons (instead of using the macroscopic result),
which turns out to be surprisingly difficult. While the finite−N ideal SDRF is linked to
the momentum distribution function via its spectral representation, at finite temperature,
the corresponding expression can only be evaluated when introducing generalized boundary
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conditions by means of a finite but small twist-angle. Thereby, unbiased results for the
finite−N ideal SDRF for all wave-vectors can be obtained from a single CPIMC simulation
of the unperturbed UEG. This has been confirmed by cross-checks with the exact results
from simulations of the perturbed UEG. In this way, the SDRF can be computed in the
TDL with an accuracy of ∼ 0.1%. Finally, our ab initio results for the SDRF allow us to
benchmark standard approximations. In particular the RPA SDRF58 reveals systematic
errors of a few percent, while the STLS approximation59,60 exhibits deviations of up to one
percent, even at rs = 0.5.

We expect the presented results to be of high importance for future warm dense matter
research, in particular in the context of advanced truly non-local exchange-correlation
functionals for DFT or as valuable input for the computation of the dynamic structure
factor, e.g., within the extended Born-Mermin approach26. Furthermore, a more detailed
investigation of the LFC will certainly help in determining the large k-vector behavior of the
LFC, which, in particular at finite temperature, is an open question. In addition, a possible
maximum in the LFC is known to indicate the possibility for charge-density waves2.
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V. APPENDIX

In this appendix we present additional information on the CPIMC procedure for the
harmonically modulated electron gas. Figure 13 shows all possible 14 elementary diagrams
for adding a type 2 or 4 kink via a one- or two-particle excitation, and thereby changing
another kink left of the added one.
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Figure 13. All 14 elementary diagrams for adding a type 2 or 4 kink via a one- or two-particle
excitation, respectively, and thereby changing another kink left of the added one.
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