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Precise knowledge of the static density response functi ) of the uniform
electron gas (UEG) serves as key input for numerous applicagionsyanost importantly
for density functional theory beyond generalized gr roximations. Here
we extend the configuration path integral Monte ) formalism that
was previously applied to the spatially uniform-electron gas to the case of an
inhomogeneous electron gas by adding a spatially f)‘é'riodi ternal potential. This
procedure has recently been successfully used in ermuté?ion blocking path integral
Monte Carlo simulations (PB-PIMC) of Ear ense electron gas [Dornheim

et al., Phys. Rev. E 96, 023203 (2017)], but thismethod is restricted to low and
moderate densities. Implementing this grocedure into CPIMC allows us to obtain
highly accurate finite temperature results the SDRF of the electron gas at high to
moderate densities closing the gap le en by'the PB-PIMC data. In this paper we
demonstrate how the CPIMC formalism bé efficiently extended to the spatially
inhomogeneous electron gas a resenf the first data points. Finally, we discuss
finite size errors involved in thi pMmm Monte Carlo results for the SDRF in
detail and present a solutiod how torgmove them that is based on a generalization
of ground state techniques. 1%

—
I. INTRODUCTION \
The uniform electrén gas G) is one of the most important model systems of quantum
physics and chemigtry%2. It fis composed of electrons embedded in a uniform positive

background — to
physical effe%?m el by the long range Coulomb interaction of electrons in infinite quantum

systems, su S CO
equilibrium.s aw EG is commonly determined by three parameters: (1) the density
(Brueck ﬁrame rs = [3/(4mn)]"/?/ap, with ap being the Bohr radius and n, the
ity of spin-up and spin-down electrons, n = n' +n*; (2) the degeneracy parameter
iith the Fermi energy® Fr; and (3) the spin-polarization, & = (n' — nt)/n,
ork, we focus on the most relevant case £ = 0, i.e., the unpolarized
ctig))’ electron gas. Of particular current importance is the so-called “warm dense
e’ where the thermal energy is of the order of the Fermi energy (6 ~ 1) while
densities are of the order of those found in solids (rs ~ 1) or higher. Prominent examples
extreme conditions are astrophysical applications®!?, dense quantum plasmas!! '3,
inelgal confinement fusion experiments'* 17, or laser or ion beam excited solids'®1°.
The static density response function (SDRF), x(q), governs the density response to an
external harmonic excitation of low amplitude A and wave vector q, ¢q(r) = 2A cos(r - q),

S . .
(A(r)) 4 — (A(r))y = x(a) ¢q(r) -
The SDRF (or longitudinal polarization function!!) is closely related to the static limit of
the dielectric function and contains a wealth of information on the correlations and collective
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properties. Therefore, the SDRF is a key property of any correlated many-body system, for
details, see Sec. ITA.

In particular, the SDRF of the UEG at warm dense matter conditions constitutes a key
ingredient for finite temperature density functional theory”® (FTDFT) simulations within the
adiabatic-connection fluctuation-dissipation formulation?°~22, the curr(?zy most promising
way to improve DFT beyond the wide-spread generalized gradient approximation®324 and
thereby enhance its predictive capabilities. In addition, the SDRF oféthe UEGs¢an be used
to directly compute the dynamic structure factor within the Bor It?r}in—approach%’%,
which is nowadays routinely measured for systems at warm d

is highly useful for the computation of energy transfer rate
as well as for the construction of effective potentials3? 3%,

In the ground state, ab-initio results for the SDRF36-40 1cludm§a subsequent parametriza-
tion over a wide range of densities*!, have been obtained lomg ago'via diffusion Monte-Carlo
simulations of the UEG subject to a weak periodic %:Zurbatlo . However, even though the
UEG effectively represents a one-component systermy.its s?ulation at warm dense matter
conditions is highly challenging due to the fermiofisgien proBlem?*4* (FSP), which is partic-
ularly severe at finite temperature (cf. Sec. IIB for a degailed discussion of the FSP). Within
the last years significant progress in this fi M chieved*®>*? via the introduction of
two novel quantum Monte-Carlo (QMC)methods, which excel at complementary parameter
regimes: permutation blocking path integgal*Meute-Carlo (PB-PIMC)°% 2 is most efficient
at low densities and strong couplingg whereas the configuration path integral Monte-Carlo
(CPIMC) approach®®°® has no FSP ‘af high densities, i.e., at weak coupling. Only recently,
the PB-PIMC approach has been use compute the first ab-initio results for the SDRF
of the strongly coupled UEG at finite tethperature®”. However, these results are limited to
density parameters of the order of ry="%a

nd larger and cannot access the important regime
of higher densities. \

kﬁvﬁjn to the complementary CPIMC approach® to compute the
ity war

Therefore, in this w;

SDRF of the high de electron gas. This means, we extend the CPIMC formalism
from the homogenéous t e inhomogeneous electron gas such that it allows for the exact
inclusion of an,in ppinciplétarbitrarily strong) periodic external potential. This allows
us to obtainfe first ab i){itio data for the SDRF in the high-density regime (rs = 0.5; 1,
0.0625 < © nd opens the way for systematic studies in the near future.

Moreo 'gce the simulations are restricted to finite systems with a few tens of electrons

inally, we'eompare our exact result for the SDRF in the TDL with dielectric approaches
ch as ?18 random phase approximation®® and the self-consistent scheme proposed by
i, Tosi, Land and Sjélander (STLS)%%60.

T)lis paper is structured as follows: in Sec. Il A we briefly discuss the model Hamiltonian
of the inhomogeneous electron gas and the basic linear response equations that are utilized
“Tor the computation of the SDRF. Thereafter, Sec. II B continues with a detailed introduction
to the general quantum Monte-Carlo approach including the origin and consequences of the
FSP, followed by the generalization of the CPIMC formalism to the inhomogenous electron
gas in Secs. [IC and IID. We proceed with a discussion of the CPIMC results for the SDRF
of the ideal and non-ideal electron gas in Sec. IIT A and IIIB. In Sec. III C, finite size errors
are investigated in detail, and an effective solution is presented to obtain the exact SDRF in
the TDL from CPIMC simulations.
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Il. THEORETICAL BASIS OF THE CPIMC APPROACH TO THE INHOMOGENEOUS
ELECTRON GAS

A. Linear Response Theory of the Uniform Electron Gas

The model system of the unperturbed UEG consists of NV electrorgﬁ a finite volume
V = L3 subject to periodic boundary conditions, where a positive homogenegus background
is assumed to ensure charge neutrality. The Hamiltonian of this sys Mee atomic
units reads S

= &M (1)

5

C(;\sﬁnt, see, e.g., Ref. 61.
eak periodic external

. 1 N ) 1 N N
H0:—§Zlvz+§zz\1/}3(r“r])+
1=

i=1 j#i

=1

with Ug(r,s) being the Ewald pair potential and &y the adgl
For the purpose of computing the SDRF of the UEG we appl
potential of the form36-40 %

ﬁcxt = ‘(‘f‘ (2)

with q = QEm m € Z3, so that the (total) pertimbed toman is given by

" \a\m .
In the linear response regime, i.e., for suffici 1 amplitudes A, the induced density

modulation is entirely determlned by th

q)2Acos(r - q) (4)
where (n(r)), = no = % is the ron cn81ty of the unperturbed UEG. Hence, one may
obtain x(q) by computing therexpecta lue of the density operator 7i(r) = Zf\il d(r—1;)

t the RHS of Eq. (4) to the LHS (see e.g. Ref. 57).
ve ent to compute x directly from the Fourier transform

in the perturbed system an
However, it turns out to be more

of the density operato doi_re —i4r via the well-known relation?3°
1.
x(@) = 7 (Pa)4 - ()
In practice a out several simulations for different amplitudes A of the external field
and then pe n a i fit to (pq) 4 in dependence of A where the resulting slope is x.

B. Path'iate aI Monte Carlo and the fermion Sign Problem

ugﬁout his work we are interested in the computation of thermodynamic expectation
e g¢anonical ensemble, i.e., at fixed electron number N, volume V' and temperature
his“task path integral Monte Carlo (PIMC) methods have proven to be a very
erful Jtool. The general idea of all existing PIMC approaches is to find a suitable
expansion of the partition function of the form

3 Z="Te P =3 "W(0), (6)
C

\Where B8 =1/kpgT and C denotes some high-dimensional multi-variable with an associated

weight W(C') € R that is readily evaluated. In the context of QMC, we commonly refer to C
as being a configuration. Given some concrete expansion of Z, thermodynamic expectation
values of an arbitrary observable O are written as

= 2> o@w(©). 7)
c
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with O(C) being the so-called estimator. If the weight function is strictly positive for a
all configurations, W(C) > 0 V C, such expressions can be efficiently computed via the
Metropolis algorithm®2. The strength of this algorithm is that it allows to randomly sample
configurations {Cy, C1,...,Cn.} with the correct probability P(C) = LW (C) without
knowing the normalization constant Z. Starting from some initial configuration Cy this is
achieved by proposing a transition from C; to some randomly chosen C’ ahd accepting this
change, i.e., setting C;11 = C’, with the probability /“

A(C = O = min{l, MM//((%"))} . 5 (8)

Having properly sampled the configurations in the described way, am_asymptotically exact

estimator of the expectation value Eq. (7) is immediately gi en"y the“ayerage
1o o

)

9)

In practice we are of course restricted to a finite sumber o pled configurations C; so
that the results are generally afflicted with a statistical ﬂertain‘uy that can, in principle,
be made arbitrarily small by increasing the compugation E- (see Eq. (14)). Therefore, one

may refer to Monte-Carlo methods as being £quasi-éxact”.
However, to this day there exists no e a&g)jdns n of the form Eq. (6) for generic
iti eight function, and hence, it cannot

fermionic quantum systems with a strictl;%eg'
be interpreted as a probability. To ne&\bhdx.e.s\uftilize the Metropolis algorithm one can

circumvent this issue by defining a modifiedy(artificial) partition function

=DM (©), (10)

(0) = (11)

V= 2 Y sia(W)W(0) = 2. (12)
C

is simply %gn of all sampled configurations in the modified configuration space.

It is easy,_to see that the relative statistical uncertainty of expectation values computed in

— / (s)' = e ANU=F) (13)

nsequsntly7 the relative statistical error of observables grows exponentially with the
““particle iumber N and the inverse temperature 3, while it can only be reduced with the
squsre root of the number of generated samples N¢ (see e.g. Ref. 43):

AO 1 ,
A0 BN(f=F) 14
\ 0y~ Ve (14)

This is the manifestation of the well-known fermion sign problem, which causes the simulation
of fermions to be a highly demanding task even in thermodynamic equilibrium. Moreover,
the sign problem may even be NP-hard**. However, this has only been shown for a small
subclass of Hamiltonians not subject to this paper.

In the standard PIMC approach®3, the utilized expansion of the partition function
is obtained by evaluating the trace in Eq. (6) in coordinate representation, leading to
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configurations C' that can be interpreted as paths or trajectories of all N particles in
imaginary time. In this formulation, the required anti-symmetrization of the density
operator to correctly account for the Fermi statistics is the source of the sign changes in
the weight function, and hence, of the FSP itself. Fortunately, the permutation blocking
PIMC (PB-PIMC) method®* 52 developed by one of us, significantly reduces the FSP
through a sophisticated rewriting of the partition function whereby path§ with a different
sign are combined into a single configuration. However, due to the formulation in coordinate
representation, the PB-PIMC approach excels at strong coupling but s‘?ﬂ&.&erf from an
increasing FSP towards lower temperature, preventing simulationsfof the UEG"elow half
the Fermi temperature.

An alternative strategy, which is pursued in this paper, is gi
path integral Monte Carlo (CPIMC) approach®* 56, In con
method is formulated in Fock-space, which leads to a FSP t
PB-PIMC: there is no sign problem at all for the ideal fermi
coupling. For this reason, CPIMC has been highly valu
(unperturbed) UEG at densities rs < 1, practically acr
range®. In the next section, the CPIMC formali -w111
(inhomogeneous) electron gas described by the Ha lltonl

C. CPIMC Approach to the Inhomogeneou W

For the CPIMC formulation of the € S, We sw1tch to second quantlzatlon with
respect to plane wave spin orbitals (ro |k;om, = 372 ekirs, o, Withk=m, m € 73 and
o; € {1,}}. The N-particle states a glv by Slater determinants i 1n Fock space

\K Ini,ng,...), (15)
ervn; € {0,1} of the i-th plane wave spin-orbital naturally

ese atlon the Hamiltonian is expressed in terms of the

omplementary to that of
ut the'FSP increases with
the simulation of the
5 the ebtire relevant temperature

eralized to the perturbed

with the fermionic occupatio
satisfying >, n; = N. In this r
creation (&;r) and annihilagi erators, which, when acting on the states [Eq. (15)],
create or annihilate agarticlein the spin-orbital . These operators satisfy the usual fermionic
eby automatically incorporating the correct Fermi statistics.
takes the explicit form?

The UEG Hami nia? Eq:

A - Em
/\0 5 Zkzzaz a; + sz]kla a;aa,, + N7 , (16)
3 i 1<j,k<l

i#k,j#l
with the antl nmetrized two-electron integrals W,y = Wijkl — Wijlks where

4mre?
-~ _
3 wljk‘l - L3(k1 — kk)26ki+kj,kk+k150'i,a‘k60'j,a'l . (]-7)

““Likewise, for the external potential Eq. (2) we have

X

). Foo = Syl (18)
o 1#]
with the corresponding one-electron integrals

Aij = A(Samj (51{9‘—1(1:7(1 + 5kj—ki,—q) . (19)

The main idea of CPIMC is to split the total Hamiltonian into an off-diagonal (Y) and
diagonal part (D ) with rsepect to the Fock states, Eq. (15), so that H4 = Ho+ Hext = D+Y.
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The matrix elements of these operators are readily computed according to the well-known
Slater-Condon rules®

Dyny = Zkl ng+ = Zwlklknmk , (20)

l<k
agj(—1)* e, {n} = {n}p
Yinpiay =9 _ o o
wpqrs(_]') {nhpaTHn)rs, {n} {
with the fermionic phase factor
max(p q)—1 \
®fn},pqg = (21)

= mln(p q)+1

The notation {n}? describes an excitation from an occupied orbital ¢ to a free orbital p in
the state [{n}). Hence we observe that there are ni-y ossibilities for non-vanishing
off-diagonal elements: the states |[{n}) and |{n} an d1 r in either exactly two (pg) or
four orbitals (pgrs). This is a direct consequ ce ct that the Hamiltonian only
contains strings of two or four creation and anni tloi..aperators For completeness we
mention that for the general case of an arbit syst
contribution to the off-diagonal elements re =H{n}r:

(22)

For the electron gas this contribution vamigshes since here the two-particle integrals with only
two equal indices are always zero N\h Kronecker delta in Eq. (17), which ensures that

the total momentum of the t les before and after the excitation is conserved.
After having split the Hamll ian nto its diagonal and off-diagonal part, we switch to
the interaction picturedn imaginary“ime with respect to D and make use of the identity:
) — -rDY —rD , (23)

with 7% beln thewtime-ordering operator. Plugging this 1dent1ty 1nt0 Eq. (6) and computing
the trace smﬁthe ter determinants, Eq. (15), finally yields®?

£ Z = ZZ > /dn/dTQ /dTK (24)

- 4 =0 T s A
(=)%e i= HY{nM}{nu ny(8i) -

i=1

er?, we have introduced the multi-index s; which defines the two or four orbitals in which
the states [{n(?}) and |{n(~D}) differ, i.e. s; = (pq) or s; = (pgrs). Further, all non-
vanishing contributions in Eq. (24) obey the condition {n} = {n(®} = {n()}. This way
we have transformed the partition function, Eq. (6), into an exact infinite perturbation
expansion with respect to the off-diagonal part of the Hamiltonian.

Comparing Eq. (24) with Eq. (6) we straightforwardly identify the multi-variable C' of
each configuration contributing to the partition function:

C=(K,{n},s1,.-,8K-1,T1,--,TK) (25)
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orbital 7

O N WOt
ey ‘

0 TiT2 | T3 . T4
Imaginary time 7

4

Figure 1. Typical “path” in a CPIMC simulation of N = 3 particles: the starting Slater determinant
at time 7o = 0 with the set of occupation numbers {n} = {110010...} u er%s five different one-
or two-particle excitations of type s; at times 7,4 =1...5.
;! N T ! ‘)
0 0 —

Figure 2. Diagram for exciting a whole occupied orbital i (frem 7 = Sto 7 = f3) to an unoccupied
orbital j.

with the corresponding weight function

ualized, s %—periodic “path in imaginary time”. But in

is'formulated in coordinate space, here the path proceeds
in Fock space and can be u stood asifollows: starting from an initial set of occupation
numbers {n} at 7 = 0 one su Q\qﬂm‘l{ applies one- or two-particle excitations at times 7,
where the involved orbitals are defined by the multi-index s;. An example of a typical path
for a system of N =3 icles is shown in Fig. 1.
volved orbitals we refer to one- and two-particle excitations as
ively. Hence, in CPIMC, one randomly samples all possible
closed paths wi iated weight, i.e., the modulus of Eq. (26), and computes
observables via' Eq. f}}nis is achieved by a highly complex set of Monte Carlo steps in
which one p es to , remove, and change a single kink or pairs of kinks and accept or
reject tho Mth the Metropolis acceptance probability Eq. (8). Starting from an
initial path ‘véhout kinks one can propose three changes: 1) one can simply excite a whole
i ital (from 7 = 0 to 7 = ), which is illustrated in in Fig. 2. 2) one can propose
type 2 kinks or 3) a pair of type 4 kinks via a one- or two-particle excitation
A3). ing a single kink is not possible since this would violate the condition of
“periodigityl {n(©} = {nF)}.
Once ©ne*has successfully added a pair of kinks, one can also add a single kink by
nging Jlanother. A careful analysis reveals that there are in total 14 elementary diagrams
ing a single kink via a one- or two-particle excitation, which are all depicted in
Fig13 in the Appendix. Naturally, to maximize the efficiency of the CPIMC simulation
ne‘only proposes to add such kinks that are associated with a non-vanishing off-diagonal

Each configuration C' can be vi
contrast to standard PIMC which

“kinks” of type 2

NI

~ ST

Figure 3. Diagrams for adding a pair of type 2 (top) or type 4 kinks (bottom) via a one- or
two-particle excitation, respectively.
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A A

Figure 4. Top panels: Dependence of the induced den <ﬁq>501' q = 2%(1,0,0)" on the
amplitude of the external field. Shown are CPIMC resiilts: (re sses) for the ideal electron gas
with N = 4 electrons at s = 1 for two different tempeztures: 6 = 0.0625 and (b) 6 =1 (right).
The blue curve represents a fit of Eq. (32) to the CRIM ta. The black dotted line corresponds
to the exact LR behavior computed from Eq. (40). toml panels: Dependence of the average

number of type 2 kinks on the amplitude of thew 1d.

on-vanishing one- or two-electron integral. For
als ¢ and p for a one-particle excitation, one
Qgvave vector of the periodic external potential,

/

:

matrix element, Eq. (20), i.e., which have

example, when randomly choosing tlie two o
ensures that |k, — kq| = |q| with q beéing
ing % a

dd a type 4 kink one makes sure that momentum

resent extension to the inhomogeneous electron gas
lies in the occurrence of type 2 kinks (one-particle excitations), which are solely induced
by the one-particle mafrix‘elements a;; of the external potential in Eq. (20). In case of the
UEG, a;; = 0, and he % are only momentum conserving type 4 kinks. This causes a
large simplificatiofh of thewalgerithm since the 14 elementary diagrams of adding a single
kink (see Fig. 13%zeduce to only three, i.e., those containing solely type 4 kinks.

Eq. (18). Likewise, whenever pr
conservation is fulfilled. Q\ﬂ

Finally, we point out that ajor difference between the previous CPIMC formulation
for the (unperturbed) UEG®* &%b.p

Fourie form of the density operator, pq, in correspondence to the CPIMC expansion

fthe partigion function Eq. (24), i.e., we have to write its expectation value in the form of
q. (7).Sfak1ng into account that (f_q) = (q), its second quantization representation is
by

R 1 Tt
5 <pq> = W Z(SUiffj (6kj_ki7q + 5kj—ki;_q) <a;'ra’j> ) (27)

S i#]
N

and we immediately see that it can be computed directly from the off-diagonal elements of
the one-particle density matrix (afd,). An estimator for these elements is readily obtained
by using the relation

R ~t~ _BH 11 07
(ala,) = —Tr{aTaqe ﬁH} =370, (28)
Pq
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and carrying out the derivative with the CPIMC expansion of the partition function, Eq. (24).
This yields

i 1 11
<apaq> = E ZC: _B ; desi7(PQ) W(C) ’ (29)

where the abbreviation /
- 5B ] 3\
Z::ZZ Z /dTl/dTg.../ TK
c
K

K;Ol, {n} S1...SK—1 0

(30)

T1 TK—1

has been used. By inserting Eqgs. (29) and (19) into (27) th es:uaator uces to
K .
. 1 1 1
(ha) = 5 (— IR (31)
c =1

where J, 5., ensures that only those kinks contribﬁvshich are of type 2. Simply speaking,

i

we just have to average over the number of typeg2 k in all sampled paths and divide by
2V BA. \ P

11l. CPIMC SIMULATION RESULTS ‘\\
\\

A. Ideal Electron Gas
Besides being highly valuabl b{j\'ﬁmte size correction of the SDRF discussed in
0

Sec. ITI C, the ideal Fermi system tittuges the natural first test case for CPIMC due to
its formulation as an exact4perturbation expansion in second quantization. It is realized
by setting all two-particle maeﬁ'.}kerenlents Eq. (17) to zero. In case of the (unperturbed)
UEG there are, consequently, no“kinks at all, so that the weight function [Eq. (26)] is

always positive, meaning t the average sign is always one. However, in simulations of
“tron
t

the perturbed ideal € s, the sampled paths contain type 2 kinks induced by the
external field, whefe eac m may cause up to two sign changes in the weight function

Eq. (26) throughs (1)#the fastor (—1)% and (2) the phase factor Eq. (21) occurring in its
matrix element Eq
absence of type'4 kinks;,

e

0). )fet, the average sign still remains unity. This is because, in the
pe 2 kinks can only be added and removed in symmetric pairs as

shown in Fige3— is a simple consequence of the fact that all type 2 kinks s = (pg) must
fulfill |kf— %: |g|. The induced sign changes of such pairs exactly compensate each other
so that the'strict positive definiteness of the weight function remains preserved, and hence,
the FSP Lemal absent, in striking contrast to standard PIMC in coordinate space.

As afi

rst d?tlonstration, we perform CPIMC simulations of the unpolarized ideal electron
as at r; = 1" with N = 4 particles for different amplitudes A of the external field with a
ave Veﬁ‘(l)r q = 27(1,0,0)". Fig. 4 shows the results for the induced density (pq) (top)

erage number of type 2 kinks (bottom) in dependence of the amplitude for two
temperatures 6 = 0.0625 (left) and § = 1 (right). As a cross-check, the dotted black
line has been computed from the unperturbed ideal UEG according to Eq. (40) as discussed
in_Sec. IITC. In the linear response regime, both results must coincide, which is observed for
A < 0.2 at 8 = 0.0625, while at # = 1 the linear response regime remains valid for much
larger amplitudes, i.e., up to A ~ 0.5. This behaviour is also reflected in the average number
of type 2 kinks for the same amplitude which is reduced by about two orders of magnitude
at 8 = 1 compared to 8 = 0.0625. Interestingly, in both cases the linear regime is reached
where (Kr9) < 1. In addition, since the next order beyond the linear regime is given by the

cubic response function®” x(®), we also perform a cubic fit (blue line) of the form

() = X(0) A+ XV (q)A® (32)
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Figure 5. Top panels: Dependence of the indu den i@(ﬁq) for q = 2%(I,O,O)T on the
amplitude of the external field. Shown are CPI resul r(?a—crosses) for the interacting electron
gas with N = 4 electrons at r; = 1 for two different_températures: (a) 6 = 0.0625 and (b) 8 = 1.
The blue (black dotted) curve represents a cubic ‘{lineat)fit (cf. Eq. (32)) to the CPIMC data. The
grey solid line shows the ideal LR behavio uted from Eq. (40). For comparison, at 6 = 1, we
also plot the PB-PIMC results (green diamomps)SBbttom panels: Dependence of the average
number of type 2 kinks (red), type 4 kifiks (green)y.and the average sign (orange) on the amplitude
of the external field. % -~

A

to the CPIMC data up to4 = for 0 = 0.0625 and A = 0.5, for # = 1, respec-
tively. Clearly, also the cubicwegime remains valid for much larger amplitudes at higher
temperatures.

B. Interacting Electron ‘)

Next, we pgtform,the sdme CPIMC simulations for the interacting system (identical
system par rs) as“for the ideal case discussed in Section IIT A. The results are shown
in Fig. 5 rz‘j\wﬁr (dotted black) and a cubic fit (solid blue) to the CPIMC data are
depicte Fgli?wse parameters, we observe that the range of amplitudes for which the linear
i sponse regimes are valid is similar to that found for the ideal system. This is
onse of N = 4 particles at s = 1 is comparable to that of the ideal system
dition, in the bottom panels the average number of type 4 kinks (green
rve) is'de d, which are induced solely by the Coulomb interaction and which cause
e Sign (orange curve) to deviate from one. In the linear regime, the dependence of
number of type 4 kinks on the amplitude is negligible.
r, for larger values of A not only the average number of type 2 kinks becomes very
large but also the number of type 4 kinks increases significantly. The main reason for this
ehavior is the substantial increase of the configuration space with increasing amplitude.
In particular, at § = 0.0625 (left graphic) the average sign drops below 1072 at A > 1 and,
}Ccording to Eq. (14), the statistical error of the corresponding CPIMC results is clearly
enhanced. As a further cross-check of the correctness of the presented algorithm, at = 1 we
also compare with the PB-PIMC method (green diamonds), which are in perfect agreement
with CPIMC, as expected.
In Fig. 6, a similar investigation is carried out for a larger system containing N = 14
electrons at rs = 0.5 and @ = 0.5. For these system parameters, the average sign (orange
curve in the bottom panel) does not drop below 0.1, even up to values of the amplitude
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Figure 6. Top panel: Dependence of the induced density (44) for g :¥(17 0,0)T on the amplitude
of the external field. Shown are CPIMC results (red cubsses) for Na=14 electrons at rs = 0.5 and
0 = 0.5. The dotted black line corresponds to a linear fit, For arison, we also plot the ideal LR

behaviour (grey solid line). Bottom panel: Depeﬂ@)f the average number of type 2 kinks
0

(oran nthe amplitude of the external field.

(red), type 4 kinks (green), and the average sign \

A ~ 1.5. Thus, very precise CPIMC résu the induced density can be obtained. In
comparison to the smaller system of NV =" clectrons in Fig. 5 the linear response regime
is valid up to about twice as large itudessgo that the SDRF x, given by the slope of
the linear fit (dotted black line)can tained with a relative accuracy of up to 0.02%.
Further, we observe that the ave er of type 2 kinks (KT3) (red curve in the bottom
panel) is significantly larger ghan oue plitudes A > 1.5, and still, the deviation from
the LR behaviour is only mi .\Rgil,iln that, for the smaller N = 4 system in Fig. 5, the

e conclude that the average number of type 2 kinks alone

his is demonstrated in Fig. 7, where we artificially restricted
gurations containing a maximum of 40 (blue), 60 (red), or
kinks. More precisely, once a path with K = K. kinks is realized,
any further kinks. First, for the result obtained without any
(‘% see that these data are afflicted with a clearly visible statistical noise,

s due t0 an average sign (bottom panel, dash-dot) that is smaller than 0.1 even in
mogenequs case (A = 0). Naturally, the resulting value for the SDRF from a linear fit
to these dta (not depicted) would only be of very poor quality. However, by restricting the
tal m 'mu;ﬂ number of kinks (blue and red curves), the average number of kinks (bottom
anel, soli d dotted lines) is reduced by an order of magnitude, whereby the average sign
increased by an order of magnitude (dash-dotted lines).

lly, one would expect this procedure to bias the result for the density response
sinée by imposing these restrictions, one only samples paths from a small region of the
total configuration space. Instead, one observes that, within statistical error bars, all three
simulations are in perfect agreement, both for large and small amplitudes A (see inset in
“the upper panel). This very favourable behaviour is explained by a complete cancellation of
all contributions from paths with a number of kinks larger than the maximum. In other
words, due to the sign changes in the weight function Eq. (26) the expansion of the physical
partition function Eq. (24) converges for much smaller values of K than the simulated
primed partition function Eq. (10).
A similar observation has already been reported for the total energy of the homogeneous
(unperturbed) electron gas in Ref. 56. There, a systematic extrapolation over the maximum
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Figure 7. Top panel: Dependence of the in M (pq) for q = %’T(l, 0,0)T on thfe amplitude
of the external field. Shown are CPIMCiresults N = 20 electrons at rs = 0.5 and § = 0.5, where
the maximum total number of kinks in pledspaths has been restricted to Kmax = 40 (blue),
Kmax = 60 (red), and Kmax = 00, ie. no zestiction (green). The solid blue line corresponds to a
linear fit to the data for Kpyax = 40" wk dotted line shows the ideal LR behaviour. Bottom

panel: Dependence of the average n of %ype 2 kinks (solid lines), type 4 kinks (dotted lines),
and the average sign (dash-dotili omthe*amplitude of the external field. The colors correspond
to the restrictions on the maxlm r of kinks as labeled in the top panel.

number of kinks ( Z%I esult) was conveniently realized by the use of an auxiliary
kink potential:

1

T o (nK+05) ;1 (33)

that dep on t number of kinks K of a configuration and the maximum number k.
The pro dur works as follows: the weight function W (C'), Eq. (26), is replaced by

Wi (C) = W(C) - Va(K), (34)
fd(ms simulations for fixed values of k. Since it is lim,_,o Vi (K) = 1, the exact

onstrated in Fig. 8, where we have increased the system size to N = 38 electrons
0 = 0.5 and r; = 0.5). First, we focus on the blue data points, which have been
obt ined from a complete CPIMC simulation with a fixed value of the parameter  in the
arti c1a11y modified weight function W, (C). Here, the kink potential acts as a smooth but
exponentlally increasing penalty for all paths that contain a total number of kinks larger
“than k. As expected, the results for the SDRF (Fig. 8. a) converge for sufficiently large
K, in this case at about £ 2 10. And since the average number of kinks [panels (b) and
(d)], and consequently, the average sign [panel (c)] are clearly not converged for k ~ 10, we
can indeed conclude that all contributions from paths containing more than some critical
number of kinks seem to completely cancel.
We again stress that the difference between CPIMC simulations of the homogeneous and
perturbed electron gas lies in the existence of type 2 kinks in the latter. In particular, the
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Figure 8. Kink potential extrapolation of (a) the SBRE<and.(e) the total energy to the exact

limit, K — oo. Shown are the results from CPIMC Simulations of the inhomogeneous electron gas
containing N = 38 electrons at § = 0.5 and s =0.5. andplitude of the external field has been
set to A = 0.2 with a wave-vector q = 2T”(l, 1% data point has been obtained from a
complete simulation with a fixed value for thHe.parameter/ss in the kink potential Eq. (33). Red
points: the kink potential is applied solely to th pe4-kinks (no restriction on the number of
type 2 kinks) in the sampled paths. Blue ¢
number of type 2 and 4 kinks. Green li

potentials the dependence on the para
average sign (c), type 2 kinks (d), di

‘Wink potential has been applied to the total
t to the last red data points. In addition, for both

its practical influence
potential only to the

e true static response with respect to the correlations in the
e cogverges to the exact result with increasing x. The result is shown

equivalent to extfapolatin,

system—this proc 2

by the red dofs, in Fig: vidently, the convergence with k is greatly accelerated. Even at

Kk = 2, the result the résponse function has only a small bias of a few percent. In contrast,

when als re?icting 1e type 2 kinks (blue crosses), the result is off by roughly a factor 2.

yze the total energy of the inhomogeneous electron gas. Here the convergence

respect to the kink parameter x is different [see Fig. 8 (e)]. Here, imposing
10ny the type 2 kinks (red points) seemingly slows down the convergence with
to a coincidental error cancellation of the diagonal [panel (f)] and off-diagonal

[panel (g)] to the total energy, E = D + Y. Both contributions, at fixed «, are

ser to the exact result when leaving the number of type 2 kinks unrestricted. Moreover,

inthe case where one is particularly interested in the total energy the potential VT4

(redidots) should still be used since only this potential ensures a monotonic convergence

of the energy with x. Naturally, a monotonic convergence is preferred when performing a

reliable extrapolation to Kk — co.

" From the investigations in this section we conclude that the general concept of an auxiliary
kink potential to enhance the performance of CPIMC simulations that has been previously
introduced for the unperturbed UEG®®56, can be used in a similar way for the inhomogeneous
electron gas. At fixed temperature and density, this allows us to obtain the SDRF for twice
as large systems. This is an impressive efficiency gain when considering that the FSP
increases exponentially with the system size, cf. Eq. (14). For the presented example with
0 = 0.5 and r;, = 0.5, CPIMC simulations without the kink potential are feasible for up to
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N ~ 20 electrons whereas, with the kink potential, simulations of N = 38 particles pose
no problem. On the other hand, for fixed temperature and electron number, use of the
kink potential roughly doubles the accessible rs-range, which corresponds to a factor 8 in
the density. Most importantly, it turns out that, in the LR regime, the number of type
2 kinks is small compared to the number of type 4 kinks so that their practical influence
on the average sign is negligible. For this reason, the accessible parametef range regarding
particle number, temperature and density for which the SDRF can be gomputed by means

of CPIMC simulations of the inhomogeneous electron gas is almost identical %@ the range of
applicability of CPIMC to the unperturbed spatially homogeneous 16%

C. Finite Size Correction of the Static Density Response Functi n)

1. Theory -~

—-—

In this section, the issue of finite size errors in the co utatio§ of the SDRF x and ways
to correct them are discussed in detail. These errorsfare a di consequence of the fact that
Monte Carlo simulations can only be performed for afinite particle number N in a finite
simulation box with volume V. This often causés,the resulting functional form of xn(q) to

differ significantly from its thermodynamic limit o
x(a) = %@%@ ). (35)

IN/V =cOongt.

In particular when simulating fermignic s ms with Monte Carlo methods, one is usually
limited to rather small systems, due e FSR, so that finite size errors are not negligible.
In addition, g—dependent quantities ¢an Only be computed for q—vectors that satisfy the

natural condition of momentum gurantizagion in the simulation box, q = Q%m with m € Z3.
Thus, standard techniques to reduc%% ze errors, e.g. those for the total energy®®, which
are all based on an extrapo h

'Bh@\e nite— N results to N — oo (at constant density)
cannot be used for the correctionsof x-

In the ground state, the most sophisticated approach to tackle finite size errors is based
on the assumption thét the se-called static local field correction (LFC) G(q) is only weakly
dependent on the sgstém size®f. The LFC is commonly defined by the equation%4-6°

V. _ x°(a)
4V =1o vg[1 = G(a)]x°(a) ’ (36)

where x° denotes the ideal response function and vg =4/ ¢%>. The random phase approxi-
mation P@S xFPis obtained by setting G = 0 in Eq. (36). Hence, the LFC contains
all inf ion beyond the RPA and should thus be dominated by short-range correlations,
whi :ted to be captured sufficiently well in a finite simulation cell. Naturally,

ryau ing the LFC from the ideal response function in the TDL, x°(q)?, i.e. via
1 1 1

GNq=<—>+1, 37

(@ vg \xn(a@)  x°(a) 7

important to obtain it consistently from the corresponding finite-N ideal response
Sion X (a),

it i
fun

\ ~ GESC(q) = 1 (1 _ 1) +1. (38)

vg \xn(@)  x%(q)

Assuming that the finite size errors in this consistent LFC are negligible, i.e., GR,SC(q) ~ G(q),
the finite size corrected response function is given by

x°(q)
1 _1 |.,0
1+ |:XN(q) x?v(q)} x"(q)

X"(q) = (39)
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Figure 9. Comparison of different ways to compute the ideal re or%[unct for the UEG with
N =4 electrons at § = 1 and r; = 1. The orange squares correspond evaluation of Eq. (41).
The blue diamonds show the result from Eq. (44) for a small twist-angle b 0.01-(1/e, 1/m,1/1/(2))"
The red dots correspond to Eq. (46). For comparison, the result obtained from CPIMC simulations
of the perturbed ideal electron gas, as discussed in Sec. IIIA depicted by the green crosses. The
bottom panel shows the relative deviation to this exa black solid line corresponds to
the ideal response function in the TDL.
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Flgure 10. %ﬂ ence o the ideal response function on the particle number at rs = 1 and three
aturessy 0 = 0.0625 (a), § = 0.25 (b), and 8 = 0.5 (c). The results for finite particle
en computed via Eq. (44) from the CPIMC result of the corresponding finite— N

, 11 addition to the response function of the interacting finite-NN system, xn(q),
Sed precise data for the corresponding ideal response function x% (q). In principle,
be obtained from a complete CPIMC simulation of the ideal perturbed electron
gasjor each g—vector and particle number N, as was demonstrated in Sec. ITT A. A more

onvenient way to achieve this is given by making use of the spectral representation of the

\ideal response function, which, in case of the UEG, takes the form?

ne (P +d) —n,(p)
= Z ! (40)

€p+q — €p

where e, = p?/2, and n,(p) = (fip o) is the momentum distribution of the unperturbed
ideal UEG, which converges to the Fermi distribution, in the TDL, and constitutes a natural
observable that is straightforwardly computed observable within the CPIMC formalism.
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Thus, Eq. (40) in principle enables us to gain access to all g—vectors of the ideal response
function from a single CPIMC simulation of the unperturbed UEG.

However, the concrete evaluation of Eq. (40) has to be done carefully because there are
terms in which both the numerator and denominator vanish, i.e., where |p + q| = |p|. In
the ground state it is correct to simply set those terms to zero? and to rewrite

NG S A 2 /\ (a)

p.o €p+q ~ fp
Ip+al#|p|

hich is illustrated
in Fig. 9, where the ideal response function of N = 4 electrons atf =% and r; = 1 is
imulations of the
perturbed ideal electron gas as discussed in Sec. IIT A. The orange Squares, which correspond
to the evaluation of Eq. (41), exhibit a large bias for eyeryusec q—vector, while every
other is in perfect agreement with the result from the unperturbed system (see deviation in
the bottom panel of Fig. 9). This is due to the faéiiha the condition |p + q| = |p| can

only be fulfilled if ¢ = ¢2L?/(27)? is an even nuhber (in follows the tilde denotes
dimensionless g—vectors with the components ¢;, € %,). Th‘eﬁroof is obvious when rewriting
L

said condition as

Since the factor 2 ensures that the RHS is ays an even number the equality can only be
fulfilled if ¢* is also even. Thus, ther }ﬁvlo ¢
Eq. (40) for odd 2.

To determine the proper contributien of the critical terms for even G2, we may write Eq. (40)
for the UEG Hamiltonian, Eq. (1)y subject to generalized periodic boundary conditions.
Following Refs. 67 and 68, this 1 lized by shifting the entire q—grid of our simulation
box by a so-called twist-angle t 350 that the modified momentum quantization reads

q= %m + t, with m %)r the'ideal response function we then have
I ¢ ne(P+t+a)—no(p+t)
?\ > | “
P,0

€p+t+q — Ep+t

where, in thi/m}&o\n, e/sum still runs over all p—vectors with p = Q%m, where m € Z3.

Obviously, Lbsco ition for a vanishing denominator now reads

p+t+dal=[p+t|, (45)

'amond> in Fig. 9 clearly show that this is indeed the case since they perfectly agree with
act result (see bottom panel).

Einally, we determine the contribution of the critical terms in Eq. (40) by performing the
limig [t — O] of those terms in Eq. (44) with the aid of L’Hospitals’s rule yielding:

\ ~ X (@) =x2n(a) g [ns(p) —n2(p)] - (46)

4 p,0
Ip+al=|p|
The corresponding result is depicted by the red dots in Fig. 9. Evidently, compared to
simply omitting the contribution of the critical terms (orange squares) the improvement

is substantial. Yet, the relative deviation to the exact result is still of the order of a few
percent (bottom panel).
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‘r%n of the density response function of the UEG at § = 0.5 and
rs = 0.5. Top pa are the uncorrected CPIMC results for different electron numbers in
the simulation b sses), 14 (orange squares), 20 (blue diamonds), and 38 (red dots).

The black symlols correspord to the finite size corrected results computed via Eq. (39), and the
spline fit through these data with N > 4. For comparison, the ideal

green curve sows a sm
(solid blac PA (dgtted black), and STLS (brown) results are plotted. Bottom panel: Zoom
into the miinimn regime of the response function.

.\Q/
)

idual bias is explained as follows: mathematically it is only valid to use L’Hospital’s
ruleyif the functional form of the momentum distribution does not change with the twist-
angle. This condition only holds in good approximation for large particle numbers, but is
increasingly violated for smaller system sizes. Since a systematic error of a few percent in the

Figure 11. Finite

“1deal response function is not sufficient for a reliable finite size correction, we conclude that

Eq. (46) cannot be used to achieve this. Nevertheless, we can instead use Eq. (44), which has
been demonstrated to be asymptotically correct for small twist-angles, to efficiently compute
the finite-N ideal response function of the UEG with high accuracy. For completeness we
mention that the L’Hospital terms vanish in the ground state, and the functional form of the
momentum distribution is independent of the twist-angle here, since it is always given by a
step function at the Fermi vector kg. Hence, Eq. (41) is indeed correct in the ground state.
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70.0 0.5 1.0 1.5 2.0

Figure 12. Local field correction of the UEG at 6 = 0.5 and ifferent particle numbers
indicated in the legend (subscripts). Colored filled symbols: DEC computed from the ideal response
function in the TDL, Eq. (37). Black symbols: LFC obtained“fromhe finite— N ideal response
function according to Eq. (38). Green curve: spline fit t@ finite size corrected LFC. Brown curve:
STLS local field correction. ‘)

! -

2. CPIMC results \‘\\

At high densities, we expect the finite Size errors involved in the response function of the

interacting system to be comparable/to thosewf the ideal system. Therefore, Fig. 10 shows
the dependence of the ideal respor\tion on the particle number at three different
(a

temperatures. At § = 0.0625 [pahel hich is close to the ground state, the finite size
errors are extremely large even electrons (blue), and are most pronounced for
small gq—vectors, which corréspond“to e distances in real space that are not sufficiently
described in small simulation wlt is only at a few hundred electrons (red) where the
convergence of the functional fornseventually becomes visible. With increasing temperature

these finite size errors ignificantly reduced; yet the relative bias of e.g. N = 14 electrons
ect)

at 0 = 0.5 [green dotSdn panel (c)] is still substantial. This reduction of finite size errors is

due to the fact that she , which also cause quantities like the total energy to converge
non-monotonica. toyards e TDL, vanish with increasing temperature.

Finally, in Fig. the wave-vector dependence of the interacting response function of

the UEG is Z icted = 0.5 and ry = 0.5. The colored symbols show the uncorrected

t:%!ﬁ;ll, 4,20, and 38 electrons, which have been obtained as discussed in

4 F%%N = the extrapolation technique with the kink potential has been used.

v see that the uncorrected results do not lie on a smooth curve. In particular

an = 14 electrons the finite size errors are of the order of a few percent when

zooming éto the minimum region of the response function (bottom panel). Before applying
e-presented finite size correction to x, we check if the underlying assumption regarding

lot the LFC of the UEG for the same parameters. Evidently, using the ideal response
in the TDL to compute the LFC according to Eq. (37) leads to substantial finite
siz?yrrors in its functional form. However, when consistently using our computed CPIMC
esult for the finite— N ideal response function (cf. Eq. (38)), the functional form of the LFC
is indeed indistinguishable for all three particle numbers so that a smooth spline can be
THitted through these data (green line). For comparison, we also plot the LFC obtained from
the Singwi-Tosi-Land-Sjolander (STLS) scheme, which is of good quality for ¢/kr < 1 but
deviates by up to a factor of two from the exact CPIMC result, for larger g—vectors.

Now we use the consistent LFC to correct the SDRF according to Eq. (39). The result is
shown by the black symbols in Fig. 11. Clearly, for N > 4 all results lie on a smooth curve,
which is demonstrated by a smooth spline fit through these data (green curve). Even though
for N =4 (black crosses) the correction is not quite sufficient to describe the TDL behavior,


http://dx.doi.org/10.1063/1.4999907

AllP

Publishing

X

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

19

the reduction of the bias is still impressive (cf. purple crosses). In addition, we plot the
response function in RPA (dotted black) and STLS (solid brown) approximation. While the
RPA exhibits systematic errors of a few percent the STLS approximation is accurate up to
about one percent. In particular, STLS exhibits no resolvable bias for ¢/kr < 1, which is in
agreement with its accuracy regarding the LFC (cf. Fig 12) in this regime. However, even
though at ¢/kr 2 2 the systematic error of the STLS result for the LECAs nearly a factor
two, the influence of the LFC on the total response function is supp( d by the factor
vy = 47 /q? in Eq. (36) so that for ¢ — oo the response function beco esth%) the ideal

case.

the SDRF can be
f this correction
mamic limit from

We conclude that the ground state finite size correction of the
generalized to finite temperatures, as presented in this section. The'hene
is dramatic: it allows one to obtain accurate results for t erm
CPIMC simulations for systems as small as N = 14 electrofs. %e rice‘one has to pay is
to compute highly accurate results of the finite— N ideal res s;%iction. This can be
efficiently achieved via CPIMC simulations of the unp turbed by using its spectral
representation. However, in contrast to the ground state, the\correct evaluation of the
spectral representation is only possible when switching to stem subject to generalized
boundary conditions, which has been verified by %;?Ch ks to the exact result obtained
from simulations of the perturbed electron gas. Kinally; Wegéention that the presented finite
size correction is not only highly valuable for CPIMC But can be used for finite— N data
obtained with any other finite temperature hod.

IV. SUMMARY AND DISCUSSION \

In summary, we have successfully genhz%the CPIMC formalism from the homogeneous
electron gas to the general inho 1eotis case. We have shown that the applied external
periodic potential results in the oc%e of type 2 kinks that correspond to one-particle
excitations in the simulate 'Wy time paths. This leads to numerous additional
diagrams, which have to be takem into account, so that the complexity of the algorithm
is significantly increa ext, we have demonstrated that the technique of an artificial
kink-potential, which€had been introduced in Refs. 55 and 56 to mitigate the FSP regarding
nergy of the UEG, is similarly effective for the computation of

induced typ inks 0O

of the ext nal%gtifd. For amplitudes that are sufficiently small for the linear response
theory t be}lid their influence is negligible. Therefore, the presented CPIMC algorithm
can besu compute the SDRF for the same parameters (density, temperature and
r) that are accessible for the simulation of the UEG without the external

kinks while ie?OSI no restrictions on the type 2 kinks. Interestingly, we observed that the

ns in a finite simulation box, may differ substantially from the TDL result. For
thejnvestigated example of intermediate temperature (§ = 0.5) and rather high density
rs= 0.5) the finite size errors are of the order of several percent. Similarly to previous
ndings in the ground state, the finite size effects are almost exclusively ascribed to the
“fdeal part of the SDRF, whereas the LFC is remarkably well converged with system size
even for small N, i.e. GR7¢(q) ~ G(q).

To compute GE3¢ from the QMC data for the SDRF we found that it is crucial to use the
ideal SDRF for the same finite number of electrons (instead of using the macroscopic result),
which turns out to be surprisingly difficult. While the finite— N ideal SDRF is linked to
the momentum distribution function via its spectral representation, at finite temperature,
the corresponding expression can only be evaluated when introducing generalized boundary
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conditions by means of a finite but small twist-angle. Thereby, unbiased results for the

finite— N ideal SDRF for all wave-vectors can be obtained from a single CPIMC simulation

of the unperturbed UEG. This has been confirmed by cross-checks with the exact results

from simulations of the perturbed UEG. In this way, the SDRF can be computed in the

TDL with an accuracy of ~ 0.1%. Finally, our ab initio results for the SDRF allow us to

benchmark standard approximations. In particular the RPA SDRFE’?éveals systematic
a

errors of a few percent, while the STLS approximation®?:%° exhibits de Q'Qup to one
rm dense matter

percent, even at rg = 0.5.
We expect the presented results to be of high importance for fu

research, in particular in the context of advanced truly non-leca ange-correlation
functionals for DFT or as valuable input for the computation namic structure
factor, e.g., within the extended Born-Mermin approach?S.
investigation of the LFC will certainly help in determining t
LFC, which, in particular at finite temperature, is an open que!
maximum in the LFC is known to indicate the possibili y?d'f cha

ion. Tiraddition, a possible

-density waves?.
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V. APPENDIX

3 .

In this appendix we present itio I information on the CPIMC procedure for the

harmonically modulated electron igwre 13 shows all possible 14 elementary diagrams
a ne-

for adding a type 2 or 4 ki
another kink left of the added

r two-particle excitation, and thereby changing
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