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The uniform electron gas is a key model system in the description of matter, includ-

ing dense plasmas and solid-state systems. However, the simultaneous occurrence

of quantum, correlation, and thermal effects makes the theoretical description chal-

lenging. For these reasons, over the last half century, many analytical approaches

have been developed, the accuracy of which has remained unclear. We have recently

obtained the first ab initio data for the exchange correlation free energy of the uni-

form electron gas, which now provides the opportunity to assess the quality of

the mentioned approaches and parameterizations. Particular emphasis is placed on

the warm, dense matter regime, where we find significant discrepancies between the

different approaches.
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1 INTRODUCTION

Over the last decade, there has emerged growing interest in the so-called warm dense matter (WDM), which is of key importance

for the description of, for example, astrophysical systems,[1,2] laser-excited solids,[3] and inertial confinement fusion targets.[4–6]

The WDM regime is characterized by the simultaneous occurrence of strong (moderate) correlations of ions (electrons), thermal

effects, as well as quantum effects of the electrons. In dimensionless units, typical parameters are the Brueckner parameter

rs = r∕aB and the reduced temperature 𝜃 = kBT∕EF, both being of the order of unity (more generally in the range 0.1–10). Here,

r and aB denote the mean interparticle distance and the Bohr radius, respectively. A third relevant parameter is the classical

coupling parameter of the ionic component, Γi = Z2
i e2∕rkBT , which is often larger than unity indicating that the ionic component

is far from an ideal gas. This makes the theoretical description of this peculiar state of matter particularly challenging, as there

is no small parameter to perform an expansion around.

In the ground state, there exists a large toolkit of approaches that allow the accurate description of manifold physical systems,

the most successful of which arguably being Kohn–Sham density functional theory (DFT) (e.g., [7,8]). The basic idea of DFT is

to map the complicated and computationally demanding quantum many-body problem onto an effective single-particle problem.

This would be exact if the correct exchange-correlation functional of the system of interest was available, which is, of course,

not the case. In practice, therefore, one has to use an approximation. The foundation of the great success of DFT has been

the local density approximation (LDA), that is, the use of the exchange-correlation energy Exc of the uniform electron gas

(UEG) with the same density as the more complicated system of interest. Accurate data for Exc of the UEG was obtained by

Ceperley and Alder[9] using a quantum Monte Carlo (QMC) method, from which Perdew and Zunger[10] constructed a simple

parameterization with respect to density, Exc(rs), which is still used to this day.

However, the accurate description of WDM requires the extension of DFT to finite temperature. This has been realized

long ago by Mermin[11], who used a superposition of excited states weighted with their thermal occupation probability. A
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strict approach to the thermodynamic properties of this system also requires an appropriate finite-temperature extension of

the LDA, in particular, replacement of the ground-state energy functionals by free energies, that is E → f = E − TS. This

means, a finite-temperature version of the LDA requires accurate parameterizations of the exchange correlation free energy
with respect to temperature and density,[12–17] that is, fxc(rs, 𝜃), even though in some cases the entropic correction may be small.

This seemingly benign task, however, turns out to be far from trivial because accurate data for the free energy are much more

involved than the ground-state results. While for the ground state reliable QMC data have been known for a long time, until

recently,[18–28] the notorious fermion sign problem[29,30] has prevented reliable QMC simulations in the warm, dense regime.

Therefore, during the recent four decades, many theoretical approaches to fxc(rs, 𝜃) have been developed that have lead to a

variety of parameterizations (for an overview on early works, see e.g., Refs. [31,32]). Some of them have gained high popularity

and been successfully applied in many fields, even though their accuracy has not been thoroughly tested. It is the purpose of

this paper to present such a quantitative comparison of earlier models with new simulation results.

In Section 2, we introduce a selection of such functions. First, we analyze the purely analytical expression presented by

Ebeling et al. (e.g., Ref. [33]). Next, we study functional fits to linear response data based on static local field correction

schemes that were suggested by Singwi, Tosi, Land, and Sjölander (STLS)[34] (Section 2.2) and Vashishta and Singwi (VS)[35]

(Section 2.3). As a fourth example, we consider the quantum-classical mapping developed by Dharma-wardana and Perrot

(PDW)[36,37] (Section 2.4). Finally, we consider the recent parameterization by Karasiev, Sjostrom, Dufty, Trickey (KSDT)[38]

(Section 2.5), which is based on the restricted path integral Monte Carlo (RPIMC) data by Brown et al. that became available

recently.[39] However, those data have a limited accuracy because of (a) the use of the fixed-node approximation[40] and (b) an

inappropriate finite-size correction (see Dornheim et al.[27]), giving rise to systematic errors in the free energy results, as we will

show below. In Section 3, we compare all aforementioned parameterizations of fxc to the new, accurate QMC data by Dornheim

et al.[27], which are free from any systematic bias and, hence, allow us to gauge the accuracy of models. Particular emphasis is

laid on the WDM regime.

2 FREE-ENERGY PARAMETERIZATIONS

2.1 Ebeling’s Padé formulae

The idea to produce an analytical formula for the thermodynamic quantities that connects known analytical limits via a smooth

Padé approximant is due to Ebeling, Kraeft, and Richert et al.[41–44] These approximations have been quite influential in the

description of nonideal plasmas and electron–hole plasmas in the 1980s and 1990s, receiving, in part, a substantial number of

citations. As they have been improved continuously in the following years, we, therefore, discuss only the more recent versions,

compare [33,45] and references therein.

Ebeling et al. used Rydberg atomic units and introduced a reduced thermal density

n = nΛ3 = 6
√
𝜋r−3

s 𝜏−3∕2 (1)

with the usual thermal wavelength Λ, and 𝜏 = kBT∕Ry being the temperature in energy units. The Padé approximation for fxc
then reads[33]

f Ebeling,Ry
xc (rs, 𝜏) = −

f0(𝜏)n1∕2 + f3(𝜏)n + f2n2
𝜖Ry(rs)

1 + f1(𝜏)n1∕2 + f2n2
(2)

with the coefficients

f0(𝜏) =
2

3

(
𝜏

𝜋

)1∕4

, f1(𝜏) =
1

8f0(𝜏)

√
2(1 + log(2)) , f2 = 3, f3(𝜏) =

1

4

(
𝜏

𝜋

)1∕2

(3)

and the ground-state parameterization for the exchange correlation energy

𝜖Ry(rs) =
0.9163

rs
+ 0.1244 log

(
1 +

2.117r−1∕2
s

1 + 0.3008
√

rs

)
. (4)

To achieve better comparability with the other formulas discussed below, we re-express Equation 2 in Hartree atomic units

as a function of rs and the reduced temperature 𝜃 = kBT∕EF:

f Ebeling,Ha
xc (rs, 𝜃) = −1

2

Ar−1∕2
s 𝜃−1∕2 + Br−1

s 𝜃−1 + C𝜃−3𝜖Ry(rs)
1 + D𝜃−1r1∕2

s + C𝜃−3
, with (5)
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A = 2

3
√
𝜋

(
8

3

)1∕2 ( 4

9𝜋

)−1∕6

, B = 2

3𝜋

(
4

9𝜋

)−1∕3

, C = 64

3𝜋
, (6)

D =
(1 + log(2))

√
3

4

(
4

9𝜋

)1∕6

.

Evidently, Equation 5 incorporates the correct ground-state limit

lim
𝜃→0

f Ebeling,Ha
xc (rs, 𝜃) = −1

2
𝜖Ry(rs) , (7)

where the pre-factor 1∕2 is due to the conversion between Rydberg and Hartree units. Similarly, in the high-temperature limit,

the well-known Debye–Hückel result is recovered, for example Ref. [46]

lim
𝜃→∞

f Ebeling,Ha
xc (rs, 𝜃) = −1

2
A r−1∕2

s 𝜃−1∕2 = − 1√
3

r−3∕2
s T−1∕2. (8)

Results for the warm, dense UEG computed from these formulas are included in the following figures. For the Padé

approximations to the UEG at strong coupling in the quasi-classical regime, see, for example, Ref. [47].

2.2 Parameterization by Ichimaru et al.

In the mid-1980s, Tanaka, Ichimaru, and coworkers[48,49] extended the original STLS scheme[34] for the static local field cor-

rections to finite temperature and numerically obtained the interaction energy V (per particle) of the UEG via integration of the

static structure factor S(k):

V = 1

2 ∫k<∞

dk
(2𝜋)3

[S(k) − 1]4𝜋

k2
(9)

for 70 parameter combinations with 𝜃 = 0.1, 1, 5 and rs ∼ 10−3,… , 74. Subsequently, a parameterization for V was introduced

as a function of rs and 𝜃[50,51]

V(rs, 𝜃) = − 1

rs

aHF(𝜃) +
√

2𝜆r1∕2
s tanh(𝜃−1∕2)B(𝜃) + 2𝜆2rsC(𝜃)E(𝜃)tanh(𝜃−1)

1 +
√

2𝜆r1∕2
s D(𝜃)tanh(𝜃−1∕2) + 2𝜆2rsE(𝜃)

(10)

with the definitions

aHF(𝜃) = 0.610887 tanh
(
𝜃−1

) 0.75 + 3.4363𝜃2 − 0.09227𝜃3 + 1.7035𝜃4

1 + 8.31051𝜃2 + 5.1105𝜃4
, (11)

B(𝜃) = x1 + x2𝜃
2 + x3𝜃

4

1 + x4𝜃2 + x5𝜃4
, C(𝜃) = x6 + x7exp

(
−𝜃−1

)
, (12)

D(𝜃) = x8 + x9𝜃
2 + x10𝜃

4

1 + x11𝜃2 + x12𝜃4
, E(𝜃) = x13 + x14𝜃

2 + x15𝜃
4

1 + x16𝜃2 + x17𝜃4
. (13)

In addition to the exact limits for 𝜃 → 0 and 𝜃 → ∞, the parameterization from Equation 10 also approaches the well-known

Hartree–Fock limit for high density:

lim
rs→0

V(rs, 𝜃) = −aHF(𝜃)
rs

, (14)

which has been parameterized by Perrot and Dharma-wardana,[52] see Equation 11. Naturally, the free parameters xi, i =
1,… , 17 have been determined by fitting Equation 10 to the STLS data for V , and the resulting values are listed in Table 1.

From the interaction energy V(rs, 𝜃), the free exchange-correlation energy is obtained by integration:

fxc(rs, 𝜃) =
1

r2
s ∫

rs

0

drs rsV(rs, 𝜃). (15)
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TABLE 1 Fit parameters by Ichimaru[51] for the fxc(rs, 𝜃) parameterization from Equation 16, fitted to STLS data[49]

x1 x2 x3 x4 x5

3.4130800 × 10−1 1.2070873 × 10 1.148889 × 100 1.0495346 × 10 1.326623 × 100

x6 x7 x8 x9 x10

8.72496 × 10−1 2.5248 × 10−2 6.14925 × 10−1 1.6996055 × 10 1.489056 × 100

x11 x12 x13 x14 x15

1.010935 × 10 1.22184 × 100 5.39409 × 10−1 2.522206 × 100 1.78484 × 10−1

x16 x17

2.555501 × 100 1.46319 × 10−1

Plugging in the expression for V(rs, 𝜃) from Equation 10 into 15 gives the final parameterization for fxc(rs, 𝜃):

fxc(rs, 𝜃) = − 1

rs

c(𝜃)
e(𝜃)

(16)

− 𝜃

2e(𝜃)r2
s𝜆

2

[(
aHF(𝜃) −

c(𝜃)
e(𝜃)

)
− d(𝜃)

e(𝜃)

(
b(𝜃) − c(𝜃)d(𝜃)

e(𝜃)

)]

× log
|||||
2e(𝜃)𝜆2rs

𝜃
+
√

2d(𝜃)𝜆r1∕2
s 𝜃−1∕2 + 1

|||||
−

√
2

e(𝜃)

(
b(𝜃) − c(𝜃)d(𝜃)

e(𝜃)

)
𝜃1∕2

r1∕2
s 𝜆

+ 𝜃

r2
s𝜆

2e(𝜃)
√

4e(𝜃) − d2(𝜃)

[
d(𝜃)

(
aHF(𝜃) −

c(𝜃)
e(𝜃)

)

+
(

2 − d2(𝜃)
e(𝜃)

)(
b(𝜃) − c(𝜃)d(𝜃)

e(𝜃)

)]

×

[
atan

(
23∕2e(𝜃)𝜆r1∕2

s 𝜃−1∕2 + d(𝜃)√
4e(𝜃) − d2(𝜃)

)
− atan

(
d(𝜃)√

4e(𝜃) − d2(𝜃)

)]
with the abbreviations

b(𝜃) = 𝜃1∕2 tanh
(
𝜃−1∕2

)
B(𝜃), c(𝜃) = C(𝜃)e(𝜃), (17)

d(𝜃) = 𝜃1∕2 tanh
(
𝜃−1∕2

)
D(𝜃), e(𝜃) = 𝜃 tanh

(
𝜃−1

)
E(𝜃).

2.3 VS parameterization

Despite the overall good performance of STLS in the ground state,[53] it has long been known that this scheme does not fulfill the

compressibility sum rule (CSR, see e.g., Ref. [54] for a detailed discussion). To overcome this obstacle, Vashishta and Singwi[35]

introduced modified local field corrections (VS), where the CSR is automatically fulfilled. This idea had been extended in

an approximate way to finite temperature by Stolzmann and Rösler,[55] and more recently Sjostrom and Dufty[54] obtained an

exhaustive dataset of results that are exact within the VS framework.

As already explained in the previous section for the STLS data, they first calculated the static structure factor S(k), computed

the interaction energy V by integration (Equation 9), fitted the parameterization from Equation 10 to this data, and thereby

obtained the desired parameterization of fxc(rs, 𝜃) as given in Equation 16 (albeit with the new fit parameters listed in Table 2).

2.4 PDW parameterization

Dharma-wardana and Perrot[36,37] introduced an independent, completely different idea. In particular, they employed a classical
mapping such that the correlation energy of the electron gas at T = 0 (that has long been known from QMC calculations [9,10])

is exactly recovered by the simulation of a classical system at an effective “quantum temperature” Tq. However, due to the lack

of accurate data at finite T , an exact mapping had not been possible, and the authors introduced a modified temperature Tc,

where they assumed an interpolation between the exactly known ground state and classical (high T) regimes, Tc =
√

T2 + T2
q .

Naturally, at WDM conditions this constitutes a largely uncontrolled approximation.
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TABLE 2 Fit parameters by Sjostrom and Dufty[54] for the fxc(rs, 𝜃) parameterization from Equation 16, fitted to VS data

x1 x2 x3 x4 x5

1.8871493 × 10−1 1.0684788 × 10 1.1088191 × 102 1.8015380 × 10 1.2803540 × 102

x6 x7 x8 x9 x10

8.3331352 × 10−1 −1.1179213 × 10−1 6.1492503 × 10−1 1.6428929 × 10 2.5963096 × 10

x11 x12 x13 x14 x15

1.0905162 × 10 2.9942171 × 10 5.3940898 × 10−1 5.8869626 × 104 3.1165052 × 103

x16 x17

3.8887108 × 104 2.1774472 × 103

TABLE 3 Fit parameters by Perrot and Dharma-wardana[37] for the fxc(rs, 𝜃) parameterization from Equation 18

k a1,k b1,k c1,k a2,k b2,k c2,k 𝜈k rk

1 5.6304 −2.2308 1.7624 2.6083 1.2782 0.16625 1.5 4.4467

2 5.2901 −2.0512 1.6185 −15.076 24.929 2.0261 3 4.5581

3 3.6854 −1.5385 1.2629 2.4071 0.78293 0.095869 3 4.3909

To obtain the desired parameterization for fxc, extensive simulations of the UEG in the range rs = 1–10 and 𝜃 = 0–10 were

performed. These were used as input for a fit (see Table 3 for the corresponding fit parameters) with the functional form

fxc(rs, 𝜃) =
𝜖(rs) − P1(rs, 𝜃)

P2(rs, 𝜃)
, (18)

P1(rs, 𝜃) = (A2(rs)u1(rs) + A3(rs)u2(rs)) 𝜃2Q2(rs) + A2(rs)u2(rs)𝜃5∕2Q5∕2(rs),
P2(rs, 𝜃) = 1 + A1(rs)𝜃2Q2(rs) + A3(rs)𝜃5∕2Q5∕2(rs) + A2(rs)𝜃3Q3(rs),

Q(rs) =
(
2r2

s𝜆
2
)−1

, n(rs) =
3

4𝜋r3
s
, u1(rs) =

𝜋n(rs)
2

, u2(rs) =
2
√
𝜋n(rs)
3

,

Ak(rs) = exp

(
yk(rs) + 𝛽k(rs)zk(rs)

1 + 𝛽k(rs)

)
, 𝛽k(rs) = exp (5(rs − rk)) ,

yk(rs) = 𝜈k log(rs) +
a1,k + b1,krs + c1,kr2

s

1 + r2
s∕5

, zk(rs) = rs
a2,k + b2,krs

1 + c2,kr2
s
,

which becomes exact for 𝜃 → 0 and 𝜃 → ∞, but is limited to the accuracy of the classical mapping data in between. Further, it

does not include the exact Hartree–Fock limit for rs → 0, so that it cannot reasonably be used for rs < 1. For completeness, we

mention that a functional form similar to Equation 18 was recently used by Brown et al. [56] for a fit to their RPIMC data[39].

Similar ideas of quantum-classical mappings were recently investigated by Dufty and Dutta (see e.g., Ref. [57,58]).

2.5 Parameterization by Karasiev et al.

Karasiev et al.[38] (KSDT) utilized as the functional form for fxc an expression similar to Equation 10, which Ichimaru and

coworkers[50,51] suggested for the interaction energy:

fxc(rs, 𝜃) = − 1

rs

aHF(𝜃) + b(𝜃)r1∕2
s + c(𝜃)rs

1 + d(𝜃)r1∕2
s + e(𝜃)rs

, (19)

b(𝜃) = tanh
(
𝜃−1∕2

) b1 + b2𝜃
2 + b3𝜃

4

1 + b4𝜃2 +
√

1.5𝜆−1b3𝜃4

, c(𝜃) =
[
c1 + c2 exp

(
−c3

𝜃

)]
e(𝜃),

d(𝜃) = tanh
(
𝜃−1∕2

) d1 + d2𝜃
2 + d3𝜃

4

1 + d4𝜃2 + d5𝜃4
, e(𝜃) = tanh

(
𝜃−1

) e1 + e2𝜃
2 + e3𝜃

4

1 + e4𝜃2 + e5𝜃4
.

Further, instead of fitting to the interaction energy V , they used the relation

Exc(rs, 𝜃) = fxc(rs, 𝜃) − 𝜃
𝜕fxc(rs, 𝜃)

𝜕𝜃

||||rs

(20)
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TABLE 4 Fit parameters by Karasiev et al. [38] for the fxc(rs, 𝜃) parameterization from Equation 19

b1 b2 b3 b4 c1 c2 c3

0.283997 48.932154 0.370919 61.095357 0.870089 0.193077 2.414644

d1 d2 d3 d4 d5 e1 e2

0.579824 94.537454 97.839603 59.939999 24.388037 0.212036 16.731249

e3 e4 e5

28.485792 34.028876 17.235515

and fitted the rhs of Equation 20 to the recently published RPIMC data for the exchange correlation energy Exc by Brown

et al. [39] that are available for the parameters rs = 1–40 and 𝜃 = 0.0625–8 (see Table 4 for the corresponding fit parameters).

3 RESULTS

In this section we analyze the behavior of the analytical approximations for the exchange-correlation free energies that were

summarized above by comparison with our recent simulation results that cover the entire relevant density range for temperatures

𝜃 ≥ 0.5. These data have an unprecedented accuracy on the order of 0.1% (for details, see Refs. [27,28]).

3.1 Temperature dependence

In Figure 1, we show the temperature dependence of the exchange-correlation free energy as a function of the reduced temper-

ature 𝜃 for two densities that are relevant for contemporary WDM research, namely rs = 1 (left) and rs = 6 (right). For both

cases, all depicted parameterizations reproduce the correct classical limit for large 𝜃 [cf. Equation 8] and four of them (Ebel-

ing, KSDT, STLS, and PDW) are in excellent agreement for the ground state as well. For completeness, we note that the small

differences between KSDT and Ebeling and PDW are due to different ground-state QMC input data. In particular, Karasiev

et al. used more recent QMC results by Spink et al.,[59] although in the context of WDM research the deviations to older

parameterizations are negligible. The VS parameterization, on the other hand, does not incorporate any ground-state limit and,

consequently, the behavior of f VS
xc (rs, 𝜃) becomes unreasonable below 𝜃 = 0.0625. Similarly, the lowest temperature (despite

the ground-state limit) included in the fit for f PDW
xc (rs, 𝜃) is 𝜃 = 0.25 and the rather unsmooth connection between this point and

𝜃 = 0 does not appear to be trustworthy as well.

Let us now check the accuracy of the different models at intermediate WDM temperatures. As a reference, we use the recent

accurate QMC results for the macroscopic UEG by Dornheim et al.,[27] that is, the red squares. For rs = 1, the semi-analytic

expression by Ebeling (blue) exhibits the largest deviations exceeding Δfxc∕fxc = 25% for 𝜃 ∼ 1. For lower density, rs = 6, the

Ebeling parameterization is significantly more accurate, although here, too, appear deviations of Δfxc∕fxc ∼ 10% to the exact

data at intermediate temperature. Therefore, this parameterization produces reliable data in the two limiting cases of zero and

high temperature, but is less accurate in between.

Next we consider the STLS curve (black). It is in very good agreement with the QMC data, and the error does not exceed

Δfxc∕fxc = 4% over the entire 𝜃 range for both depicted rs values. The largest deviations appear for intermediate temperatures

as well.

Third, we consider the VS model (yellow line). For rs = 1, the VS parameterization by Sjostrom and Dufty[54] exhibits the

same trends as the STLS curve, albeit with larger deviations, Δfxc∕fxc > 5%. Further, for rs = 6, f VS
xc exhibits much larger

deviations to the exact result and the error reaches Δfxc∕fxc ≈ 8%. Evidently, the constraint to automatically fulfill the CSR

does not improve the accuracy of other quantities, in particular the interaction energy V (which was used as an input for the

parameterization (see Section 2.3) or the static structure factor S(k) itself).

Fourth, the parameterization based on the classical mapping (PDW, light blue) exhibits somewhat opposite trends as compared

to Ebeling, STLS, and VS and predicts too large an exchange-correlation free energy for all 𝜃. The magnitude of the deviations

is comparable to VS and does not exceed Δfxc∕fxc = 5%.

Finally, we consider the recent parameterization by Karasiev et al. (KSDT, green),[38] which is based on RPIMC results[39].

For rs = 6, there is excellent agreement with the new reference QMC data with a maximum deviation ofΔfxc∕fxc ∼ 1% for 𝜃 = 4.

This is, in principle, expected since the main sources of error for their input data, that is, the nodal error and the insufficient

finite-size correction, are less important for larger rs. However, for rs = 1 there appear significantly larger deviations exceeding

Δfxc∕fxc = 5% at high temperature. In fact, for rs = 1 and the largest considered temperature, 𝜃 = 8, the KSDT parameterization

exhibits the largest deviations of all depicted parameterizations.
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FIGURE 1 Temperature dependence of fxc at fixed density rs = 1 (left) and rs = 6 (right). Top: Quantum Monte Carlo (QMC) data (symbols) taken from

Dornheim et al.,[27] a parameterization of RPIMC data by Karasiev, Sjostrom, Dufty, Trickey (KSDT),[38] a semi-analytic Padé approximation by Ebeling,[33]

a parameterization fitted to Singwi, Tosi, Land, and Sjölander (STLS) and Vashishta and Singwi (VS) data by Ichimaru[51] and Sjostrom and Dufty,[54]

respectively, and a fit to classical mapping data by Perrot and Dharma-wardana (PDW).[37] Bottom: Relative deviation to the QMC data.

3.2 Density dependence

As a complement to Section 3.1, in Figure 2 we investigate in more detail the density dependence of the different parameteri-

zations for two relevant temperatures, 𝜃 = 0.5 (left) and 𝜃 = 4 (right).

Most notably, the Ebeling and PDW parameterizations do not include the correct high-density (rs → 0) limit, that

is Equation 11, and therefore are not reliable for rs < 1. For 𝜃 = 0.5, f Ebeling
xc is in qualitative agreement with the correct results,

but the deviations rapidly increase with density and exceed Δfxc∕fxc = 10%, for rs = 1. At higher temperature, 𝜃 = 4, the

situation is worse, and the Ebeling parameterization shows systematic deviations over the entire density range. The STLS fit

displays a similarly impressive agreement with the exact data as for the 𝜃 dependence (cf. Figure 1), and the deviations do not

exceed Δfxc∕fxc ∼ 3% for both depicted 𝜃 values. On the other hand, the VS results are again significantly less accurate than

STLS although the deviation remains below Δfxc∕fxc = 8% for both temperatures. Further, we notice that the largest deviations

occur for rs ≥ 2, that is, toward stronger coupling, which is expected since here the pair distribution function exhibits unphysi-

cal negative values at short distance (see e.g., Ref. [54]). Again, the incorporation of the CSR has not improved the quality of

the interaction energy or the structure factor compared to STLS. The classical mapping data (PDW) does exhibit deviations not

exceeding Δfxc∕fxc = 5% for rs ≥ 1, that is, in the range where numerical data have been incorporated into the fit. Overall, the

quality of this parameterization is comparable to the VS curve although the relative deviation appears to be almost constant with

respect to the density. This is not surprising, as the approximation has not been conducted with respect to coupling (the effec-

tive classical system is solved with the hypernetted chain method, which is expected to be accurate in this regime) but, instead,

in the interpolation of the effective temperature Tc. Further, we notice a peculiar nonsmooth and almost oscillatory behavior of

f PDW
xc around rs = 5, which is more pronounced for 𝜃 = 0.5 and the origin of which remains unclear. Finally, we again consider
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al.,[27] a parameterization of RPIMC data by Karasiev, Sjostrom, Dufty, Trickey (KSDT),[38] a semi-analytic Padé approximation by Ebeling,[33] a

parameterization fitted to Singwi, Tosi, Land, and Sjölander (STLS) and Vashishta and Singwi (VS) data by Ichimaru[51] and Sjostrom and Dufty,[54]

respectively, and a fit to classical mapping data by Perrot and Dharma-wardana (PDW).[37] Bottom: Relative deviation to the QMC data.

the KSDT fit based on the RPIMC data by Brown et al. [39] (a similar analysis for more temperatures can be found by Dornheim

et al.[27]). For 𝜃 = 0.5, this parameterization is in excellent agreement with the reference QMC data and the deviations are in

the sub-percent regime over the entire depicted rs range. However, for larger temperatures there appear significant errors that,

at 𝜃 = 4, reach a maximum of Δfxc∕fxc ∼ 10% for rs = 0.1, that is, at parameters where STLS, VS, and PDW are in very good

agreement with the reference QMC data. Interestingly, these deviations vanish only for rs ≤ 10−4. Naturally, the inaccuracies

of the KSDT fit are a direct consequence of the systematic errors of the input data and the lack of accurate simulation data for

rs < 1, prior to Dornheim et al.[27]

4 DISCUSSION

In summary, we have compared five different parameterizations of the exchange-correlation free energy of the unpolarized

UEG to the recent QMC data by Dornheim et al.[27] and, thereby, have been able to gauge their accuracy with respect to 𝜃 and

rs over large parts of the WDM regime. We underline that all these parameterizations are highly valuable, the main merit being

their easy and flexible use and rapid evaluation. At the same time, an unbiased evaluation of their accuracy had not been done

and appears highly important, as this allows constraining the field of applicability of these models and indicating directions for

future improvements.

Summarizing our findings, we have observed that the semi-analytic parameterization by Ebeling[33] is mostly reliable in

the high and zero temperature limits but exhibits substantial deviations in between. The STLS fit given by Ichimaru and

coworkers[50,51], on the other hand, exhibits a surprisingly high accuracy for all investigated rs–𝜃 combinations with a typical
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relative systematic error of∼ 2%. The more recent VS results,[54] which automatically fulfill the CSR, display a qualitatively sim-

ilar behavior but are significantly less accurate everywhere. The classical mapping suggested by Perrot and Dharma-wardana[37]

constitutes an approximation rather with respect to temperature than to the coupling strength and, consequently, exhibits dif-

ferent trends. In particular, we have found that the relative systematic error is nearly independent of rs, but decreases with

increasing 𝜃 and eventually vanishes for 𝜃 → ∞. Overall, the accuracy of the PDW parameterization is comparable to VS and,

hence, inferior to STLS. Finally, the more recent fit by Karasiev et al. [38] to RPIMC data[39] is accurate for large rs and low

temperature, where the input data is not too biased by the inappropriate treatment of finite size errors in the underlying RPIMC

results. For higher temperatures (where the exchange-correlation free energy constitutes only a small fraction of the total free

energy), there occur relative deviations of up to ∼ 10%.

Thus we conclude that an accurate parameterization of the exchange-correlation free energy that is valid for all rs–𝜃 combi-

nations is presently not available. However, the recent QMC data by Dornheim et al.[27] most certainly constitute a promising

basis for the construction of such a functional. In the mean time, of all the considered parameterizations, KSDT appears to be

the most accurate at low 𝜃 and large rs while the STLS fit exhibits smaller deviations elsewhere. Further, thermal DFT cal-

culations in the local spin-density approximation require a parameterization of fxc also as a function of the spin polarization

𝜉 = (N↑−N↓)∕(N↑+N↓), that is, fxc(rs, 𝜃, 𝜉) for all WDM parameters. Obviously, this will require an extension of the QMC sim-

ulations beyond the unpolarized case, 𝜉 ∈ (0, 1]; in addition, reliable data for 𝜃 < 0.5 are indispensable. This work is presently

under way. We also note that the quality of the currently available KSDT fit for fxc(rs, 𝜃, 𝜉) remains to be tested for 𝜉 > 0. The

accuracy of this parameterization is limited by (a) the quality of the RPIMC data (for the spin-polarized UEG (𝜉 = 1), they are

afflicted with a substantially larger nodal error than for the unpolarized case that we considered in the present paper, see Ref.

[22]), and (b) by the quality of the PDW results[37] that have been included as the only input to the KSDT fit for 0 < 𝜉 < 1

at finite 𝜃. Therefore, we conclude that the construction of a new accurate function fxc(rs, 𝜃, 𝜉) is still of high importance for

thermal DFT and semi-analytical models, for comparisons with experiments, but also for explicitly time-dependent approaches

such as time-dependent DFT and quantum hydrodynamics.[60,61]
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