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The static density response of the uniform electron gas is of fundamental importance for numerous applications.
Here we employ the recently developed ab initio permutation blocking path integral Monte Carlo (PB-PIMC)
technique [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] to carry out extensive simulations of the
harmonically perturbed electron gas at warm dense matter conditions. In particular, we investigate in detail the
validity of linear response theory and demonstrate that PB-PIMC allows us to obtain highly accurate results
for the static density response function and, thus, the static local field correction. A comparison with dielectric
approximations to our new ab initio data reveals the need for an exact treatment of correlations. Finally, we
consider a superposition of multiple perturbations and discuss the implications for the calculation of the static
response function.
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I. INTRODUCTION

The uniform electron gas (UEG), which is composed of
Coulomb interacting electrons in a homogeneous neutralizing
background, is one of the most seminal model system in
quantum many-body physics and chemistry [1]. In addition
to the UEG’s importance for, e.g., the formulation of Fermi
liquid theory [2,3] and the quasiparticle picture of collective
excitations [4,5], accurate parametrizations of its ground-
state properties [6–10] based on ab initio quantum Monte
Carlo calculations [11–15] have been pivotal for the arguably
unrivaled success of density-functional-theory simulations of
real materials [16–18].

The density response of the UEG to a small external
perturbation as described by the density response function is
of high importance for many applications [2]. The well-known
random-phase approximation (RPA) [5] provides a qualitative
description for weak coupling strength (high density),

χRPA(q,ω) = χ0(q,ω)

1 − 4π
q2 χ0(q,ω)

, (1)

where χ0(q,ω) denotes the density response function of the
ideal (i.e., noninteracting) system. However, since Eq. (1) does
not incorporate correlations beyond the mean-field level, RPA
breaks down even for moderate coupling. This shortcoming is
usually corrected in the form of a local field correction (LFC)
G(q,ω) [19], modifying Eq. (1) to

χLFC(q,ω) = χ0(q,ω)

1 − 4π
q2 [1 − G(q,ω)]χ0(q,ω)

. (2)

Hence, by definition, the exact LFC contains all exchange-
correlation effects beyond RPA. Common approximations
for G include the approaches by Singwi-Tosi-Land-Sjölander
(STLS) [20] and Vashishta and Singwi (VS) [21]. It is
important to note that the accurate determination of G(q,ω)
is an important end in itself as it can be straightforwardly
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utilized as input for other calculations. For example, it is
directly related to the XC kernel

Kxc(q,ω) = −4π

q2
G(q,ω) (3)

of density functional theory in the adiabatic-connection
fluctuation-dissipation formulation [22–24]. This allows for
the construction of a true nonlocal XC functional, which is
a promising approach to go beyond the ubiquitous gradient
approximations [18,25] and thereby increase the predictive
capabilities of DFT. Further applications of the LFCs for
current warm dense matter (WDM, see below) research include
the calculation of the dynamic structure factor [26–29] as it
can be obtained with x-ray Thomson scattering from a variety
of systems, energy transfer rates [30,31], the electrical and
optical conductivity [32,33], and equation of state models of
ionized plasmas [34–36]. Finally, we mention the construction
of effective potentials both for WDM [37,38] and beyond
[39,40].

In the ground state, Moroni et al. [41] obtained accurate
QMC results for the static response function [i.e., ω → 0,
see Eq. (27)]—and thereby the static LFC—by simulating
an electron gas with a weak external harmonic perturbation
[42–45]. This has allowed for a systematic assessment of the
accuracy of previous approximations. Further, the ab initio
data for the LFC have subsequently been parametrized by
Corradini et al. [46], and the zero temperature limit of the
static density response is well understood.

However, recently there has emerged a growing interest
in matter under extreme conditions, i.e., at high density
and temperature, which occurs in astrophysical objects such
as brown dwarfs and planet interiors [47,48]. Furthermore,
similar conditions are now routinely realized in experiments
with laser excited solids [49] or inertial confinement fusion
targets [50–53]. This “warm dense matter” (WDM) regime is
characterized by two parameters being of the order of unity
[54]: (i) the Wigner-Seitz radius rs = r/aB and (ii) the reduced
temperature θ = kBT /EF , where r , aB and EF denote the
mean interparticle distance, Bohr radius, and Fermi energy
[55], respectively. Naturally, accurate data for the static LFC
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at such extreme conditions are highly desirable. In fact, in lieu
of thermodynamic data often ground-state results are used at
WDM conditions, which might not be appropriate [54].

Yet, a theoretical description of warm dense electrons
is notoriously hard since it must account for the nontrivial
interplay of (a) the strong quantum Coulomb collisions, (b)
excitation effects due to the high temperature, and (c) quantum
degeneracy effects (e.g. fermionic exchange). In particular,
conditions (a) and (b) rule out perturbation expansions and
ground-state methods, respectively, leaving thermodynamic
quantum Monte Carlo methods as the most promising option.
Unfortunately, QMC simulations of degenerate electrons
suffer from the fermion sign problem (FSP) [56,57] so that
the widespread path integral Monte Carlo (PIMC) approach
[58] is limited to small system sizes and high temperatures,
preventing simulations under WDM conditions [59]. Despite
its remarkable success in the ground state, at finite temperature,
the fixed node approximation [60,61] (which avoids the FSP)
can lead to systematic errors exceeding 10% [62]. This unsat-
isfactory situation has sparked remarkable progress in the field
of fermionic QMC simulations. In particular, the joint usage of
two novel complementary approaches (in combination with an
improved finite-size correction [63]) has recently allowed us to
obtain the first complete ab initio description of the warm dense
electron gas [63,64]: (i) At high density and weak to moderate
coupling, the configuration PIMC (CPIMC) approach [65–67],
which is formulated in Fock space and can be understood as a
Monte Carlo calculation of the (exact) perturbation expansion
around the ideal system, is capable to deliver exact results
over a broad temperature range. (ii) The permutation blocking
PIMC (PB-PIMC) approach [68–70] extends standard PIMC
towards higher density and lower temperature and allows for
accurate results in large parts of the WDM regime. In this
work, we use the latter method to carry out simulations of the
harmonically perturbed electron gas under warm dense matter
conditions.

A brief introduction of the UEG model (Sec. II A) is
followed by a comprehensive introduction to fermionic QMC
simulations at finite temperature. In particular, we explain
how the antisymmetry of the density operator leads to the
fermion sign problem in standard PIMC (Sec. II B 1) and
how this is addressed by the idea of permutation blocking
(Sec. II B 2). Further, we give a concise overview of linear
response theory and how the static density response can be
obtained by simulating the harmonically perturbed system
(Sec. II C). In Sec. III, we show extensive PB-PIMC results
to investigate the dependence on the perturbation strength
(Sec. III A), the convergence with the number of imaginary
time propagators (Sec. III B), and the wave-vector dependence
(Sec. III C), which also allows to address possible finite-size
effects. Finally, in Sec. III E we consider the response to a
superposition of multiple perturbations with different wave
vectors and the resulting implications for the calculation of χ .

II. THEORY

A. Uniform electron gas

The uniform electron gas is a model system of N electrons
in a positive homogeneous background that ensures charge

neutrality. Throughout this work, we assume an unpolarized
(paramagnetic) system, i.e., N↑ = N↓ = N/2 [with ↑ (↓)
denoting the number of spin-up (-down) electrons] and, thus,

ξ = N↑ − N↓

N
= 0. (4)

To alleviate the differences between a finite model system
and the thermodynamic limit (finite-size effects), we employ
Ewald summation for the repulsive pair interaction. Therefore,
the Hamiltonian (in Hartree atomic units) is given by

Ĥ = −1

2

N∑
i=1

∇2
i + 1

2

N∑
i=1

N∑
j �=i

�E(ri ,rj ) + N

2
ξM, (5)

where �E(r,s) and ξM denote the Ewald pair potential and the
well-known Madelung constant, see, e.g., Ref. [71].

B. Quantum Monte Carlo

1. Path-integral Monte Carlo

Throughout the entire work, we consider the canonical
ensemble where the volume V = L3 (with L being the box
length), particle number N , and inverse temperature β =
1/kBT are fixed. To derive the path integral Monte Carlo
formalism [58], we consider the partition function

Z = Trρ̂, (6)

which is defined as the trace over the canonical density
operator ρ̂

ρ̂ = e−βĤ . (7)

Let us temporarily restrict ourselves to distinguishable parti-
cles and rewrite Eq. (6) in coordinate representation:

Z =
∫

dR 〈R| e−βĤ |R〉 , (8)

where R = {r1, . . . ,rN } contains the all 3N particle coordi-
nates. Since the matrix elements of ρ̂ are not readily known,
we use the group property

e−βĤ =
P−1∏
α=0

e−εĤ , (9)

with ε = β/P and α labeling the P identical factors. Fur-
thermore, we insert P − 1 unity operators of the form 1̂ =∫

dRα |Rα〉 〈Rα| into Eq. (8) and obtain

Z =
∫

dX 〈R0| e−εĤ |R1〉 〈R1| . . .

|RP−1〉 〈RP−1| e−εĤ |R0〉 , (10)

and the integration is carried out over P sets of particle
coordinates, dX = dR0 . . . dRP−1. We stress that Eq. (10) is
still exact. The main benefit of this recasting is that the new
expression involves P density matrix elements, but at a P times
higher temperature. Each of these high temperature factors can
now be substituted using some suitable high-T approximation,
e.g., the simple primitive factorization

e−εĤ ≈ e−εV̂ e−εK̂ , (11)
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with V̂ and K̂ being the operators for the potential and kinetic
contribution to the Hamiltonian, respectively, and which
becomes exact in the limit P → ∞ [72]. The resulting high-
dimensional integral is then evaluated using the Metropolis
algorithm [73] (we employ a simulation scheme based on the
worm algorithm [74,75]).

However, to simulate fermions we must extend the partition
function from Eq. (8) by the sum over all particle permutations,
which, for an unpolarized system, gives

Z = 1

N↑!N↓!

∑
σ↑∈S

N↑

∑
σ↓∈S

N↓

sgn(σ ↑)sgn(σ ↓)

×
∫

dR 〈R| e−βĤ |π̂σ↑ π̂σ↓R〉 , (12)

with σ ↑,↓ denoting particular elements from the permutation
groups S

↑,↓
N and π̂σ↑,↓ being the corresponding permutation

operators. In practice, this leads to the occurrence of so-called
exchange cycles within the PIMC simulations, which are paths
incorporating more than a single particle, see Fig. 1. The
problem is that the sign of each configuration depends on the
parity of the permutations involved which can be both positive
and negative. Let {X} denote the set of all possible paths in
the QMC simulation. The partition function, Eq. (12), is then
given by

Z =
∫

{X}
dX W (X), (13)

where the so-called configuration weight W (X) can be neg-
ative. However, since a probability must be strictly positive,
we sample the paths according to the absolute values |W (X)|,
where the normalization of this modified configuration space
is given by

Z′ =
∫

{X}
dX |W (X)|. (14)

The correct fermionic expectation value of an arbitrary
observable Â is then computed as

〈A〉 = 〈Â Ŝ〉′

〈Ŝ〉′
, (15)

where 〈. . .〉′ denotes the expectation value corresponding to
Z′, and S(X) = W (X)/|W (X)| is the sign of the configuration
X. In particular, the denomininator in Eq. (15) is the so-called
average sign,

〈Ŝ〉′ = 1

Z′

∫
{X}

dX |W (X)|S(X). (16)

Note that the abbreviation S = 〈Ŝ〉′ is used henceforth through-
out this work.

At low temperature and high density, permutation cycles
with both positive and negative signs appear with a similar
frequency and, thus, both the enumerator and the denominator
in Eq. (15) vanish simultaneously. In this case, the signal-to-
noise ratio of the fermionic expactation value vanishes, leading
to an exponentially increasing statistical uncertainty [59]. This
is the notorious fermion sign problem [56,57], which limits
standard PIMC to weak degeneracy where fermionic exchange

FIG. 1. Screen shots of standard path integral Monte Carlo
simulations of the warm dense UEG for N = 19 spin-polarized
electrons, rs = 1, and P = 32, with θ = 8 (a), θ = 1 (b), and
θ = 0.3 (c).

plays only a minor role and, therefore, precludes its application
to warm dense matter [59]. This is illustrated in Fig. 1,
where we show random configurations from standard PIMC
simulations of the UEG with N = 19 spin-polarized electrons
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at a density parameter rs = 1 and three different temperatures.
Each particle is represented by P = 32 so-called beads, which
are connected by the (red) kinetic density matrix elements and
thus form the eponymous paths. At high temperature, θ = 8
[Fig. 1(a)], each particle is represented by a distinct, separate
path and exchange cycles occur only infrequently. Therefore,
the FSP is not severe and PIMC simulations are feasible. At
moderate, WDM temperatures [θ = 1, Fig. 1(b)], fermionic
exchange is influencing the system significantly, and multiple
exchange cycles are visible in the screenshot. Since each pair
exchange causes a sign change in the Monte Carlo simulation,
a standard PIMC simulation is no longer feasible. Finally, at
low temperature [θ = 0.3, Fig. 1(c)] nearly all particles are
involved in exchange cycles, and the system is dominated by
the antisymmetric nature of the electrons (i.e., Pauli blocking).

2. Permutation blocking

The fermion sign problem is NP -hard [57] and a general
solution is, at the time of this writing, not in sight. Therefore,
there does not exist a single QMC method that is applicable
for all parameters. Nonetheless, it is possible to go beyond
standard PIMC by employing the recently introduced permuta-
tion blocking PIMC approach [68,69]. The first key ingredient
is the usage of antisymmetric imaginary time propagators,
i.e., determinants, which allows for a combination of positive
and negative terms into a single configuration weight [76–78].
However, while this “permutation blocking” can indeed lead
to a significant reduction of the fermion sign problem, with
an increasing number of propagators P this advantage quickly
vanishes. For this reason, as the second key ingredient, we
utilize a higher-order factorization of the density matrix
[79,80]

e−εĤ ≈ e−v1εŴa1 e−t1εK̂e−v2εŴ1−2a1

×e−t1εK̂e−v1εŴa1 e−2t0εK̂ , (17)

which allows for sufficient accuracy even for a small number
of imaginary time slices, for the definitions of the coefficients
v1, t1, v2, a1, and t0, see Refs. [68,69]. The Ŵ operators
correspond to modified potential terms combining the standard
potential contribution V̂ with double commutator terms of the
form [80]

[[V̂ ,K̂],V̂ ] = h̄2

m

N∑
i=1

|Fi |2,

Fi = −∇iV (R), (18)

where Fi denotes the total force on a particle “i”. Finally, this
allows one to obtain the PB-PIMC partition function [70]

Z = 1

(N↑!N↓!)3P

∫
dX

×
P−1∏
α=0

(
e−εṼα e−ε3u0

h̄2

m
F̃αDα,↑Dα,↓

)
, (19)

with Ṽα and F̃α containing all contributions of the potential
energy and the forces, respectively, and the exchange-diffusion
functions

Dα,↑ = det(ρα,↑)det(ραA,↑)det(ραB,↑) ,

Dα,↓ = det(ρα,↓)det(ραA,↓)det(ραB,↓) . (20)

FIG. 2. Screen shot of a permutation blocking path integral Monte
Carlo simulation of the UEG with N = 9 spin-polarized electrons
with rs = 1, θ = 1, and P = 2 imaginary time propagators. The
green, blue, and purple points correspond to the three different kinds
of time slices, see Refs. [68–70].

Here ρα,↑ denotes the diffusion matrix of a single time slice

ρα,↑(i,j ) = λ−3
t1ε

∑
n

e
− π

λ2
t1ε

(rα,↑,j −rαA,↑,i+nL)2

, (21)

with λt1ε =
√

2πεt1h̄
2/m being the corresponding thermal

wavelength. Observe that Eq. (17) implies that there are three
imaginary time slices for each propagator α = 0, . . . ,P − 1,
with Rα , RαA, and RαB denoting the corresponding sets of
particle coordinates.

In a nutshell, in the PB-PIMC approach, we do not have to
explicitly sample each positive or negative permutation cycle.
Instead, we combine configuration weights with different
signs in the determinants, which results in an analytical
cancellation of terms and, thus, a significantly alleviated sign
problem. This is illustrated in Fig. 2, where we show a random
configuration from a PB-PIMC simulation of the warm dense
UEG with N = 9 spin-polarized electrons, rs = 1 and θ = 1
for P = 2. The green, blue, and purple beads correspond to
the three different kinds of imaginary time slices due to the
higher-order factorization of the density operator, cf. Eq. (17).
In contrast to the standard PIMC configurations from Fig. 1,
every bead can be involved in multiple connections here.
In fact, each bead is connected to all N beads on the next
and previous slices although the weight of the connection
exponentially decreases with spatial difference, which is
expressed by the different line widths of the (red) connections.
Evidently, many beads of the depicted screen shot exhibit
multiple visible connections, which means that a significant
amount of analytical cancellation is accomplished within the
determinants and, unlike standard PIMC, simulations are still
feasible [59].
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This permutation blocking is most effective when λt1ε is
comparable (or larger) than the mean interparticle distance.
However, for P → ∞ the beneficial effect vanishes and the
original sign problem from standard PIMC is recovered. This
plainly illustrates the paramount importance of a sophisticated
higher-order factorization scheme such as Eq. (17).

C. Linear response theory

In linear response theory (LRT), we consider the effect of
a small external perturbation on the density of the system of
interest

Ĥ = Ĥ0 + Ĥext(t). (22)

Note that, in general, Ĥext(t) is time dependent. Throughout
this work, the unperturbed Hamiltonian Ĥ0 corresponds to the
UEG as introduced in Eq. (5) and the perturbation is given by
a sinusoidal external charge density of wave vector q,

Ĥext(t) = 2A

N∑
i=1

cos(ri · q − � t), (23)

which corresponds to the potential

φext(r,t) = 2A cos(r · q − � t). (24)

The standard definition of the density response function is
given by

χ̃ (q,τ ) = −i

h̄
〈[ρ(q,τ ),ρ(−q,0)]〉0 �(τ ), (25)

where the expectation value is with respect to the unperturbed
system. Note that Eq. (25) only depends on the time difference
τ = t − t ′ and, due to the homogeneity of the unperturbed
system, χ only depends on the modulus of the wave vector.
The corresponding Fourier transform is given by

χ (ω,q) = lim
η→0

∫ ∞

−∞
dτ e(iω−η)τ χ̃(q,τ ). (26)

Throughout this work, we restrict ourselves to the static
limit [81] that is defined as

lim
ω→0

χ (ω,q) = χ (q), (27)

i.e., the response of the electron gas to a time-independent
external perturbation

φext(r) = 2A cos(r · q), (28)

and, henceforth, the ω dependence is simply dropped. More
precisely, the physical interpretation of χ (q) is the description
of the density response [i.e., the induced charge density ρind(q)]
due to the external charge density ρext(q)

ρind(q) = ρext(q)
4π

q2
χ (q). (29)

The external density follows from the Poisson equation as

ρext(r) = − 1

4π
∇2φext(r)

= q2

4π
φext(r) = q2

4π
2A cos(r · q) (30)

⇒ ρext(q) = q2

2π

A

(2π )3

∫
dr e−ik·r

(
eiq·r + e−iq·r

2

)

= q2A

4π
(δk,q + δk,−q), (31)

and the induced density is the difference between the perturbed
and unperturbed systems:

ρind(q) = 〈ρ̂q〉A − 〈ρ̂q〉0 = 1

V

〈
N∑

j=1

e−iq·rj

〉
A

, (32)

where we made use of the fact that 〈ρ̂q〉0 = 0. Thus, it holds

χ (q) = 1

A
〈ρ̂q〉A . (33)

In order to obtain the desired static density response func-
tion, we carry out multiple QMC simulations for each wave
vector q = 2πL−1(a,b,c)T (with a,b,c ∈ Z) for different
values of A and compute the expectation value from Eq. (32).
For sufficiently small A, 〈ρ̂q〉A is linear with respect to A with
χ (q) being the slope.

Another way to obtain the response function from the QMC
simulation of the perturbed system is via the perturbed density
profile in coordinate space:

〈n(r)〉A = n0 + 2A cos(q · r)χ (q). (34)

In practice, we compute the left-hand side of Eq. (34) using
QMC and perform a fit of the right-hand side with χ (q) being
the only free parameter. Naturally, in the linear response regime
both ways to obtain χ (q) are equal.

For completeness, we mention that the dynamic response
can be obtained in a similar fashion by considering explic-
itly time-dependent perturbations, e.g., using nonequilibrium
Green function techniques [82,83] for quantum systems or
molecular dynamics [84,85] in the classical case.

A second strategy to compute the density response from
thermodynamic QMC simulations in LRT is by considering
imaginary-time correlation functions (ITCF) of the unper-
turbed system. In particular, the static response function can
be obtained from the fluctuation dissipation theorem [43],

χ (q) = − 1

V

∫ β

0
dτ 〈ρ(q,τ )ρ(−q,0)〉0 , (35)

as an integral over the imaginary time τ . If one is solely
interested in the linear response of the system, then invoking
Eq. (35) constitutes the superior strategy since all q vectors
can be computed from a single simulation. However, this
requires a QMC estimation of the ITCF on a sufficient τ grid,
which is straightforward in standard PIMC where P > 100 is
not an obstacle. For PB-PIMC, simulations are only possible
for a small number of imaginary-time propagators (typically
P � 4), see Sec. II B 2, which precludes the evaluation of
Eq. (35). Nevertheless, we stress that it is only the permutation
blocking idea that allows us to carry out simulations at warm
dense matter conditions in the first place, since standard PIMC
simulations are not feasible due to the FSP. In addition, the
application of an external perturbation allows us to go beyond
LRT and to consider arbitrarily strong perturbation strengths.

III. RESULTS

A. Dependence on perturbation strength

Let us start our investigation of the harmonically perturbed
electron gas by considering the dependence on the perturbation
amplitude A. In Fig. 3, we show PB-PIMC results for the
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FIG. 3. Density profiles along the x direction for N = 54,
rs = 10, and θ = 1. Shown are PB-PIMC results for P = 4 with
q = 2πL−1(2,0,0)T and weak (a), medium (b), and strong (c)
perturbations. The black lines correspond to fits according to Eq. (34).

density profile along the x direction for N = 54 unpolarized
electrons at rs = 10 and θ = 1 for the perturbation wave vector
q = 2πL−1(2,0,0)T . In Fig. 3(a), the depicted A values are
relatively small. The black lines correspond to fits according

to Eq. (34). Evidently, for A = 0.001 and A = 0.005, those
curves are in perfect agreement with the QMC results, which
indicates that here the linear response theory is accurate. In
contrast, for A = 0.01 significant (although small, �A/A ∼
1%) deviations appear, which are most pronounced around the
minima and maxima. In Fig. 3(a), we systematically increase
A up to a factor two. Clearly, with increasing perturbation
amplitude, the deviations between the exact QMC results
and the cosine fit predicted by LRT become more severe,
as is expected. Finally, in Fig. 3(c) we show the density
profiles for even larger perturbations. Eventually, the external
potential becomes the dominating feature, resulting in a
strongly inhomogeneous electron gas. For the largest depicted
perturbation, A = 0.1, there appear two distinct shells with a
vanishing density in between.

To systematically investigate the effect of the perturbation
amplitude on our QMC estimation of the static response
function χ (q), we show results in Fig. 4 for the induced
density ρind(q) for the same system and two different wave
vectors, q = 2πL−1(qx,0,0)T with qx = 2 [Fig. 4(a)] and
qx = 1 [Fig. 4(b)]. The black squares correspond to the direct
QMC results, cf. Eq. (32), and the green crosses have been
obtained by performing a cosine fit to the density profiles
according to Eq. (34). The red lines depict a linear fit to the
black squares for A < 0.01. First and foremost, we observe
a perfect agreement between the direct QMC results and the
cosine fits for small A as predicted by the linear response
theory. Even for A = 0.01, where the cosine fit exhibits
significant deviations to the density profile from QMC, we
find perfect agreement between the black and green points and
also to the fit. With increasing A, however, the assumptions of
linear response theory are no longer valid. Interestingly, the ρ

values obtained from the cosine fit exhibit significantly larger
deviations to the linear response prediction (red line) than the
direct QMC results. For example, at A = 0.05 the deviation of
the green points is twice as large as for the black squares.

In Fig. 4(b), the same information is shown for a smaller
wave vector, qx = 1. First, we observe a significantly smaller
density response (cf. Fig. 8). This, in turn, means that linear
response theory is accurate up to much larger A values as the
system only weakly reacts to such an external perturbation.

To further illustrate this point, in Fig. 5(a) we show the
corresponding average signs from the QMC simulations for
both wave vectors investigated in Fig. 4. For small perturba-
tions, S is equal for both q and approaches the result for the
unperturbed system. With increasing A, the system becomes
more inhomogeneous, i.e., there appear regions of increased
(and also decreased) density, see Fig. 5(b), where we show
the corresponding density profiles for strong perturbations,
A = 0.1. This, in turn, leads to increased fermionic exchange,
resulting in a significantly decreased average sign in our
PB-PIMC simulations. Since the density response is more
pronounced for qx = 2, here S exhibits a faster decrease
in dependence of A. We conclude that PB-PIMC (and also
standard PIMC) simulations of the inhomogeneous electron
gas are significantly more computationally demanding than
simulations of the UEG at equal conditions. Nevertheless,
this is of no consequence for the determination of the static
response function as this is only possible for A values that are
sufficiently small for the linear response theory to deliver an
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FIG. 4. Induced density modulation for N = 54, rs = 10,
and θ = 1. Shown are PB-PIMC results for P = 4 with q =
2πL−1(qx,0,0)T [qx = 2 (a) and qx = 1 (b)] directly computed from
QMC, cf. Eq. (32), and from fits according to Eq. (34).

accurate description, i.e., systems that are close to the uniform
case.

B. Convergence with propagators

As discussed in Sec. II B 2, PB-PIMC crucially relies on the
higher-order factorization of the density operator, Eq. (17),
to allow for sufficient accuracy with only few imaginary
time propagators. In the following section, this situation is
investigated in detail.

In Fig. 6(a), we plot direct QMC results for the induced
density for the unpolarized UEG with rs = 10, θ = 1, and
N = 34 electrons versus the inverse number of propagators
P −1. The perturbation is given by the wave vector q =
2πL−1(1,0,0)T and amplitude A = 0.01, which is well within
the linear response regime. Evidently, only the result for ρ with
P = 2 propagators significantly deviates from the rest and,
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 0.001  0.01  0.1

(a)

S

A

  qx=1
qx=2

 0

 0.5

 1
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(b)
n/

n 0

x/L

  qx=1
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FIG. 5. Average sign for N = 54, rs = 10, and θ = 1 (a). Shown
are PB-PIMC results for P = 4 with q = 2πL−1(qx,0,0)T . Corre-
sponding density profiles along the x direction for A = 0.1 (b).

for the P = 4 propagators used above, the PB-PIMC results
are converged within the statistical uncertainty. Figure 6(b)
shows the corresponding density profiles along the x direction.
Here, even the results for only P = 2 propagators exhibits no
significant deviations to the other curves.

As a second example, in Fig. 7 we consider the same system
as in Fig. 6 but with N = 54 electrons and a larger wave
vector for the perturbation, q = 2πL−1(5,0,0)T . In Fig. 7(a),
we again show direct QMC results for ρ in dependence of the
inverse number of propagators. However, in contrast to the data
depicted in Fig. 6, here we see significant differences for differ-
ent P . The black line corresponds to a parabolic fit of the form

ρ(P −1) = a + b

P 2
, (36)

which reproduces all QMC results within error bars.
Nevertheless, we stress that the functional form in Eq. (36)
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FIG. 6. Convergence with number of propagators P for N =
34, rs = 10, and θ = 1 with a perturbation of wave vector q =
2πL−1(1,0,0)T and amplitude A = 0.01. Shown are QMC results for
the density matrix (a) and the density profile along the x direction (b).

has been empirically chosen and does merely serve as a guide
to the eye since, for large P , the propagator error is expected to
exhibit a fourth-order decay, see Ref. [80] for a comprehensive
discussion. Evidently, for P = 4 there occurs a systematic bias
of �ρ/ρ ≈ 2% at such a large wave vector. This is reflected
in the increasing error bars towards large q in the wave-vector
dependence plot, i.e., Fig. 8, and can be understood as
follows: The propagator error is a direct consequence of the
noncommuting of the kinetic (K̂) and potential (V̂ )
contributions of the Hamiltonian. The larger the wave vector
q, the faster the spatial variations of the external potential and,
because K̂ ∝ ∇2, the larger the error terms, which involve
nested commutators of K̂ and V̂ .

Figure 7(b) shows the corresponding results for the total
potential energy, i.e., the sum of the Ewald interaction and
the external perturbation. Evidently, no deviations can be
resolved within the given statistical uncertainty, even for
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(b)
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1/P

FIG. 7. Convergence with number of propagators P for N = 54,
rs = 10, and θ = 1 with the perturbation of wave vector q =
2πL−1(5,0,0)T and amplitude A = 0.01. Shown are QMC results
for the density matrix (a) and the potential energy, i.e., the sum of
Ewald interaction and external field (b).

P = 2 propagators. This is similar to previous findings for
the unperturbed UEG [69,70] and reflects the circumstance
that for V the particle interaction dominates. In stark contrast,
the induced density ρ is particularly sensitive to the small
external perturbation which, as explained above, requires a
larger number of propagators to be sufficiently incorporated.

C. Wave-vector dependence of χ (q) and finite-size effects

Due to the momentum quantization in a finite simulation
box, QMC calculations are only possible at an N -dependent
discrete q grid. Therefore, the investigation of finite-size
effects in the static response function requires us to obtain
results over a broad wave-vector range, as shown in Fig. 8.
The gray and red curves correspond to the predictions due
to the RPA, cf. Eq. (1), and with a LFC from the (finite-T )
STLS formalism [86,87], respectively. For small q, both
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FIG. 8. Wave-vector dependence of the static response function
for the unpolarized UEG at rs = 10 and θ = 1. Shown are QMC
results according to Eq. (33) for different particle numbers (symbols)
and the predictions from RPA (gray) and STLS (red). The black arrow
indicates the Fermi wave vector, kF = (9π/4)1/3/rs . Panel (b) shows
a magnified segment.

approximations exhibit the same exact parabolic behavior [88].
With increasing q, however, there appear significant systematic
deviations with a maximum of �χ/χ ∼ 50% around q ≈ 0.35
[i.e., around twice the Fermi vector kF = (9π/4)1/3/rs]. The
symbols correspond to our QMC results obtained according to
Eq. (33) and the colors distinguish different particle numbers,
in particular N = 54 (blue crosses), N = 34 (light blue
circles), N = 20 (yellow squares), N = 14 (black triangles),
and N = 8 (green diamonds). First and foremost, we note
that the main effect of different system size is the q grid,
while the functional form itself is remarkably well converged,
even for as few as N = 8 particles, cf. Fig. 8(b) showing a
magnified segment. This is similar to the analogous behavior of
the static structure factor S(q) of the warm dense UEG found in
Refs. [59,63]. Evidently, momentum shell effects as observed
at T = 0 in Refs. [41,44] do not appear above θ = 0.5. Second,
we find that the static local field correction due to the STLS
closure relation leads to a significant improvement compared
to RPA due to the improved treatment of correlations.

We thus conclude that our QMC approach allows us, for
the first time, to unambiguously assess the accuracy of the

-0.003

-0.002

-0.001

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6

kF

q

RPA
STLS

PB-PIMC
PIMC

FIG. 9. Wave-vector dependence of the static response function
for the unpolarized UEG at rs = 10 and θ = 4. Shown are QMC
results according to Eq. (33) for N = 8 electrons obtained from PB-
PIMC with P = 4 (black squares) and standard PIMC with P = 100
(green crosses). As a reference, we also show the predictions from
RPA (gray) and STLS (red).

multitude of existing and widely used dielectric approxima-
tions and, in addition, to provide highly accurate data, which
can subsequently be used as input for other theories. However,
a comprehensive study over a broad parameter range is beyond
the scope of this work and will be provided in a future
publication.

D. Comparison of PB-PIMC to standard PIMC

As an additional benchmark for the static response obtained
with PB-PIMC, in Fig. 9 we show χ (q) for the unpolarized
UEG with N = 8, rs = 10, and θ = 4. Since for such a
temperature fermionic exchange plays only a minor role, in
addition to PB-PIMC (green crosses) also standard PIMC
(black squares) calculations are feasible. Evidently, both
independent data sets are in excellent agreement over the
entire q range, as expected. In addition, we again show
results from RPA (gray) and STLS (red) and find qualitatively
similar behavior to Fig. 8. However, due to the 4 times higher
temperature correlations play a less important role, which
means that (i) RPA and STLS exhibit less deviations towards
each other and (ii) the density response from STLS is in
much better agreement with the QMC data. For completeness,
we note that a more meaningful assessment of the systemic
error due to the STLS approximation requires to eliminate the
possibility of finite-size effects in the QMC data (as done in
Fig. 8 at lower temperature, θ = 1) and, thus, to consider larger
particle numbers N .

E. Multiple q vectors from a single simulation

When we have to perform at least a single (or even
a few for different A) QMC simulation for each q value,
the investigation of the wave-vector dependence as depicted
in Fig. 8 is computationally quite involved. However, by
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FIG. 10. Density profile along x direction for N = 54, rs = 10,
and θ = 1 with a perturbation amplitude of A = 0.005. The green
squares correspond to a QMC simulation with a superposition of two
q vectors (qx = 1 and qx = 2), see Eq. (37), whereas the yellow and
red points have been obtained using two separate QMC simulations
each with a single perturbation. The black crosses correspond to a
superposition of the latter two. The blue lines have been reconstructed
from a fit to the green squares according to Eq. (38), i.e., by obtaining
both χ (q1) and χ (q2) from the density response of the system with
two simultaneous perturbations.

definition in linear response theory the response of a system to
multiple perturbations is described by a superposition of the
responses to each perturbation. Therefore, it should be possible
to obtain the response function for multiple q values from a
single QMC simulation where we apply a superposition of NA

harmonic perturbations,

Ĥext = 2
NA∑
k=1

[
Ak

N∑
i=1

cos(ri · qk)

]
. (37)

The induced density is then calculated for each wave vector
qk according to Eq. (32). Furthermore, the density profile in
coordinate space is given by

〈n(r)〉A = n0 + 2
NA∑
k=1

[Akcos(r · qk)χ (qk)], (38)

which means that we have to perform a fit where the free
parameters are given by the NA values of χ (qk).

In Fig. 10, we show QMC results for the density profile
in the x direction for N = 54, rs = 10, and θ = 1. The green
squares have been obtained from a simulation with a superpo-
sition of NA = 2 perturbations with q1 = 2πL−1(1,0,0)T and
q2 = 2πL−1(2,0,0)T and A1 = A2 = 0.005, i.e., an amplitude
that is expected to be well within the linear response regime.
As a comparison, the yellow and red points correspond to the
QMC results with a single perturbation with qx = 1 (yellow)
and qx = 2 (red). Further, the black crosses have been obtained
as a superposition of the latter and are in perfect agreement
with the green squares. This is a strong indication that the
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FIG. 11. Induced density for N = 54, rs = 10, and θ = 1 for a
perturbation of wave vector q = 2πL−1(qx,0,0)T . The blue crosses
have been obtained from a QMC simulation with a single perturbation,
whereas the green squares and red circles correspond to the direct
and cosine-fit results from the simulation with a double perturbation.
Finally, the black lines has been obtained by a linear fit to the green
squares.

linear response is still valid for multiple perturbations under the
present conditions. In addition, we have fitted the right-hand
side of Eq. (38) to the green squares and in this way obtained
χ (qk) for both qk values. This, in turn, allows us to reconstruct
the density response of the system to a perturbation with only
a single qk value, i.e., the blue curves. Again, we find excellent
agreement to the corresponding QMC simulations.

To further pursue this point, in Fig. 11 we show the induced
density matrix for different amplitudes A. The green squares
and red circles have been obtained from a simulation with
two qk vectors and correspond to the direct QMC estimate
and the cosine fit according to Eq. (38), respectively. The blue
crosses have been obtained from the QMC simulation with
only a single harmonic perturbation and the red line depicts a
linear fit. Evidently, all points are in excellent agreement for
all A values both for qx = 1 (panel a) and qx = 2 [Fig. 11(b)].
Therefore, we conclude that it is indeed possible to obtain
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FIG. 12. Perturbation strength dependence for a combination of
three wave vectors qi = 2πL−1(qx,i ,0,0) with qx,1 = 1, qx,2 = 2,
and qx,3 = 3. The black squares correspond to direct QMC results
according to Eq. (32), the green crosses to direct QMC results from
a simulation with a single perturbation, and the red line to a fit in the
linear response regime.

multiple values of the static density response function χ (q)
simultaneously.

Finally, to investigate the perturbation strength dependence
for a QMC simulation with a superposition of multiple q vec-
tors in more detail, we consider a combination of NA = 3 per-
turbations with q1 = 2πL−1(1,0,0)T , q2 = 2πL−1(0,2,0)T ,
and q3 = 2πL−1(0,0,3)T and equal amplitude, A1 = A2 =
A3, over a broad A range. The results are shown in Fig. 12
where direct QMC results for the induced density matrix are
shown both from the simulation with the superposition (black
squares) and, as a reference, from a simulation with only
a single perturbation (green crosses). As usual, the red line
corresponds to a linear fit within the linear response regime.
For both qx = 1 [Fig. 12(a)] and qx = 2 [Fig. 12(b)] we
observe that the linear response is accurate up to larger A.

This is expected, since the more perturbations we apply at the
same time, the more inhomogeneous the system becomes and,
thus, the stronger the total perturbation will be. Further, we
note that this effect is more pronounced for qx = 2. This is
again a consequence of the larger χ (q) value which implies
that the density response is even larger in this case.

In a nutshell, we find that, while it is possible to obtain
multiple q values of the response function within a single QMC
simulation, this comes at the cost that the linear response is
valid only up to smaller perturbation amplitudes A. However,
the smaller A, the larger the relative statistical uncertainty
of the induced density, which means that there is a trade-
off between more Monte Carlo steps for a simulation with
multiple q vectors or multiple QMC simulations with only a
single perturbation and fewer MC steps. In practice, applying
a superposition of NA ≈ 3 perturbations is reasonable.

IV. SUMMARY AND DISCUSSION

In summary, we have carried out extensive permutation
blocking PIMC simulations of a harmonically perturbed
electron gas to investigate the static density response at warm
dense matter conditions. To investigate the dependence of the
response on the perturbation strength, we varied the amplitude
A over three orders of magnitude. For small A, linear response
theory is accurate and both ways to obtain the response
function χ (q) [i.e., Eqs. (33) and (34)] give equal results. With
increasing A, the system becomes strongly inhomogeneous,
which leads to a significantly increased sign problem due
to the regions with increased density. The second important
issue investigated in this work is the convergence of the
PB-PIMC results for χ (q) with the number of propagators
P . For small to medium q, we find that P = 4 propagators
are sufficient at WDM conditions, which agrees with previous
findings for the uniform system [69,70]. However, for large
q, the external potential exhibits fast spatial variations, which
lead to increased commutator errors and thus require a larger
number of propagators to achieve the same level of accuracy.
For the largest considered wave vector, q = 2πL−1(5,0,0)T ,
at θ = 1, rs = 10, and N = 54, we find a propagator error of
�χ/χ ∼ 2%. The main effect of system size on the QMC
results for the static response function is given by the different
q grid (which is a consequence of momentum quantization in a
finite box), whereas the functional form of χ (q) is remarkably
well converged even for small particle numbers. This is in stark
contrast to previous findings at zero temperature [41,44] and
can be ascribed to the absence of momentum shell effects at
WDM conditions.

Our first brief comparison of the wave-vector dependence
of χ (q) computed from QMC to the approximate results
from RPA and STLS for rs = 10 and θ = 1 reveals the
stark breakdown of the former when coupling effects are
non-negligible. The LFC from the STLS closure relation,
on the other hand, constitutes a significant improvement,
although there remain significant deviations at intermediate
q values. Finally, we have investigated the possibility to
obtain the static response function at multiple wave vectors
from a single QMC simulation. As predicted by the linear
response theory, we found that the density response of the
electron gas to a superposition of NA external harmonic
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perturbations is given by a linear combination of the responses
to each of the perturbations. Unfortunately, however, this
means that the linear response is valid only up to smaller
perturbation amplitudes A as the system becomes increasingly
inhomogeneous for multiple NA. Thus, there is a trade-off
between NA and A, and applying a superposition of NA = 3
perturbations is a reasonable strategy.

As mentioned in the Introduction, accurate QMC results
for the static density response function—and, thus, for the
static local field correction—are of high importance for
contemporary warm dense matter research. Based on the
findings of this work, the construction of a comprehensive
set of QMC results for χ (q) over the entire relevant rs range
and temperatures θ � 0.5 appears to be within reach. First
and foremost, this will allow one to systematically benchmark
previous approximate results for the warm dense UEG, such
as STLS [86,87] (and “dynamic STLS” [89,90]), VS [87,91],
or the recent improved LFC by Tanaka [92] that is based on the
hypernetted chain equation, as well as semiempirical quantum

classical mappings [93,94]. Furthermore, the construction of
an accurate parametrization of G(q; rs,θ ) with respect to rs

and θ at WDM conditions [95–97] is highly desirable due to
its utility for, e.g., new DFT exchange-correlations functionals
[22–24], the description of Thomson scattering experiments
[26,27], and the construction of pseudopotentials [37–39].
Finally, accurate QMC results for the (weakly and strongly)
inhomogeneous electron gas can be used as a highly needed
benchmark for different exchange-correlation functionals that
are used at WDM conditions [25,64,98–102].
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