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Warm dense matter is one of the most active frontiers in plasma physics due to its relevance for

dense astrophysical objects and for novel laboratory experiments in which matter is being strongly

compressed, e.g., by high-power lasers. Its description is theoretically very challenging as it con-

tains correlated quantum electrons at finite temperature—a system that cannot be accurately mod-

eled by standard analytical or ground state approaches. Recently, several breakthroughs have been

achieved in the field of fermionic quantum Monte Carlo simulations. First, it was shown that exact

simulations of a finite model system (30…100 electrons) are possible, which avoid any simplifying

approximations such as fixed nodes [Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)]. Second, a

novel way to accurately extrapolate these results to the thermodynamic limit was reported by

Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. As a result, now thermodynamic results for

the warm dense electron gas are available, which have an unprecedented accuracy on the order of

0.1%. Here, we present an overview on these results and discuss limitations and future directions.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977920]

I. INTRODUCTION

The uniform electron gas (UEG) (i.e., electrons in a uni-

form positive background) is inarguably one of the most fun-

damental systems in condensed matter physics and quantum

chemistry.1 Most notably, the availability of accurate quan-

tum Monte Carlo (QMC) data for its ground state proper-

ties2,3 has been pivotal for the success of the Kohn-Sham

density functional theory (DFT).4,5

Over the past few years, interest in the study of matter

under extreme conditions has grown rapidly. Experiments

with not only inertial confinement fusion targets6–8 and

laser-excited solids9 but also astrophysical applications such

as planet cores and white dwarf atmospheres10,11 require a

fundamental understanding of the warm dense matter

(WDM) regime, a problem now at the forefront of plasma

physics and materials science. In this peculiar state of matter,

both the dimensionless Wigner-Seitz radius rs ¼ �r=a0 (with

the mean interparticle distance �r and Bohr radius a0) and the

reduced temperature h ¼ kBT=EF (EF being the Fermi

energy) are of order unity, implying a complicated interplay

of quantum degeneracy, coupling effects, and thermal excita-

tions. Because of the importance of thermal excitation, the

usual ground-state version of DFT does not provide an

appropriate description of WDM. An explicitly thermody-

namic generalization of DFT12 has long been known in prin-

ciple but requires an accurate parametrization of the

exchange-correlation free energy (fxc) of the UEG over the

entire warm dense regime as an input.13–17

This seemingly manageable task turns out to be a major

obstacle. The absence of a small parameter prevents a low-

temperature or perturbation expansion, and consequently,

Green function techniques in the Montroll-Ward and e4

approximations18,19 break down. Further, the linear response

theory within the random phase approximation20,21 (RPA)

and also with the additional inclusion of static local field cor-

rections as suggested by, e.g., Singwi, Tosi, Land, and

Sj€olander22–24 (STLS) and Vashista and Singwi24,25 (VS), is

not reliable. Quantum classical mappings26,27 are exact in

some known limiting cases but constitute an uncontrolled

approximation in the WDM regime.

The difficulty of constructing a quantitatively accurate

theory of WDM leaves thermodynamic QMC simulations as

the only available tool to accomplish the task at hand.

However, the widely used path integral Monte Carlo28

(PIMC) approach is severely hampered by the notorious fer-

mion sign problem29,30 (FSP), which limits simulations to

high temperatures and low densities and precludes applica-

tions to the warm dense regime. In their pioneering work,

Brown et al.31 circumvented the FSP by using the fixed-node

approximation32 (an approach hereafter referred to as

restricted PIMC, RPIMC), which allowed them to present

the first comprehensive results for the UEG over a wide tem-

perature range for rs � 1.

Although these data have subsequently been used to con-

struct the parametrization of fxc required for thermodynamic

DFT (see Refs. 24, 33, and 34), their quality has been called

into question. First, RPIMC constitutes an uncontrolled

approximation,35–38 which means that the accuracy of the

results for the finite model system studied by Brown et al.31

was unclear. This unsatisfactory situation has sparked remark-

able recent progress in the field of fermionic QMC.39–50 In
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particular, a combination of two complementary QMC

approaches51,52 has recently been used to simulate the warm

dense UEG without nodal restrictions,42 revealing that the

nodal constraints in RPIMC cause errors exceeding 10%.

Second, Brown et al.31 extrapolated their QMC results for

N¼ 33 spin-polarized (N¼ 66 unpolarized) electrons to the

macroscopic limit by applying a finite-T generalization of the

simple first-order finite-size correction (FSC) introduced by

Chiesa et al.53 for the ground state. As we have recently

shown,47 this is only appropriate for low temperature and

strong coupling and, thus, introduces a second source of the

systematic error.

In this paper, we give a concise overview of the current

state of the art of quantum Monte Carlo simulations of the

warm dense electron gas and present new results regarding

the extrapolation to the thermodynamic limit (TDL). Further,

we discuss the remaining open questions and challenges in

the field.

After a brief introduction to the UEG model (II), we

introduce various QMC techniques, starting with the stan-

dard path integral Monte Carlo approach (A) and a discus-

sion of the origin of the FSP (B). The sign problem can be

alleviated using the permutation blocking PIMC (PB-PIMC,

C) method, the configuration PIMC algorithm (CPIMC, D),

or the density matrix QMC (DMQMC, E) approach. In com-

bination, these tools make it possible to obtain accurate

results for a finite model system over almost the entire warm

dense regime (IV). The second key issue is the extrapolation

from the finite to the infinite system, i.e., the development of

an appropriate finite-size correction,47,53–57 which is dis-

cussed in detail in Sec. V. Finally, we compare our QMC

results for the infinite UEG to other data (2) and finish with

some concluding remarks and a summary of open questions.

II. THE UNIFORM ELECTRON GAS

A. Coordinate representation of the Hamiltonian

Following Refs. 44 and 54, we express the Hamiltonian

(using Hartree atomic units) for N ¼ N" þ N# unpolarized

electrons in coordinate space as

Ĥ ¼ � 1

2

XN

i¼1

r2
i þ

1

2

XN

i¼1

XN

j 6¼i

W ri; rjð Þ þ
N

2
nM ; (1)

with the well-known Madelung constant nM and the periodic

Ewald pair interaction

W r; sð Þ ¼
1

X

X
G 6¼0

e�p2G2=j2

e2piG r�sð Þ

pG2

� p
j2X
þ
X

R

erfc jjr� sþ Rjð Þ
jr� sþ Rj : (2)

Here, R ¼ n1L and G ¼ n2=L denote the real and reciprocal

space lattice vectors, respectively, with n1 and n2 three-

component vectors of integers, L the box length, X ¼ L3 the

box volume, and j the usual Ewald parameter.

B. Hamiltonian in second quantization

In second quantized notation using a basis of spin-

orbitals of plane waves, hrr jkirii ¼ 1
L3=2 eiki�rdr;ri

, with ki

¼ 2p
L mi; mi 2 Z3 and ri 2 f"; #g, the Hamiltonian, Eq. (1),

becomes

Ĥ ¼ 1

2

X
i

k2
i â†

i âi þ
X

i < j; k < l
i 6¼ k; j 6¼ l

w�ijklâ
†
i â†

j âlâk þ
N

2
nM: (3)

The antisymmetrized two-electron integrals take the form

w�ijkl ¼ wijkl � wijlk, where

wijkl ¼
4pe2

L3 ki � kkð Þ2
dkiþkj;kkþkl

dri;rk
drj;rl

; (4)

and the Kronecker deltas ensure both momentum and spin

conservation. The first (second) term in the Hamiltonian, Eq.

(3), describes the kinetic (interaction) energy. The operator

â†
i (âi) creates (annihilates) a particle in the spin-orbital

jkirii.

III. QUANTUM MONTE CARLO

A. Path integral Monte Carlo

Let us consider N spinless distinguishable particles in

the canonical ensemble, with the volume X, the inverse tem-

perature b ¼ 1=kBT, and the density N=X being fixed. The

partition function in coordinate representation is given by

Z ¼
ð

dR hRje�bĤ jRi; (5)

where R ¼ fr1;…; rNg contains all 3N particle coordinates,

and the Hamiltonian Ĥ ¼ K̂ þ V̂ is given by the sum of a

kinetic and a potential part, respectively. Since the low-

temperature matrix elements of the density operator,

q̂ ¼ e�bĤ , are not readily known, we exploit the group prop-

erty e�bĤ ¼ e��Ĥ
� �P

, with � ¼ b=P and positive integers P.

Inserting P – 1 unities of the form 1̂ ¼
Ð

dRa jRiahRja into

Eq. (5) leads to

Z ¼
ð

dX hR0je��Ĥ jR1ihR1j…jRP�1ihRP�1je��Ĥ jR0i
� �

¼
ð

dX W Xð Þ: (6)

We stress that Eq. (6) is still exact and constitutes an integral

over P sets of particle coordinates (dX ¼ dR0…dRP�1), the

integrand being a product of P density matrices, each at P
times the original temperature T. Despite the significantly

increased dimensionality of the integral, this recasting is

advantageous as the high temperature matrix elements can

easily be approximated, most simply with the primitive

approximation, e��Ĥ � e��K̂ e��V̂ , which becomes exact for

P!1. In a nutshell, the basic idea of the path integral

Monte Carlo method28 is to map the quantum system onto a

classical ensemble of ring polymers.58 The resulting high
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dimensional integral is evaluated using the Metropolis algo-

rithm,59 which allows one to sample the 3PN-dimensional

configurations X of the ring polymer according to the corre-

sponding configuration weight W Xð Þ.

B. The fermion sign problem

To simulate N spin-polarized fermions, the partition

function from the previous Section III A has to be extended

to include a sum over all N! permutations of particles:

Z ¼ 1

N!

X
s2SN

sgn sð Þ
ð

dR hRje�bĤ jp̂sRi; (7)

where p̂s denotes the exchange operator corresponding to the

element s from the permutation group SN. Evidently, Eq. (7)

constitutes a sum over both positive and negative terms, so

that the configuration weight function W Xð Þ can no longer

be interpreted as a probability distribution. To allow fermi-

onic expectation values to be computed using the Metropolis

Monte Carlo method, we introduce the modified partition

function

Z0 ¼
ð

dX jW Xð Þj; (8)

and compute fermionic observables as

hOi ¼ hOSi0

hSi0
; (9)

with averages taken over the modified probability distribu-

tion W0 Xð Þ ¼ jW Xð Þj and S ¼ W Xð Þ=jW Xð Þj denoting the

sign. The average sign, i.e., the denominator in Eq. (9), is a

measure for the cancellation of positive and negative contri-

butions and exponentially decreases with inverse tempera-

ture and system size, hSi0 / e�bN f�f 0ð Þ, with f and f 0 being

the free energy per particle of the original and the modified

system, respectively. The statistical error of the Monte Carlo

average value DO is inversely proportional to hSi0

DO

O
/ 1

hSi0
ffiffiffiffiffiffiffiffiffi
NMC

p / ebN f�f 0ð Þffiffiffiffiffiffiffiffiffi
NMC

p : (10)

The exponential increase in the statistical error with b and N
evident in Eq. (10) can only be compensated by increasing

the number of Monte Carlo samples, but the slow 1=
ffiffiffiffiffiffiffiffiffi
NMC

p

convergence soon makes this approach unfeasible. This is

the notorious fermion sign problem,29,30 which renders stan-

dard PIMC unfeasible even for the simulation of small sys-

tems at moderate temperature.

C. Permutation blocking path integral Monte Carlo

To alleviate the difficulties associated with the FSP,

Dornheim et al.43,44,48 recently introduced a novel simulation

scheme that significantly extends fermionic PIMC simulations

towards lower temperature and higher density. This so-called

permutation blocking PIMC (PB-PIMC) approach combines

(i) the use of antisymmetrized density matrix elements, i.e.,

determinants;60–62 (ii) a fourth-order factorization scheme to

obtain accurate approximate density matrices for relatively

low temperatures (large imaginary-time steps);63–66 and (iii)

an efficient Metropolis Monte Carlo sampling scheme based

on the temporary construction of artificial trajectories.43

In particular, we use the factorization introduced in

Refs. 64 and 65

e��Ĥ � e�v1�Ŵ a1 e�t1�K̂ e�v2�Ŵ 1�2a1

� e�t1�K̂ e�v1�Ŵ a1 e�2t0�K̂ ; (11)

where the Ŵ operators denote a modified potential term,

which combines the usual potential energy V̂ with double

commutator terms of the form

V̂ ; K̂
� �

; V̂
� �

¼ �h2

m

XN

i¼1

jFij2; (12)

and, thus, requires the evaluation of all forces in the system.

Furthermore, for each high-temperature factor, there appear

three imaginary time steps. The final result for the partition

function is given by

Z ¼ 1

N!ð Þ3P

ð
dX
YP�1

a¼0

e��
~V ae��

3u0
�h2

m
~Fa

�

� det qað Þdet qaAð Þdet qaBð Þ
�
; (13)

where the determinants incorporate the three diffusion matri-

ces for each of the P factors44

qa i; jð Þ ¼ k�D
t1�

X
n

exp �p ra;j � raA;i þ nLð Þ2

k2
t1�

 !
: (14)

The key problem of fermionic PIMC simulations is the

sum over permutations, where each configuration can have a

positive or a negative sign. By introducing determinants, we

analytically combine both positive and negative contribu-

tions into a single configuration weight (hence the label

“permutation blocking”). Therefore, parts of the cancellation

are carried out beforehand, and the average sign of our simu-

lations [Eq. (9)] is significantly increased. Since this effect

diminishes with increasing P, we employ the fourth-order

factorization, Eq. (11), to obtain sufficient (although lim-

ited,44 jDVj=V � 0:1%) accuracy with only a small number

of high-temperature factors. PB-PIMC is a substantial

improvement over regular PIMC, but the determinants can

still be negative, which means that the FSP is not removed

by the PB-PIMC approach. To illustrate this point, in Fig. 1,

we show simulation results for the average sign (here

denoted as S) as a function of the density parameter rs for a

UEG simulation cell containing N¼ 33 spin-polarized elec-

trons subject to periodic boundary conditions. The red, blue,

and black curves correspond to PB-PIMC results for three

isotherms and exhibit a qualitatively similar behavior. At

high rs, fermionic exchange is suppressed by the strong

Coulomb repulsion, which means that almost all configura-

tion weights are positive and S is large. With increasing den-

sity, the system becomes more ideal and the electron wave
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functions overlap, an effect that manifests itself in an

increased number of negative determinants. Nevertheless,

the value of S remains significantly larger than zero, which

means that, for the three depicted temperatures, PB-PIMC

simulations are possible over the entire density range. In con-

trast, the green curve shows the density-dependent average

sign for standard PIMC simulations31 at h¼ 1 and exhibits a

significantly steeper decrease with density, limiting simula-

tions to rs � 4.

D. Configuration path integral Monte Carlo

For CPIMC,40,41 instead of performing the trace over

the density operator in the coordinate representation [see Eq.

(5)], we trace over Slater determinants of the form

jfngi ¼ jn1; n2;…i ; (15)

where, in the case of the uniform electron gas, ni denotes the

fermionic occupation number (ni 2 f0; 1g) of the i-th plane

wave spin-orbital jkirii. To obtain an expression for the par-

tition function suitable for Metropolis Monte Carlo, we split

the Hamiltonian into diagonal and off-diagonal parts, Ĥ ¼
D̂ þ Ŷ (with respect to the chosen plane wave basis, see Sec.

II), and explore a perturbation expansion of the density oper-

ator with respect to Ŷ

e�bĤ ¼ e�bD̂
X1
K¼0

ðb
0

ds1

ðb
s1

ds2…

ðb
sK�1

dsK

� �1ð ÞKŶ sKð ÞŶ sK�1ð Þ �… � Ŷ s1ð Þ ; (16)

with Ŷ sð Þ ¼ esD̂ Ŷe�sD̂ . In this representation, the partition

function becomes

Z ¼
X1
K ¼ 0

K 6¼ 1ð Þ

X
fng

X
s1…sK�1

ðb
0

ds1

ðb
s1

ds2…

ðb
sK�1

dsK

� �1ð ÞKe
�
PK
i¼0

Dfn ið Þg siþ1�sið ÞYK
i¼1

Yfn ið Þg;fn i�1ð Þg sið Þ : (17)

The matrix elements of the diagonal and off-diagonal opera-

tors are given by the Slater-Condon rules

Dfn ið Þg ¼
X

l

k2
l n ið Þ

l þ
X
l<k

w�lklkn ið Þ
l n ið Þ

k ; (18)

Yfn ið Þg;fn i�1ð Þg sið Þ ¼ w�si
�1ð Þasi ; (19)

asi
¼ a ið Þ

pqrs ¼
Xq�1

l¼p

n i�1ð Þ
l þ

Xs�1

l¼r

n ið Þ
l ; (20)

where the multi-index si ¼ pqrsð Þ defines the four orbitals in

which fn ið Þg and fn i�1ð Þg differ, and we note that p< q and

r< s. As in standard PIMC, each contribution to the partition

function (17) can be interpreted as a b�periodic path in

imaginary time, but the path is now in Fock space instead of

coordinate space. Evidently, the weight corresponding to any

given path (second line of Eq. (17)) can be positive or nega-

tive. Therefore, to apply the Metropolis algorithm, we have

to proceed as explained in Sec. III B and use the modulus of

the weight function as our probability density. In conse-

quence, the CPIMC method is also afflicted with the FSP.

However, as it turns out, the severity of the FSP as a function

of the density parameter is complementary to that of standard

PIMC, so that weakly interacting systems, which are the

most challenging for PIMC, are easily tackled using CPIMC.

For a detailed derivation of the CPIMC partition function

and the Monte Carlo steps are required to sample it see, e.g.,

Refs. 40–42, and 51.

E. Density matrix quantum Monte Carlo

Instead of sampling contributions to the partition func-

tion, as in path integral methods, DMQMC samples the

(unnormalized) thermal density matrix directly by expanding

it in a discrete basis of outer products of Slater determinants

q̂ ¼
X
fng;fn0g

qfng;fn0gjfngihfn0gj; (21)

where qfng;fn0g ¼ hfngje�bĤ jfn0gi. The density-matrix coef-

ficients qfng;fn0g appearing in Eq. (21) are found by simulat-

ing the evolution of the Bloch equation

dq̂
db
¼ � 1

2
q̂Ĥ þ Ĥq̂
� �

; (22)

which may be finite-differenced as

qfng;fn0g bþDbð Þ¼qfng;fn0g bð Þ�Db
X
fn00g

qfng;fn00g bð ÞHfn00g;fn0g
�

þHfng;fn00gqfn00g;fn0g bð Þ�: (23)

The matrix elements of the Hamiltonian are as given as in

Eqs. (18) and (19).

Following Booth and coworkers,67 we note that Eq. (23)

can be interpreted as a rate equation and can be solved by

evolving a set of positive and negative walkers, which sto-

chastically undergo birth and death processes that, on aver-

age, reproduce the full solution. The rules governing the

FIG. 1. Density dependence of the average sign of a PB-PIMC simulation of

the uniform electron gas. Also shown are standard PIMC data taken from

Ref. 31. Reproduced with permission from J. Chem. Phys. 143, 204101

(2015). Copyright 2014 AIP Publishing LLC.44
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evolution of the walkers, as derived from Eq. (23), can be

found elsewhere.45,67 The form of q̂ is known exactly at infi-

nite temperature (b¼ 0, q̂ ¼ 1̂), providing an initial condi-

tion for Eq. (22). For the electron gas, however, it turns out

that simulating a differential equation that evolves a mean-

field density matrix at inverse temperature b to the exact

density matrix at inverse temperature b is much more effi-

cient than solving Eq. (22), an insight that leads to the

“interaction picture” version of DMQMC39,46 used through-

out this work.

The sign problem manifests itself in DMQMC as an

exponential growth in the number of walkers required for the

sampled density matrix to emerge from the statistical

noise.67–70 Working in a discrete Hilbert space helps to reduce

the noise by ensuring a more efficient cancellation of positive

and negative contributions, enabling larger systems and lower

temperatures to be treated than would otherwise be possible.

Nevertheless, at some point, the walker numbers required

become overwhelming and approximations are needed.

Recently, we have applied the initiator approximation71–73 to

DMQMC (i�DMQMC). In principle, at least, this allows a

systematic approach to the exact result with an increasing

walker number. More details on the use of the initiator

approximation in DMQMC and its limitations can be found in

Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in

Fig. 2, we give a schematic overview of the parameter com-

binations where the different methods can be used to obtain

results in the thermodynamic limit (for a discussion of finite-

size corrections, see Sec. V) with a relative accuracy of

DV=V � 0:003. Standard PIMC (black) is only useful for

high temperatures and low densities where fermionic

exchange does not play an important role and, therefore,

does not give access to the WDM regime. PB-PIMC (green)

significantly extends the possible parameter combinations to

lower temperature (down to h ¼ 0:5 for rs � 1) and is avail-

able over the entire density range for h � 2. In contrast, both

CPIMC (red) and DMQMC (blue) are feasible for all h at

small rs and eventually break down with increasing rs due to

coupling effects. Despite their apparent similar range of

applicability, it turns out that CPIMC is significantly more

efficient at higher temperature, while DMQMC is superior at

low h.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the

warm dense electron gas in the thermodynamic limit is to

carry out accurate simulations of a finite model system. In

Fig. 3, we compare results for the density dependence of the

exchange correlation energy Exc of the UEG for N¼ 33 spin-

polarized electrons and two different temperatures. The first

results, shown as blue squares, were obtained with RPIMC31

for rs � 1. Subsequently, Groth, Dornheim, and co-work-

ers44,51 showed that the combination of PB-PIMC (red

crosses) and CPIMC (red circles) allows for an accurate

description of this system for h � 0:5. In addition, it was

revealed that RPIMC is afflicted with a systematic nodal error

for densities greater than the relatively low value at which

rs¼ 6. Nevertheless, the FSP precludes the use of PB-PIMC

at lower temperatures and, even at h ¼ 0:5 and rs¼ 2, the sta-

tistical uncertainty becomes large. The range of applicability

of DMQMC is similar to that of CPIMC, and the DMQMC

results (green diamonds) fully confirm the CPIMC results.39,46

Further, the introduction of the initiator approximation (i-

DMQMC) has made it possible to obtain results up to rs¼ 2

for h ¼ 0:5. Although i-DMQMC is, in principle, systemati-

cally improvable and controlled, the results suggest that the

initiator approximation may introduce a small systematic shift

at lower densities.

In summary, the recent progress in fermionic QMC

methods has resulted in a consensus regarding the finite-N
UEG for temperatures h � 0:5. However, there remains a

gap at rs � 2� 6 and h < 0:5 where, at the moment, no reli-

able data are available.

FIG. 2. Density-temperature-plane around the WDM regime. Shown are the

parameter combinations where standard PIMC (black), PB-PIMC (green),

CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-

dynamic limit with an accuracy of DV=V � 0:003.

FIG. 3. Exchange-correlation energy of N¼ 33 spin-polarized electrons as a

function of the density parameter rs for two isotherms. Shown are results

from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.

31, and DMQMC from Ref. 39. For h ¼ 0:5, all data have been shifted by

0.05 Hartree. In the case of DMQMC, the initiator approximation is used.
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V. FINITE SIZE CORRECTIONS

In this section, we describe in detail the finite-size cor-

rection scheme introduced in Ref. 47 and subsequently pre-

sent detailed results for two elucidating examples.

A. Theory

As introduced above (see Eq. (1) in Sec. II A), the poten-

tial energy of the finite simulation cell is defined as the inter-

action energy of the N electrons with each other, the infinite

periodic array of images, and the uniform positive back-

ground. To estimate the finite-size effects, it is more conve-

nient to express the potential energy in k-space. For the finite

simulation cell of N electrons, the expression obtained is a

sum over the discrete reciprocal lattice vectors G

VN

N
¼ 1

2X

X
G6¼0

SN Gð Þ � 1½ � 4p
G2
þ nM

2
; (24)

where S kð Þ is the static structure factor. In the limit as the

system size tends to infinity and nM ! 0, this yields the

integral

v ¼ 1

2

ð
k<1

dk

2pð Þ3
S kð Þ � 1½ � 4p

k2
: (25)

Combining Eqs. (24) and (25) yields the finite-size error for

a given QMC simulation

DVN

N
S kð Þ; SN kð Þ
� �

¼ v� VN

N

¼ 1

2

ð
k<1

dk

2pð Þ3
S kð Þ � 1ð Þ 4p

k2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
v

(26)

� 1

2L3

X
G6¼0

SN Gð Þ � 1ð Þ 4p
G2
þ nM

2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VN=N

:

(27)

The task at hand is to find an accurate estimate of the

finite-size error from Eq. (26), which, when added to the

QMC result for VN=N, gives the potential energy in the ther-

modynamic limit. As a first step, we note that the Madelung

constant may be approximated by55

nM �
1

L3

X
G 6¼0

4p
G2

e��G
2 � 1

2pð Þ3
ð

k<1
dk

4p
k2

e��k
2

; (28)

an expression that becomes exact in the limit as �! 0. The

Madelung term thus cancels the minus unity contributions to

both the sum and the integral in Eq. (27).

The remaining two possible sources of the finite-size

error in Eq. (26) are (i) the substitution of the static structure

factor of the infinite system S(k) by its finite-size equivalent

SN kð Þ and (ii) the approximation of the continuous integral

by a discrete sum, resulting in a discretization error. As we

will show in Sec. V B, SN kð Þ exhibits a remarkably fast con-

vergence with system size, which leaves explanation (ii). In

particular, about a decade ago, Chiesa et al.53 suggested that

the main contribution to Eq. (26) stems from the G ¼ 0 term

that is completely missing from the discrete sum. To remedy

this shortcoming, they made use of the random phase

approximation (RPA) for the structure factor, which

becomes exact in the limit k ! 0. The leading term in the

expansion of SRPA kð Þ around k¼ 0 is26

SRPA
0 kð Þ ¼ k2

2xp
coth

bxp

2


 �
; (29)

with xp ¼
ffiffiffiffiffiffiffiffiffi
3=r3

s

p
being the plasma frequency. The finite-T

generalization of the FSC introduced by Chiesa et al., hereaf-

ter called the BCDC-FSC, is31,47

DVBCDC Nð Þ ¼ lim
k!0

SRPA
0 kð Þ4p
2L3k2

¼ xp

4N
coth

bxp

2


 �
: (30)

Eq. (30) would be sufficient if (i) SRPA
0 kð Þ were accurate for

k � 2p=L and (ii) all contributions to Eq. (26) beyond the

G ¼ 0 term were negligible. As is shown in Sec. V B, both

conditions are strongly violated in parts of the warm dense

regime.

To overcome the deficiencies of Eq. (30), we need a

continuous model function Smodel kð Þ to accurately estimate

the discretization error from Eq. (27)

DVN Smodel kð Þ½ � ¼ DVN

N
Smodel kð Þ; Smodel kð Þ
� �

: (31)

A natural choice would be to combine the QMC results for

k � kmin, which include all short-ranged correlations and

exchange effects, with the STLS structure factor for smaller

k, which is exact as k! 0 and incorporates the long-ranged

behavior that cannot be reproduced using QMC due to the

limited size of the simulation cell. However, as we showed

in Ref. 47, a simpler approach using SSTLS kð Þ [or the full

RPA structure factor SRPA kð Þ] for all k is sufficient to accu-

rately estimate the discretization error.

B. Results

1. Particle number dependence

To illustrate the application of the different FSCs, Fig. 4

shows results for the unpolarized UEG at h¼ 2 and rs¼ 1.

The green crosses in panel (b) correspond to the raw, uncor-

rected QMC results that, clearly, are not converged with sys-

tem size N. The raw data points appear to fall onto a straight

line when plotted as a function of 1=N. This agrees with the

BCDC-FSC formula, Eq. (30), which also predicts a 1=N
behavior, and suggests the use of a linear extrapolation (the

green line). However, while the linear fit does indeed exhibit

good agreement with the QMC results, the computed slope

does not match Eq. (30). Further, the points that have been

obtained by adding DVBCDC to the QMC results, i.e., the yel-

low asterisks, do not fall onto a horizontal line and do not

agree with the prediction of the linear extrapolation (see the

horizontal green line). To resolve this peculiar situation, we
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compute the improved finite-size correction [Eq. (31)] using

both the static structure factor from STLS (SSTLS) and the

combination of STLS with the QMC data (Scomb) as input.

The resulting corrected potential energies are shown as black

squares and red diamonds, respectively, and appear to

exhibit almost no remaining dependence on system size. In

panel (c), we show a segment of the corrected data, magni-

fied in the vertical direction. Any residual finite-size errors

[due to the QMC data for S(k) not being converged with

respect to N, see panel (d)] can hardly be resolved within the

statistical uncertainty and are removed by an additional

extrapolation. In particular, to compute the final result for V/

N in the thermodynamic limit, we obtain a lower bound via a

linear extrapolation of the corrected data (using SSTLS) and

an upper bound by performing a horizontal fit to the last few

points, all of which are converged to within the error bars.

The dotted grey line in panel (b), which connects to the

extrapolated result, shows clearly that the results of this

procedure deviate from the results of a naive linear

extrapolation.

Finally, in panel (d) of Fig. 4, we show results for the

static structure factor S(k) for the same system. As explained

in Sec. V A, momentum quantization limits the QMC results

to discrete k values above a minimum value kmin ¼ 2p=L.

Nevertheless, the N dependence of the k grid is the only

apparent change of the QMC results for S(k) with system size,

and no difference between the results for the three particle

numbers studied can be resolved within the statistical uncer-

tainty (see also the magnified segment in the inset). The STLS

curve (red) is known to be exact in the limit k! 0 and

smoothly connects to the QMC data, although for larger k
there appears an almost constant shift. The full RPA curve

(grey) exhibits a similar behavior, albeit deviating more sig-

nificantly at intermediate k. Finally, the RPA expansion

around k¼ 0 [Eq. (29), light blue] only agrees with the STLS

and full RPA curves at very small k and does not connect to

the QMC data even for the largest system size simulated.

To further stress the importance of our improved finite-

size correction scheme, Fig. 5 shows results again for h¼ 2

but at higher density, rs ¼ 0:1. In this regime, the CPIMC

approach (and also DMQMC) is clearly superior to PB-

PIMC and simulations of N¼ 700 unpolarized electrons in

Nb¼ 189 234 basis functions are feasible. Due to the high

density, the finite-size errors are drastically increased com-

pared to the previous case and exceed 50% for N¼ 38 par-

ticles [see panels (a) and (b)]. Further, we note that the

BCDC-FSC is completely inappropriate for the N values

considered, as the yellow asterisks are clearly not converged

FIG. 4. Finite-size correction for the

UEG at h¼ 2 and rs¼ 1: (a) N depen-

dence of the FSCs; (b) potential energy

per particle, V/N; the dotted grey line

corresponds to the TDL value where

DN SSTLS½ � had been subtracted; (c)

extrapolation of the residual finite-size

error; and (d) corresponding static

structure factors S(k) from QMC (for

N¼ 34, 40, and 66), STLS, RPA, and

the RPA expansion around k¼ 0, Eq.

(29). (b) and (c) Adapted with permis-

sion from Dornheim et al., Phys. Rev.

Lett. 117, 156403 (2016). Copyright

2016 American Physical Society.

FIG. 5. Finite-size correction for the

UEG at h¼ 2 and rs ¼ 0:1: (a) N
dependence of the FSCs; (b) potential

energy per particle, V/N; (c) extrapola-

tion of the residual finite-size error;

and (d) corresponding static structure

factors S(k) from QMC (for N¼ 66,

300, and 700), STLS, RPA, and the

RPA expansion around k¼ 0, Eq. (29).
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and differ even more strongly from the correct TDL than the

raw uncorrected QMC data.

Our improved FSC, on the other hand, reduces the

finite-size errors by two orders of magnitude (both with

SSTLS and Scomb) and approaches Eq. (30) only in the limit of

very large systems [N � 104; see panel (a)]. The small resid-

ual error is again extrapolated, as shown in panel (c).

Finally, we show the corresponding static structure fac-

tors in panel (d). The RPA expansion is again insufficient to

model the QMC data, while the full RPA and STLS curves

smoothly connect to the latter.

2. Comparison to other methods

To conclude this section, we use our finite-size corrected

QMC data for the unpolarized UEG to analyze the accuracy

of various other methods that are commonly used. In Fig.

6(a), the potential energy per particle, V/N, is shown as a

function of rs for the isotherm with h¼ 2. Although all four

depicted curves exhibit qualitatively similar behavior, there

are significant deviations between them [see panel (b), where

we show the relative deviations from a fit to the QMC data

in the TDL]. Let us start with the QMC results: the black

squares correspond to the uncorrected raw QMC data for

N¼ 66 particles (see Ref. 52) and the red diamonds to the

finite-size corrected data from Ref. 47. As expected, the

finite-size effects drastically increase with density from

jDVj=V � 1%, at rs¼ 10, to jDVj=V � 50%, at rs ¼ 0:1.

This again illustrates the paramount importance of accurate

finite-size corrections for QMC simulations in the warm

dense matter regime. The RPA calculation (green curve) is

accurate at high density and weak coupling. However, with

increasing rs, the accuracy quickly deteriorates and, already

at moderate coupling, rs¼ 1, the systematic error is of the

order of 10%. The yellow asterisks show the SLTS result,

which agrees well with the simulations (the systematic error

does not exceed 3%) over the entire rs-range considered, i.e.,

up to rs¼ 10. Finally, the blue curve has been obtained from

the recent parametrization of fxc by Karasiev et al.34

(KSDT), for which RPIMC data have been used as an input.

While there is a reasonable agreement with our new data for

rs � 1 (with jDVj=V � 2%), there are significant deviations

at smaller rs, which only vanish for rs < 10�4.

VI. SUMMARY AND OPEN QUESTIONS

Let us summarize the status of ab initio thermodynamic

data for the uniform electron gas at finite temperature. The

present paper has given an overview of recent progress in ab
initio finite temperature QMC simulations that avoid any addi-

tional simplifications such as fixed nodes. While these simula-

tions do not “solve” the fermion sign problem, they provide a

reasonable and efficient way on how to avoid it, in many prac-

tically relevant situations, by combining simulations that use

different representations of the quantum many-body state: the

coordinate representation (direct PIMC and PB-PIMC) and

Fock states (CPIMC and DMQMC). With this, it is now pos-

sible to obtain highly accurate results for up to N � 100 par-

ticles in the entire density range and for temperatures h � 0:5.

As a second step, we demonstrated that these comparatively

small simulation sizes are sufficient to predict results for the

macroscopic uniform electron gas not significantly losing
accuracy.47 This unexpected result is a consequence of a new

highly accurate finite-size correction that was derived by

invoking STLS results for the static structure factor.

With this procedure, it is now possible to obtain thermo-

dynamic data for the uniform electron gas with an accuracy

on the order of 0.1%. Even though pure electron gas results

cannot be directly compared to warm dense matter experi-

ments, they are of high value to benchmark and improve addi-

tional theoretical approaches. Most importantly, this concerns

finite-temperature versions of the density functional theory

(such as orbital-free DFT), which is the standard tool to model

realistic materials and which will benefit from our results for

the exchange-correlation free energy. Furthermore, we have

also presented a few comparisons with earlier models such as

RPA, STLS, or the recent fit of Karasiev et al. (KSDT),

the accuracy and errors of which can now be

unambiguously quantified. We found that among the tested

models, the STLS is the most accurate one. We wish to under-

line that even though exchange-correlation effects are often

small compared to the kinetic energy, their accurate treatment

is important to capture the properties of real materials, see

e.g., Ref. 74.

In the following, we summarize the open questions and

outline future research directions.

(1) Construction of an improved fit for the exchange-

correlation free energy due to their key relevance as

input for finite-temperature DFT. Such fits are straight-

forwardly generated from the current results but require

a substantial extension of the simulations to arbitrary

spin polarization. This work is currently in progress.

(2) The presently available accurate data are limited to tem-

peratures above half the Fermi energy, as a consequence

FIG. 6. Potential energy per particle of the uniform electron gas at

h¼ 2–simulations versus analytical models. Squares: QMC results for

N¼ 66 particles,52 (red) rhombs: finite-size corrected QMC data (TDL),47

green (yellow) curves: RPA (STLS) data,24 and blue: results of the parame-

trization of Ref. 34 (KSDT). Bottom: relative deviations of all curves from

the fit to the thermodynamic QMC results.
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of the fermion sign problem. A major challenge will be

to advance to lower temperatures, H < 0:5, and to reli-

ably connect the results to the known ground state data.

This requires substantial new developments in the area

of the three quantum Monte Carlo methods presented in

this paper (CPIMC, PB-PIMC and DMQMC) and new

ideas on how to combine them. Another idea could be to

derive simplified versions of these methods that treat the

FSP more efficiently but still have acceptable accuracy.

(3) The present ab initio results allow for an entirely new

view on previous theoretical models. For the first time, a

clear judgment about the accuracy becomes possible,

which more clearly maps out the sphere of applicability

of the various approaches, e.g., Ref. 75. Moreover, the

availability of our data will allow for improvements of

many of these approaches via adjustment of the relevant

parameters to the QMC data. This could yield, e.g.,

improved static structure factors, dielectric functions or

local field correlations.

(4) Similarly, our data may also help to improve alternative

quantum Monte Carlo concepts. In particular, this con-

cerns the nodes for Restricted PIMC simulations, which

can be tested against our data. This might help to extend

the range of validity of those simulations to higher den-

sity and lower temperature. Since this latter method does

not have a sign problem, it may allow to reach parame-

ters that are not accessible otherwise.

(5) A major challenge of Metropolis-based QMC simula-

tions that are highly efficient for thermodynamic and

static properties is to extend them to dynamic quantities.

This can, in principle, be done via analytical continua-

tion from imaginary to real times (or frequencies).

However, this is known to be an ill-posed problem.

Recently, there has been significant progress by invoking

stochastic reconstruction methods or genetic algorithms.

For example, for Bose systems, accurate results for the

spectral function and the dynamics structure factor could

be obtained, e.g., Ref. 76 and references therein, which

encourage also for applications to the uniform electron

gas, in the near future.

(6) Finally, there are a large number of additional applica-

tions of the presented ab initio simulations. This includes

the 2D warm dense UEG where thermodynamic results

of similar accuracy should be straightforwardly accessi-

ble. Moreover, for the electron gas, at high density,

rs�0:1, relativistic corrections should be taken into

account. Among the presented simulations, CPIMC is

perfectly suited to tackle this task and to provide ab ini-
tio data also for correlated matter at extreme densities.
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