
Contrib. Plasma Phys. 56, No. 3-4, 204 – 214 (2016) / DOI 10.1002/ctpp.201500088

Streaming Complex Plasmas: Ion Susceptibility for a Partially
Ionized Plasma in Parallel Electric and Magnetic Fields
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The density response function for streaming ions in homogeneous, parallel electric and magnetic fields is
derived self-consistently from kinetic theory. Ion-neutral collisions are treated with the Bhatnagar-Gross-
Krook collision operator assuming a constant ion-neutral collision frequency. The result accounts for the non-
Maxwellian distribution function of the ions and is valid in the full range from weak to strong magnetization. It
provides the basis for various linear response calculations in the context of magnetized complex plasmas, where
streaming ions interact with highly charged dust particles under the influence of a strong external magnetic field.
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Magnetic fields play an important role in plasma physics because they allow one to confine and manipulate
charged particles externally. Plasma properties such as wave spectra, particle diffusion, heat conduction, or
plasma instabilities can be strongly modified when the plasma is magnetized. Strong magnetic fields of several
Tesla are not only encountered in magnetic confinement or magnetic liner inertial fusion experiments [1] but
have also become of interest for complex plasmas research [2, 3]. By adjusting the magnetic field strength it
is possible to create plasma states where only the electrons, electrons and ions, or possibly all three charged
particle species including the dust particles are magnetized [4]. Several new phenomena have been observed
in experiments with magnetic fields, including a slow rotation of the entire dust cloud [5–9], the spinning of
dust particles [10], and complicated flow patterns [11]. In recent experiments with strong magnetic fields on the
order of a few Tesla, sufficient to magnetize not only the electrons but the ions as well, filaments appeared in the
discharge [12]. The dynamics of a dust particle pair also showed a pronounced response to magnetic fields of
this magnitude [13]. Experiments performed at the Magnetized Dusty Plasma Experiment (MDPX) at Auburn
University [14] further demonstrate that ordered structures of a titanium mesh can be imposed on the dust particles
under these conditions. Crystalline and strongly coupled fluid states [15,16] also occur naturally in dusty plasmas
due to the strong Coulomb interaction between the grains. Even though the dust particles themselves are difficult
to magnetize [17], their screened interaction, and thus, their collective behavior, can be affected significantly by
an external magnetic field [18].

Dusty plasma experiments are often confronted with ion flows due to electric fields, especially in the sheath
region. They affect the charging of the dust grains [19], their mutual interaction due to the formation of wake
potentials [20, 21], and give rise to drag forces [22, 23]. Under the influence of an electric field the ion velocity
distribution may considerably differ from a displaced Maxwellian due to collisions with the neutral gas. Various
phenomena related to the interaction between ions and dust particles have been shown to be crucially affected
by the different distribution, e.g., the ion-drag force [22, 23] or the ion-dust streaming instability [24]. The ion
susceptibility is the basis for several ion-dust related linear response calculations, including the screened dust
potential [18, 25, 26]. In particular, the susceptibility is well known for ions in an external homogeneous electric
field [22, 27]. Extending these results, the ion susceptibility will be derived self-consistently in the presence
of both an electric and a parallel magnetic field. Ion-neutral collisions are included via the Bhatnagar-Gross-
Krook (BGK) collision operator. Crossed electric and magnetic fields with a finite flow along the magnetic field,
introduced via a Doppler-shift of the frequency, were treated in Ref. [28]. The result presented here accounts
for the non-Maxwellian ion velocity distribution and should be useful to extend the study of ion-dust streaming
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phenomena into the magnetized regime, which is expected to become of increasing interest in the coming years
since several superconducting magnets in dusty plasma laboratories are now operational.

This paper is organized as follows. In Sec. 1 the kinetic equation used for the derivation of the susceptibility
is linearized and solved for the ion distribution function. As a main result, two different representations of the
response function are presented and discussed in Sec. 2. The paper concludes with a summary of the results
in Sec. 3. Complementary mathematical details on the derivation of the response function are presented in the
Appendices.

1 Derivation of density response function

1.1 Kinetic theory

For the derivation of the ion response function, the following kinetic equation is used,

∂fi

∂t
+

∂fi

∂�r
· �v + ∂fi

∂�v
· qi

mi

(
�E + �v × �B0

)
= −νin (fi − ni Φn) , (1)

where the approximation of a constant ion-neutral collision frequency νin has been made on the right-hand side,
known as the BGK collision operator. Improvements are possible by allowing for a frequency-dependent collision
frequency [29] or by using available (velocity-dependent) cross sections [30]. The velocity distribution of the
neutral particles is assumed to be Maxwellian, Φn(�v) = Φz

n(vz)Φ
⊥
n (v⊥), with

Φz
n(vz) = (2πv2th,n)

−1/2 exp

(
− v2z
2v2th,n

)
, Φ⊥

n (v⊥) = (2πv2th,n)
−1 exp

(
− v2⊥
2v2th,n

)
, (2)

where vth,n = (kBTn/mi)
1/2 is their thermal velocity. The distribution function, density, mass, and charge of the

ions are denoted by fi(�r,�v, t), ni(�r, t), mi, and qi, respectively.
The electric field �E in Eq. (1) contains the field created by the plasma species and a DC electric field �E0 =

E0�ez . It was shown [22, 30, 31] that the stationary ion distribution function, fi0(�v) = ni0Φi0(�v), where ni0 is the
unperturbed ion density, differs considerably from the usual assumption of a shifted Maxwellian:

Φi0(�v) = Φ⊥
n (v⊥)Φz

i0(vz), Φz
i0(vz) =

∫ ∞

0

exp(−x) Φz
n(vz − x vd) dx. (3)

Compared with the distribution function perpendicular to the electric field, which is Maxwellian, the distribu-
tion in the streaming direction becomes significantly broader and highly asymmetric for Mach numbers Mth =

vd/vth,n � 1, where vd = qE0/(mνin) is the ion drift speed, see also Ref. [24]. The external magnetic field �B0 is
considered parallel to �E0. Consequently, there is no �E0 × �B0 drift, and fi0 remains unaffected by the magnetic
component of the Lorentz force.

1.2 Perturbed distribution function

The ion distribution will now be linearized around its stationary value, fi ≈ fi0 + δfi, where δfi is a small
perturbation. Similarly, we introduce small perturbations of the electric field, �E ≈ �E0 + δ �E. The perturbed
density follows from δni =

∫
δfi d�v. Dropping all terms of second order, one obtains from Eq. (1),

∂δfi

∂t
+

∂δfi

∂�r
· �v + ∂δfi

∂�v
· qi

mi

(
�E0 + �v × �B0

)
= −νin [δfi − δni Φn]− ∂fi0

∂�v
· qi δ �E

mi
. (4)

The solution of Eq. (4) can be found by the method of characteristics [32, 33]. For this purpose, we consider
the equivalent equation[

d

dt′
+ νin

]
δfi(�r

′(t′), �v ′(t′), t′) = c(�r ′(t′), �v ′(t′), t′), (5)
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where

c(�r,�v, t) = νin δni(�r, t) Φn(�v)− ∂fi0(�v)

∂�v
· qi δ �E(�r, t)

mi
. (6)

The trajectories {�r ′(t′), �v ′(t′)} satisfy the equations of motion

�̇r ′(t′) = �v ′(t′), �̇v ′(t′) =
qi

mi

(
�E0 + �v ′(t′)× �B0

)
, (7)

with the condition �r ′(t′ = t) = �r and �v ′(t′ = t) = �v. The explicit solutions of Eqs. (7) are given in Appendix A.
The particular solution of Eq. (4) that vanishes for t→ −∞ can now be written in the form

δfi(�r,�v, t) =

∫ t

−∞
exp [−νin(t− t′)] c(�r ′(t′), �v ′(t′), t′) dt′, (8)

corresponding to an integration along the unperturbed orbits. It is thereby assumed that c(�r,�v, t) → 0 for
t→ −∞.

We analyze Eq. (8) for a single Fourier component, δfi(�r,�v, t) ∼ δf̂i(�k,�v, ω) exp(i�k · �r − iωt), where ω has
a positive imaginary part, Im(ω) > 0. Corresponding expressions are used for the electric field and the density.
Changing the integration variable from t′ to τ = t− t′, the result for the Fourier coefficient becomes

δf̂i(�k,�v, ω̂) =

∫ ∞

0

dτ exp
[
iΩ(�k,�v, ω, τ)

] [
νin δn̂i(�k, ω)Φn(�v

′(t′)) + i
qi

mi
ϕ̂(�k, ω)

∂fi0(�v
′(t′))

∂�v ′ · �k
]
. (9)

Here, the perturbed electric field has been written as δ �̂E(�k, ω) = −i�k δϕ̂(�k, ω), where δϕ̂ denotes the Fourier
component of the perturbed electrostatic potential. Choosing the orientation of the coordinate system such that
�k = (k⊥, 0, kz) and employing the explicit expressions for the trajectories in Appendix A, the phase of the
exponential term in Eq. (9) becomes (see also Ref. [32])

Ω(�k,�v, ω, τ) = (ω + iνin − kzvz)τ +
kz
2

qiE0

mi
τ2 +

k⊥v⊥
ωci

[sinφ− sin(φ+ ωciτ)] , (10)

where ωci = qiB0/mi is the ion cyclotron frequency.

1.3 Density response function

The susceptibility relates the induced ion density to the electrostatic potential and can be obtained from [22]

χi(�k, ω) = − qi

ε0 k2
δn̂i(�k, ω)

δϕ̂(�k, ω)
. (11)

The density response is calculated from Eq. (9) as the integral over the velocities,

δn̂i(�k, ω) =

∫
δf̂i(�k, ω) d�v = νin δn̂i(�k, ω)I1(�k, ω)− qini0

mi
δϕ̂(�k, ω)I2(�k, ω), (12)

where the integrals I1 and I2 read

I1 =

∫∫ ∞

0

Φn(�v
′) exp

[
iΩ(�k,�v, ω, τ)

]
dτd�v, (13a)

I2 = −i�k ·
∫∫ ∞

0

∂Φi0(�v
′)

∂�v ′ exp
[
iΩ(�k,�v, ω, τ)

]
dτd�v. (13b)

Solving Eq. (12) for the density and using the result in Eq. (11), the ion susceptibility becomes

χi(�k, ω) =
ω2

pi

k2
I2

1− νinI1
, (14)

where ωpi =
√
q2i ni0/(miε0) is the ion plasma frequency. The evaluation of the integrals, Eq. (13), can be found

in Appendix B and Appendix C. In the next section, only the results will be presented and discussed.
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2 Ion susceptibility

Equations (13a) and (13b) can be represented as (i) a sum over Bessel functions, known from the response func-
tion of a magnetized Maxwellian plasma [34,35] and an appropriately weighted plasma dispersion function [22],
and (ii) in integral form without an infinite sum (Gordeev form), see Ref. [32]. These two representations will be
discussed in the following.

2.1 Bessel series representation

The derivation of the series expansion can be found in Appendix B. Introducing In(η) as a modified Bessel
function of the first kind with argument η = k2⊥r

2
L (Larmor radius rL = vth,n/ωci), the expansion reads

χi(�k, ω) =
(kλin)

−2

1 + i/(lEkz)

1 +
∞∑

n=−∞
In(η) exp(−η)

[
〈ξnZ(ξn)〉+ nωci

√
1 + i/(lEkz)√
2|kz|vth,n

〈Z(ξn)〉
]

1 +
∞∑

n=−∞

iνin

ω + iνin − nωci
In(η) exp(−η)ξn(0)Z[ξn(0)]

.

(15)

where two length scales have been introduced, lE = miv
2
th,n/(qiE0) and λin = vth,n/ωpi. The latter corresponds

to the Debye length, but only in a stationary plasma (E0 = 0)—the reason being the modified velocity distri-
bution [31]. Note that in the perpendicular direction the ion distribution function is indeed Maxwellian, and the
perpendicular ion temperature is equal to the temperature of the neutral gas. Therefore, the Larmor radius is well
defined. The plasma dispersion function can be expressed in terms of the complementary error function,

Z(ξ) = i
√
π exp

(−ξ2) erfc(−iξ), ξn(x) =
ω + iνin − nωci − kzvdx√
2 vth,n|kz|

√
1 + i/(kzlE)

. (16)

The averages in Eq. (15) are performed in the same way as in Eq. (3), i.e.,

〈f(x)〉 =
∫ ∞

0

exp(−x)f(x)dx, (17)

see also Ref. [22].
Equation (15) extends the result for a magnetized Maxwellian plasma with ion-neutral collisions [35] and

includes an external electric field that gives rise to a finite flow and the non-Maxwellian velocity distribution [22].

2.2 Integral representation

The convergence of the sums in Eq. (15) is very slow for η = k2⊥r
2
L � 1, i.e., when the perpendicular wavelength

is much smaller than the Larmor radius, see Ref. [18]. However, there exists an alternative representation of
the susceptibility, where the summation can be performed analytically, and the computation of χi reduces to the
evaluation of two integrals, see also Ref. [32]. Details on the derivation can be found in Appendix C.

The result for the integral form of the response function reads

χi(�k, ω) =
1

k2λ2
in

1 +A(�k, ω)

1 +B(�k, ω)
. (18)

The functions A and B are given by the following integrals,

A(�k, ω) =

∫ ∞

0

Λ(τ) exp [Ψ(0, τ)] dτ, B(�k, ω) = −νin

∫ ∞

0

exp [Ψ(0, τ)] dτ, (19)

where the common argument of the exponential term is

Ψ(x, τ) = i(ω + iνin − kzvdx)τ − k2zv
2
th,n

τ2

2

(
1 +

i

lEkz

)
+ η[cos(ωciτ)− 1], (20)
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and the integrand of A(�k, ω) is determined by

Λ(τ) =
i (ω + iνin − kzvdνinτ)

1 + ikzvdτ
− ikzvd

(1 + ikzvdτ)2
. (21)

In contrast to Eq. (15), the averaging procedure over the unperturbed ion distribution function has been performed
analytically. A corresponding form was found in the unmagnetized limit [22, 31].

2.3 Discussion

The main result of this work is the ion susceptibility in parallel electric and magnetic fields, Eqs. (15) and (18).
It is readily verified that for k⊥ = 0, i.e., in the direction of the external fields, the susceptibility is independent
of the magnetic field and identical to the result for unmagnetized ions [22], see also Eq. (42). Only the n = 0
term in Eq. (15) yields a finite contribution to the susceptibility. In the perpendicular direction (kz = 0), on the
other hand, χi is independent of E0. It can thus be concluded that the complex interplay between the electric
and magnetic field occurs under oblique angles, where both fields affect the susceptibility at the same time. An
example is shown in Fig. 1.

Fig. 1 Real part (a) and imaginary part (b) of the static (ω = 0) ion susceptibility as a function of k = |�k| for Mth = 4,
νin/ωpi = 0.2. The magnetization β = ωci/ωpi is indicated in the figure. The angle between the electric field �E0 and the wave
vector �k is π/3.

Despite being a very simple approximation, the ion distribution function obtained with the BGK collision
operator was shown to agree well with more complex calculations using the Boltzmann equation, at least in the
small Mach number limit [30]. Thus, the present results should be best applicable in this regime. In addition,
the ion subsystem can become unstable at high Mach numbers and at low ion-neutral damping [31]. A detailed
investigation of the initial value problem [36] and a stability analysis of the ion system in the presence of a
magnetic field is beyond the scope of this work.

3 Conclusion

In summary, the ion susceptibility has been derived for a situation, where the ions are subject to both an external
electric field and a parallel magnetic field. It accounts for the non-Maxwellian velocity distribution and is appli-
cable in a wide range of ion magnetization. Possible applications include the screening of a dust particle in the
presence of streaming magnetized ions [18], the ion-dust streaming instability [37, 38], and other phenomena,
where flowing ions interact with charged microparticles in a strong external magnetic field.
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Appendix

A Unperturbed orbits

Equation (7) describes the motion of a single ion in uniform parallel electric and magnetic fields. The trajectories
without the influence of the former can be found in Ref. [32]. Adding the constant acceleration in the z-direction
caused by the electric field, the unperturbed orbits are

x′(t′)− x =
v⊥
ωci

[sinφ− sin(φ+ ωciτ)] , v′x(t
′) = v⊥ cos(φ+ ωciτ),

y′(t′)− y = −v⊥
ωci

[cosφ− cos(φ+ ωciτ)] , v′y(t
′) = v⊥ sin(φ+ ωciτ),

z′(t′)− z = −vzτ +
1

2

qiE0

mi
τ2, v′z(t

′) = vz − qiE0

mi
τ.

They satisfy the boundary conditions, �r ′(t′ = t) = �r and �v ′(t′ = t) = �v. The polar angle of the velocity vector
�v ′ is denoted by φ and τ = t − t′. The ion performs the usual cyclotron motion around the magnetic field and
experiences the constant electric field force, which leads to the additional term in the z-component.

B Susceptibility in terms of Bessel series and plasma dispersion function

In this appendix, the calculation of the integrals in Eq. (13) will be discussed, and it is shown how they can be
written as a Bessel series involving the plasma dispersion function.

Equation (13a) is considered first. Using the identity exp(iz sinφ) =
∑

n Jn(z) exp(inφ), where Jn(z) is a
Bessel function of order n [32], the phase factor [see Eq. (10)] can be written as

exp(iΩ) = exp

[
i(ω + iνin − nωci − kzvz)τ +

kz
2

qiE0

mi
τ2
]

·
∑
n,n′

Jn

(
k⊥v⊥
ωci

)
Jn′

(
k⊥v⊥
ωci

)
exp[i(n′ − n)φ]. (22)

Noting that
∫ 2π

0
exp[i(n′ − n)φ]dφ = 2π δn,n′ , the integral over the perpendicular velocity component in

Eq. (13a) becomes [32]

∫ ∞

0

J2
n

(
k⊥v⊥
ωci

)
exp[−v2⊥/(2v2th,n)]

2πv2th,n
v⊥dv⊥ =

In(η) exp(−η)
2π

, (23)

where Eq. (2) for the neutral particles’ velocity distribution and the definition η = k2⊥v
2
th,n/ω

2
ci have been used.

Introducing

Υn = (ω + iνin − nωci − kzvz)τ +
kz
2

qiE0

mi
τ2, (24)

the remaining integrals over time (τ ) and the parallel velocity (vz) in Eq. (13a) can be written as (v′z = vz −
qiE0τ/mi) ∫ ∞

−∞
dvz

∫ ∞

0

dτ
exp[−(v′z)2/(2v2th,n)]

(2πv2th,n)
1/2

exp(iΥn) =

∫ ∞

0

dτ exp

{
−v2th,nk

2
z

τ2

2

[
1 +

i

lEkz

]

+ i(ω + iνin − nωci)τ

}
=
√
π erfc[−i ξn(0)] ξn(0) exp[−ξ

2
n(0)]

ω + iνin − nωci
= −i ξn(0)Z[ξn(0)]

ω + iνin − nωci
, (25)

where the vz integration has been performed (Gaussian integral), and the τ -integral has been written in terms of
the complementary error function, erfc(z) = 1− erf(z). Further, the definition of the plasma dispersion function,
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Eq. (16), has been used. Collecting the results, Eq. (13a) now becomes

I1 = −i
∞∑

n=−∞
In(η) exp(−η) ξn(0)Z[ξn(0)]

ω + iνin − nωci
. (26)

The second integral [Eq. (13b)] can be split into a longitudinal and a transverse contribution, I2 = Iz2 + I⊥2 ,
where

Iz2 = −ikz
∫∫ ∞

0

∂Φi0

∂vz
exp(iΩ)dτd�v, I⊥2 =

ik⊥
v2th,n

∫∫ ∞

0

Φi0(�v
′) exp(iΩ)v⊥ cos(φ+ ωciτ)dτd�v.

(27)

For the perpendicular part, we have used the explicit form of the distribution function. After a partial integration
with respect to vz and the same integration of the perpendicular velocity as for I1, the longitudinal contribution
becomes

Iz2 = −ikz
∫∫ ∞

0

∂Φi0

∂vz
exp(iΩ)dτd�v = k2z

∫∫ ∞

0

Φi0(�v
′)τ exp(iΩ)dτd�v

= k2z

∞∑
n=−∞

In(η) exp(−η)
∫ ∞

0

dτ

∫ ∞

−∞
dvzΦ

z
i0(v

′
z) exp(iΥn)τ. (28)

Inserting the explicit result for the ion distribution function in the streaming direction [Eq. (3)], the remaining
integrals can be rewritten as [see Eq. (25)]

∫ ∞

0

dτ

∫ ∞

−∞
dvz Φ

z
i0

(
vz − qiE0

mi
τ

)
exp(iΥn)τ (29)

=

∫ ∞

0

dτ

∫ ∞

0

dx exp

{
−v2th,nk

2
z

τ2

2

[
1 +

i

lEkz

]
+ i(ω + iνin − nωci − kzvdx)τ

}
τ exp(−x).

With the relation −2b ∫∞
0

exp(aτ + bτ2)τdτ = 1+ a
∫∞
0

exp(aτ + bτ2)dτ (with a and b such that convergence
of the integrals is assured), Eq. (29) can be further simplified to

1

v2th,nk
2
z [1 + i/(lEkz)]

[
1 + i

∫ ∞

0

dx exp(−x)(ω + iνin − nωci − kzvdx)∫ ∞

0

dτ exp

{
−v2th,nk

2
z

τ2

2

[
1 +

i

lEkz

]
+ i(ω + iνin − nωci − kzvdx)τ

}]

=
1

v2th,nk
2
z [1 + i/(lEkz)]

[
1 +

∫ ∞

0

dx exp(−x)ξn(x)Z(ξn(x))

]
=

1 + 〈ξn(x)Z(ξn(x))〉
v2th,nk

2
z [1 + i/(lEkz)]

. (30)

The integral in the first line involving the plasma dispersion function is equivalent to the integral in Eq. (25). In
the last line, Eq. (17) for the average 〈. . . 〉 has been used.

The perpendicular component of the integral I2 will be considered next, see Eq. (27). The steps are similar to
those above. With the identity [32]

1

2π

∫ 2π

0

exp{iz [sinφ− sin(φ+ ωciτ)]} cos(φ+ ωciτ)dφ =
∞∑

n=−∞

nJ2
n(z)

z
exp(−inωciτ) (31)
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for the angular (φ) integration and Eq. (23) for the v⊥ integral, one finds

I⊥2 =
ik⊥
v2th,n

∫ ∞

0

dτ

∫ ∞

−∞
dvz

∫ ∞

0

dv⊥ v2⊥ exp

[
i(ω + iνin − kzvz)τ +

kz
2

qiE0

mi
τ2
]

(32)

· exp[−v
2
⊥/(2v

2
th,n)]

2πv2th,n
Φz

i0(v
′
z)

∫ 2π

0

dφ cos(φ+ ωciτ) exp

{
ik⊥v⊥
ωci

[sinφ− sin(φ+ ωciτ)]

}

=
iωci

v2th,n

∫ ∞

0

dτ

∫ ∞

−∞
dvz

∑
n

2πn

∫ ∞

0

dv⊥v⊥
exp[−v2⊥/(2v2th,n)]

2πv2th,n
J2
n

(
k⊥v⊥
ωci

)
Φz

i0(v
′
z) exp(iΥn)

=
iωci

v2th,n

∑
n

In(η) exp(−η)n
∫ ∞

0

dτ

∫ ∞

−∞
dvz Φ

z
i0(v

′
z) exp(iΥn)

=
ωci

v2th,n

∑
n

In(η) exp(−η) n 〈Z(ξn(x))〉√
2vth,n|kz|

√
1 + i/(lEkz)

.

Summarizing the results, Eq. (13b) can be written as

I2 =
1

v2th,n [1 + i/(lEkz)]

∑
n

In(η) exp(−η)
[
1 + 〈ξnZ(ξn)〉+ nωci

√
1 + i/(lEkz)√
2|kz|vth,n

〈Z(ξn)〉
]
.

(33)

Equation (15) in the main text now follows from Eqs. (14), (26), and (33) and the identity
∑∞

n=−∞ In(z) =
exp(z) [32].

C Integral form of susceptibility

The steps that lead to the integral form of the response function, Eq. (18), are detailed in the following. For
this purpose one returns to Eqs. (26), (28) and (32) and performs the summation of the infinite series of Bessel
functions analytically.

For the integral I1 [see Eqs. (25) and (26)], we use
∑

n In(η) exp(−inωciτ) = exp[η cos(ωciτ)] [32] to obtain

I1 =
∑
n

In(η) exp(−η)
∫ ∞

0

exp

{
i(ω + iνin − nωci)τ − v2th,nk

2
z

τ2

2

[
1 +

i

lEkz

]}
dτ

=

∫ ∞

0

exp[Ψ(0, τ)]dτ, (34)

where Ψ is defined in Eq. (20). The second integral can be rewritten in a similar fashion. From Eqs. (28) and (30)
one gets

v2th,n [1 + i/(lEkz)] I
z
2 =

∑
n

In(η) exp(−η)
[
1 + i

∫ ∞

0

dx exp(−x)(ω + iνin − nωci − kzvdx)

·
∫ ∞

0

dτ exp

{
−v2th,nk

2
z

τ2

2

[
1 +

i

lEkz

]
+ i(ω + iνin − nωci − kzvdx)τ

}]

= 1 +

∫ ∞

0

dx exp(−x)
∫ ∞

0

dτ [i(ω + iνin − kzvdx)− η ωci sin(ωciτ)] exp[Ψ(x, τ)],
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where the same summation formula as above and
∑

n n In(η) exp(−inωciτ) = −i η sin(ωciτ) exp[η cos(ωciτ)]
for the sum involving the factor n have been employed [32]. Using Eq. (32) and performing similar manipula-
tions, the perpendicular component of I2 can be expressed as

I⊥2 = i

∞∑
n=−∞

In(η) exp(−η)nωci

v2th,n

∫ ∞

0

dτ

∫ ∞

0

dx exp(−x)

· exp
{
i(ω + iνin − nωci − kzvdx)τ − v2th,nk

2
z

τ2

2

[
1 +

i

lEkz

]}

=
η ωci

v2th,n

∫ ∞

0

dx exp(−x)
∫ ∞

0

dτ sin(ωciτ) exp[Ψ(x, τ)]. (35)

One now combines the results for Iz2 and I⊥2 to obtain

I2 =
1

v2th,n [1 + i/(lEkz)]

{
1 +

∫ ∞

0

dx exp(−x)
∫ ∞

0

dτ i

[
ω + iνin − kzvdx+

η ωci

lE kz
sin(ωciτ)

]

· exp[Ψ(x, τ)]

}
,

=
1

v2th,n

{
1 +

∫ ∞

0

dx exp(−x)
∫ ∞

0

dτ [i(ω + iνin − kzvd(x+ νinτ))] exp[Ψ(x, τ)]

}
, (36)

which yields Eqs. (18) and (19) upon performing the x integral.

D Limiting cases

In this Appendix it is briefly shown how the results for the susceptibility can be reduced to (i) the case of magne-
tized ions with a Maxwellian velocity distribution for E0 → 0 (i.e., no streaming [32, 35]), and (ii) the suscepti-
bility of unmagnetized, non-Maxwellian (streaming) ions for B0 = 0 [22].

D.1 Stationary ions: E0 → 0

In the limit E0 → 0, where the ions become stationary, one may drop the averages in Eq. (15) to obtain

χi(�k, ω;E0 → 0) =
1

k2λ2
in

1 +
∞∑

n=−∞

ω + iνin

ω + iνin − nωci
In(η) exp(−η)ζnZ(ζn)

1 +
∞∑

n=−∞

iνin

ω + iνin − nωci
In(η) exp(−η)ζnZ(ζn)

,

where the argument of the plasma dispersion function is

ζn =
ω + iνin − nωci√

2 vth,n|kz|
. (37)

This is the result for a magnetized Maxwellian plasma with ion-neutral collisions taken into account [18, 35].

D.2 Unmagnetized ions: B0 → 0

For the analysis of the limit B0 → 0, the integral form [Eq. (18)] will be employed. Taking the limit ωci → 0, the
cosine term in Eq. (20) simplifies, k2⊥v

2
th,n/ω

2
ci[cos(ωciτ)− 1]→ −k2⊥v2th,nτ

2/2, and one obtains

Ψ(x, τ ;B0 → 0) = i(ω + iνin − kzvdx)τ − k2v2th,n
τ2

2

[
1 +

i kz
k2 lE

]
. (38)
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With this result at hand, the integrals I1 and I2 [Eqs. (13a) and (13b)] can be rewritten, thereby starting from
Eqs. (34) and Eq. (36). Equation (34) becomes

I1 =

∫ ∞

0

exp[Ψ(0, τ ;B0 → 0)]dτ =
−i α(0)Z[α(0)]

ω + iνin
, (39)

where the parameter α reads

α(x) =
ω + iνin − kzvdx

√
2 vth,nk

√
1 +

i kz
k2lE

. (40)

The integral can be evaluated by comparing Eqs. (38) and (39) with Eq. (25). From Eq. (36), one gets

v2th,n I2 = 1 +

∫ ∞

0

dx exp(−x)
∫ ∞

0

dτ [i(ω + iνin − kzvd(x+ νinτ))] exp[Ψ(x, τ ;B0 → 0)]

= k2v2th,n

∫ ∞

0

dx exp(−x)
∫ ∞

0

dτ τ exp[Ψ(x, τ ;B0 → 0)]

=

(
1 +

i kz
k2lE

)−1

[1 + 〈α(x)Z(α(x))〉] . (41)

A comparison with Eqs. (29) and (30), where an equivalent integral occurs, yields the last line.
The susceptibility for unmagnetized ions is finally obtained in the form

χi(�k, ω;B0 → 0) =
(kλin)

−2

1 +
i kz
k2lE

1 + 〈αZ(α)〉
1 +

iνin

ω + iνin
α(0)Z[α(0)]

, (42)

which is the result given in Ref. [22]. If we perform the x-integration in the second line of Eq. (41) and combine
this result with Eq. (39), we obtain the integral form of χi [22].
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