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Dynamic interference in the photoionization of He by coherent intense high-frequency laser pulses:
Direct propagation of the two-electron wave packets on large spatial grids
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The direct ionization of the helium atom by intense coherent high-frequency short laser pulses is investigated
theoretically from first principles. To this end, we solve numerically the time-dependent Schrödinger equation for
the two-electron wave packet and its interaction with the linearly polarized pulse by the efficient time-dependent
restricted-active-space configuration-interaction method (TD-RASCI). In particular, we consider photon energies
which are nearly resonant for the 1s → 2p excitation in the He+ ion. Thereby, we investigate the dynamic
interference of the photoelectrons of the same kinetic energy emitted at different times along the pulse in the
two-electron system. In order to enable observation of the dynamic interference in the computed spectrum, the
electron wave packets were propagated on large spatial grids over long times. The computed photoionization
spectra of He exhibit pronounced interference patterns the complexity of which increases with the decrease of
the photon energy detuning and with the increase of the pulse intensity. Our numerical results pave the way
for experimental verification of the dynamic interference effect at presently available high-frequency laser pulse
sources.
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I. INTRODUCTION

The possibility of interference in the time domain was first
discussed in the multiphoton absorption regime by optical
lasers pulses [1–6]. Intense optical pulses couple different
discrete electronic states of a system and cause relative ac Stark
energy shifts [7], which follow the time envelope of the pulse.
As a consequence, the temporally coherent pulses may lead
to the interference owing to excitation of the time-separated
transient resonances on the rising and falling fronts of the
pulse. Such interference appears as distinct multiple-peak
pattern in the spectrum of particles emitted via relaxation of the
system, as has been theoretically predicted for the strong field
autoionization [1,2], resonant fluorescence [3,4], and resonant
multiphoton ionization [5,6] spectra. Later, oscillations in the
total multiphoton ionization yield were measured as a function
of laser intensity and explained by the interference of electrons
emitted at different times [8,9].

The presently available attosecond lasers [10], high-order
harmonic generation sources [11,12], and free electron lasers
[13,14] allow one to produce pulses with photon energies,
which are by far above the ionization threshold of any matter.
These unprecedentedly strong and short high-frequency pulses
enable one to reinvestigate various fundamental light-matter
interaction processes under extreme field conditions (see, e.g.,
Refs. [15–36] and references therein). Recently, dynamic
interference was also reinvestigated in the high-frequency
regime [37–43]. It was identified theoretically in the (i)
photoionization and above-threshold ionization (ATI) spectra
of model anions [37,38]; (ii) direct photoionization spectra
of atoms [39,40]; (iii) resonant Auger decay spectra of
atoms induced by free electron laser pulses [41–43]; and (iv)
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sequential multiphoton ionization of atoms by high-frequency
pulses [43]. In all those works, theoretical consideration was
restricted to a single active electron.

Exposed to strong pulses, an atom with several electrons can
undergo several ionization steps creating differently charged
ions and even bare nuclei [15–18]. Moreover, a many-electron
system exhibits usually several open ionization channels, and
different final ionic states can be produced in each of the
photoionization step. In the present work we study how the
dynamic interference effect, investigated previously in the one-
active-electron approximation, modifies in systems with more
electrons. In particular, we investigate here the photoionization
of He under conditions amenable to current experiments. The
paper is organized as follows. Section II describes the process
under consideration and outlines present theoretical approach
and computational details. Results of numerical calculations
are discussed and analyzed in Sec. III. We conclude with a
brief summary.

II. THEORY

A. The process

The process relevant to the present study is schematically
drawn in Fig. 1. It implies a direct photoionization of the He
atom by a coherent intense laser pulse with a carrier frequency
close to the He+(1s → 2p) excitation energy. The resonant
photon energy ω = 1.50 a.u. = 40.817 eV is larger than the
ionization potential of neutral He (24.587 eV [44]), but smaller
than the ionization potential of He+ (54.418 eV [44]). The
intense resonant laser pulse couples the He+(1s1) electronic
state, remaining after photoionization, with the He+(2p1)
state, and creates a Rabi doublet by the ac Stark [7] or
Autler-Townes [45] effect. The energy splitting between these
ionic states adiabatically increases and decreases, respectively,
when the pulse arrives and expires [43]. Consequently, the
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FIG. 1. Sketch of the presently studied process, in which absorp-
tion of a photon of energy ω from a high-frequency pulse promotes
one of the two electrons of He into the photoionization (PI) continuum
of energy εPI. Subsequent absorption of another nearly resonant
photon from the same pulse can either couple the 1s and 2p states
of the second electron remaining in the He+ ion, or promote the
photoelectron into continuum state of higher energy εATI via the
above threshold ionization (ATI) process. The two coupled ionization
thresholds He+(1s1) and He+(2p1) repel each other and follow a
time-dependent energy shifts �(t) provided by the laser pulse. These
shifts result in the dynamic interference in photoelectron spectrum
of He.

energy of photoelectrons, which see these ionic states as
their photoionization thresholds, follows the pulse intensity
envelope too. This gives rise to dynamic interference of
photoelectrons emitted with the same kinetic energy on the
rising and falling edges of the pulse [39].

We should note that the described process was originally
proposed in our previous work [39]. In the supplemental
material document of this reference, it was considered as the
two-step process, in which the dynamics of the photoelectron
was treated separately from that of the electron remaining
in the ion. The latter introduces the time-dependent energy
shift to the ionization threshold included in the former. In
the present work, we consider the aforementioned coupled
dynamics of the two electrons of He simultaneously. We
should also notice that the processes with similar conditions,
i.e., where the carrier frequency of the driving pulse was
chosen to be resonant for the transitions between the final
states of atomic Auger decay [19], as well as atomic [21]
and molecular [26] photoionization, were already discussed
in the literature. However, dynamic interference was ne-
glected in those theoretical treatments or considered to
be irrelevant for those processes owing to the laser field
conditions.

Theoretical description of the presently studied process
requires the solution of the time-dependent Schrödinger
equation for the two-electron wave function �(�r1,�r2,t) of He
exposed to intense coherent linearly polarized laser pulse. In
the electric dipole approximation, the total Hamiltonian of the
system reads (atomic units are used throughout)

Ĥ (t) = −1

2
�∇2

1 − 1

2
�∇2

2 − 2

r1
− 2

r2
+ 1

|�r1 − �r2|
+ (z1 + z2)E0 g(t) cos(ωt). (1)

Here g(t) is the time envelope of the pulse, ω is its carrier
frequency, and E0 is the peak amplitude related with the peak
intensity via I0 = 1

8πα
E2

0 , where α � 1/137.036 is the fine
structure constant, and 1 a.u. of intensity is equal to 6.43641 ×
1015 W/cm2.

Desirable theoretical and computational approaches for
atoms, required to propagate multi-electron wave packets
in real time and space, are already available [46–58]. A
straightforward implementation of the most accurate multicon-
figuration time-dependent Hartree-Fock (MCTDHF) method
[46–51] to the solution of the present problem is a formidable
computational task, even if it assumes propagation of only
two active electrons in He. As has been demonstrated in our
previous work [59], in order to allow the dynamic interference
to occur, one has to propagate the undisturbed photoelectron
wave packet during the pulse, without implying a complex
absorption potential at the boundary. This requires radial
spatial grids of at least 104 a.u., even for relatively short few
femtosecond ionizing pulses.

In order to tackle this challenging computational problem,
we restricted the present theoretical consideration only to the
dominant relevant physical processes evoked by the high-
frequency pulse in He (see Fig. 1 and its description in the
text). In particular, we neglected the very weak two-photon
nonsequential double ionization of He, which may occur
already at the photon energies above ω = 39.508 eV [51].
In addition, we forbad the second electron in the He+ ion
to be ionized, since this requires a sequential absorption of
at least three photons from the pulse, i.e., by the He+(1s →
2p) excitation and subsequent ionization. We thus keep one
of the electrons always bound to the nucleus. Finally, we
limited the two-electron space of active configurations as
justified in Sec. II C. Hence, the time-dependent restricted-
active-space configuration-interaction method (TD-RASCI,
[52,57,58]), which can also be viewed as a restricted form
of MCTDHF, was the computational approach of our choice.
It is known to allow for a considerable simplification of the
problem by a clever selection of the active configurational
space.

B. Theoretical approach

The present theoretical approach is based on the particular
realization of the TD-RASCI method described in Ref. [52].
The implemented numerical procedure is partly reported
in our previous works Refs. [59,60]. Therefore, only its
essential relevant points are outlined below. Briefly, the radial
coordinate is described by the finite-element discrete-variable
representation (FEDVR) basis set of the normalized Lagrange
polynomials χik(r), constructed over a Gauss-Lobatto grid
{rik} as introduced in Ref. [61–63]:

χik(r) = 1√
wik

∏
μ �=k

r − riμ

rik − riμ

. (2)

Here index i runs over the finite intervals [ri,ri+1] and index k

counts the basis functions in each interval. As in Ref. [60], we
further introduce the basis element in the three-dimensional
space:

ξλ(�r ) ≡ ξik,�m(�r ) = χik(r)

r
Y�m(θ,ϕ). (3)

As justified in the preceding section, we use two different
one-electron spatial basis sets for the two electrons in He. In
particular, dynamics of the electron which remains bound to
the nucleus is described by a few selected localized orbitals
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{φn�m(�r ) ≡ φα(�r )}. These stationary orbitals are composed of
the basis elements ξλ as

φα(�r ) =
∑

λ

d α
λ ξλ(�r ), (4)

and they are normalized according to the condition

〈φα|φα′ 〉 = δα,α′ = δn,n′δ�m,�′m′ . (5)

In addition, we introduce the time-dependent wave packets of
a photoelectron {ψα

�m(�r,t) ≡ ψβ(�r,t)}
ψβ(�r,t) =

∑
λ

c
β

λ (t) ξλ(�r ), (6)

which are constrained by the following condition:

〈φα|ψβ(t)〉 = 0, ∀α,β,t. (7)

The wave packets (6) are built to be orthogonal to all discrete
orbitals φα . Therefore, the full dynamics of the photoelec-
tron in the whole discrete and continuous spectrum can be
described by the unification of the two one-electron basis sets
{φα ∪ ψβ}.

Since the Hamiltonian (1) preserves the total spin of the
1s2 1S singlet ground state of He, the spatial part of the two-
electron wave function must be symmetric with respect to
permutation of two coordinates �r1 and �r2. We thus introduce
the following symmetrized ansatz for the total two-electron
wave function �(�r1,�r2,t)

�(�r1,�r2,t)

=
∑

α

aα(t)φα(�r1)φα(�r2)

+
∑
α>α′

bαα′ (t)
1√
2

[φα(�r1)φα′(�r2) + φα′(�r1)φα(�r2)]

+
∑
αβ

1√
2

[φα(�r1)ψβ(�r2,t) + ψβ(�r1,t)φα(�r2)], (8)

where the one-electron basis is defined in Eqs. (4)–(7). The
present calculations were performed by using the two-electron
wave functions with well-defined total orbital angular momen-
tum quantum numbers L and M , which were constructed via
usual Clebsch-Gordon expansion [64] over electronic states
with given quantum numbers � and m.

The matrix elements of the Hamiltonian (1) can be com-
puted as described in detail in Refs. [59–63]. For completeness,
we list here final working expressions in the basis of the
three-dimensional elements (3). The matrix element of the one-
electron kinetic energy operator reads (note that λ ≡ {ik,�m}
is four-dimensional index)

〈ξλ| − 1

2
�∇2|ξλ′ 〉 = δ�m,�′m′

{
�(� + 1)

2r2
ik

δik,i ′k′ + 1

2
(δi,i ′ + δi,i ′±1)

×
∫ ∞

0
dr

d

dr
χik(r)

d

dr
χi ′k′(r)

}
. (9)

It can be analytically evaluated in terms of the first derivatives
of the basis functions (2) as

χ ′
ik(rik′) = (rik − rik′)−1

√
wik

∏
μ �=k,k′

rik′ − riμ

rik − riμ

, k �= k′;

= 1√
wik

∑
μ �=k

(rik − riμ)−1, k = k′. (10)

The matrix element of the one-electron potential energy
operator is given by

〈ξλ| − 2

r
|ξλ′ 〉 = − 2

rik

δ�m,�′m′δik,i ′k′ . (11)

The dipole transition matrix element for the interaction with
the linearly polarized field can be computed via

〈ξλ|z|ξλ′ 〉 = rik δik,i ′k′

√
4π

3
〈�m|1 0|�′m′〉, (12)

where 〈�m|KQ|�′m′〉 stands for the integral of the three
spherical harmonics [65].

The matrix element of the two-electron Coulomb operator
is evaluated using its standard expansion over spherical
harmonics [64]

〈ξλξλ′ | 1

|�r1 − �r2| |ξλ′′ξλ′′′ 〉

=
∑
KQ

4π

2K + 1
〈χikχi ′k′ | rK

<

rK+1
>

|χi ′′k′′χi ′′′k′′′ 〉

× 〈�m|KQ|�′′m′′〉〈�′′′m′′′|KQ|�′m′〉∗, (13)

where r< and r> are, respectively, the smallest and the largest
of r1 and r2 values. The radial matrix element in Eq. (13) can
be further evaluated as [63]

〈χikχi ′k′ | rK
<

rK+1
>

|χi ′′k′′χi ′′′k′′′ 〉

= δik,i ′′k′′δi ′k′,i ′′′k′′′

×
(

2K + 1

ri ′k′
√

wi ′k′ rik

√
wik

[2T ]−1
i ′k′,ik + rK

i ′k′ r
K
ik

R2K+1
max

)
, (14)

where Tik,i ′k′ is the matrix of the one-electron kinetic energy
operator defined in braces of Eq. (9) with � = K , and Rmax is
the last point of the radial grid.

In order to follow time-evolution of the total wave function
(8), we collect the time-dependent expansion coefficients
aα(t), bαα′ (t), and c

β

λ (t) in a single vector �A(t), which is
propagated according to the Hamiltonian (1) with the matrix
elements given by Eqs. (9)–(14):

�A(t) = exp
{−iP Ĥ (t)P

} �A(0). (15)

Here the one-particle projector, P = 1 − ∑
α |φα〉〈φα|, acts

on the {c β

λ (t)} part of the vector �A(t) to ensure constrain
(7). The propagation was managed by the short-iterative
Lanczos method employing the algorithm of Ref. [66]. The
multiconfigurational initial ground state of the He atom in
the absence of the field [i.e., the �A(0) vector] was obtained
via the imaginary time propagation. The three-dimensional
momentum distribution of the emitted photoelectrons can be
obtained from the Fourier transformation of the final electron
wave packets at large times ψβ(�r ) = ψβ(�r,t = ∞). Because
of the normalization condition (5), the total photoemission
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FIG. 2. Radial parts of the one-electron functions, r φα(r), used
as the basis functions for the bound electron in the two-electron
TD-RASCI ansatz Eq. (8). Shown are the 1sHF Hartree-Fock orbital of
the He atom, 1sion and 2pion orbital of the He+ ion, and the correlation
functions 2̃s and 3̃p defined via Eqs. (17) and (19), respectively.

probability is given by

W (�k ) = 1

(2π )3

∑
β

∣∣∣∣
∫

ψβ(�r ) e−i�k·�r d3�r
∣∣∣∣2

. (16)

C. Computational details

We, first, discuss the basis set of the discrete functions φα

taken for the bound electron in He and justify the present
restrictions to the active space of configurations in Eq. (8).
In order to be as close as possible to the ground state of
neutral He, we include the 1sHF Hartree-Fock orbital in this
basis set. Thereby, the two-electron ansatz (8) includes the
|1s2

HF〉 configuration, as well as the corresponding |1sHFψ
1s
�m〉

configurations. The former approximates the ground states of
He, whereas the latter describes the one-photon–one-electron
ionization in the ψ1s

�m continuum. Apart from the 1sHF orbital,
the present one-electron basis set φα includes the 2pion

orbital of He+. Thereby, the active space is extended to the
|2pionψ

2p

�m〉, and the |1sHF2pion〉 and |2p2
ion〉 configurations.

The former allows for the 1sHF → 2pion excitation in the
ion, which gives rise to the dynamic interference, whereas the
latter two configurations ensure completeness of the present
configurational space.

Although the already selected active space is sufficient to
describe the dynamic interference effect, it yields low 1sHF →
2pion excitation energy and underestimates the resonant carrier
frequency. In order to correct for this inaccuracy, one should
allow for relaxation of the 1sHF orbital in the ion to the 1sion

orbital (the radial parts of the 1sHF and 1sion orbitals orbitals
are compared in the upper panel of Fig. 2). For this purpose, the
basis set φα must include a complete set of the nsion functions,

which is rather complicated. However, there is an alternative
procedure to describe the 1sHF → 1sion relaxation in the ion
by a single function.

Here we included the following normalized difference
between those two orbitals in the basis set φα

|2̃s 〉 = N2s( |1sion〉 − |1sHF〉〈1sHF|1sion〉 ), (17)

where N2s stands for the normalization coefficient. The radial
part of the 2̃s function is depicted in the upper panel of
Fig. 2 by solid line. This function satisfies the condition
(5), i.e., it is orthogonal to the 1sHF orbital. It is also
localized in the same region as the 1sHF and 1sion functions.
Therefore, a proper mixture of the 1sHF and 2̃s functions
will yield the required 1sion orbital. In order to allow for
this relaxation, we introduce the |2̃s ψ2s

�m〉 configuration in the
active space. Including this configuration ensures correct value
of the 1sion → 2pion excitation energy of 1.50 a.u. Besides,
configurations |1sHF2̃s 〉, |2̃s 2pion〉, and |2̃s

2〉 need also to be
included in the active space for completeness.

So far, the present active space allows for the most probable
1sion → 2pion excitation in the ion. However, the quantum
motion of the higher npion states driven by the strong pulse
may also influence dynamics of the whole process. This is
especially important for the photon energies slightly above the
resonant energy, where the next closest 3pion state is already
involved. In order to allow for such 1sion → npion excitations
in the ion, all those states need to be included in the basis set
φα , which is rather expensive. Here, we imply the technique
[67–69] and describe those transitions in an effective way by
the single correlation function 3̃p . To this end, we construct
and diagonalize the following matrix:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

E(1sion) + ω 〈1sion|ẑ|2pion〉 . . . 〈1sion|ẑ|npion〉 . . .

〈2pion|ẑ|1sion〉 E(2pion) 0 0 0

. . . 0 . . . 0 0

〈npion|ẑ|1sion〉 0 0 E(npion) 0
. . . 0 0 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(18)

Here 〈n′�′
ion|ẑ|n�ion〉 are the corresponding dipole transition

matrix elements in the ion.
The correlation function 3̃p can now be computed with

the help of the eigenvector {v1s
n } of matrix (18), which

genealogically corresponds to the 1sion basis state

|3̃p〉 = N2p

∑
n>2

v1s
n |npion〉. (19)

Here N2p stands for the normalization coefficient. This
function is orthogonal to the 2pion function by its construction.
The condition (5) is thus fulfilled. The radial parts of the 2pion

and 3̃p functions are compared in the lower panel of Fig. 2.
One can see that the latter is localized around the former, and
since 3pion function provides the major contribution to the sum
(19), the 3̃p function has one knot. The correlation function
(19) effectively includes contributions from the whole npion

spectrum, apart from the explicitly included 2pion state. In
order to allow for the 1sion → 3̃p excitation to take place, we
include the |3̃p ψ

3p

�m〉 configuration, as well as the |1sHF3̃p 〉,
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FIG. 3. The final photoelectron radial density (upper panel) and
the final photoelectron spectrum (lower panel) after the intense
linearly polarized Gaussian-shaped pulse has expired. The pulse
duration τ , carrier frequency ω, and peak intensity I0, used in the
calculations, as well as assignments of the main structures in the
spectrum are indicated in the figure. Note the logarithmic scales
on the vertical axes. Here and below, the electron energy was
corrected by −0.264 eV for the difference between the theoretical
and experimental ionization potentials (see Sec. II C for details).

|2̃s 3̃p 〉, |2pion3̃p 〉, and |3̃p
2〉 configurations in the present

active space.
The presently computed energy of the ground state of

neutral He, obtained by the imaginary time propagation
of the chosen active configurational space in the restricted
radial interval of r � 50 a.u., is equal to E(1s2) = −2.89384
a.u. Since our active space allows for an exact numerical
description of the He+(1s1) and He+(2p1) states, the theo-
retical ionization potential of He amounts to V+ = E(1s1) −
E(1s2) = −2.0 + 2.89384 = 0.89384 a.u. = 24.323 eV. It is
by +0.873 eV larger than the Hertree-Fock value of 23.450
eV, and only by −0.264 eV smaller than its experimental
value of 24.587 eV [44]. In order to eliminate this difference
between the theoretical and experimental ionization potentials,
the photoelectron energy in all computed spectra was corrected
by this value of −0.264 eV. As the consequence, photoelectron
peaks in the computed spectra in Figs. 3–6 have correct
energy positions, which facilitates comparison with possible
experiments in the future.

As was suggested in the supplemental material document
of our previous work Ref. [39], the present calculations were
performed for a Gaussian-shaped pulse with the time envelope
g(t) = e−t2/τ 2

and the pulse duration of τ = 30 fs. The two-
electron wave packets were propagated in the time interval of
[−75fs, + 75fs] centered around the pulse maximum. At the
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FIG. 4. Photoionization spectra of the helium atom computed
for Gaussian-shaped pulses of 30 fs duration and peak intensity
of 2.5 × 1014 W/cm2 for different carrier frequencies (indicated
near each spectrum) around the 1s → 2p resonant excitation in
the He+ ion. The photoelectron energies expected in the weak
field regime are indicated by the vertical down arrows. For the
carrier frequencies below 1.5 a.u., the shift of the 1s threshold is
negative, which results in the positive shift in the corresponding
major part of the electron spectrum. On the contrary, the shift
of the 2p threshold is positive, and for the associated minor part
of the spectrum it is thus negative. For the frequencies above
1.50 a.u., the shift of the 1s threshold is positive and of the 2p

threshold is negative, which results in the negative shift in the
corresponding major part of the spectrum and in the positive shift in its
minor part. The complexity of the dynamic interference patterns in the
spectrum increases with the decrease of the photon energy detuning.
The resonant carrier frequency of 1.50 a.u. produces nearly symmetric
Autler-Townes doublet structured by distinct dynamic interference
patterns.

interval boundaries, the field amplitude falls by almost three
orders of magnitude. For the photon energies used, the ATI
electrons indicated in Fig. 1 have momenta of k ∼ 2.0 a.u.
During the propagation time of 150fs ≈ 6200 a.u. they may
move off the nucleus by about Rmax ∼ 12 000 a.u. In order to
avoid hitting the outward grid boundary by the fast electrons
during the whole propagation, this value of Rmax was chosen as
the radial grid size. The interval [0,Rmax] was covered by 4800
equidistant finite elements of the 2.5 a.u. size, each represented
by 10 Gauss-Lobatto points. In order to be able to describe
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FIG. 5. Photoionization spectra of the helium atom computed for
Gaussian-shaped pulses of 30 fs duration, two carrier frequencies
of 1.500 a.u. (left panel) and 1.528 a.u. (right panel), and different
peak intensities (indicated near each spectrum). For further details,
see caption of Fig. 4. The complexity of the dynamic interference
patterns in the spectrum increases with the increase of the pulse
intensity.

ATI electrons, the wave packets ψβ with � = 0, 1, and 2 were
included in the present active space. The convergence of the
solution with respect to the chosen computational parameters
has been ensured.

A typical calculation discussed at the very beginning of the
next section requires approximately 20 Gb memory and, in
average, about 300 days for a single contemporary computer
core. In order to be able to perform such time-consuming
numerical calculations in a reasonable time, the propagation
procedure was parallelized, and calculations were performed
in the multiple-processor regime.

III. RESULTS AND DISCUSSION

A. Propagation of two-electron wave packet

An overview of the computational results obtained for the
Gaussian-shaped pulse with the resonant carrier frequency of
1.50 a.u., peak intensity of 1014 W/cm2, and duration of 30 fs
is given in Fig. 3. The upper panel depicts the final radial wave
packet density computed after the laser pulse has expired. In
this wave packet, a clear hump with the maximum around r =
4000 a.u. represents the slow photoelectrons released by the
photoionization (see below). The shoulder around r = 8000
a.u. describes faster electrons emitted via the ATI process. The
electron energy spectrum obtained via Eq. (16) is depicted
in the lower panel of Fig. 3. Assignments of the observed
structures, made on the base of the main contribution to the
spectrum, are also given in the figure near each peak.

The two groups of peaks are clearly visible in this computed
energy distribution. The low-energy group corresponds to
the photoionization process. In particular, the double-peak
structure in the energy range of 16.0–16.5 eV corresponds
to the Autler-Townes doublet of the 1s and 2p states of
the He+ ion. It is produced by the one-photon ionization
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FIG. 6. Comparison of the dynamic interference patterns in the
major part of the photoionization spectrum, which corresponds to
the He+(1s1) final state, computed numerically via the electron wave
packet propagation and estimated as described in Sec. III B for two
Gaussian-shaped pulses. The computational parameters are indicated
in the panels. Each estimated spectrum is normalized to the maximum
of the corresponding numerical one.

of the ground state and by the two-photon ionization and
subsequent 1s → 2p excitation in the ion. The low energy
peaks at about ε = 9.6 and 5.2 eV correspond, respectively,
to the population of the 2̃s

1
and 3̃p

1
states of He+ via

the one- and two-photon absorption. These weak artificial
structures are characteristic for the present choice of CI
ansatz (Sec. II C). They comprise an integral contribution
of all shake-up photoionization processes populating higher
in energy realistic ns1 and np1 states of He+, except the
explicitly involved He+(1s1) and He+(2p1) thresholds. The
high-energy group of peaks in the spectrum is separated
from the low-energy group by the resonant photon energy of
40.817 eV. The former group corresponds one-by-one to the
latter one, and it represents thereby the ATI processes involving
absorption of an additional photon from the pulse. Due to the
limitations of the present CI ansatz, these ATI structures were
excluded from the analysis of the dynamic interference effect.

The presently computed photoionization spectra are col-
lected in Figs. 4 and 5. In Fig. 4 the photon energy increases
from top to bottom across the resonant value of ω = 1.50
a.u., whereas the pulse duration 30 fs and intensity 2.5 × 1014

W/cm2 are kept fixed. One can see, that each photoionization
spectrum in Fig. 4 consists of two parts. The largest major part
is related to the He+(1s1) photoionization threshold, and the
somewhat smaller minor one corresponds to the population
of the He+(2p1) final state. At the resonant carrier frequency
(the middle spectrum), the two ionic states mix completely,
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and a typical dynamical Autler-Townes doublet [43] with
approximately equal intensities can be seen. One can see that
the computed spectra in Fig. 4 exhibit prominent multiple-
peak pattern, which are due to the dynamic interference
[39,40,42,43]. The number of interference peaks increases
with the energy shift of the ionization threshold, which is
larger for smaller energy detunings.

The two uppermost spectra represent the photon energies
below the resonant value of ω = 1.50 a.u. In this case, the
dressed He+(1s1) ionic state is just below the He+(2p1) one:
E(1sion) + ω < E(2pion). The former experiences a negative
energy shift and the latter a positive one. Therefore, photo-
electrons corresponding to the He+(1s1) threshold acquire a
positive shift, and the major part of the spectrum shifts to
the high-energy side from the central photoelectron energy
ε0 = ω − V+ (indicted by the vertical down arrow in the
figure). On the contrary, the minor part of the spectrum,
which corresponds to the He+(2p1) threshold, experiences the
negative energy shift. The situation is altered for the photon
energies above the resonant value (two lowermost spectra in
Fig. 4). The dressed He+(1s1) state is now above the He+(2p1)
ionic state: E(1sion) + ω > E(2pion). As a result, the former
experiences a positive energy shift and the latter a negative
one. The corresponding major part of the spectrum shifts now
to the low-energy side from the central photon energy ε0, and
the minor part accordingly to the high-energy side.

Figure 5 demonstrates changes of the dynamic interference
in the photoionization spectra computed for different pulse
intensities. For the resonant carrier frequency (left panel),
a typical Autler-Townes doublet structured by interference
patterns [42,43] can be observed. As usual, the number of
interference peaks increases with the growth of the pulse
intensity (from top to bottom of the figure). The same
observation applies to the off-resonant regime (right panel,
carrier frequency is larger than its resonant value). The energy
shift in the spectrum from the central electron energy ε0

(indicated by the vertical down arrow) grows as a function of
the pulse intensity. As a consequence, the number of peaks
in the spectrum grows as well. The interference structure
computed for the largest considered intensity of 4.5 × 1014

W/cm2 (the lowermost right spectrum in Fig. 5), is somewhat
truncated on the low-energy side. This behavior indicates that
the photoionization process is nearly saturated at this relatively
large peak intensity.

B. Explicit estimates of the electron spectrum

So far we discussed results of the numerical calculations
of the two-electron wave packet propagation dynamics in
He. Such an accurate theoretical description of the process
is very time-consuming. Therefore, it is very important to
wield a simple theoretical model which can provide quick and
reliable estimates for the dynamic interference effects in the
photoelectron spectrum of He. It has been introduced in the
supplemental material document of our previous work [39].
Below we briefly outline this model and apply it to estimate
selected numerical spectra. For transparency, we explicitly
assume that only two subsequent ionization steps of an atom
are possible (as in He), and only one final ionic state is
presented in each of the photoionization steps. Generalization

of the theory to the case of several ionization thresholds in
each step is straightforward.

We now restrict the ansatz for the total wave function of the
system �(t) to the quantum motion of only essential electronic
states participating directly in the photoionization dynamics in
each step. It thus includes (i) the neutral ground electronic state
|N〉 of energy of EN = 0 (chosen as the origin of the energy
scale); (ii) the electron continuum states of the singly ionized
atom |Fε〉 of energy V+ + ε (where V+ = EF − EN stands
for the ionization potential to produce state |F 〉 and ε is the
kinetic energy of the primary photoelectron); and (iii) the final
doubly ionized electron continuum states |Gεε′〉 of energy
V2+ + ε + ε′ (where V2+ = EG − EN is the double-ionization
potential to produce state |G〉 and ε′ is the kinetic energy of
the secondary electron emitted by the ionization of the ion).
Following Refs. [39–43], the total wave function of the system
reads

�(t) = aN (t)|N〉 +
∫

dε aε(t)|Fε〉e−iωt

+
∫∫

dε dε′ bεε′ (t)|Gεε′〉e−2iωt . (20)

In Eq. (20), aN (t), aε(t), and bεε′ (t) are the time-dependent
amplitudes for the population of the initial neutral state, the
singly and the doubly ionized continuum states, respectively.
The continuum states are already dressed by the energy of
photons absorbed in order to access these states. Technically,
the stationary states have just been redefined by multiplying
with the phase factors eiωt and e2iωt [41]. Inserting �(t)
into the time-dependent Schrödinger equation for the total
Hamiltonian of the atom plus its interaction with the laser
field, and implying the rotating wave [70] and local [71,72]
approximations, we obtain the following set of equations for
the amplitudes [39–43]:

iȧN (t) =
(

�N − i

2
�N

)
g2(t) aN (t), (21a)

iȧε(t) =
{

1

2
dεE0

}
g(t) aN (t) +

{
V+ +

[
�I − i

2
�I

]

× g2(t) + ε − ω

}
aε(t), (21b)

iḃεε′ (t) =
{

1

2
d̃ε′E0

}
g(t) aε(t) + (V2+ + ε + ε′ − 2ω)bεε′ (t).

(21c)

Here dε = 〈Fε|ẑ|N〉 and d̃ε′ = 〈Gε′|ẑ|F 〉 are the energy-
dependent dipole transition matrix elements for the ionizations
of the neutral atom and of the ion, respectively.

One can see that the populations of the neutral ground
and the singly ionized states are subjects to the time-
dependent leakages, − i

2�Ng2(t) and − i
2�Ig

2(t), which is due
to photoionization of these states by strong high-frequency
pulse. In addition, the energy of the neutral ground state is
augmented by the time-dependent ac Stark shift �N g2(t)
[39,40]. Similar shift �I g2(t) is introduced to the energy of
the singly ionized state. We stress, that even if the photon
energy ω is insufficiently large to further ionize the ion (as in
the present case), the shift �I also exists, and it is caused by
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the coupling in the discrete spectrum of the singly ionized
system. However, leakage in the ion in this case is equal
to zero, �I = 0. Therefore, dynamics in the photoionization
step can now be decoupled from the dynamics of the electron
remaining bound to the ion. Neglecting also the ac Stark shift
in continuum for the neutral ground state �N ≈ 0, the final
equations describing photoionization process read

iȧN (t) = − i

2
�Ng2(t) aN (t), (22a)

iȧε(t) =
{

1

2
dεE0

}
g(t) aN (t)

+ [V+ + �I g2(t) + ε − ω]aε(t). (22b)

The above derived equations of motion (22) can be applied
to compute the photoelectron spectrum, σ (ε) = |aε(∞)|2. The
two parameters �I and �N needed can be estimated from first
principles or taken to be fit parameters. We follow here the
former path. For simplicity, we restrict further consideration
to the major part of the photoionization spectrum, which
corresponds to the He+(1s1) ionization threshold. The direct
ionization rate �N can be computed with the help of the total
photoionization cross section of the neutral ground state of
He via �N = 2π | 1

2dεE0|2 = σεI0/ω [25,41]. For the present
purpose, it was sufficient to estimate the corresponding dipole
transition amplitude dε and the total cross section σε at the
Hartree-Fock level. The shift �I in the He+ ion was computed
through the diagonalization of the matrix (18), which describes
the quantum motion of the dressed 1sion state coupled by the
field to the motion of the whole npion electron spectrum. It
neglects, however, the quantum motion of states with different
angular momenta nsion, ndion, etc. Since the photon energy ω

is nearly resonant to the 1sion → 2pion transition, it provides
the main contribution to the shift. Equation (18) thus yields a
reliable estimate for �I .

Results of the present estimation of the two selected
numerical spectra are collected in Fig. 6. The pulse properties
and parameters �I and �N used in the propagation and for
the estimation of the spectra are indicated in each panel. One
can see that Eq. (22) provides an overall good estimate for the
major part of the numerical spectra related with the He+(1s1)
ionization threshold. Each pair of the estimated and computed
spectra possesses an equal number of oscillations caused by
the dynamic interference. The energy positions and relative
heights of the multiple peak structures are, however, slightly
different. The dynamic interference is very sensitive to the
time-dependence and to the absolute values of the energy shifts
�I and ionization rates �N [39,40,42,43]. In Eq. (22), the
energy shift �I explicitly follow the pulse intensity envelope
I0g

2(t), which is typical for the ac Stark effect [7]. For
the resonant carrier frequencies, the energy splitting between
the dynamical Autler-Townes doublet follows the time en-
velope of the field E0g(t) [42,43]. The present situation is
intermediate to those two extremes, which can be one of the
reasons for a slight disagreement between the estimated and
computed spectra in Fig. 6. Improvement can probably be
achieved by either a better calculation of or by fitting the
parameters �I and �N . Figure 6 demonstrates that a simplified
and explicit description of the process is possible via Eq. (22)
which leads to a better understanding of the findings and can

be used for a quick but rather reliable estimate of the dynamic
interference in He.

IV. CONCLUSION

The time-dependent Schrödinger equation for the helium
atom exposed to coherent intense high-frequency short linearly
polarized laser pulse is solved by numerically propagat-
ing the two-active-electron wave packet. The propagation
over very large spatial grids and long times, required to
allow for the interference of electron wave packets emitted
at different times to take place, is managed by the ef-
ficient time-dependent restricted-active-space configuration-
interaction method. Working equations for the application
of the TD-RASCI method to the photoionization of He are
collected and discussed.

The carrier frequencies of the pulse were chosen to be nearly
resonant for the He+(1s → 2p) transition, which is sufficient
to ionize neutral He by one-photon absorption, but not enough
to further ionize the ion by absorption of a subsequent photon
from the pulse. We allowed only one of the electrons in
He to be ionized during the propagation, whereas the other
electron feels the field and is active but was kept bound to the
nucleus. The present active space was restricted to the electron
configurations which describe (i) one-electron photoionization
and above threshold ionization of He; (ii) relaxation of the
remaining 1s electron in response to the photoionization; and
(iii) excitation of this bound electron explicitly in the 2p state
and in an effective way in the whole np electron spectrum.
As a result, the present calculations account for sequential
two-photon absorption, as well as for main but all three-photon
absorption processes in a numerically precise way.

The presently computed electron energy spectra exhibit two
photoionization structures, which are due to the population
of the He+(1s1) and He+(2p1) final ionic states by one-
and, respectively, two-photon absorption. The above-threshold
ionization peaks, related to those thresholds and produced
respectively by two and three-photon absorption processes,
are also visible. The photoionization peaks exhibit distinct
patterns which are due to dynamic interference. The effect
is exclusively produced by the dynamics of the electron
remaining in He+, which is governed by the nearly resonant
intense coherent laser pulse and is coupled to the dynamics
of the photoelectron. One can view this processes as if the
1s and 2p ionization thresholds, seen by the photoelectrons,
experience the opposite time dependent energy shifts provided
by the pulse. This results in the emission of photoelectrons with
different kinetic energies along the pulse, which is at the heart
of the dynamic interference phenomenon.

The dynamic interference pattern can be controlled by
choosing carrier frequencies across the He+(1s → 2p) res-
onant transition and different pulse intensities. The relative
intensities of the two photoionization peaks, associated with
the He+(1s1) and He+(2p1) ionization thresholds, depend on
the photon energy detuning. For the resonant carrier frequency
of 1.50 a.u., a nearly symmetric interference-structured Autler-
Townes doublet can be observed. Finally, we notice that
the carrier frequencies, pulse durations, field intensities, and
temporal coherence required to produce observable effects,
are available at present at the FEL facility FERMI@Elettra
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[14]. Our results provide a theoretical background for future
experimental verification of the dynamic interference effect in
the high-frequency regime.
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