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A. Static structure factors

In Fig. S1, as a supplement to Fig. 2 of the main
manuscript, we show the structure factors (SF) at θ = 2
for intermediate (rs = 1) and lower (rs = 10) density. At
both densities the STLS structure factor smoothly con-
nects to the QMC data but exhibits significant deviations
at larger k. The low k expansion of the RPA SF fails to
connect to the QMC data at rs = 1, indicating that the
FSC by Brown et al. is inappropriate, while at rs = 10
the RPA expansion smoothly connects to the QMC data
so that the FSC by Brown et al. is applicable.

B. Practical details

For the evaluation of the discretization error (DE) ac-
cording to Eq. (5) in the main manuscript,
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)
,

the maximum modulus of the discrete lattice vectors Gmax

has to be chosen large enough to ensure the convergence
of the FSC, which is demonstrated in Fig. S2 for three
different particle numbers at θ = 2 and rs = 0.5. Clearly,
taking into account only the first k-vector is not sufficient.
In fact, the convergence of the DE with respect to Gmax
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Figure S1: Static structure factors of N = 66 electrons at
θ = 2 for a) rs = 1.0 and b) rs = 10.0: QMC data (green
crosses), STLS (red) and k → 0 expansion of the the RPA SF
(light blue).
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Figure S2: Convergence of the FSC with the maximum k-
value for three particle numbers and θ = 2 and rs = 0.5,
cf. Fig. 3 in the main manuscript.

is rather slow, and the number of k-vectors needed for
convergence of the DE only weakly depends on N . The
difference between the converged values is due to the
different k-mesh for different N .

C. Finite-size corrections for selected parameters

To demonstrate the broad range of applicability of
our finite size correction (FSC) procedure, we present
some more examples for different parameter combinations.
Figure S3 shows the convergence of the potential energy
with system size for the most challenging (with respect to
finite-size errors) case at θ = 8 and rs = 0.1. Evidently,
the uncorrected QMC (CPIMC) data exhibit severe finite-
size errors of ∆V/V ≈ 200% for N = 34. This is a direct
consequence of the steep drop of the static structure
factor S(k) at small k, that is not properly accessed
by the available k-values even in a QMC simulation of
N = 1000 electrons. Further, the potential energy that
is obtained by invoking the BCDC-FSCs even worsens
the convergence, as SRPA

0 (k) does not come anywhere
near the QMC-data, even for N = 1000. In striking
contrast, our FSCs (using either SSTLS, or a combination
of STLS with the QMC data, Scomb) are converged to a
remarkably high degree, even for relatively small systems
(with |∆V |/|V | ∼ 10−3, for N = 66) and the additional
extrapolation of the residual finite-size errors allows for
an accurate result for V in the TDL even for such extreme
parameters.

Figure S4 shows the convergence for θ = 2 and rs = 1.
In this case, the uncorrected QMC (permutation blocking
PIMC) data exhibit finite-size errors of |∆V |/|V | ≈ 10%
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Figure S3: Finite-size correction of the QMC results for the
potential energy with θ = 8 and rs = 0.1.
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Figure S4: Same as Fig. S3, but for θ = 2 and rs = 1.

(for N = 34) and the convergence seems to follow
|∆V |/N ∼ 1/N , cf. the linear fit (the green line). Al-
though, in principle, the 1/N -behavior is predicted by
the BCDC-FSCs, the slope is different and the corrected
V/N -data do not agree with the linear extrapolation and
are not converged. The data that have been obtained
after adding our new FSCs are converged to a high degree,
but do not agree with the linearly extrapolated value as
well. This, again, clearly demonstrates the danger of
a direct extrapolation of the QMC data without being
certain about the exact functional form of the finite-size
error.

D. Fit of the potential energy

Following Karasiev et al. [1], we use the following
parametrization of the exchange-correlation free energy
for fixed θ:

Fxc
N

(rs, θ) = − 1

rs

(
a+ b

√
rs + crs

1 + d
√
rs + ers

)
, (S.2)

which yields the potential energy via

V (rs, θ)rs = 2rsFxc(rs, θ) + r2s
∂Fxc(rs, θ)

∂rs

∣∣∣∣
θ

, (S.3)

which allows us to fit the rhs. of Eq. (S.3) to our new
corrected QMC data. The parameter a follows from the
Hartree-Fock limit and the results of the fit procedure for
the five isotherms shown in Fig. 4 in the main article are
listed in table I.

E. STLS and RPA

The static structure factor (SF) is found by the
fluctuation-dissipation theorem as a sum over the Matsub-
ara frequencies for the polarizabilities of the interacting
system as

S(k) =
−1

βn

∞∑
l=−∞

1

vk

(
1

ε(k, zl)
− 1

)
, (S.4)

with the particle density n, the Matsubara frequencies
zl = 2πil/βh̄, and the Fourier transform of the Coulomb
potential vk = 4π/k2. Following [2], the Singwi-Tosi-
Land-Sjölander (STLS) SF is computed from the dielectric
function

ε(k, ω) = 1− vkχ0(k, ω)

1 +G(k)vkχ0(k, ω)
, (S.5)

with χ0(q, ω) being the finite-temperature polarizability
of the non-interacting UEG, G is the static local field
correction

G(k) =
−1

n

∫
dk′

(2π)3
k · k′

k′2
[S(k− k′)− 1], (S.6)

and Eq. (S.4), (S.5), and (S.6) are solved self-consistently.
In the random phase approximation (RPA), G(k)→ 0.

F. Finite-size corrections by Brown et al.

In Fig. 4 from the main manuscript, we have compared
our new corrected data for the potential energy to RPIMC
data (for N = 66) by Brown et al. that were corrected
with the BCDC-FSC [Eq. (4) of the main article]. How-
ever, it should be noted that this corrected data differs
from the data tabulated in the supplement of Ref. [3].
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Figure S5: Potential energy of the warm dense electron gas
in the TDL. Panel a) shows our new corrected data for three
temperatures, the fits to our data (see Eq. (S.3)), and the data
by Brown et al. (BCDC), taken directly from their supplement.
Panel b) shows the corresponding relative deviations to the
fits to our data.

For the latter, apparently, there was a problem caused
by a mix of Hartree and Rydberg atomic units within
their FSC. In Fig. S5, we compare our data to the BCDC
results as they are given in their supplement. While
the magnitude of the deviation is similar as in Fig. 4
from the main article, the sign changes with temperature.
In particular, for θ = 8 the BCDC values are lower by
∆V/V ≈ 8% than ours instead of being too high, and the
two data sets significantly disagree even for rs = 10.

G. Data

As a supplement to Fig. 4 from the main article, we have
listed all data for the potential and exchange correlation
free energy of the macroscopic UEG in Table II.
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Table I: Fit parameters from Eq. (S.3), see Fig. 4 in the main article.

θ a b c d e

8.0 0.025 26 0.151 46 0.015 624 0.158 37 0.021 73
4.0 0.049 81 0.216 40 0.046 744 0.315 83 0.054 29
2.0 0.095 88 0.302 37 0.081 005 0.454 80 0.093 17
1.0 0.173 85 0.389 00 0.097 468 0.554 82 0.113 88
0.5 0.278 86 0.404 12 0.054 329 0.519 84 0.063 44

Table II: Energies per particle of the warm dense electron gas in the
thermodynamic limit: Listed are the potential energy V/N (finite-size
corrected QMC data where the residual error has been removed by an
additional extrapolation, cf. Fig. 3 in the main article), the corresponding
uncertainty δV/N and the exchange correlation free energy Fxc/N that
has been obtained by the fit, see Sec. D.

θ rs V/N δV/N Fxc/N

8.0 10.0 −0.051 01 0.000 02 −0.038 442
8.0 8.0 −0.059 84 0.000 04 −0.044 601
8.0 6.0 −0.072 91 0.000 05 −0.053 789
8.0 4.0 −0.0956 0.0001 −0.069 583
8.0 2.0 −0.1483 0.0002 −0.106 794

 http://link.aps.org/doi/10.1103/PhysRevLett.112.076403 
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Table II: (continued).

θ rs V/N δV/N Fxc/N

8.0 1.0 −0.2259 0.0004 −0.162 990
8.0 0.5 −0.3442 0.000 19 −0.249 668
8.0 0.3 −0.4692 0.0003 −0.344 241
8.0 0.1 −0.9341 0.0003 −0.710 052

4.0 10.0 −0.059 74 0.000 01 −0.047 280
4.0 6.0 −0.088 43 0.000 02 −0.068 305
4.0 4.0 −0.119 06 0.000 04 −0.090 529
4.0 2.0 −0.1929 0.0004 −0.144 405
4.0 1.0 −0.3060 0.0003 −0.228 337
4.0 0.5 −0.4811 0.0003 −0.361 760
4.0 0.3 −0.6722 0.0003 −0.511 220
4.0 0.1 −1.4091 0.0007 −1.112 758

2.0 10.0 −0.066 409 0.000 003 −0.055 243
2.0 8.0 −0.080 093 0.000 009 −0.065 910
2.0 6.0 −0.101 461 0.000 014 −0.082 412
2.0 4.0 −0.140 11 0.000 03 −0.112 123
2.0 2.0 −0.2380 0.0004 −0.187 073
2.0 1.0 −0.3950 0.0011 −0.309 220
2.0 0.5 −0.6484 0.0007 −0.511 632
2.0 0.3 −0.9350 0.0010 −0.746 033
2.0 0.1 −2.0956 0.0013 −1.732 828

1.0 10.0 −0.070 264 0.000 014 −0.061 098
1.0 8.0 −0.085 593 0.000 009 −0.073 774
1.0 6.0 −0.109 94 0.000 04 −0.093 763
1.0 4.0 −0.155 37 0.000 10 −0.130 733
1.0 2.0 −0.2749 0.0003 −0.228 179
1.0 1.0 −0.4769 0.0005 −0.395 507
1.0 0.5 −0.8225 0.0011 −0.686 721
1.0 0.3 −1.2301 0.0010 −1.037 072
1.0 0.1 −2.972 0.003 −2.585 960

0.5 10.0 −0.071 47 0.000 10 −0.064 069
0.5 8.0 −0.087 60 0.000 04 −0.077 981
0.5 6.0 −0.113 52 0.000 08 −0.100 212
0.5 4.0 −0.1631 0.0006 −0.142 231
0.5 2.0 −0.2938 0.0008 −0.257 459
0.5 1.0 −0.531 0.003 −0.465 543
0.5 0.5 −0.959 0.003 −0.845 752
0.5 0.4 −1.158 0.002 −1.026 811
0.5 0.3 −1.4808 0.0011 −1.320 709
0.5 0.1 −3.851 0.004 −3.521 367
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