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We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas
in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to
remove finite-size errors from the potential energy over the substantial parts of the warm dense regime,
overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110,
146405 (2013)]. Extensive new QMC results for up to N ¼ 1000 electrons enable us to compute the
potential energy V and the exchange-correlation free energy Fxc of the macroscopic electron gas with an
unprecedented accuracy of jΔVj=jVj; jΔFxcj=jFjxc ∼ 10−3. A comparison of our new data to the recent
parametrization of Fxc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant
deviations to the latter.
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The uniform electron gas (UEG), consisting of electrons
on a uniform neutralizing background, is one of the most
important model systems in physics [1]. Besides being a
simple model for metals, the UEG has been central to the
development of the linear response theory and more
sophisticated perturbative treatments of solids, the formu-
lation of the concepts of quasiparticles and elementary
excitations, and the remarkable successes of density func-
tional theory (DFT)
The practical application of ground-state density func-

tional theory in condensed matter physics, chemistry, and
materials science rests on a reliable parametrization of the
exchange-correlation energy of the UEG [2], which in turn
is based on accurate quantum Monte Carlo (QMC) sim-
ulation data [3]. However, the charged quantum matter in
astrophysical systems such as planet cores and white dwarf
atmospheres [4,5] is at temperatures way above the ground
state, as are inertial confinement fusion targets [6–8], laser-
excited solids [9], and pressure-induced modifications of
solids, such as insulator-metal transitions [10,11]. This
unusual regime, in which strong ionic correlations coexist
with electronic quantum effects and partial ionization, has
been termed “warm dense matter” and is one of the most
active frontiers in plasma physics and materials science.
The warm dense regime is characterized by the existence

of two comparable length and energy scales: the mean
interparticle distance r̄ and the Bohr radius a0; and the
thermal energy kBT and the electronic Fermi energy EF,
respectively. The dimensionless parameters rs ¼ r̄=a0 and
Θ ¼ kBT=EF are of the order of unity. Because Θ ∼ 1, the
use of the ground-state density functional theory is inap-
propriate and extensions to finite T are indispensable; these
require accurate exchange-correlation functionals for finite

temperatures [12–16]. Because neither rs nor Θ is small,
there are no small parameters, and weak-coupling expan-
sions beyond Hartree-Fock such as the Montroll-Ward
(MW) and e4 (e4) approximations [17,18] as well as the
linear response theory within the random-phase approxi-
mation (RPA) break down [19,20], see Fig. 1. Finite-T
Singwi-Tosi-Land-Sjölander (STLS) [21,22] local-field
corrections allow for an extension to moderate coupling
[22] but exhibit nonphysical behavior at short distances for
moderate to low densities, so improved expressions are
highly needed. Further, quantum-classical mapping [23,24]
allows for semiquantitative descriptions of warm dense
matter in limiting cases.
Therefore, an accurate description of warm dense matter,

in general, and of the warm dense UEG, in particular, can be

FIG. 1. Potential energy per particle of the unpolarized UEG at
θ ¼ 2 and rs ¼ 0.5. The exact CPIMC results for different system
sizes are indicated by green crosses; the yellow asterisks show
these results after the ΔVBCDC finite-size correction from Eq. (4)
has been applied. The horizontal arrows refer to many-body
theories (RPA, STLS [21], MW, and e4 [45]; see the text). The
black lines are two different, equally plausible, extrapolations of
the QMC data to infinite system size [44].
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achieved only using computational approaches, primarily
QMC methods which, however, are hampered
by the fermion sign problem [25,26]. The pioneering
QMC simulations of the warm dense UEG by Brown
et al. [27] eliminated the sign problem by invoking the
(uncontrolled) fixed-node approximation [28] but were
nevertheless restricted to small systems of N ¼ 33
(spin-polarized) and N ¼ 66 (unpolarized) electrons and
tomoderate densities rs ≥ 1. Recently, wewere able to show
[29–31] that accurate simulations of these systems are
possible over a broad parameter range without any nodal
restriction. Our approach combines two independent meth-
ods, configuration path-integral Monte Carlo (CPIMC)
calculations [32–34] and permutation blocking PIMC
(PB-PIMC) calculations [35,36], which allow for accurate
simulations at high (rs ≲ 1) and moderate densities (rs ≳ 1
and θ ≳ 0.5), respectively.An independently developed third
approach, density matrix QMC [31,37,38], confirmed the
excellent quality of these results. The only significant errors
remaining are finite-size effects [34,39–43],which arise from
the difference between the small systems simulated and the
infinite [thermodynamic limit (TDL)] system of interest.
Direct extrapolation to the TDL [3,40,42] is extremely

costly and also unreliable unless the form of the function to
be extrapolated is known; the two black lines in Fig. 1 show
two equally reasonable extrapolations [44] that reach
different limits. Furthermore, the parameter-free finite-size
correction (FSC) proposed in Ref. [27] [see Eq. (4) below]
turns out to be inappropriate in parts of the warm dense
regime. The problem is clear from inspection of the yellow
asterisks in Fig. 1, which include this FSC but remain
system-size dependent.
In this Letter, we close the gap between the finite-N

QMC data and the TDL by deriving a highly accurate FSC
for the interaction energy. This allows us to obtain precise
(on the level of 0.1%) results for the exchange-correlation
free energy, making possible the ab initio computation of
arbitrary thermodynamic quantities for warm dense matter.
Theory.—Consider a finite unpolarized UEG of N

electrons subject to periodic boundary conditions. The
Hamiltonian is Ĥ ¼ K̂ þ V̂E, where K̂ is the kinetic energy
of the N electrons in the cell and

V̂E ¼ 1

2

XN

i≠k
ϕEðri; rkÞ þ

1

2
NξM ð1Þ

is the Coulomb interaction energy per unit cell of an infinite
periodic array of images of that cell. The Ewald pair
potential ϕEðx; yÞ and Madelung constant ξM are defined in
Refs. [39,40]. We use Hartree atomic units throughout this
work. The expected value of V̂E=N carries a finite-size
error [46] that is the difference between the potential energy
v per electron in the infinite system and its value VN=N in
the finite system. This difference may be expressed in terms
of the static structure factor (SF) as follows:
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where L and G are, respectively, the length and reciprocal
lattice vector of the simulation cell and SðkÞ [SNðGÞ] is the
SF of the infinite [finite] system. A first source of FS error
in Eq. (2) is the replacement of SðkÞ in the first term by its
finite-size analogue SNðGÞ in the second term. However,
this effect is negligible, as we will demonstrate in Fig. 2.
Thus, the main source of error is the discretization of the

integral in the first term to obtain the sum in the second.
Chiesa et al. [41] suggested that the main contribution to
Eq. (2) comes from the omission of the G ¼ 0 term from
the summation [47]. As is well known, the RPA becomes
exact in the limit of small k, and the expansion of SðkÞ
around k ¼ 0 at finite T is given by [23]

SRPA0 ðkÞ ¼ k2

2ωp
coth

�
βωp

2

�
; ð3Þ

where β ¼ 1=kBT and ωp ¼
ffiffiffiffiffiffiffiffiffi
3=r3s

p
is the plasma fre-

quency. The finite-T version [48] of the Chiesa FSC [27],

FIG. 2. Static structure factors for θ ¼ 2, rs ¼ 0.5, and three
values of N. In (a), the discrete QMC k points are plotted as
vertical lines for N ¼ 100; the minimum k values for N ¼ 66 and
N ¼ 38 are indicated by the green and yellow line, respectively.
The colored horizontal bars indicate the k ranges where SSTLS

(red), SRPA RPA (gray), and SRPA0 (light blue) are accurate.
(b) shows that the QMC results for SðkÞ converge rapidly with N
(see the colored symbols in the inset). The black curve shows
Scomb connecting SSTLSðkÞ at small k with the QMC data for
N ¼ 100 which yields accurate results for all k.
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ΔVBCDCðNÞ ¼ lim
k→0

SRPA0 ðkÞ4π
2L3k2

¼ ωp

4N
coth

�
βωp

2

�
; ð4Þ

would be sufficient if (i) SRPA0 ðkÞ were accurate for the
smallest nonzero k in the QMC simulation, kmin ¼ 2π=L,
and (ii) all contributions to Eq. (2) not accounted for by the
inclusion of the G ¼ 0 term were negligible. As we
demonstrate below, for high temperatures and intermediate
to high densities, both conditions are strongly violated.
Thus, we require an improved model SF, SmodelðkÞ, to
compute the discretization error,

ΔN ½SmodelðkÞ� ¼
ΔVN ½SmodelðkÞ; SmodelðkÞ�

N
; ð5Þ

in Eq. (2). A natural strategy is to combine the QMC data
for k ≥ kmin with an approximation that is accurate for all k
up to (at least) kmin.
Results.—In Fig. 2, we analyze the static SF for θ ¼ 2

and a comparatively high-density case, rs ¼ 0.5, for three
different particle numbers. The use of a finite simulation
cell subject to periodic boundary conditions discretizes the
momentum, so QMC data are available only at the discrete
k points indicated by the vertical lines in the top panel. As
shown in the inset, the QMC SðkÞ is well converged with
respect to the system size for surprisingly small N,
providing justification to set SNðGÞ ≈ SðGÞ. Therefore,
the FS error of VN=N reduces as N increases, primarily
because the k grid becomes finer and kmin decreases. The
figure also allows us to study the performance of the three
analytical structure factors SRPA, SSTLS [21,22], and SRPA0 .
We clearly observe that SRPA0 ðkÞ is accurate only for
ka0 ≲ 0.3, explaining why the BCDC FSC, Eq. (4), fails.
In contrast, SRPAðkÞ and SSTLSðkÞ match the QMC data
much better. On the left-hand side of Fig. 2(a), we indicate
the k ranges over which the three models are accurate,
showing that only SSTLSðkÞ connects smoothly to the QMC
data. At larger k, SRPA and SSTLS exhibit significant
deviations from the QMC data, although STLS is more
accurate. For completeness, we mention that, when the
density is lowered, the k ranges of accurate behavior of
SRPA, SSTLS, and SRPA0 continuously increase [49]. For
example, at rs ¼ 1, both SRPA and SSTLS smoothly connect
to the QMC data, whereas for rs ¼ 10 this is observed even
for SRPA0 ðkÞ, revealing that there the BCDC FSC is accurate.
Based on this behavior, an obvious way to construct a

model SF that is accurate over the entire k range for all
warm dense matter parameters is to combine the QMC data
with the STLS data at small k. The result is denoted Scomb
and computed via a spline function. The excellent behavior
is illustrated by the black line in Fig. 2(b) and in the inset.
This quasiexact SF is the proper input to compute the
discretization error from Eq. (5).
The results of this procedure are shown in Fig. 3 for the

most challenging high-density case, rs ¼ 0.5 and θ ¼ 2.

Clearly, the raw QMC data (green crosses) suffer from
severe finite-size errors of the order of 10% for system sizes
from N ¼ 38 to N ¼ 200. These errors do not exhibit the
ΔV ∝ 1=N behavior predicted by Eq. (4), and the BCDC-
corrected QMC data (yellow asterisks) do not fall on a
horizontal line. In contrast, using ΔN ½Scomb� produces
results that are very well converged for all system sizes
considered, including even N ¼ 38 (red diamonds).
Figure 3(b) shows that the removal of the discretization
error has reduced the FS bias by 2 orders of magnitude. The
residual error jΔVj=jVj ∼ 10−3 is due to the small finite-
size effects in the QMC data for SNðkÞ itself and exhibits a
linear behavior in 1=N. Thus, it is possible to determine the
potential energy in the TDL (the red cross in the bottom
panel) with a reliable error bar [50].
To further explore the properties of our discretization

formula for the FS error, we recomputeΔN using the purely
theoretical STLS and RPA SFs as Smodel in Eq. (5). The FS-
corrected data are depicted by the black squares and blue
circles, respectively, in Fig. 3(b). Surprisingly, we find very
good agreement with the FSCs derived from the substan-
tially more accurate Scomb. Hence, despite their significant
deviations from the QMC data at intermediate k [cf. inset in
Fig. 2(b)], SSTLSðkÞ and SRPAðkÞ are sufficiently accurate to
account for the discretization error of the potential energy
[51]. Since Scomb is sensitive to statistical noise, computing
the FSC solely from SSTLSðkÞ or SRPAðkÞ is in fact the
preferred approach. Of course, this does not eliminate the
need for accurate finite-N QMC data, the quality of which
sets the baseline for our thermodynamic result,
v ¼ VQMC;N=N þ ΔN ½Smodel�. Using instead the STLS or
RPA SF to estimate VQMC;N as well as ΔN poorly accounts
for the short-range correlations and, even for θ ¼ 2 and

FIG. 3. (a) Finite-size corrected QMC data for the potential
energy for θ ¼ 2 and rs ¼ 0.5. The yellow asterisks are obtained
using Eq. (4); the red diamonds use the combined SF Scomb
(cf. Fig. 2) to evaluate the discretization error, Eq. (5). (b) Mag-
nified part of (a) including an extrapolation of the residual finite-
size error to the TDL (the red cross). Results obtained using only
the full RPA (blue) and STLS structure factors (black) in Eq. (5)
are also shown.

PRL 117, 156403 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

7 OCTOBER 2016

156403-3



rs ¼ 0.5, leads to ∼10% errors (cf. Fig. 1), which further
increase with rs.
By performing extensive QMC simulations and applying

our FSC to results for various system sizes N to allow
extrapolation of the residual FS error, we obtain the
potential energy of the UEG in the TDL over a very broad
density range, 0.1 ≤ rs ≤ 10. The results are displayed in
Fig. 4 for five different temperatures and listed in a table in
the Supplemental Material [49]. We also compare our
results to the most accurate data previously available—
the RPIMC results of Brown et al. (BCDC, circles), which
were corrected using the BCDC FSC, Eq. (4) [27,49]. We
underline that these results were limited to moderate
densities rs ≥ 1 but even there substantially deviate from
our data. The error increases rapidly with the density and
temperature reaching 20% for rs ¼ 1 and θ ¼ 8 [49].
Finally, we obtain the exchange-correlation free energy

from a fit to the potential energy, regarded as a function of
rs for fixed θ. Figure 4(b) shows that the functional form
assumed [Eq. (S.2) in Ref. [49]] is indeed appropriate, as no
systematic deviations between the QMC data and the fit
(red crosses, θ ¼ 8) are observed. In Fig. 4(c), we compare
our new data for Fxc to the recent parametrization by
Karasiev et al. [52]. By design, both curves coincide in the
limit rs → 0, approaching the exact asymptotic value
known from the Hartree-Fock theory (for rs ≪ 0.1).
While both results are in very good agreement for
θ ¼ 0.5, we observe severe deviations of up to 9% at

θ ¼ 8 [5% at θ ¼ 2]. Despite the systematic RPIMC bias
and the lack of data for rs < 1 prior to our work, the major
cause of the disagreement is the inadequacy of the BCDC
FSCs for a high temperature and small rs. The absolute data
for Fxc and the corresponding fit parameters are provided
in Ref. [49].
Summary and discussion.—We have presented a simple

but highly accurate procedure for removing finite-size
errors from ab initio finite-N QMC data for the potential
energy V of the UEG at a finite temperature. This is
achieved by adding to the QMC results the discretization
error ΔN ½SmodelðkÞ�, Eq. (5), computed using simple
approximate structure factors based on the RPA or STLS
approximations. Our finite-size-corrected results include
excellent descriptions of both the exchange and short-range
correlation effects (from the QMC data) and the long-range
correlations (via the RPA or STLS corrections). These
results constitute the first unbiased ab initio thermody-
namic data for the warm dense electron gas. For temper-
atures above half the Fermi temperature and a density range
covering 6 orders of magnitude (0.1 ≤ rs ≤ 10), we achieve
an unprecedented accuracy not exceeding 0.3%; our results
will therefore serve as valuable benchmarks for the devel-
opment of accurate new theories and simulation schemes,
including improved static local field corrections. The recent
results of Brown et al. [27,49], which were obtained by
applying the BCDC FSC from Eq. (4) to RPIMC data,
exhibit deviations of up to 20%. The recent parametrization
of Fxc by Karasiev et al. [52], which was mainly based on
the data by Brown et al., uses a good functional form but
exhibits errors of up to 9% at high temperatures. Even
though these inaccuracies constitute only a small fraction of
the total free energy, which might not drastically influence
subsequent density functional theory calculations of real-
istic multicomponent systems, it is indispensable to have a
reliable and consistent fit of Fxc for all warm dense matter
parameters to achieve predictive power and agreement with
experiments. The construction of an improved complete
parametrization of Fxc with respect to density, temperature,
and spin polarization remains a challenging task for future
work. In particular, the fermion sign problem presently
limits our QMC simulations to θ ≥ 0.5 for rs ∼ 1 (although
lower temperatures are feasible for both larger and smaller
rs with PB-PIMC and CPIMC, respectively). To overcome
this bottleneck, it will be advantageous to incorporate the
T ¼ 0 limit of Exc and, thus, to perform an interpolation
across the remaining gap where no ab initio data are
available [52]. In addition, our data will be an important
input for time-dependent DFT and quantum hydrodynam-
ics [53,54]. Finally, our FSC procedure is expected to be of
value for other simulations of warm dense plasmas
[55–57], as well as 2D systems, e.g., Refs. [58,59].
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FIG. 4. Potential energy of the UEG in the TDL. (a) Our new
FS-corrected QMC data, the fits to our data [see Eq. (S.2) of
Ref. [49]], and the RPIMC results of Brown et al. [27], which
include BCDC FSCs. (b) Relative deviations of our data (for
Θ ¼ 8) and Brown’s BCDC-corrected data from the correspond-
ing fit. (c) Relative deviation of our exchange-correlation free
energies from the fit of Ref. [52] for five temperatures. For
details, see Ref. [49].
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