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Abstract. In this contribution, we review the time-dependent generalized-active-space
configuration interaction (TD-GAS-CI) approach to the photoionization dynamics of atoms and
molecules including electron correlation effects. It is based on the configuration interaction (CI)
expansion of the many-body wave function and the restriction of the determinantal space to a
reduced subspace. For its numerically efficient application to photoionization, a partially-rotated
basis set is used which adopts features of a localized basis with a good reference description
and a grid representation for escaping wave packets. After reviewing earlier applications of the
theory, we address the strong-field ionization of a one-dimensional model of the four-electron LiH
molecule using TD-GAS-CI and demonstrate the importance of electron-electron correlations
in the ionization yield for different orientations of the molecule w.r.t the peak of the linearly
polarized laser field. A pronounced orientation-dependent variation of the yield with the pulse
duration and the level of considered electron-electron correlations is observed.

1. Introduction

With the emergence of ultrashort and strong laser pulses in the femtosecond and subfemtosecond
regimes [1|, a time-dependent theory for electron dynamics with the ability of treating
strong fields and electron correlations is needed. Among the processes are the time-resolved
observation of post-collision interaction [2, 3|, time-delays in photoionization [4], the time-
resolved observation of strong-field tunneling [5], and many more. See also the review
articles [6, 7].

Often, only numerically costly methods are able to describe the ultrafast motion of the
interacting electrons in the external fields. Pioneering work was based on the numerical solution
of the time-dependent Schrodinger equation (TDSE) in the context of strong-field processes, e.g.
[8, 9], for one-electron systems. Despite the tremendous evolution of computing architectures
over the past decades, the numerical solution of the TDSE still remains a challenging task for
extended systems with more than one active electron and is limited to helium, Hy and similar
systems, e.g., [10, 11, 12]. Therefore, approximative methods are inevitable. Perturbation
theory in the electrical field of the excitation is extremely successful by considering the fully-
correlated ground-state wave function for calculating spectra, but not applicable to the high-
intensity or time-resolved regime by construction. The alternative approach is the approximative
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treatment of the electron interaction. Within a wave-function based perspective, this leads to
the concept of configuration interaction (CI) and self-consistent-field (SCF) methods, see [13]
for a review. Time-dependent methods emerging from the latter are the widely applied multi-
configurational time-dependent Hartree-Fock (MC-TDHF) theory, e.g. [14, 15, 16| and time-
dependent restricted and complete active space (TD-R/CAS) SCF methods [17, 18, 19]. Similar
approaches are the TD-renormalized natural orbital [20] and the TD orbital-adaptive coupled-
cluster [21] theories. All these methods are based on a time-dependent optimization of the orbital
space, thereby leading to a highly non-linear propagation scheme with convergence issues still
under investigation, see also the article by Hinz et al. [22] in this volume. The CI expansion
on the other hand is based on a time-independent orbital picture and conserves the linearity of
the underlying TDSE, although much larger determinantal spaces are required for an accurate
description. This deficiency is addressed within the presented TD-GAS-CI approach.

2. Time-dependent generalized-active space configuration interaction
The underlying equation of motion is the time-dependent N-electron Schrédinger equation,

.0
15, 19(t) = H(®)[¥(t)). (1)

with a time-dependent Hamilton operator

N N
H(t) =Y ti+oi(t)+ > wi . (2)
=1

1<j

t; = t(r;) and v; = vien(7;) + E(t)r; describe the kinetic and potential energies of particle i at
position r;, and w;; = w(r;, ;) denotes the interaction between electrons 7 and j. The excitation
with an external field, e.g. a laser, is coupled via the dipole operator in length gauge, r, with
the time-dependent electrical field amplitude F(t). In this contribution, we consider only linear
polarization.

2.1. The generalized-active space method
The generalized-active space (GAS) concept to calculate approximate solutions to Eq. (1),
as many recently developed methods, is inspired from time-independent quantum chemistry
considerations [23, 24]|. It is founded on the configuration interaction (CI) expansion of the
N-electron wave function,

Un() = > e, (3)

1€GAS

where |I) denotes an N-electron Slater determinant constructed from 2N, time-independent
single-particle spin orbitals x;(x) = ¢;(r)s(o) with @ = (7,0) referring to the spatial orbital
¢;(r) and the spin part s(o) with s € {|1), |[{)}. cr(t) are the time-dependent complex expansion
coefficients. Typically, |I) is constructed from HF orbitals or HF-like pseudo orbitals, which
describe the excitations of the system more accurately than common HF virtual orbitals [25].
The basic idea of GAS is the reduction of the exponentially large N-electron Hilbert space to
an active subspace, which is capable of describing the physics, but to much less numerical cost
than the full CI (FCI) method. This is achieved by partitioning the single-particle space into
subspaces with fixed number of electrons. Thereby, it is possible to freeze certain parts of the
many-body wavefunction which are unlikely to take part in the dynamics (e.g. by considering
energy scales). Details of the idea, technical aspects of the GAS construction and illustrative
examples are given in Refs. [25, 26]. A schematic of examples for GAS partitions is drawn in



Progress in Non-equilibrium Green’s Functions (PNGF VI) IOP Publishing

Journal of Physics: Conference Series 696 (2016) 012008 doi:10.1088/1742-6596/696/1/012008
Figure 1. Schematic of GAS definitions
*

SAE CAS*(Ne, K) for SAE (left) and correlated CAS (right)
¢Nb ) d)Nb . calculations with four electrons. ¢; are
_ . . the spatial orbitals, which can be occupied
! — by 1 and | electrons. For SAE, three
GAS-2 ) electrons in GAS-1 are frozen and the outer
' PK+1 i J electron is allowed to be excited, ¢ > 2
by| — b || =— (gray arrows). For the CAS, No = 4
electrons occupy K orbitals in any possible
P3| — P3|| =— configuration. For ¢ > K, only one electron
is allowed to occupy higher orbitals. In the
CAS-] Ga|| = o5 ¥ picture, the example of | is sketched (gray
- = = arrows indicate excited electrons). In the

2 2 calculations, every realization is possible.

Fig. 1. The time-dependent realization of GAS-CI was first introduced in the context of time-
dependent restricted-active-space (RAS) CI in Ref. [26] and applied to the ionization of helium,
beryllium and neon [27]. Throughout, we use the historically motivated acronyms “RAS” and
“GAS” as synonyms of the same method. A comprehensive study of convergence and a detailed
layout of the method are discussed in [25], further studies using TD-GAS-CI comprise correlation
effects in the enhanced-ionization phenomena of molecules [28] and a study of the four-electron
LiH molecule in prolate spheroidal coordinates [29]. For more information see also the review
article [13].

Within the GAS formalism, several well-established approximation schemes are contained. In
this contribution, we will use the single-active electron (SAE), the CI singles (CIS) and special
cases of the complete active space (CAS) approximations. For the SAE case, expansion (3)
consists only of excitations of one electron with all other N — 1 electrons kept frozen in their
HF reference orbitals, see Fig. 1 (left) for a schematic of a four-electron system. In contrast to
common SAE calculations, no additional pseudo potential needs to be constructed in the GAS
framework and all interactions are contained on the same level in the Hamiltonian, Eq. (2). For
CIS, the restriction to only one active electron is loosened, and all electrons may be excited,
however, only one at a time.

The important CAS case is more involved, as it can be tuned toward the fully converged FCI
case containing all electron correlation contributions. We will use the specially adapted notation
CAS*(N¢, K), which corresponds to No < N electrons occupying K < N spatial orbitals
(2K spin orbitals) and on top of that single-excitations out of the CAS, which is referred to by
the * symbol. In this notation, the familiar CIS method is denoted by CAS*(N¢, N¢/2) [Ne
electrons occupy always N¢ /2 spatial orbitals and one electron may be excited|. Therefore, in the
quantum chemistry community, also the term “multi-reference CIS” is widely used for this kind
of GAS with K > N¢ /2. These CAS* approximations are especially useful for photoionization,
as they describe the correlated motion of all (or some) electrons within a subspace and one
electron is allowed to occupy every spin orbital, such as continuum states. See Fig. 1 (right)
and the corresponding caption for an example. Further information on notations and illustrative
examples are provided in Refs. |25, 29].

2.2. Mixed-basis set approach

An essential ingredient to a successful application of truncated CI expansions, i.e., the efficient
application of the GAS-CI concept, is a good reference state. Typically in usual CI calculations,
the Hartree-Fock (HF) or a similar optimized state is chosen, from which excited Slater
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Figure 2. Layout of the mixed basis. Close
to the atom or molecule, r < r., a localized

basis (HF-like) is constructed to allow for
HF grid-like good Cl-reference properties. For r > rg,
Tegion description a grid-like representation is employed. For
r 1d systems, a similar boundary appears for
0 I.c re r < 0.

determinants are created. However, especially the two-electron integrals in the HF basis comprise
a four-indexed object, w;jix, which prohibits the application for large basis sets because O(Ngl)
two-electron integrals need to be calculated and stored. Note that Nj is large (> 100) for
photoionization calculations due to the discretized continuum description.

Therefore, we employ a mixed basis set, allowing for an accurate description of the bound
part and the scattering states, which combines the best of both worlds: the good reference
properties in vicinity to the nucleus and a grid-like discretized continuum with sparse interaction
matrices. Technically, a finite-element discrete-variable-representation (FE-DVR) basis is used
and partially transformed to a HF-like basis within a central region of the computational grid
close to the nuclei, r < r. , see Fig. 2. The great benefit originates from the fact that the two-
electron integrals in FEDVR representation, e.g. [30], are extremely sparse, Wijk X 040k, and
under the partial rotation, this property is conserved for the largest part of the basis (r > r.) [25].

In the context of time-dependent CI calculations, this technique was introduced by Hochstuhl
and Bonitz in Ref. [26]. The details of the transformation from the full grid to the mixed basis
and technical aspects for its efficient implementation are presented and discussed in Ref. [25],
the application to atoms in spherical coordinates is addressed in Refs. |26, 27| and in prolate
spheroidal coordinates for diatomic molecules in [29]. A similar partitioning technique is also
applied in the successful time-dependent R-Matrix theory [31, 32|, in a recent formulation even
with two-electron continua [33].

3. Application to four-electron molecules

To demonstrate TD-GAS-CI, we consider in the following the four-electron LiH molecule in one
spatial dimension and the fixed-nuclei (Born-Oppenheimer) approximation. Hence, only the
electronic degrees of freedom are treated in a time-dependent fashion, which is applicable due to
the large separation of time scales caused by the large mass differences between the heavy nuclei
and the electrons.

3.1. 1d model of LiH
We consider a regularized binding potential for the electrons (R is the internuclear distance,
Z; € (1, 3) are the nuclear charges) of

o 7 B Z
N (e T RS M e e W

and an electron-electron interaction term of

1
w(wy, z2) = e (5)

to remove the Coulomb singularities. Such forms of the potentials are well-established models
in the literature, see, e.g. Ref. [25] and references therein. A similar model has been used for
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the investigation of enhanced ionization phenomena in molecules, also using the TD-GAS-CI
formalism [28].

In such a model, the laser field is polarized along the internuclear axis. Throughout, we
consider fields in Eq. (2) of the form

E(t) = f(t)Eocos [w(t —to) + ¢cEp] , (6)
with a Gaussian-shaped envelope

f(t) =exp [(t —t0)*/(277)] . (7)

The photon energy is denoted by w, the maximum field strength by Ey, which relates to the peak
intensity of the field via I[W/cm?] = 3.56 - 106 W/cm? x E2. pcpp denotes the phase between
the envelope f(t) and the carrier wave, the pulse duration is given by 7. In the following, we
will choose pcpp = 0. Due to the asymmetric potential, Eq. (4), a strong dependence of the
orientation w.r.t. to the dominant field cycle is expected [25]. We will denote the configuration
Z1 = 1,7y = 3 with Li-H and Z; = 3,7y = 1 with H-Li. For the former, the direction of the
force acting on the electrons due to the external electric field at its maximum [t = ¢y in Eq. (7)]
points from H to the Li, thus ionization happens from the Li end (and vice versa for the opposite
configuration).

3.2. Calculation of ionization yields

To calculate total ionization probabilities, we add a complex absorbing potential (CAP) to the
hamiltonian, which is located at the boundary region of the computational box. During the time
evolution, the normalization n(t) = [(¥(¢)|¥(t))|? is therefore not conserved and the absorbed
part, P(t) = 1 — n(t), is a measure for the ionization yield. This procedure was introduced by
Kulander [8|. Details of the employed CAP can be found in Refs. [25, 28.
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Figure 4. Shape of the
Gaussian pulses, Eq. (6),
used in this work (¢cpp =
0). In the lower corner,
the FWHM duration of the
intensity (I(t) oc E2(t)) is
printed. The situation ty =
T=2.4fs Sfs 20 fs 0 in Eq. (6) is chosen to

—1 B 1 1 1 HE 1 1 1 1 1 Jd =1 1 i\ 1 1 - .
5 250 25 5.10 5 0 5 10 4020 0 20 4o Ccmphasize the asymmetry of
the pulse w.r.t. the sign of

time [fs] time [£s] time [£s] the electrical field ampliture.

[arb. u.]
o
o in

|
o
(9]

electrical field

To investigate the orientation dependence of the ionization yield in our 1d model, we follow
Refs. [25, 29] and introduce an orientation parameter

~ PRt — 00) 8
TP S ) ®)
which describes the ratio of ionization w.r.t. the orientation of the molecule. Values of n < 1
correspond to a more favourable ionization of Li-H, whereas n > 1 to H-Li.

To illustrate the methodology, the temporal behavior of the ionization yields are given in
Fig. 3 for both orientations of the LiH molecule along with the parameter n for an intermediate
electrical field strength £ = 0.025 (throughout, atomic units are used if not stated otherwise), a
pulse duration of 7 = 75 (3 fs FWHM of intensity) and using the SAE approximation. After a
fast dynamics in the observables during the pulse (left panels), a convergence for large times is
found (right panels in the figure), as expected. The ionization probabilities entering in Eq. (8)
are extracted from the asymptotic value of the ionization yield, typically at ¢ > 500 fs. We
checked for convergence of the results with the size of the simulation box, the grid spacing, and
the position of the CAP and found no significant variation of the observables.

3.8. Pulse duration

We first turn our attention to the behavior of the ionization parameter n [Eq. (8)] as a function
of the pulse duration 7 at a fixed electrical field strength of Eg = 0.025, which corresponds to an
intensity of 2.2 x 10 W /cm? and a photon energy of w = 0.057 (800 nm). By tuning the pulse
duration from 2.4 fs to about 40 fs, qualitatively different regimes from single-cycle pulses to long
continuous-wave like pulses are covered, see Fig. 4 for an illustration. Due to the asymmetric
target molecule and the chosen CEP of the pulse, a strong influence of the orientation of the
molecule w.r.t. the peak electrical field strength (¢ = 0 in Fig. 4) is expected for short pulses
(left panel), which should vanish for rather long pulses (right panel).

The corresponding ratio of the ionization yield n at different levels of GAS approximations
as a function of the pulse duration is given in Fig. 5. Let us first discuss the uncorrelated SAE
results (red dotted line). The strongest asymmetry is observed for the shortest pulses (7 < 4 fs),
which results from the strong directional character of the single-cycle pulse with one dominant
cycle pointing at either the Li or the H nucleus. 1 < 1 corresponds to a preferred configuration
of ionization of Li-H, which shows in the limit of the shortest possible pulse at w = 0.057 a factor
of five (n & 0.2) higher yields than the configuration H-Li. As expected, an increase of the pulse
duration converges 7 to unity due to the symmetry of the long pulse. The observed convergence
is not monotonic but oscillatory with the pulse duration with a period of about 8 fs.
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The reviewed TD-GAS-CI formalism allows us to investigate the influence of electronic
correlations. The first improvement is the CAS*(2,1) [or equivalently TD-CIS, see Sec. 2.1
approximation (blue dashed line), which shows similar behavior as the SAE result, but with
a drastic phase shift of the observed oscillations in 7. Further inclusion of correlations (green
and black solid lines) shifts the oscillations such that the preferred configuration is opposite to
that of the uncorrelated SAE calculation (black solid vs. red dashed line). This means that for
certain regimes of pulse durations, correlation decides which configuration is easier to ionize and
correlated and uncorrelated results are “Hipped”.

To check whether this oscillatory behavior is only present at the chosen intensity, we calculated
1 as a function of the pulse duration for different electric field strength in SAE approximation,
see Fig. 6. For small electric fields, only the first minimum is found (red dotted and blue dashed
lines) and by successively increasing the intensity more and more pronounced oscillations in the
ratio appear. This lets us conclude that the observed structures are especially important at
higher intensities.

3.4. Validity of the frozen-core approzimation

The above calculations considered only CAS space with two active electrons (N¢ = 2) thereby
freezing the inner shell. This should be a valid scheme since the core level located nearby the
lithium atom is much more tightly bound than the valence orbital. Nevertheless, the TD-GAS-CI
formalism allows us to test the validity of this frozen core approximation within computational
limits. We in the following compare CAS calculation with equivalent sizes, i.e., CAS*(2, K) and
CAS*(4, K + 1), where the latter include four active electrons.

For the TD-CIS-like calculations, this results in CAS*(2,1) with a frozen core and two active
electrons and CAS*(4,2) with four active electrons. The results are presented in Fig. 7, and
nearly no difference is observed (green fine dotted vs black solid curves) from which we conclude
that the frozen-core approximation is valid for the considered regimes of intensity and photon
energy. We note, however, that for intense pulses or high photon energies, where inner-shell
ionization becomes possible, it is necessary to include the electrons in the dynamics.
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4. Conclusions

In this contribution, we reviewed the time-dependent generalized active space configuration
interaction (TD-GAS-CI) approach to the photoionization of atoms and molecules. We
introduced the basic idea of selecting important Slater determinants in the CI expansion and
addressed the mixed basis set as an essential ingredient to a numerically tractable scheme. We
then demonstrated the theory by applying it to the ionization of a heteronuclear 1d model
molecule in a strong field with its strongest peak pointing in one direction. For such an excitation
scenario the total ionization yields of the two possible orientations in one spatial dimension
have been compared and strong influences of electronic correlations have been found. Even the
opposite configuration w.r.t. the electric peak for correlated vs. uncorrelated calculation can
be found. Ongoing work is in the direction of 3d molecules and larger systems. One possible
approach by means of a prolate spheroidal basis is pursued in Ref. [29], with the focus on the
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3d LiH molecule. Following these extensions of the TD-GAS-CI theory, it will become possible
to validate the presented correlation-driven observations of a one-dimensional model in more
realistic systems which can then be tested by experiment.
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