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Stopping dynamics of ions passing through correlated honeycomb clusters
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A combined nonequilibrium Green functions–Ehrenfest dynamics approach is developed that allows for a
time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero
and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-
Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the
motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson
(Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T-matrix approximations
of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1
and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular,
examine the influence of electron-electron correlations on the energy exchange between projectile and electron
system. We investigate the time dependence of the projectile’s kinetic energy (stopping power), the electron
density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of
the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations
for particle irradiation of single-layer graphene.
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I. INTRODUCTION

The interaction of particles with matter is a fundamental
aspect of physics and allows one to measure their properties
in colliding-beam or beam-target experiments. Conversely,
the irradiation of matter by particles can be used also as a
diagnostic tool to probe the static and dynamic properties of
matter itself. In soft collisions of heavy charged particles,
such as ions, with a solid, typically the electrostatic force,
i.e., the Coulomb interaction, has the largest impact, leading
to excitation and ionization of electrons in the target material
and thus to the loss of kinetic energy of the projectile [1]. For
nonrelativistic projectile velocities of the order of or larger
than the Fermi velocity (∼106 m/s in metals), theoretical
approaches based on scattering theory [2] or on the response
functions of the homogeneous electron gas [3], can give a
quantitative description of the energy transferred during the
collision process but neglect the precise atomic composition
of the target.

Regarding first-principles modeling in the same velocity
regime, recent theoretical progress is due to time-dependent
density functional theory (TDDFT), which has been applied
to describe the slowing down of charged particles in a
variety of solids, including metals [4–6], semimetals [7,8]
and clusters [9,10], narrow-band-gap semiconductors [11], and
insulators [12,13]. Taking into account primarily the excitation
of valence electrons, these simulations yield satisfactory
results for the electronic stopping power (the transfer of energy
to the electronic degrees of freedom per unit length traveled by
the projectile) and work for a wide range of impact energies. On
the other hand, one can quite generally determine the stopping
power of energetic ions in matter using the SRIM code [14],
which uses the binary collision approximation in combination
with an averaging over a large range of experimental situations
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to provide energy loss and range tables for many materials and
gaseous targets. In principle, TDDFT and SRIM can include
effects of electron-electron correlations on the stopping be-
havior, either by using exchange-correlation potentials beyond
the local density approximation in TDDFT, e.g., [15,16], or
by including static exchange and correlation contributions to
the interaction energy between overlapping electron shells in
SRIM. Despite these capabilities, both methods have, however,
difficulties to approach strong Coulomb correlations, which
are crucial, e.g., in transition-metal oxides [17] or specific
organic materials [18]. In addition, we note that SRIM does
account neither for the exact crystal structure of the material
nor dynamic (i.e., time-dependent) changes in the target during
the collision process, which limits its applicability.

It is, therefore, interesting to consider an alternative
approach to the stopping power that does not have these
limitations: nonequilibrium Green functions (NEGF) [19,20].
This method allows one to systematically include electron-
electron correlations via a time-dependent many-body self-
energy, and it has recently successfully been applied to strongly
correlated lattice systems as well [21]. Particular advantages
of the NEGF approach are that it is not limited to either weak
or strong coupling and that it is particularly well suited to study
finite-sized clusters and spatially inhomogeneous systems
on a self-consistent footing. While the NEGF approach is
computationally very demanding, in recent years efficient nu-
merical schemes have been developed to solve the underlying
Keldysh-Kadanoff-Baym equations (KBE) [22–29].

Here, we extend the NEGF approach by including the
interaction with a classical projectile using an Ehrenfest-type
approach that is well established in TDDFT simulations. Our
goal is to develop a full time-dependent and space-resolved
description, which is necessary as the projectile induces local
time-dependent changes to the electron density and to the local
band structure. This allows us, in particular, to consider finite
clusters of size L, which are of substantial current interest.
Furthermore, we study the size dependence of the response
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to the projectile. At the same time, the thermodynamic limit
of the stopping power (cluster size L approaching infinity)
is more difficult and expansive to obtain, as it requires an
extrapolation of results for different L. Nevertheless, we obtain
good agreement with existing results for macroscopic systems.

To implement this approach, we choose, as a first applica-
tion, the energy deposition of simple ions (protons and alpha
particles), where there is no interatomic electron dynamics,
in planar two-dimensional honeycomb clusters, in which the
electron dynamics is well described in terms of a Fermi-
Hubbard model. To investigate the importance of electronic
correlation effects, we vary the coupling strength from small to
moderate values (up to U/J = 4) and test various self-energy
approximations, such as the second Born and the much more
involved T-matrix approximation. The results are compared to
mean-field (Hartree) results, which are provided by the same
NEGF program.

The paper is organized as follows. In Sec. II, we define the
model Hamiltonian, discuss the interaction potential between
projectile and target, and describe the self-consistent compu-
tational scheme, which allows us to calculate the correlated
electron dynamics on the honeycomb clusters. In Sec. III, we
review the equilibrium properties of the target system, which
are sensitive to correlations, and then present the main results
for the stopping dynamics in Sec. IV. Here, we primarily
focus on the effect of electron-electron correlations on the
energy transfer, analyze the time-dependent collision process
for a wide range of projectile velocities, and consider different
initial states and temperatures. In Sec. V, we finally discuss
the application of the used model to graphene and conclude
the paper with Sec. VI, outlining possible future work.

II. COMPUTATIONAL SETUP

A. Model

To study the stopping dynamics of a classical charged
particle which passes through a (strongly) correlated system,
we consider a finite lattice of electrons described by a
single-band Fermi-Hubbard model and monitor the transfer
of energy during the collision process. Taken as a whole,
the lattice system is electrically neutral, i.e., the electronic
charges are compensated by corresponding opposite charges
located at the site coordinates Ri . The general stopping
mechanism is mediated by the bare Coulomb interaction
between the projectile, the fixed background charges, and the
target electrons which are initially in equilibrium. Throughout,
we focus on positively charged ions as projectiles, which, when
approaching the lattice, induce a confinement potential to the
electrons and thus initiate a nonequilibrium electron dynamics.
In turn, the ions (of mass mp and charge Zpe) react to any
charge redistribution on the lattice and change their position
and kinetic energy accordingly.

As lattice systems, we choose circular honeycomb clusters,
which are oriented in the xy plane and have a finite number of
honeycombs, yielding in total L sites (see Fig. 1 for an illus-
tration). We consider a half-filled system in the paramagnetic
phase and, to generate realistic results, set the lattice spacing
to a0 = 1.42 Å, which corresponds to the carbon-carbon bond
length in graphene [30]. Using a nearest-neighbor hopping J
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FIG. 1. Lattice structure of circular honeycomb clusters with L =
24 (black) and 54 sites (blue). The green point indicates the position
where the projectile hits the lattice plain. For further reference, we
label four sites in the center of the clusters, where we will monitor
the time-dependent electron density in Sec. IV B. Furthermore, a0

denotes the lattice spacing, J (U ) is the nearest-neighbor hopping
(the onsite interaction), and Wii is the local energy defined in Eq. (2).

and an onsite Coulomb repulsion U , the Hamiltonian for the
lattice electrons is then given by

He(t) = −J
∑

〈i,j〉,σ
c
†
iσ cjσ + U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)

+
∑
ij,σ

Wij (t)c†iσ cjσ , (1)

where the operator c
†
iσ (ciσ ) creates (annihilates) an electron

with spin σ on site i, niσ = c
†
iσ ciσ denotes the electron density,

and Wij are the matrix elements of the confinement potential
induced by the projectile. In Sec. IV, we imply localized
electronic wave functions ϕi(r) ∝ δ(r − Ri), for which we can
resort to the diagonal components of this potential:

Wii(t) = − e2

4πε0

Zp

|rp(t) − Ri | , (2)

where rp(t) denotes the time-dependent position of the projec-
tile, −e is the electron charge, and ε0 the vacuum permittivity.
Moreover, in Sec. V, we improve this model by including also
terms Wij (t) with |i − j | = 1, which locally renormalize the
nearest-neighbor hopping [cf. Eq. (14)].

For convenience, we measure J and U in electron volts,
define U/J as the interaction strength for the electrons, and
use t0 = �/J as the unit of time. Unless otherwise stated, we
use J = 2.8 eV (which is typical for graphene [31]) to fix the
time scale.

B. Computational method

To compute the classical motion of the projectile with an
initial velocity drp/dt = (0,0,vz), we solve Newton’s equation
with the total potential

V (rp,t) = e2

4πε0

∑
i

ZpZi(t)

|rp(t) − Ri | (3)

created by all lattice charges [here, Zi(t) = 1 − ∑
σ 〈niσ 〉(t)

denotes the net charge on the lattice site i]. For the solution we
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use a three-dimensional velocity-Verlet algorithm. Motivated
by TDDFT calculations [7], we set the initial position of the
incident ion to rp = (− 1

6a0, −
√

3
3 a0, − z) (see the centroid

point of the green dashed triangle in Fig. 1). These coordinates
have been found to give similar stopping results for the
highly symmetric honeycomb lattice compared to calculations,
where one averages over many different collision sites. This
allows us to avoid averaging over many trajectories and
to directly compare to previous TDDFT results (Sec. V).
Furthermore, the initial z position is chosen such that the
measured energy transfer becomes independent of the initial
conditions (typically z � 10a0).

To compute the correlated time evolution of the lattice
electrons, we use a quantum statistical approach based on the
one-particle nonequilibrium Green function (NEGF)

Gijσ (t,t ′) = − i

�
〈TCciσ (t)c†jσ (t ′)〉, (4)

which is defined on the Keldysh time contour C [32] and can
be interpreted as a two-time generalization of the one-particle
density matrix

〈ρijσ 〉(t) = 〈c†iσ cjσ 〉 = −i� Gjiσ (t,t+). (5)

On the contour, TC furthermore denotes the time-
ordering operator, 〈TC . . .〉 = tr[TC exp(S) . . .]/tr[TC exp(S)]
with S = −i/�

∫
C ds He(s) defines the ensemble average, and

the notation t+ means that the time t+ is infinitesimally larger
along C than t . The equations of motion of the greater and less
components of the NEGF (4),

G>
ijσ (t,t ′) = − i

�
〈ciσ (t)c†jσ (t ′)〉,

(6)
G<

ijσ (t,t ′) = i

�
〈c†jσ (t ′)ciσ (t)〉,

follow from the time evolution of the creation and anni-
hilation operators in the Heisenberg representation and are
known as the two-time Keldysh-Kadanoff-Baym equation
(KBE) [19,20,23]:∑

k

[i� ∂tδik − hikσ (t)]G≷
kjσ (t,t ′)

= δC(t,t ′)δij +
∑

k

{∫
C
ds 	ikσ (t,s)Gkjσ (s,t ′)

}≷
. (7)

Here, δC denotes the delta function on the contour, and hijσ (t) is
the time-dependent effective one-particle Hamiltonian, which
explicitly includes the Hartree contribution to the electron-
electron interaction, i.e.,

hijσ (t) = − Jδ〈i,j〉︸ ︷︷ ︸
=Jij

+ {
Wii(t) + U

[〈niσ̄ 〉(t) − 1
2

]}
δij , (8)

with the density 〈niσ 〉(t) = −i�G<
iiσ (t,t). On the right-hand

side of Eq. (7), the contour integral defines the memory kernel
of the KBE, in which 	ijσ (t,t ′) denotes the correlation part
of the self-energy [i.e., the mean-field part is excluded as it
is contained in Eq. (8)]. Systematic expressions for the self-
energy can be constructed by many-body perturbation theory,
e.g., using diagram techniques [20,33]. Below, we treat the

correlation self-energy 	 in different approximations, which
conserve particle number, momentum, and energy.

C. Many-body approximations

We consider the correlation self-energy 	 in the following
approximations:

(1) As the simplest self-energy beyond the (Hartree) mean-
field level, we consider the second-order Born approximation
(2B),

	
2B,≶
ijσ (t,t ′) = �

2U 2G
≶
jiσ (t,t ′)G≶

jiσ̄ (t,t ′)G≷
ij σ̄ (t ′,t), (9)

which includes all irreducible diagrams of second order in
the interaction U . Aside from the full evaluation of this
self-energy, we will consider, in addition, the local (in space)
second Born approximation, which includes only the diagonal
components 	2B

iiσ of the self-energy (9). This approximation
substantially reduces the numerical complexity, as it allows to
solve the KBE via particularly efficient schemes [34–36]. We
note that the 2B approximation is a perturbation theory result
and, therefore, becomes less accurate when U increases.

(2) We consider the particle-particle T-matrix (TM) self-
energy, which sums up the whole Born series including
diagrams of all orders in U and is given by [37]

	TM
ijσ (t,t ′) = i� Tij (t,t ′)Gjiσ̄ (t ′,t), (10)

with the effective interaction

Tij (t,t ′) = −i� U 2Gijσ (t,t ′)Gijσ̄ (t,t ′)

+ i� U
∑

k

∫
C
ds Gikσ (t,s)Gikσ̄ (t,s)Tkj (s,t ′).

The T-matrix approximation has been found to perform very
well in the regime of small (or large) density, i.e., away
from half-filling [33,37,38]. If the number of electrons and
holes become comparable, however, particle-hole interaction
processes gain in importance, which are not captured by the
particle-particle T-matrix.

(3) In order to accurately treat strongly correlated systems,
we also consider the third-order approximation [38], which
exactly takes into account all self-energy contributions up
to O(U 3). This approximation has been found advantageous
around half-filling, in particular, for small to moderate inter-
action strengths [38].

(4) We also consider the generalized Kadanoff-Baym
ansatz (GKBA) of Lipavský et al. [39], which has recently
attracted growing attention [28,29,33,40]. By reconstructing
the two-time Green function Gijσ (t,t ′) from its time-diagonal
value, the GKBA provides a way to substantially reduce
the numerical effort of the computation of the NEGF, while
still accurately accounting for particle number and energy
conservation and correlations. Here, we will apply the GKBA
to the second-order Born self-energy using mean-field type
propagators (HF-GKBA) (for details see Refs. [29,33]). This
allows us to increase the simulation duration and extend the
calculations to lower projectile energies (see Sec. IV D).

With these self-energies, the KBE (7) is solved together
with its adjoint equation by a self-consistent time propagation
scheme in the two-time plane, starting from a given initial-state
Green function at t,t ′ = 0. For details on the numerical
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solution of the two-time KBE including the above approxima-
tions, we refer the reader to Refs. [23,25,27,33]. To investigate
the influence of the initial state of the many-electron system on
the dynamics and the energy loss of the projectile, we consider
two relevant cases. For the example of the system being
initially in the ground state (we set kBT = β−1 = 0.01 eV and
note that the case of finite temperature is discussed separately
in Sec. IV E), we consider the following:

(A) The stationary correlated equilibrium state, which is
formed via a relaxation that starts in the Hartree ground
state (see Sec. III for details). This is, of course, only an
approximation to the true ground state but it substantially
reduces the computation time.

(B) The fully correlated ground state. It is obtained
via a time-dependent procedure (adiabatic switch-on of the
interaction U ) (see, e.g., Refs. [33,41] for details).

For the case of half-filling (chemical potential μ = 0), the
Hartree ground state of Hamiltonian (1) (with Wij ≡ 0) is
independent of U and is given by the density matrix

〈ρijσ 〉(t = 0) = −i� G<
jiσ (0,0)

= −i�
∑

k

v∗
kivkjfβ(εk,μ), (11)

where εk (vk) are the eigenvalues (eigenvectors) of the hopping
matrix (J)ij = Jδ〈i,j〉, and fβ(ε,μ) = 1/(eβ(ε−μ) + 1) is the
Fermi-Dirac distribution.

III. LATTICE PROPERTIES PRIOR TO THE IMPACT

In this section, we solve the KBE (7) without the incident
projectile and compute central equilibrium properties of
the honeycomb clusters primarily in the local second Born
approximation. First, we analyze the double occupations

〈di〉 = 〈ni↑ni↓〉 = − i�

U

∑
k

∫
C
ds 	ikσ (t,s)Gkiσ (s,t+) (12)

on the lattice sites i, which contain important information
about the correlations in the system.

In Fig. 2, we show results for the average double occupation
〈d〉av = 1

L

∑
i〈ni↑ni↓〉 on clusters of different size L, which

is established over time, when the system is prepared in
the Hartree ground state [Eq. (11), case (A)]. We find that
the emerging double occupation is practically independent of
the system size, which is even the case for larger values of
the interaction strength. The value 〈d〉av is, up to U/J � 4, in
reasonable agreement with exact quantum Monte Carlo data
(black triangles) for the extended honeycomb lattice [42]. The
right panel of Fig. 2 gives details on the time dependence
of the double occupation during this (fictitious) relaxation.
Clearly, the sudden switch-on of the correlation part of the
self-energy at t = 0 leads to an oscillatory transient response,
after which the double occupation rapidly reaches a new
(correlated) stationary value. The site densities (〈niσ 〉 = 0.5)
remain constant during this relaxation because we consider an
undoped system with particle-hole symmetry. We note that this
final state is a stationary correlated state, which slightly differs
from the correlated ground state as it has a slightly larger total
energy (due to correlation-induced heating [43,44]) (cf. the

0.25
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0 1 2 3 4

d
av

U/J
0 1 2

t/t0

L=54

2B (local): L=24
L=54
L=96

3rd order: L=54
TM: L=54

S. Sorella et al.

U/J=1
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5

FIG. 2. Left panel: average double occupation 〈d〉av on the
honeycomb clusters with L = 24, 54, and 96 sites for different
interaction strengths U/J in the local second Born, third-order,
and T-matrix approximations, using the initial state (A). The black
triangles correspond to exact data for the extended honeycomb lattice
(taken from Ref. [42]). Right panel: time evolution of 〈d〉av for the
local second Born calculations starting from the Hartree ground state
[Eq. (11)], for which 〈d〉av = 〈di〉 = 〈ni↑〉〈ni↓〉 = 0.25.

spectral weight discussed below). Nevertheless, the excellent
agreement with the reference data confirms the reliability of
this procedure, which is computationally efficient as it requires
comparatively few time steps.

Finally, the stationary values of the double occupations
allow us to test the accuracy of the different approximations
for the self-energy. The T-matrix result is accurate up to
about U/J = 1.5 but for larger coupling starts to deviate from
the reference. The third-order approximation and the local
second Born result are very close to each other and work
substantially better up to U/J = 3.5. Since the correlated
states (A) and (B) are particle-hole symmetric, in an exact
calculation, the third-order contributions to the self-energy
would perfectly cancel each other [21,38,45]. Therefore, in the
T-matrix approximation, the leading term beyond second order
becomes unbalanced, which explains the poor performance in
Fig. 2. For the same reason, both a full second Born calculation
and a third-order simulation would be exact up to O(U 3),
which also is the origin for the high accuracy of the local
second Born results. These findings give us confidence to use
the comparatively simple local second Born approximation for
most simulations below [46].

Second, we study the photoemission spectrum, which is
directly obtained from the less component G<

iiσ (t,t ′) of the
nonequilibrium Green function (for details, see the Appendix).
In Fig. 3, we present the photoemission signal I1(ω) of the
cluster with L = 54 sites recorded at the central site 1 (as
labeled in Fig. 1). We show results for different values of U/J

with a probe pulse arriving at some time after the transient
regime (for the computational details and the specific probe
pulse parameters, see Appendix A). In the case of half-filling,
the Hartree approximation (	 = 0) yields a photoemission
signal with a few pronounced peaks which are independent
of U/J . On the other hand, correlations lead to an essential
broadening of the whole spectrum and, in particular, to single-
particle energies beyond the cutoff energy ωcutoff = −3J of the
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FIG. 3. (a) Photoemission signal I1(ω) for the honeycomb cluster
with L = 54 sites in Hartree approximation (U independent) and
in local second Born approximation for different U/J , using the
initial state (A) of Sec. II C. Black dashed line: spectrum of the
extended lattice at U/J = 0 (e.g., Refs. [48,49]), black solid line:
spectrum for U/J = 5, as obtained from a cluster-DMFT calculation
[from Ref. [47] and also shown in panel (b)]. (b) Comparison of
the photoemission signal I1(ω) at U/J = 5 for local second Born
calculations with different initial states. Green line: spectrum [as in
panel (a)] for the initial state (A). Red line: correlated ground state (B).

noninteracting system (see the black dashed line and compare
also with Fig. 11 in Appendix A). Moreover, this broadening
is accompanied by a shift of the main peak (around ω = −J )
towards the Fermi energy, ωF = 0, as a function of the
interaction strength. For U/J = 5 (green dashed-dotted line),
we finally observe that the photoemission spectrum becomes
rather flat due to enhanced occupations of single-particle
energies above the Fermi level. These occupations originate
from the fact that the equilibrated state is not the ground
state of the system. On the contrary, if we first prepare the
correlated ground state (B) (recall Sec. II C) and then propagate
the nonequilibrium Green functions in time, we obtain a
photoemission spectrum as shown by the red solid line in
Fig. 3(b). If we compare it, for example, to a cluster-DMFT
(CDMFT) study [47] for the extended honeycomb lattice
(black solid line), we find a very good agreement. However,
the finite spectral resolution introduced by the probe pulse
does not allow us to recover the emergence of a small energy
gap [48], which exists at finite onsite interactions U/J .

In summary, we conclude from Figs. 2 and 3 that already the
local second Born approximation is able to capture important
electron correlation properties of the honeycomb clusters. As
the considered equilibrium properties are adequately described
up to U/J ≈ 3 . . . 4, we will likewise analyze the stopping
dynamics in Sec. IV up to this regime of interaction strengths.

IV. STOPPING DYNAMICS

A. Energy loss of the projectile

We now simulate collisions of protons (Zp = 1) with
honeycomb clusters of size L = 24 and 54. To characterize
the stopping dynamics, we consider different impact kinetic
energies Ekin = 1

2mpṙ2
p(t = 0), ranging from below 1 keV to

about 0.5 MeV, and measure the energy loss Se, defined as the
change of the projectile’s kinetic energy after passing through
the lattice:

Se = Ekin(t = 0) − Ekin(t → ∞). (13)

As function of Ekin(t = 0), this quantity yields the energy loss
spectrum, which is similar to the stopping power spectrum
(spectrum of dissipated power per length) for the case of
homogeneous media. Below, we specify the kinetic energy
of the proton in units of keV/u, where u denotes the unified
atomic mass unit.

We begin with the analysis of Se for the smaller cluster
[see Fig. 4(a)]. In Hartree approximation (black lines), we find
a pronounced maximum of the energy loss in the regime of
considered energies, which is the behavior known from the
stopping power of nonrelativistic ions (we note, however, that
the position of the maximum is typically at larger energies,
compare with Sec. V). When U is increased, the peak height
decreases and, at the same time, the peak slightly shifts towards
larger proton energies. At large impact energies, the curves for
different interaction strength approach each other, leading to a
rather generic scaling of the energy loss as ∝v−a

z ln(bv2
z ) (with

fit parameters a,b > 0). Thus, the high-energy tail is consistent
with predictions from the nonrelativistic Bethe formula [1]. On
the other hand, for low energies, the change of the energy loss
is closer to ∼vz.

Next, we examine the influence of electron-electron corre-
lations [cf. the red curves in Fig. 4(a)], which represent local
second Born calculations for the initial state (A) of Sec. II C,
where the lattice system has equilibrated before the impact
of the proton. For small interactions U/J � 2, we find that
corrections to the Hartree approximation are rather small. On
the contrary, for U/J = 4, we observe clear deviations from
the mean-field picture, with a decrease of Se over a large energy
window and a slight increase around Ekin ≈ 1 keV/u.

In Fig. 4(b), we present the same analysis for the larger
honeycomb cluster with L = 54 sites, including results for
various approximations of the self-energy. While Se becomes
generally larger compared to the smaller cluster, we notice
that correlations have the same effect of reducing the energy
loss for proton energies of Ekin � 5 keV/u, as was observed
for L = 24. At the same time, the low-energy tail behaves
differently: here we find a scaling ∝ln(vz). Moreover, we
observe that all considered self-energies lead to very similar
stopping results. In particular, there is very good agreement
between the local and full second-order Born approximation,
which indicates that here it is sufficient to treat correlations
locally. We emphasize again that a nonlocal self-energy (with
	ij �= 0) or a more complex self-energy (including higher-
order diagrams) generally brings about a drastic increase of the
computation time, particularly on a large time grid, which is
required to study the impact of slow projectiles. For this reason,
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FIG. 4. Energy loss Se for protons passing through honeycomb
clusters of size L = 24 [panels (a) and (c)] and L = 54 [panel (b)].
In all panels, the value of the onsite interaction U/J is encoded in
the line style, and the black lines indicate the results of the Hartree
approximation. In panel (a), the red curves show the energy loss in
the local second Born approximation with initial state (A). In panel
(b), we present the same analysis for the larger cluster, including
results of the full second Born (yellow), the third-order (blue), and
the T-matrix approximation (green). Panel (c) shows the influence
of initial correlations, comparing the second Born results of panel
(a) to local and full second Born, third-order, as well as T-matrix
calculations for the initial state (B). The arrows in panel (c) indicate
the two situations analyzed in more detail in Fig. 5.

we show results beyond the local second Born approximation
in Fig. 4(b) only for correspondingly large proton energies.

Standard stopping power calculations of a charged particle
usually consider the target material in the ground state before

the collision. This is, however, not the case for our simulations
with the initial condition (A) and self-energies beyond mean
field. To quantify the effect of this systematic inconsistency,
we repeat some of the simulations with the initial state (B)
[see Fig. 4(c) for L = 24 and U/J = 4]. As a result, we
observe that the form of the correlated initial state has a non-
negligible influence on the energy loss of the projectile. In fact,
we find that the self-consistent correlated ground state [case
(B)] yields energy losses which are overall closer to those of the
Hartree approximation. Nevertheless, there remain significant
differences between correlated and mean-field calculations,
most importantly around the maximum of the curves.

B. Time-dependent density response of the electron system

To gain insight into the effect of correlations on Se and
the physical mechanisms, we now analyze the response of the
lattice electrons to the approaching projectile for a fixed value
of the interaction strength U/J = 4. The general scenario
is as follows. During the early stage of the dynamics, the
electrons (initially distributed uniformly over the cluster with
〈niσ 〉 = 0.5) start to accumulate close to the impact point
and, thus, create a negative net space charge, which attracts
and accelerates the proton towards the cluster. After passing
through the lattice plane, the proton then loses kinetic energy,
depending on the nonadiabatic response of the electron density.
For two different proton energies [indicated by arrows labeled
a and b in Fig. 4(c)], the precise dynamics is shown in Fig. 5.
There, we compare the Hartree approximation to the local
second Born approximation for both considered initial states
(A) and (B).

The difference in the time scale on which the observables
change during the collision process is evident: While at a
kinetic energy around 1 keV/u, the electron density and the
double occupation in the center of the honeycomb cluster
change on a time scale of a few inverse hopping times, t0 =
�/J , they change on a time scale comparable to t0 for the much
faster proton (∼10 keV/u). This difference has immediate
consequences for the energy transfer to the lattice: From
Fig. 5(b) (fast proton), we find that the exchange of energy
between projectile and target occurs mainly during the stage
of electron accumulation. Together with a retarded response
of the electron density in the second Born approximation
[dotted and solid lines in panel (b)], this translates into a faster
proton (of a few eV) after the collision, as compared to the
mean-field calculation (dashed line). On the contrary, for the
slow proton, the energy loss is defined by both the buildup and
the removal stage of the charge-induced confinement potential.
For this reason it, is not a priori obvious how Se is altered
by correlations. This is also confirmed by the difference of
the two second Born calculations [cf. in particular the center
panel in Fig. 5(a)]. Here, the calculation which starts from the
correlated ground state (dotted line) shows a density response
rather close to the Hartree approximation [50], whereas the
simulation which uses the equilibrated Hartree ground state as
initial state (solid line) yields an energy transfer that is
clearly larger than the mean-field result. The time evolution
of the double occupation is, however, almost identical in both
correlated cases, but significantly different from the mean-field
approximation [see the bottom panel in Fig. 5(a)].
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FIG. 5. Coupled proton-electron dynamics for the honeycomb
cluster with L = 24 sites for two different proton energies, Ekin =
0.96 keV/u (left panels) and 11.82 keV/u (right panels), corre-
sponding to the arrows shown in Fig. 4(c). The coupling strength is
fixed, U/J = 4, and three many-body approximations are compared
(see inset). Top panels: change of the projectile’s kinetic energy
�Ekin(t) = Ekin(t) − Ekin(t = 0) as function of time. Center panels:
time evolution of the electron density averaged over the central sites
labeled 1 to 4 in Fig. 1, i.e., 〈N4〉(t) = 1

4

∑4
i=1〈niσ 〉(t). Bottom panels:

time evolution of the double occupation 〈d1〉(t) = 〈n1↑n1↓〉(t) on the
site 1, which is closest to the impact point of the projectile.

C. Time-dependent electron spectral properties

An even closer look at the electronic excitations dur-
ing the collision process is provided by the time-resolved
photoemission spectrum I (ω,tp) = I−1

0

∑L
i=1 Ii(ω,tp), with

normalization factor I0. Our NEGF approach directly yields
this quantity (see Appendix), and we present the results in
Fig. 6 for two different probe times tp. Prior to the impact of
the proton (tp = 0), the spectrum corresponds to the correlated
ground state [we use initial state (B)] of the system and is, thus,
analogous to the one discussed in Fig. 3(b). Note, however, that
here we use U/J = 4, and we average over the whole cluster
and use a different probe pulse. At a later time, when the
projectile just passes the lattice plane (tp ∼ 4.1t0), we observe
a spectrum which indicates a strong redistribution of electrons
in the lower Hubbard band, particularly towards lower energies
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,t p
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FIG. 6. Time-resolved photoemission spectrum I (ω,tp) =
I−1

0

∑L

i=1 Ii(ω,tp) of a cluster with L = 24 and U/J = 4 for the
stopping dynamics of a proton with energy Ekin = 11.82 keV/u [the
scenario is similar to Fig. 5(b)]. The calculations are performed in full
second Born approximation with a correlated initial state [case (B)].
Red curve: initial state, black dashes: ground state of an infinite
system at U/J = 0. Blue line: spectrum when the projectile passes
through the lattice plane. Green line: “final” state after the collision.
To resolve the spectrum at the different stages of the dynamics, we
have set the probe pulse width here to τ = 2t0 (cf. Appendix A).

(blue line in Fig. 6). This redistribution is, obviously, a result
of the negative electronic confinement potential induced to
the lattice electrons by the projectile and corresponds to a net
energy loss of the electron system. Finally, at time tp � 9t0,
the proton has passed through the lattice and is located far
enough such that it does not affect the electrons anymore. We,
therefore, measure a state of the electrons that is close to the
“final” state. This state is characterized by a net energy gain of
the electron system [as was shown in the top panel of Fig. 5(b)].
Here, we can resolve the spectral distribution of this energy:
a substantial amount of electrons is being excited (above the
Fermi level, ωF = 0) into the upper Hubbard band. Of course,
on a longer time scale (part of) this energy will be transferred
from the electrons to lattice vibrations (phonons), but this is
beyond the present model.

D. Projectile energy loss within the generalized
Kadanoff-Baym ansatz

In this section, we analyze the generalized Kadanoff-Baym
ansatz (GKBA) that was discussed in Sec. II C. This approxi-
mation has recently attracted growing attention [28,29,33,40]
because it provides a way to significantly reduce the numerical
effort of the computation of the NEGF, while still preserving
the conservation laws of the chosen many-body approxima-
tions. Here, we apply the GKBA to reconstruct the two-time
Green function Gijσ (t,t ′) for second Born self-energies from
its time-diagonal value by using Hartree propagators (see
Ref. [33] for details). For the present setup, the GKBA allows
us to extend the full second Born calculations of Fig. 4(b)
towards significantly longer times and, thus, to lower proton
impact energies. We also note that, for finite systems which
are strongly excited, the GKBA has been found to be free of
certain artifacts of the two-time simulations [29], while being
of comparable accuracy than the latter.
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FIG. 7. Energy loss for the honeycomb cluster with L = 54 sites
in second Born approximation. Comparison of the full two-time
simulation and the GKBA (see text for details). Black and red solid
lines are the same as in Fig. 4(b); red dashed and blue dotted curves:
GKBA results for the initial states (A) and (B), respectively.

In Fig. 7, we present such GKBA simulations for both initial
states, (A) and (B), as discussed above. For the initial state (A),
we find a qualitative agreement with the analogous two-time
calculations. At the same time, the GKBA simulations yield
a systematically lower energy loss Se for proton energies
of Ekin � 5 keV/u than the two-time simulations. In the
present case, the projectile induces a rather strong and
nonlocal perturbation, which is typically well described by
the GKBA [29]. Whether the GKBA or two-time results for
the stopping power are more accurate is presently unknown,
as there are no exact results available, and this remains to be
resolved in future studies.

Finally, we perform GKBA simulations with the fully
correlated initial state (B). This leads to significantly increased
results for the energy loss spectrum of the protons (blue dotted
curve), which are closer to the mean-field result. The most
striking achievement is that the GKBA simulations can be
extended towards projectile energies around 200 eV. Interest-
ingly, for these energies, the stopping power is significantly
increased, as compared to the mean-field result. At the same
time, with the use of Hartree propagators, we lose direct access
to the correlated spectral functions.

E. Finite temperatures

For slow projectiles, we have seen in Secs. IV A and IV D
that the inclusion of electron-electron correlations can lead
to a slight increase of the energy loss in comparison to the
mean-field treatment of the collision process. As this effect
seems to be larger for a lattice system which is initially not
in the self-consistent ground state [and thus has a nonzero
effective temperature, cf. initial state (A)], it is worthwhile
to discuss in more detail the influence of a finite electron
temperature on the stopping dynamics.

In contrast to other approaches, the effect of finite tempera-
ture is straightforwardly incorporated in the NEGF formalism,
where temperature effects enter the KBE via the initial state
defined in Eq. (11). In Fig. 8, we perform Hartree and
second Born calculations for L = 24 and different inverse
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FIG. 8. Temperature dependence of the energy loss Se for the
honeycomb cluster with L = 24 sites and U/J = 4. Black lines:
zero-temperature Hartree calculations, as in Fig. 4(a). Colored lines:
Hartree results for different temperatures. Symbols: local second Born
results for the same temperatures βJ = 5, 1.5, 1, and 0.5. (a) Local
second Born calculations with initial state (A). (b) GKBA calculations
as in Sec. IV D with initial state (B).

temperatures βJ � 100. For βJ = 5, which corresponds to
an electron temperature of kBT = 0.56 eV (or about T =
6500 K) for a hopping amplitude of J = 2.8 eV, we measure
energy loss spectra (cf. the yellow curves) that are still very
close to the ground-state results of Fig. 4(a). For higher
temperatures, βJ < 5, on the other hand, we observe that
the energy loss systematically decreases with temperature,
whereas the maximum of the spectrum shifts to slightly
lower energies. These trends continue even for higher electron
temperatures (obviously, this refers to a nonequilibrium state,
where the electron temperature is decoupled from the lattice)
(see the red, blue, and green solid curves).

To understand the origin of the reduction of the energy
loss with temperature, we investigate in Fig. 9 the time
dependence of the proton energy and of the local electron
density computed in mean-field approximation. Obviously, a
temperature increase reduces the local enhancement of the
electron density, as thermal fluctuations reduce the coherent
response of the electrons to the projectile.

Finally, electron correlations are important even at the
highest temperature considered [βJ = 0.5 (T ≈ 65000 K for
J = 2.8 eV)], where the interaction energy U is still twice as
large as the thermal energy. Here, compared to the mean-field
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FIG. 9. Time-dependent energy change �Ekin(t) = Ekin(t) −
Ekin(t = 0) of the proton (upper panels) and electron density
〈N4〉(t) = 1

4

∑4
i=1〈niσ 〉(t) at the four sites around the impact point

(lower panels) for four different temperatures. Same cases (Hartree
dynamics, U/J = 4) as shown in Fig. 8.

model, we observe that the local second Born calculations
yield a clear shift of the whole spectrum towards smaller en-
ergies. Furthermore, the maximum energy loss is substantially
reduced (with a peak value of the second Born calculation
that is only about half of the mean-field result, Fig. 8(a)],
which shows that the relative importance of correlations
seems to increase with reduction of the temperature βJ .
This unexpected behavior is due to the reduction of quantum
diffraction effects with temperature, leading to an increased
electron localization, which will be investigated in more detail
elsewhere.

V. APPLICATION TO GRAPHENE

As a supplementary investigation, we examine, in this
section, whether the coupled NEGF-Ehrenfest approach can
be applied also to study the collision of charged particles with
real (low-dimensional) materials. As example, we consider
a two-dimensional sheet of graphene. As was shown in
Refs. [51,52], the equilibrium properties of graphene [30,49]
are well described through an extended Hubbard model with
a nearest-neighbor hopping J on the honeycomb lattice
using, beyond the onsite interaction U , additional nonlocal
Coulomb interactions Vij , that are known to stabilize the
Dirac semimetallic phase [53]. However, it is not clear a
priori whether this model holds also out of equilibrium. In
particular, the present situation of the impact of a charged
particle corresponds to a (locally) very strong excitation,
driving the system far away from equilibrium. This question
can only be answered by direct simulations of this process

and by comparison to reliable reference data for the stopping
power.

In order to map this extended Hubbard model to the
Hamiltonian of the form (1) with purely local interactions,
we follow Ref. [31] and use an effective onsite interaction
U ′ = U − V̄ = 1.6J , where V̄ denotes a weighted average
over the nonlocal contributions. Although this approximation
has limitations, e.g. [52], it is agreed to be, at least, qualitatively
correct. Moreover, we extend the Hamiltonian of Sec. II in two
regards:

(i) We take into account the existence of four valence
electrons per site. This means we consider (instead of a
single-band model) a system with four independent Hubbard
bands of equal hopping and interaction parameters, which
together describe the dynamics of the four electrons provided
by each sp2-hybridized carbon atom in the graphene sheet. We
are aware of the fact that such an approach excludes the specific
nature of the σ and π bonds as well as possible (sp-)interband
transitions. The main advantage of this model is, however, that
it can be straightforwardly implemented by setting the local
net charges Zi in Eq. (3) to Zi = 4(1 − ∑

σ 〈niσ 〉), leaving
open a single parameter, the hopping amplitude J , which we
will use below to adjust the maximum energy transfer.

(ii) We account for the fact that the incident projectile can
influence the electron mobility on the lattice. This includes
local changes to the electron’s kinetic energy which originate
from the presence of the off-diagonal matrix elements of
the interaction potential Wij between the projectile and the
electrons on the lattice. Below, we approximate such a
renormalization of the hopping to be proportional to the
average potential energy between neighboring sites, i.e., we
define an effective time- and site-dependent hopping amplitude

Jij (t) =
{−J + Wij (t), |i − j | = 1

0, otherwise (14)

where

Wij (t) = γ
Wii(t) + Wjj (t)

2
. (15)

The proportionality factor γ can be interpreted as the strength
of the orbital overlap and will be used as a second fit parameter
below (see Appendix B for details).

We note that the ansatz (14) neglects corrections of the
form Wij with |i − j | > 1, which is justified because the wave
functions of next-nearest and more distant neighbors have
in general a much smaller overlap. Nevertheless, a further
improved treatment of the off-diagonal components may be
important for future studies since the projectile induces strong
perturbations to the system.

In Fig. 10, we present stopping results for protons and alpha
particles (Zp = 2) for the model parameters J = 3.15 eV and
γ = 0.55. To obtain reasonable agreement with ab initio
TDDFT and SRIM data for the planar infinitely extended
graphene sheet [7,8], we consider cluster sizes as large as L =
384, which are easily treated in Hartree approximation. The
neglect of correlations is justified due to the relatively small
onsite interaction strength of U/J = 1.6 (recall Sec. IV A).
This expectation is confirmed by performing additional local
second Born simulations for L = 54 (green circles) that lie on
top of the Hartree curves [cf. Figs. 10(a) and 10(b)]. Generally,
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BALZER, SCHLÜNZEN, AND BONITZ PHYSICAL REVIEW B 94, 245118 (2016)

0

20

40

60

1 10 100 1000

S e
/e
V

Ekin/(keV/u)

(a) H+

SRIM
S. Zhao et al.

A. Ojanperä et al.
2B (local), L=54

L=24
54
96
150

216
294
384

0

50

100

150

1 10 100 1000

S e
/
eV

Ekin/(keV/u)

(b) He2+
[Line styles as in a)]

SRIM
A. Ojanperä et al.
2B (local), L=54

FIG. 10. Energy loss of (a) hydrogen ions (H+) and (b) alpha
particles (He2+) penetrating through a single layer of graphene. In
both panels, the strength of the Coulomb interaction is U/J = 1.6,
the fit parameters are J = 3.15 eV and γ = 0.55, and the initial z

position of the projectile is z = 20a0. The Hartree results for different
cluster sizes, ranging from L = 24 (bottom) to L = 384 (top), are
shown by different line styles. For the cluster with L = 54 sites, we
also performed second Born calculations (green circles) showing that
correlation corrections are rather small in this case. For a detailed
discussion of the U , J , and γ dependence, see Appendix B. The
black symbols and lines correspond to ab initio TDDFT calculations
and SRIMdata, respectively (taken from Refs. [7,8]).

we find that the energy transfer increases with the cluster size,
which is consistent with results for graphene clusters discussed
in Ref. [9]. In Fig. 10(a), the curves Se(Ekin) tend to converge
for large L and, for practically all considered proton energies,
well approach the energy loss given by the reference data.

Finally, an important test of the model is provided by
Fig. 10(b). There, we use exactly the same model parameters J

and γ to simulate the energy loss for collisions of single-layer
graphene with bare helium nuclei (He2+). Without further
adjustments, we recover good agreement with the available
reference data, including the increase of the overall magnitude
of Se compared to the case of protons and, in addition, the shift
of the maximum energy loss towards larger kinetic energies.

Given the simplicity of the model Hamiltonian, it is
interesting that our NEGF-based approach reveals the correct
trends for a fairly realistic system. On the other hand, however,
we have to note also problems of the model. In particular,
at the low-energy tail of the energy loss curve, we observe

significantly larger values compared to the TDDFT simulation
in the case of alpha particles [cf. the red curve in Fig. 10(b)].
The origin of these discrepancies is not fully clear yet, and,
therefore, in this range, additional correlated simulations as
well as improvements to the model are required in the future.

VI. CONCLUSIONS

In summary, we have presented a combined nonequilibrium
Green functions and classical Ehrenfest dynamics approach
to the interaction of a nonrelativistic charged particle with a
(strongly) correlated system. Our approach allows for a fully
time-dependent treatment and is, thus, able to resolve nonadi-
abatic processes in the electronic subsystems. To explore the
role of electronic correlations, we performed solutions of the
two-time Keldysh-Kadanoff-Baym equations using different
many-body approximations for the self-energy: the second
Born, third-order, and the T-matrix approximations. This
enabled us to demonstrate that electron-electron correlations
do significantly influence the slowing down of a charged
projectile in, both, the low and high-energy limits. The high
computational effort of the NEGF simulations has limited us to
projectile energies of 1 keV, as lower impact energies increase
the interaction time with the lattice and, in turn, the computing
time. To extend the simulations to lower energies, we have ap-
plied the generalized Kadanoff-Baym ansatz (GKBA), which
is substantially more efficient. Interestingly, these simulations
predict an energy loss well above the mean-field model,
indicating that correlations can enhance the slowing down of a
(slow) projectile. How accurate these results are is not known
at the moment. This requires further analysis via full two-time
simulations, the use of improved self-energies such as T-matrix
self-energies, as well as independent TDDFT simulations.

Of particular current interest is the energy loss of low-
energy (below 1 keV) charged particles in solid materials. An
important field of applications are low-temperature plasmas.
Questions of interest include the stopping power in materials
with very strong electronic correlations (e.g., lattice models
with U/J � 10) or for magnetically ordered systems or
insulators, where the stopping power can vanish below a
certain threshold [54]. Furthermore, it will be important to
extend the model beyond the Hubbard model to better capture
realistic material properties, e.g., by using a Kohn-Sham basis.
This, however, will drastically increase the computational
requirements.

Additional questions of interest at low energies concern the
inclusion of all relevant dissipation mechanisms, in particular,
inelastic mechanisms such as phonons, impact excitation,
and ionization or reemission of particles. Further relevant
processes include neutralization of the ion before impact and
capture (sticking), which is expected to cause deviations from
the linear velocity scaling. Finally, it will be important to also
consider more complex charged projectiles that are different
from bare ionic cores. Here, intraionic electronic excitations
play an important role in the stopping dynamics, e.g., [55].

From a technological point of view, it would furthermore
be interesting to explore whether the energy deposition can
be externally controlled, e.g., by time-dependent (laser) fields,
which excite the target material before or during the impact.
The potential effect of such an out-of-equilibrium situation
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was demonstrated by an analysis of an increased temperature
of the electronic subsystem. For such kinds of nonequilibrium
investigations, our NEGF-based approach represents an op-
timal toolbox, as it handles external fields self-consistently
and nonperturbatively and can include arbitrary scattering
processes in a systematic way.
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APPENDIX A: TIME-RESOLVED
PHOTOEMISSION SPECTRUM

As an essential test for the numerics and the time prop-
agation of the KBE (7), we verify here whether the correct
spectrum and bandwidth are recovered from the two-time
NEGF in the limit of an infinite honeycomb lattice. To this
end, we compute the photoemission spectrum for vanishing
onsite interaction [U = 0 in Hamiltonian (1)] and consider
clusters of different size L.

We consider the photoemission signal of a reference site i,
which is given by [56]

Ii(ω,tp) = −i

∫
dt

∫
dt ′ s(t − tp)s(t ′ − tp)eiω(t−t ′)G<

iiσ (t,t ′)

(A1)

at some probe time tp. The function s(t) thereby describes the
envelope of the probe pulse and is chosen to be of Gaussian
form, i.e.,

s(t) = 1

τ
√

2π
e−t2/(2τ 2), (A2)

where we set τ = 4t0 with t0 = �/J and J = 2.8 eV.
Figure 11 shows the spectrum I1(ω) for honeycomb clusters

with up to L = 216 sites at a probe time tp = 8t0, where,
to evaluate the integral in Eq. (A1), we have computed the
nonequilibrium Green function up to t,t ′ = 15t0. Aside from
some pulse-induced peak broadening, we observe that the
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FIG. 11. Photoemission spectrum I1(ω) for different uncorrelated
honeycomb clusters of size L, measured at a probe time tp = 8t0 with
τ/t0 = 4 [cf. Eq. (A1)]. The black dashed line shows the density of
states in the valence and conduction band of the extended honeycomb
lattice at half-filling, e.g., Refs. [48,49].

smaller clusters reveal only a few single-particle states, which
are due to the finite system size. On the other hand, the spectra
of the larger clusters (L > 96 sites) approach already well the
density of states in the lower (valence) band of the extended
honeycomb lattice (cf. the black dashed line).

APPENDIX B: ADAPTATION OF THE MODEL
TO GRAPHENE

In order to model the impact of protons on a single sheet
of graphene, we have tuned in Sec. V the hopping amplitude
J and the orbital overlap parameter γ [defined in Eq. (14)]
such that the energy loss spectrum is in good agreement
with first-principles and SRIM data. By performing Hartree
calculations, we show in Fig. 12 in more detail how the
energy transfer Se varies when these parameters are changed.
Moreover, we discuss the influence of the ratio of the onsite
Coulomb interaction U to the hopping J .

From Fig. 12(a), we observe that the interaction strength
mainly influences the energy transfer below about 20 keV/u,
whereas the high-energy tail remains unchanged. In the course
of this, the low-energy tail as well as the maximum energy
loss increase fairly linearly with U/J . Figure 12(b) shows
that the hopping amplitude and the overlap parameter γ
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FIG. 12. Proton stopping dynamics as in Sec. V, but for different
parameters U , J , and γ in Hartree approximation. The system size is
L = 54. (a) Influence of the onsite interaction U for fixed J = 3.2 eV
and γ = 0. (b) Influence of the hopping amplitude J and the orbital
overlap γ for fixed interaction strength of U/J = 1.6.
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affect the energy transfer substantially more than the Coulomb
interaction. For a fixed value U/J = 1.6, a larger value of J

(i.e., an increase of the general electron mobility on the lattice)
leads to a larger energy loss, independently of the initial kinetic

energy of the projectile. On the other hand, if we increase the
hopping locally by choosing γ > 0, we find that the energy
transfer becomes considerably smaller, which is accompanied
by a shift of the maximum of Se towards larger kinetic energies.

[1] P. Sigmund, Particle Penetration and Radiation Effects
(Springer, Berlin, 2006).

[2] I. Nagy and B. Apagyi, Phys. Rev. A 58, R1653(R) (1998).
[3] J. M. Pitarke, R. H. Ritchie, and P. M. Echenique, Phys. Rev. B

52, 13883 (1995).
[4] M. Quijada, A. G. Borisov, I. Nagy, R. Dı́ez Muiño, and P. M.

Echenique, Phys. Rev. A 75, 042902 (2007).
[5] M. A. Zeb, J. Kohanoff, D. Sánchez-Portal, A. Arnau, J. I.

Juaristi, and E. Artacho, Phys. Rev. Lett. 108, 225504 (2012).
[6] A. Schleife, Y. Kanai, and A. A. Correa, Phys. Rev. B 91, 014306

(2015).
[7] S. Zhao, W. Kang, J. Xue, X. Zhang, and P. Zhang, J. Phys.:

Condens. Matter 27, 025401 (2015).
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