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This supplement contains additional information on 1. CPIMC simulations for the polarized electron gas, 2.
Thermodynamic Green functions results and 3. the first CPIMC results for the unpolarized (paramagnetic)
electron gas.

1 First-principle CPIMC simulation results for the spin-polarized
electron gas

1.1 Energy contributions for the uniform electron gas at finite temperature and high
density

Here, we include the configuration path integral Monte Carlo (CPIMC) data for the uniform electron gas used
in the figures of the main text. Table 1 contains the total, kinetic and potential energy for 33 fully polarized
particles in the canonical ensemble for a broad range of temperatures and densities, together with the total
energy of the non-interacting Fermi gas. For rs ≥ 0.6, an additional potential Vκ restricting the number of
kinks was used and the total, kinetic and potential energies were each extrapolated to the unrestricted case, as
explained in the main text. Therefore, for these values, the sum of kinetic and potential energy equals the
total energy only within the given errors. The errors were constructed to include systematic uncertainties
due to the extrapolation. For the ideal Fermi gas, NB = 925 basis function were used. For all other cases the
calculations were performed using NB = 2109 basis functions. For θ = 1.0, the basis size used for the ideal
Fermi gas was increased to NB = 2109 and for the interacting system to NB = 4169. The basis incompleteness
error is less than the statistical error, as explained in the main text. All statistical errors correspond to a 1σ
standard deviation.
In Tab. 2 we present energies per particle for temperatures in the range of θ = 2 to θ = 8 as well as the

energy of the ideal Fermi gas. For the CPIMC simulations, NB = 5575, NB = 24 405, and NB = 44 473 basis
functions have been used for θ = 2, θ = 4, and θ = 8, respectively. An extrapolation with respect to the
additional potential Vκ was applied to rs ≥ 2 for θ = 2 and rs = 4 for θ = 4.

1.2 Finite size corrections
To map our data for N = 33 particles to the macroscopic limit we use the finite size corrections for the kinetic
and potential energy of Drummond et al. [1] for the spin polarized case

∆T (rs, β;N) =
1

N

(
ωp
4
− 5.264

πr2s(2N)1/3
2−2/3

)
(S1)

∆V (rs;N) =
ωp
4N

, (S2)

where β = 1/kBT , and we introduced the plasma frequency ωp = 2
√

3
r3s

(in units of Rydberg). These formulas
were derived for twist averaged boundary conditions [2], so we performed corresponding simulations for two
temperatures (θ = 0.0625 and θ = 0.5) and densities from rs = 0.01 to rs = 1.0. As N = 33 constitutes a
magic number, twist averaging has a small effect for lower densities but becomes more important for rs < 1.0.
Formulas (S1, S2) are called “FSC (a)” in the main manuscript and work well for not too high density, although
a small deviation from the e4 approximation and the fit of Ref. [9] remains. The deviations grow much faster
with density for θ = 0.5, which reflects the fact that these corrections are derived for the ground state.
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Figure S1: (Color online) Extrapolation to the macroscopic limit. Left, θ = 0.0625; right, θ = 0.5. Blue
symbols denote CPIMC total energies per particle for various particle numbers in twist-averaged
boundary conditions. The grey area visualizes the range of fits for different choices of the starting-
and endpoints. The resulting macroscopic energy is shown in black.

On the path to improve the available finite size corrections for high densities and finite temperatures we also
performed twist-averaged CPIMC calculations for up to N = 800 particles at rs = 0.1 and two temperatures
θ = 0.0625 and θ = 0.5, which allow for a reliable extrapolation of finite-size results to the macroscopic limit.
For rs = 0.3, approximate results were obtained for up to N = 150 particles by CPIMC calculations which
used only even kink numbers. This approach yields reasonable results for low temperatures. In all cases, at
least 128 random twist angles have been used. The dependence of the total energy on the particle numbers is
in good agreement with a power law of E(N) ∝ N−1 as used in [1].

Although being greatly reduced by twist-averaging, shell effects are still present in the energy data, introducing
a significant dependence on the starting- and endpoint of a fit. For this reason, we fitted the total energy for
all possible starting-points in the range N ∈ [80, 200] (N ∈ [100, 200]) and all possible endpoints in the range
N ∈ [300, 400] (N ∈ [600, 800]) for rs = 0.1 and θ = 0.0625 (θ = 0.5). For rs = 0.3 and θ = 0.0625 particle
numbers were chosen between N ∈ [80, 100] and N ∈ [120, 150]. As it is unclear how to weight the single fits,
the final result is simply taken to be the average between the minimal and the maximal extrapolated value
with their difference as uncertainty. This is shown in Fig. S1. As for all fits in this work, data points have
been weighted relative to their error bar.

Tab. 3 shows the resulting finite-size corrections for N = 33 particles, denoted by FSC (b) in the main text.
These differ from the analytic formulas Eq. (S1) and Eq. (S2), denoted by FSC (a), by more than 2.3 Ry in
the worst case of θ = 0.5, highlighting the importance of improved corrections at high densities and finite
temperatures.

2 Green functions results for the exchange-correlation energy of the
spin-polarized electron gas in Montroll-Ward and e4 approximation

To describe the spin-polarized electron gas in semi-analytical form, we employ the quantum statistical method
of thermodynamic Green functions [5, 6]. Its advantage is the ability to describe systems in the thermodynamic
limit with arbitrary temperatures including the correct T =0 physics, the transition to Boltzmann statistics,
and the correct high temperature (Debye-Hückel) law. Using this technique, a perturbation expansion in the
interaction strength can be established [6, 7]. Including terms up to the second order, one obtains

Uee(T, αe) = U id
e (T, αe) + UHF

e (T, αe) + UMW
ee (T, αe) + U e4n

e (T, αe) . (S3)

Here, αe = µe/kBT is the activity with the chemical potential µe, the temperature T , and the Boltzmann
constant kB. The terms are the ideal gas law, the Hartree-Fock (HF) quantum exchange term, the direct
Montroll-Ward (MW) term, and quantum exchange contributions of the second order (e4n), respectively.
Further, chemical potential and density are related via neλ3DB = I1/2(αe), where, λDB=

√
2π~2/mekBT is the

electron thermal deBroglie wavelength, and Iν is the Fermi integral of order ν [6]. The inversion (transition)
from the grand canonical ensemble to the canonical ensemble has already taken place in the golden rule

2



0.01 0.1 10.02 0.05 0.2 0.5
rs

−1.3

−1.28

−1.26

−1.24

−1.22

−1.2

−1.18
E

xc
·r

s
θ = 0.0625

θ = 0.25

θ = 0.0625

θ = 0.25

HF
MW
e4
Karasiev
CPIMC (a)
CPIMC (b)

0.01 0.1 10.02 0.05 0.2 0.5
rs

−1.3

−1.2

−1.1

−1

−0.9

−0.8

θ = 0.5

θ = 1.0

θ = 0.5

θ = 1.0

Figure S2: Green functions results for the exchange-correlation energy (times rs) of the polarized uniform
electron gas: The Montroll-Ward (MW) and e4 approximation are compared to Hartree-Fock (HF)
and the fit of Karasiev et al. [9]. The exact result is unknown but expected to be inbetween
the e4 and MW curves (cf. shaded area). Due to the weak coupling expansion, the e4 and MW
approximations are restricted to small rs values. The width of the shaded area can be used to
judge the validity range of the analytical approximations: we terminate the shaded area when the
width exceeds 1% of the mean value of Etot. The points with the error bars denote the CPIMC
results for rs = 1, applying the finite size correction of Drummond et al. [1], Eqs. (S1, S2). The
crosses denote the CPIMC extrapolation over N , see text and Tab. 3.

approximation, and the resulting additional terms are given below together with the HF, MW and e4 terms.
We summarize the results used in the main text.

1. The ideal internal energy is given by

U id
e (T, αe) =

3

2

kBT

λ3DB
I3/2(αe) . (S4)

2. First order exchange contributions are contained in the HF term [6]

UHF
e (T, αe) =

e2

λ4DB

αe∫
−∞

dα I2−1/2(α)− 3e2

2λ4DB
I−1/2(αe)I1/2(αe), (S5)

where the 2nd term is a direct result of the inversion procedure or can be seen as resulting from the
temperature derivative of the free energy.

3. The Montroll-Ward contribution to the equation of state can be computed using the dielectric function of
the spin-polarized electron gas, εe(p, ω) = 1− Vee(p)Πee(p, ω), with the result [7]

pMW
e (T, µe) =

−1

4π3

∞∫
0

dp p2 P
∞∫
±0

dω coth

(
~ω

2kBT

)[
arctan

Im εe(p, ω)

Re εe(p, ω)
− Im εe(p, ω)

]
. (S6)

It is consistent with the expansion (S3) to use here the dielectric function in random phase approximation
(RPA).

4. The normal e4 exchange term for the equation of state, accounting for exchange effects of second order,
can be written as an integral over Fermi functions, fp=[exp(βp2/2me−βµe)+1]−1, and Pauli blocking
factors, denoted f̄p=[1−fp] [7],

pe
4n
e (T, µe) =

me

2

∫
dpdq1dq2

(2π)9
vee(p)vee(p + q1 + q2)

fq1fq2 f̄q1+pf̄q2+p − fq1+pfq2+pf̄q1 f̄q2
q21 + q22 − (p + q1)2 − (p + q2)2

,

(S7)

where, vee is the bare electron-electron Coulomb potential.
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Figure S3: (Color online) CPIMC results for the unpolarized UEG for N = 14. a: low temperature total
energy for rs = 0.5, compared to the ground state data of Ref. [10], horizontal black line, grey area
denotes the error bars. b: Density dependence of the exchange-correlation energy for Θ = 0.5.

5. From the two results for the pressure, Eqs. (S6, S7), the corresponding internal energy contributions follow
according to

Uke (T, αe) = −pke(T, αe) + T
∂

∂T
pke(T, αe), k = MW, e4n. (S8)

The expansion (S3) accounts for direct correlations and dynamic screening, incorporates collective oscillations
(plasmons) as well as quantum diffraction and exchange in the electron system. This expression is valid for
weakly coupled electrons of arbitrary degeneracy and, in particular, includes the low and high temperature
limiting cases of Debye-Hückel as well as Gell-Mann and Brueckner, respectively [7].
In the following, we use the notation “e4 approximation” for the complete expression (S3), whereas “MW”

denotes the result (S3) without the last term. Numerical results for the e4 approximation, for two temperatures,
are shown in Fig. 5 of the manuscript. Here we present additional data, extending the temperature range to
Θ = 1, and we also compare with the Hartree-Fock (HF) and Montroll-Ward (MW) approximations. Figure S2
shows the exchange-correlation energy (times rs) for four temperatures. In all cases, the high-density limit is a
horizontal line, approaching the Hartree-Fock approximation. For lower densities approaching rs = 1, MW and
e4 start to deviate from each other. Obviously, the series expansion contains sign alternating contributions so
we expect that the exact result will be enclosed between the MW- and e4 approximations where e4 yields an
upper bound to the exchange-correlation energy. Furthermore, we notice that the agreement between MW-
and e4 approximations improves with decreasing temperature.

The data for the total energy in the various analytical approximations are presented in table 1.

3 First CPIMC simulation results for the unpolarized electron gas
For the ideal Fermi gas, NB = 925 basis function were used. For all other cases, the calculations were performed
using NB = 2109 basis functions. The results for unpolarized electrons with N = 14 are shown in Figure S3
and in Table 4. No twist averaging and finite size extrapolation has been performed. The table also contains
thermodynamic Green functions results for the macroscopic unpolarized UEG with the same approximations
as explained above.
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Table 1: Left part: CPIMC energies per particle for N = 33 polarized electrons: ideal energy, U0, total energy, Etot, kinetic energy, Ekin, and potential energy, Epot.
Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy U0 (S4), Hartree-Fock (HF), Eq. (S5),
Montroll-Ward (MW), Eqs. (S6, S8) and e4 approximation (e4), Eqs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 33) Analytical approximations

θ rs U0 Etot Ekin Epot U0 HF MW e4

0.0625 0.01 35 458.07(4) 35 336.30(22) 35 457.65(22) −121.3612(4) 35 640.21 35 523.06 35 523.06 35 523.09
0.02 8864.517(9) 8803.59(4) 8864.32(4) −60.727 38(11) 8909.727 8851.156 8851.136 8851.168
0.05 1418.3227(15) 1393.918(9) 1418.264(9) −24.346 28(4) 1425.608 1402.179 1402.082 1402.114
0.10 354.5807(4) 342.358(5) 354.575(5) −12.217 61(9) 356.4021 344.6876 344.5623 344.5928
0.20 88.645 17(9) 82.5102(15) 88.6609(14) −6.150 73(5) 89.100 54 83.2433 83.128 84 83.160 94
0.30 39.397 85(4) 35.2933(8) 39.4197(8) −4.126 41(5) 39.600 23 35.695 41 35.586 07 35.617 42
0.40 22.161 292(23) 19.0740(5) 22.1871(5) −3.113 04(5) 22.275 13 19.346 51 19.241 05 19.272 65
0.60 9.849 463(10) 7.7787(14) 9.8776(11) −2.097 26(19) 9.900 058 7.947 647 7.848 245 7.880 411
0.80 5.540 323(6) 3.9779(22) 5.5693(32) −1.590(4) 5.568 787 4.104 478 4.009 63 4.040 199
1.00 3.545 807(4) 2.2898(15) 3.5745(34) −1.2835(34) 3.564 021 2.392 57 2.301 711 2.332 256

0.1250 0.01 37 217.14(6) 37 092.91(30) 37 212.95(30) −120.0438(4) 37 275.81 37 155.89 37 155.87 37 155.91
0.02 9304.284(16) 9242.12(6) 9302.19(6) −60.075 62(22) 9318.611 9258.653 9258.612 9258.648
0.05 1488.6854(25) 1463.827(11) 1487.920(11) −24.092 91(7) 1491.032 1467.049 1466.96 1466.995
0.10 372.1714(6) 359.715(4) 371.812(4) −12.096 87(11) 372.7581 360.7661 360.6584 360.6927
0.20 93.042 84(16) 86.8060(16) 92.9013(15) −6.095 27(6) 93.189 54 87.193 55 87.098 77 87.134 98
0.30 41.352 37(7) 37.1833(7) 41.2755(7) −4.092 22(6) 41.417 57 37.420 25 37.331 13 37.366 92
0.40 23.260 71(4) 20.1268(6) 23.2159(6) −3.089 07(7) 23.297 38 20.299 39 20.213 65 20.248 08
0.60 10.338 093(18) 8.2390(12) 10.3238(16) −2.0836(5) 10.354 39 8.355 732 8.273 912 8.309 463
0.80 5.815 177(10) 4.2334(29) 5.8139(19) −1.582(8) 5.824 351 4.325 353 4.246 401 4.281 027
1.00 3.721 714(6) 2.450(4) 3.729(5) −1.280(9) 3.727 581 2.528 384 2.452 161 2.487 229

0.2500 0.01 43 133.28(8) 43 005.3(5) 43 119.7(5) −114.3657(9) 43 073.15 42 951.16 42 950.94 42 951
0.02 10 783.320(19) 10 719.93(11) 10 777.18(11) −57.257 92(34) 10 767.89 10 706.89 10 706.58 10 706.64
0.05 1725.3312(30) 1699.891(18) 1722.883(18) −22.992 32(14) 1722.925 1698.526 1698.238 1698.301
0.10 431.3328(8) 418.612(7) 430.178(7) −11.566 46(15) 430.7315 418.5319 418.2997 418.3626
0.20 107.833 20(19) 101.4488(15) 107.2978(15) −5.849 05(8) 107.6829 101.5831 101.417 101.4799
0.30 47.925 87(8) 43.6591(8) 47.5981(8) −3.938 97(7) 47.859 03 43.7925 43.648 36 43.711 11
0.40 26.958 30(5) 23.7508(5) 26.7321(5) −2.981 32(7) 26.920 71 23.870 81 23.742 75 23.805 54
0.60 11.981 467(21) 9.8327(12) 11.8538(14) −2.0199(7) 11.964 76 9.931 492 9.821 115 9.884 106
0.80 6.739 575(12) 5.1215(21) 6.662(5) −1.542(10) 6.730 183 5.205 231 5.106 167 5.169 354
1.00 4.313 328(8) 3.014(4) 4.262(7) −1.249(11) 4.307 315 3.087 35 2.995 452 3.058 339
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Table 1: (continued). Left part: CPIMC energies per particle for N = 33 polarized electrons: ideal energy, U0, total energy, Etot, kinetic energy, Ekin, and potential
energy, Epot. Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy U0 (S4), Hartree-Fock (HF),
Eq. (S5), Montroll-Ward (MW), Eqs. (S6, S8) and e4 approximation (e4), Eqs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 33) Analytical approximations

θ rs U0 Etot Ekin Epot U0 HF MW e4

0.5000 0.01 59 504.77(16) 59 380.6(8) 59 483.0(8) −102.3978(9) 59 732.07 59 622.44 59 621.3 59 621.45
0.02 14 876.19(4) 14 814.74(18) 14 866.03(17) −51.2963(6) 14 932.47 14 877.66 14 876.23 14 876.38
0.05 2380.191(6) 2355.402(25) 2376.036(25) −20.634 13(16) 2389.282 2367.357 2366.254 2366.406
0.10 595.0477(16) 582.650(14) 593.058(14) −10.408 43(26) 597.3207 586.358 585.5635 585.7148
0.20 148.7619(4) 142.5160(35) 147.8068(35) −5.290 79(14) 149.3301 143.8488 143.3036 143.4549
0.30 66.116 41(18) 61.9353(14) 65.5152(14) −3.579 92(12) 66.368 94 62.714 72 62.277 54 62.4288
0.40 37.190 48(10) 34.0378(12) 36.7589(12) −2.721 07(9) 37.332 53 34.591 87 34.218 35 34.369 54
0.60 16.529 10(5) 14.4093(21) 16.2673(14) −1.8577(8) 16.592 24 14.765 13 14.466 16 14.6174
0.80 9.297 620(25) 7.6943(26) 9.1196(30) −1.424(4) 9.333 143 7.962 809 7.708 448 7.8597
1.00 5.950 477(16) 4.660(4) 5.823(6) −1.162(6) 5.973 207 4.876 941 4.652 623 4.803 846

1.0000 0.01 98 930.9(15) 98 821.7(26) 98 908.8(26) −87.0477(13) 99 202.77 99 124.46 99 122.08 99 122.22
0.02 24 732.7(4) 24 678.7(8) 24 722.3(8) −43.6217(6) 24 799.78 24 760.63 24 757.84 24 757.98
0.05 3957.24(6) 3935.63(13) 3953.20(13) −17.565 21(30) 3968.11 3952.448 3950.353 3950.488
0.10 989.309(15) 978.392(29) 987.269(29) −8.876 69(14) 992.0277 984.1968 982.7109 982.8453
0.20 247.327(4) 241.809(7) 246.337(7) −4.527 97(6) 248.0069 244.0914 243.0704 243.2047
0.30 109.9232(17) 106.2045(26) 109.2790(26) −3.074 50(5) 110.2253 107.6149 106.7979 106.9326
0.40 61.8318(9) 59.0190(15) 61.3643(15) −2.345 234(31) 62.001 72 60.043 98 59.347 61 59.481 75
0.60 27.4808(4) 25.5776(6) 27.1891(6) −1.611 536(25) 27.556 32 26.251 16 25.697 37 25.833 41
0.80 15.457 95(23) 14.0102(7) 15.2531(8) −1.2429(13) 15.500 45 14.521 58 14.051 82 14.186 54
1.00 9.893 09(15) 8.7214(8) 9.7379(8) −1.016 20(22) 9.920 273 9.137 178 8.725 332 8.860 601
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Table 2: Left part: CPIMC energies per particle for N = 33 polarized electrons: total energy, Etot, kinetic
energy, Ekin, and potential energy, Epot. Right part: total ideal energy per particle of the macroscopic
UEG U0, Eq. (S4). Energies in units of Ryd.

CPIMC (N = 33) Analytical

θ rs Etot Ekin Epot U0

2 0.01 183 285(5) 183 359(5) −74.0447(18) 183 606
0.02 45 798.6(13) 45 835.7(13) −37.1009(8) 45 901.49
0.05 7317.02(21) 7331.95(21) −14.931 82(29) 7344.238
0.10 1824.76(5) 1832.30(5) −7.540 91(15) 1836.06
0.20 453.875(11) 457.718(11) −3.843 04(7) 459.0149
0.30 200.673(5) 203.281(5) −2.608 21(5) 204.0066
0.40 112.2688(29) 114.2583(29) −1.989 45(4) 114.7537
0.60 49.3465(13) 50.7147(13) −1.368 156(27) 51.001 66
0.80 27.4380(7) 28.4931(7) −1.055 121(21) 28.688 43
1.00 17.3488(4) 18.2145(4) −0.865 710(24) 18.3606
2.00 4.0557(7) 4.5340(4) −0.4779(4) 4.590 149
3.00 1.662(9) 2.0104(33) −0.353(15) 2.040 066

4 0.01 356 381(29) 356 446(29) −65.4691(22) 356 620.9
0.02 89 058(6) 89 091(6) −32.7831(12) 89 155.23
0.05 14 242.9(11) 14 256.1(11) −13.1747(5) 14 264.84
0.10 3556.76(24) 3563.40(24) −6.638 01(24) 3566.209
0.20 887.28(5) 890.65(5) −3.367 82(10) 891.5523
0.30 393.479(21) 395.756(21) −2.277 09(7) 396.2455
0.40 220.847(10) 222.578(10) −1.731 12(5) 222.8881
0.60 97.685(5) 98.869(5) −1.184 028(28) 99.061 37
0.80 54.6867(25) 55.5962(25) −0.909 488(22) 55.722 02
1.00 34.8168(22) 35.5607(22) −0.743 913(29) 35.662 09
2.00 8.4690(4) 8.8769(4) −0.407 964(16) 8.915 523
4.00 1.9826(9) 2.2149(6) −0.2318(6) 2.228 881

8 1.00 69.840(33) 70.501(33) −0.660 83(11) 70.572 06

Table 3: Total energies per particle for N = 33 polarized electrons in twist-averaged boundary conditions,
extrapolated results for the corresponding macroscopic system, analytic FSC (a) from Eqs. (S1, S2),
FSC (b) obtained from CPIMC extrapolation, and analytic approximations, see Eqs. (S6, S8) and
Eqs. (S7, S8). Energies per particle in units of Ryd.

θ rs Etot (N = 33) Etot (N →∞) FSC (a) FSC (b) MW e4

0.0625 0.1 344.354(28) 344.61(7) 0.868 265 0.26(8) 344.5623 344.5928
0.3 35.5033(28) 35.631(26) 0.231 478 0.128(26) 35.586 07 35.617 42

0.5 0.1 582.39(7) 585.630(16) 0.868 265 3.24(7) 585.5635 585.7148
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Table 4: Left part: CPIMC energies per particle for N = 14 unpolarized electrons: ideal energy, U0, total energy, Etot, kinetic energy, Ekin, and potential energy, Epot.
Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy U0 (S4), Hartree-Fock (HF), Eq. (S5),
Montroll-Ward (MW), Eqs. (S6, S8) and e4 approximation (e4), Eqs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 14) Analytical approximations

θ rs U0 Etot Ekin Epot U0 HF MW e4

0.5 0.01 37 754.74(15) 37 649.45(16) 37 747.23(16) −97.779(4) 37 569.14 37 482.26 37 480.82 37 480.97
0.02 9438.68(4) 9386.07(14) 9435.18(14) −49.1027(7) 9391.883 9348.443 9346.659 9346.81
0.05 1510.189(6) 1489.029(26) 1508.803(26) −19.774 46(29) 1502.658 1485.283 1483.893 1484.044
0.10 377.5473(15) 366.905(5) 376.900(5) −9.995 01(13) 375.6689 366.9809 366.013 366.1639
0.20 94.3868(4) 89.0174(13) 94.1160(13) −5.098 68(8) 93.917 07 89.573 11 88.913 97 89.065 38
0.30 41.949 71(17) 38.3371(6) 41.7986(6) −3.461 52(6) 41.741 07 38.845 09 38.319 85 38.4714
0.40 23.596 71(10) 20.866 06(31) 23.505 55(31) −2.639 48(4) 23.4793 21.307 32 20.861 43 21.013 51
0.50 15.101 89(6) 12.900 26(18) 15.044 19(17) −2.143 93(5) 15.026 79 13.2892 12.896 86 13.048 51
0.60 10.487 43(4) 8.639 24(33) 10.451 21(26) −1.811 82(16) 10.435 26 8.987 27 8.633 526 8.790 687
0.80 5.899 177(24) 4.4947(4) 5.887 89(29) −1.393 05(28) 5.869 834 4.783 843 4.484 474 4.636 478
1.00 3.775 474(16) 2.6387(4) 3.7782(15) −1.1396(17) 3.756 692 2.8879 2.621 94 2.774 52
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