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This supplement contains additional information on 1. CPIMC simulations for the polarized electron gas, 2.
Thermodynamic Green functions results and 3. the first CPIMC results for the unpolarized (paramagnetic)
electron gas.

1 First-principle CPIMC simulation results for the spin-polarized
electron gas

1.1 Energy contributions for the uniform electron gas at finite temperature and high
density

Here, we include the configuration path integral Monte Carlo (CPIMC) data for the uniform electron gas used
in the figures of the main text. Table 1 contains the total, kinetic and potential energy for 33 fully polarized
particles in the canonical ensemble for a broad range of temperatures and densities, together with the total
energy of the non-interacting Fermi gas. For r, > 0.6, an additional potential V,; restricting the number of
kinks was used and the total, kinetic and potential energies were each extrapolated to the unrestricted case, as
explained in the main text. Therefore, for these values, the sum of kinetic and potential energy equals the
total energy only within the given errors. The errors were constructed to include systematic uncertainties
due to the extrapolation. For the ideal Fermi gas, Ng = 925 basis function were used. For all other cases the
calculations were performed using N = 2109 basis functions. For § = 1.0, the basis size used for the ideal
Fermi gas was increased to Np = 2109 and for the interacting system to Np = 4169. The basis incompleteness
error is less than the statistical error, as explained in the main text. All statistical errors correspond to a lo
standard deviation.

In Tab. 2 we present energies per particle for temperatures in the range of 8 = 2 to § = 8 as well as the
energy of the ideal Fermi gas. For the CPIMC simulations, Ng = 5575, Ng = 24405, and Np = 44473 basis
functions have been used for § = 2, § = 4, and 0 = 8, respectively. An extrapolation with respect to the
additional potential V,; was applied to rs > 2 for § = 2 and ry = 4 for 0 = 4.

1.2 Finite size corrections

To map our data for N = 33 particles to the macroscopic limit we use the finite size corrections for the kinetic
and potential energy of Drummond et al. [1] for the spin polarized case
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where § = 1/kgT, and we introduced the plasma frequency w, = 2\/?3 (in units of Rydberg). These formulas
were derived for twist averaged boundary conditions [2], so we performed corresponding simulations for two
temperatures (§ = 0.0625 and 6 = 0.5) and densities from r, = 0.01 to s = 1.0. As N = 33 constitutes a
magic number, twist averaging has a small effect for lower densities but becomes more important for ry < 1.0.
Formulas (S1, S2) are called “FSC (a)” in the main manuscript and work well for not too high density, although
a small deviation from the e* approximation and the fit of Ref. [9] remains. The deviations grow much faster

with density for § = 0.5, which reflects the fact that these corrections are derived for the ground state.
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Figure S1: (Color online) Extrapolation to the macroscopic limit. Left, § = 0.0625; right, 6 = 0.5. Blue
symbols denote CPIMC total energies per particle for various particle numbers in twist-averaged
boundary conditions. The grey area visualizes the range of fits for different choices of the starting-
and endpoints. The resulting macroscopic energy is shown in black.

On the path to improve the available finite size corrections for high densities and finite temperatures we also
performed twist-averaged CPIMC calculations for up to N = 800 particles at r; = 0.1 and two temperatures
0 = 0.0625 and # = 0.5, which allow for a reliable extrapolation of finite-size results to the macroscopic limit.
For r, = 0.3, approximate results were obtained for up to N = 150 particles by CPIMC calculations which
used only even kink numbers. This approach yields reasonable results for low temperatures. In all cases, at
least 128 random twist angles have been used. The dependence of the total energy on the particle numbers is
in good agreement with a power law of E(N) oc N~! as used in [1].

Although being greatly reduced by twist-averaging, shell effects are still present in the energy data, introducing
a significant dependence on the starting- and endpoint of a fit. For this reason, we fitted the total energy for
all possible starting-points in the range N € [80,200] (N € [100,200]) and all possible endpoints in the range
N € [300,400] (N € [600,800]) for s = 0.1 and 6 = 0.0625 (# = 0.5). For rs = 0.3 and 6 = 0.0625 particle
numbers were chosen between N € [80,100] and N € [120,150]. As it is unclear how to weight the single fits,
the final result is simply taken to be the average between the minimal and the maximal extrapolated value
with their difference as uncertainty. This is shown in Fig. S1. As for all fits in this work, data points have
been weighted relative to their error bar.

Tab. 3 shows the resulting finite-size corrections for N = 33 particles, denoted by FSC (b) in the main text.
These differ from the analytic formulas Eq. (S1) and Eq. (S2), denoted by FSC (a), by more than 2.3 Ry in
the worst case of # = 0.5, highlighting the importance of improved corrections at high densities and finite
temperatures.

2 Green functions results for the exchange-correlation energy of the
spin-polarized electron gas in Montroll-Ward and ¢* approximation

To describe the spin-polarized electron gas in semi-analytical form, we employ the quantum statistical method
of thermodynamic Green functions [5, 6]. Its advantage is the ability to describe systems in the thermodynamic
limit with arbitrary temperatures including the correct T'=0 physics, the transition to Boltzmann statistics,
and the correct high temperature (Debye-Hiickel) law. Using this technique, a perturbation expansion in the
interaction strength can be established [6, 7]. Including terms up to the second order, one obtains

Uee(T,ae) = UNT, ap) + U (T, 00) + UMY(T, ) + U™ (T, o) . (S3)

Here, ae = pe/kpT is the activity with the chemical potential p., the temperature 7', and the Boltzmann
constant k. The terms are the ideal gas law, the Hartree-Fock (HF) quantum exchange term, the direct
Montroll-Ward (MW) term, and quantum exchange contributions of the second order (e*n), respectively.
Further, chemical potential and density are related via n A% 5 = I /2(ce), where, App =+/27h? /m.kpT is the
electron thermal deBroglie wavelength, and I, is the Fermi integral of order v [6]. The inversion (transition)

from the grand canonical ensemble to the canonical ensemble has already taken place in the golden rule
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Figure S2: Green functions results for the exchange-correlation energy (times rs) of the polarized uniform
electron gas: The Montroll-Ward (MW) and e* approximation are compared to Hartree-Fock (HF)
and the fit of Karasiev et al. [9]. The exact result is unknown but expected to be inbetween
the e* and MW curves (cf. shaded area). Due to the weak coupling expansion, the e* and MW
approximations are restricted to small 75 values. The width of the shaded area can be used to
judge the validity range of the analytical approximations: we terminate the shaded area when the
width exceeds 1% of the mean value of E;,;. The points with the error bars denote the CPIMC
results for rs = 1, applying the finite size correction of Drummond et al. [1], Egs. (S1, S2). The
crosses denote the CPIMC extrapolation over NV, see text and Tab. 3.

approximation, and the resulting additional terms are given below together with the HF, MW and e* terms.
We summarize the results used in the main text.

1. The ideal internal energy is given by

3 kpT
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2. First order exchange contributions are contained in the HF term [6]
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where the 2nd term is a direct result of the inversion procedure or can be seen as resulting from the
temperature derivative of the free energy.

3. The Montroll-Ward contribution to the equation of state can be computed using the dielectric function of
the spin-polarized electron gas, e.(p,w) = 1 — Vee (p)ee(p, w), with the result [7]

W -1 hw Ime,(p,w)

j— 77 _
(T, ppe) = y dpp ‘P/ dw coth( kBT){arctan Ree.(p.) Ime.(p,w)| . (S6)
0

It is consistent with the expansion (S3) to use here the dielectric function in random phase approximation
(RPA).

4. The normal e* exchange term for the equation of state, accounting for exchange effects of second order,
can be written as an integral over Fermi functions, f,=[exp(8p®/2me—fue)+1]7", and Pauli blocking
factors, denoted f,=[1—f,] [7],
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where, v, is the bare electron-electron Coulomb potential.
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Figure S3: (Color online) CPIMC results for the unpolarized UEG for N = 14. a: low temperature total
energy for r; = 0.5, compared to the ground state data of Ref. [10], horizontal black line, grey area
denotes the error bars. b: Density dependence of the exchange-correlation energy for © = 0.5.

5. From the two results for the pressure, Eqgs. (S6, S7), the corresponding internal energy contributions follow
according to
UMT, ) = —pH(T, ) + Ta%plg(T, Qe), k=MW, eln. (S8)

The expansion (S3) accounts for direct correlations and dynamic screening, incorporates collective oscillations
(plasmons) as well as quantum diffraction and exchange in the electron system. This expression is valid for
weakly coupled electrons of arbitrary degeneracy and, in particular, includes the low and high temperature
limiting cases of Debye-Hiickel as well as Gell-Mann and Brueckner, respectively [7].

In the following, we use the notation “e* approximation” for the complete expression (S3), whereas “MW”
denotes the result (S3) without the last term. Numerical results for the e* approximation, for two temperatures,
are shown in Fig. 5 of the manuscript. Here we present additional data, extending the temperature range to
© = 1, and we also compare with the Hartree-Fock (HF) and Montroll-Ward (MW) approximations. Figure S2
shows the exchange-correlation energy (times ry) for four temperatures. In all cases, the high-density limit is a
horizontal line, approaching the Hartree-Fock approximation. For lower densities approaching rs = 1, MW and
et start to deviate from each other. Obviously, the series expansion contains sign alternating contributions so
we expect that the exact result will be enclosed between the MW- and e* approximations where e* yields an
upper bound to the exchange-correlation energy. Furthermore, we notice that the agreement between MW-
and e* approximations improves with decreasing temperature.

The data for the total energy in the various analytical approximations are presented in table 1.

3 First CPIMC simulation results for the unpolarized electron gas

For the ideal Fermi gas, Np = 925 basis function were used. For all other cases, the calculations were performed
using N = 2109 basis functions. The results for unpolarized electrons with N = 14 are shown in Figure S3
and in Table 4. No twist averaging and finite size extrapolation has been performed. The table also contains
thermodynamic Green functions results for the macroscopic unpolarized UEG with the same approximations
as explained above.



Table 1: Left part: CPIMC energies per particle for /N = 33 polarized electrons: ideal energy, Uy, total energy, Eiot, kinetic energy, Eiin, and potential energy, Epor.
Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy Uy (S4), Hartree-Fock (HF), Eq. (S5),
Montroll-Ward (MW), Eqgs. (S6, S8) and e* approximation (e4), Egs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 33) Analytical approximations
0 s Ug Elot FExin Epot Uy HF MW ed
0.0625 0.01 35458.07(4) 35336.30(22) 35457.65(22) —121.3612(4) 35640.21 35523.06 35523.06 35523.09
0.02 8864.517(9) 8803.59(4) 8864.32(4) —60.727 38(11) 8909.727 8851.156 8851.136  8851.168
0.05 1418.3227(15) 1393.918(9) 1418.264(9) —24.346 28(4) 1425.608  1402.179  1402.082 1402.114
0.10 354.5807(4) 342.358(5) 354.575(5) —12.21761(9) 356.4021  344.6876  344.5623  344.5928
0.20 88.64517(9) 82.5102(15) 88.6609(14) —6.150 73(5) 89.10054  83.2433 83.12884  83.16094
0.30 39.39785(4) 35.2933(8) 39.4197(8) —4.126 41(5) 39.60023 35.69541 35.58607 35.61742
0.40 22.161292(23) 19.0740(5) 22.1871(5) —3.11304(5) 22.27513 19.34651 19.24105 19.27265
0.60 9.849463(10)  7.7787(14) 9.8776(11) —2.09726(19) 9.900058 7.947647 7.848245 7.880411
0.80 5.540323(6) 3.9779(22) 5.5693(32) —1.590(4) 5.568 787 4.104478 4.00963  4.040199
1.00 3.545807(4) 2.2898(15) 3.5745(34) —1.2835(34) 3.564021 2.39257  2.301711 2.332256
0.1250 0.01 37217.14(6) 37092.91(30) 37212.95(30) —120.0438(4) 37275.81 37155.89 37155.87 37155.91
0.02 9304.284(16) 9242.12(6) 9302.19(6) —60.07562(22) 0318.611  9258.653 9258.612  9258.648
0.05 1488.6854(25) 1463.827(11) 1487.920(11) —24.09291(7) 1491.032  1467.049  1466.96 1466.995
0.10 372.1714(6) 359.715(4) 371.812(4) —12.096 87(11) 372.7581 360.7661 360.6584  360.6927
0.20 93.04284(16)  86.8060(16) 92.9013(15) —6.09527(6) 93.18954 87.19355 87.09877 87.13498
0.30 41.35237(7) 37.1833(7) 41.2755(7) —4.092 22(6) 41.41757 37.42025 37.33113 37.36692
0.40 23.26071(4) 20.1268(6) 23.2159(6) —3.08907(7) 23.29738 20.29939 20.21365 20.24808
0.60 10.338093(18) 8.2390(12) 10.3238(16) —2.0836(5) 10.35439 8.355732 8.273912 8.309463
0.80 5.815177(10)  4.2334(29) 5.8139(19) —1.582(8) 5.824351 4.325353 4.246401 4.281027
1.00 3.721714(6) 2.450(4) 3.729(5) —1.280(9) 3.727581 2.528384 2.452161 2.487229
0.2500 0.01 43133.28(8) 43005.3(5) 43119.7(5) —114.3657(9) 43073.15 42951.16 42950.94 42951
0.02 10783.320(19) 10719.93(11) 10777.18(11) —57.25792(34) 10767.89 10706.89 10706.58 10706.64
0.05 1725.3312(30) 1699.891(18) 1722.883(18) —22.99232(14) 1722.925 1698.526  1698.238  1698.301
0.10 431.3328(8) 418.612(7) 430.178(7) —11.566 46(15) 430.7315 418.5319 418.2997 418.3626
0.20 107.83320(19) 101.4488(15) 107.2978(15) —5.84905(8) 107.6829 101.5831 101.417 101.4799
0.30 47.92587(8) 43.6591(8) 47.5981(8) —3.93897(7) 47.85903 43.7925 43.64836  43.71111
0.40 26.95830(5) 23.7508(5 7) 26.92071 23.87081 23.74275 23.80554

) 26.7321(5)  —2.98132(

0.60 11.981467(21) 9.8327(12)  11.8538(14)  —2.0199(7) 11.96476  9.931492 9.821115 9.884106
0.80 6.739575(12)  5.1215(21)  6.662(5) —1.542(10) 6.730183 5.205231 5.106167 5.169 354
1.00 4.313328(8)  3.014(4) 4.262(7) —1.249(11) 4307315 3.08735  2.995452 3.058339




Table 1: (continued). Left part: CPIMC energies per particle for N = 33 polarized electrons: ideal energy, Uy, total energy, Fiot, kinetic energy, Fin, and potential
energy, E,o. Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy Uy (S4), Hartree-Fock (HF),
Eq. (S5), Montroll-Ward (MW), Eqs. (S6, S8) and e* approximation (e4), Eqs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 33) Analytical approximations
0 s Ug Elot FExin Epot Uy HF MW ed
0.5000 0.01 59504.77(16) 59 380.6(8) 59483.0(8) —102.3978(9) 59732.07 59622.44 59621.3  59621.45
0.02 14876.19(4) 14814.74(18) 14 866.03(17) —51.2963(6) 1493247 14877.66 14876.23 14876.38
0.05 2380.191(6) 2355.402(25) 2376.036(25) —20.634 13(16) 2389.282  2367.357 2366.254  2366.406
0.10  595.0477(16) 582.650(14) 593.058(14) —10.408 43(26) 597.3207  586.358 585.5635  585.7148
0.20 148.7619(4) 142.5160(35)  147.8068(35) —5.29079(14) 149.3301 143.8488 143.3036  143.4549

0.30 66.11641(18)  61.9353(14)  65.5152(14)  —3.57992(12) 66.36894 62.71472 62.27754 62.4288
040 37.19048(10)  34.0378(12)  36.7589(12)  —2.72107(9) 37.33253 34.59187 34.21835 34.369 54
0.60 16.52910(5)  14.4093(21)  16.2673(14)  —1.8577(8) 16.59224 14.76513 14.46616 14.6174
0.80 9.297620(25)  7.6943(26)  9.1196(30)  —1.424(4) 9.333143 7.962809 7.708448 7.8597
1.00 5.950477(16)  4.660(4) 5.823(6) —1.162(6) 5973207 4.876941 4.652623 4.803846
1.0000 0.01 98930.9(15)  98821.7(26)  98908.8(26)  —87.0477(13) 99202.77 99124.46 99122.08 99122.22
0.02 24732.7(4) 24678.7(8)  24722.3(8)  —43.6217(6) 24799.78 24760.63 24757.84 24757.98
0.05 3957.24(6) 3935.63(13)  3953.20(13)  —17.56521(30)  3968.11  3952.448 3950.353  3950.488
0.10 989.309(15)  978.392(29)  987.269(29)  —8.87669(14) 992.0277 984.1968 982.7109  982.8453
0.20 247.327(4) 241.809(7)  246.337(7)  —4.52797(6) 248.0069 244.0914  243.0704  243.2047
0.30 109.9232(17)  106.2045(26)  109.2790(26)  —3.07450(5) 110.2253  107.6149  106.7979  106.9326
0.40 61.8318(9) 59.0190(15)  61.3643(15)  —2.345234(31)  62.00172 60.04398 59.34761 59.48175
0.60 27.4808(4) 25.5776(6)  27.1891(6)  —1.611536(25)  27.55632 26.25116 25.69737 25.83341
0.80 15.45795(23)  14.0102(7)  15.2531(8)  —1.2429(13) 1550045 14.52158 14.05182 14.18654
1.00  9.89309(15)  8.7214(8) 9.7379(8) —1.01620(22) 9.920273 9.137178 8.725332 8.860601




Table 2: Left part: CPIMC energies per particle for N = 33 polarized electrons: total energy, E}., kinetic
energy, Fiin, and potential energy, Eyo¢. Right part: total ideal energy per particle of the macroscopic

UEG Uy, Eq. (S4). Energies in units of Ryd.

CPIMC (N = 33) Analytical
0 Ts Etot Ekin Epot UO
2 0.01 183285(5) 183 359(5) —74.0447(18) 183 606
0.02 45798.6(13) 45835.7(13)  —37.1009(8) 45901.49
0.05 7317.02(21) 7331.95(21) —14.93182(29) 7344.238
0.10 1824.76(5) 1832.30(5) —7.54091(15) 1836.06
0.20 453.875(11) 457.718(11) —3.84304(7) 459.0149
0.30 200.673(5) 203.281(5) —2.60821(5) 204.0066
0.40 112.2688(29) 114.2583(29) —1.98945(4) 114.7537
0.60 49.3465(13) 50.7147(13) —1.368 156(27) 51.001 66
0.80 27.4380(7)  28.4931(7)  —1.055121(21) 28.688 43
1.00 17.3488(4)  18.2145(4)  —0.865710(24) 18.3606
2.00  4.0557(7) 4.5340(4) —0.4779(4) 4.590149
3.00 1.662(9) 2.0104(33) —0.353(15) 2.040 066
4 0.01 356381(29) 356 446(29) —65.4691(22) 356 620.9
0.02 89058(6) 89091(6) —32.7831(12) 89155.23
0.05 14242.9(11) 14256.1(11) —13.1747(5) 14.264.84
0.10 3556.76(24) 3563.40(24) —6.63801(24) 3566.209
0.20  887.28(5) 890.65(5) —3.36782(10) 891.5523
0.30 393.479(21) 395.756(21) —2.27709(7) 396.2455
0.40  220.847(10) 222.578(10) —1.73112(5) 222.8881
0.60 97.685(5) 98.869(5) —1.184028(28) 99.061 37
0.80 54.6867(25)  55.5962(25)  —0.909488(22) 55.722 02
1.00 34.8168(22) 35.5607(22) —0.743913(29) 35.66209
2.00 8.4690(4) 8.8769(4) —0.407964(16) 8.915523
400 1.9826(9) 2.2149(6) —0.2318(6) 2.228 881
8 1.00 69.840(33)  70.501(33)  —0.66083(11) 70.572 06

Table 3: Total energies per particle for N = 33 polarized electrons in twist-averaged boundary conditions,
extrapolated results for the corresponding macroscopic system, analytic FSC (a) from Eqs. (S1, S2),
FSC (b) obtained from CPIMC extrapolation, and analytic approximations, see Eqs. (S6, S8) and
Egs. (S7, S8). Energies per particle in units of Ryd.

0 Ts Etot (N = 33) Etot (N — OO) FSC (a) FSC (b) MW 64
0.0625 0.1 344.354(28) 344.61(7) 0.868265 0.26(8) 344.5623  344.5928
0.3 35.5033(28) 35.631(26) 0.231478 0.128(26) 35.58607 35.61742
0.5 0.1 582.39(7) 585.630(16) 0.868265 3.24(7) 585.5635  585.7148




Table 4: Left part: CPIMC energies per particle for IV = 14 unpolarized electrons: ideal energy, Uy, total energy, Eiq, kinetic energy, Fiin, and potential energy, Fpot.
Right part: total energy per particle of the macroscopic UEG, for different analytical approximations: ideal energy Uy (S4), Hartree-Fock (HF), Eq. (S5),
Montroll-Ward (MW), Egs. (S6, S8) and e* approximation (e4), Eqgs. (S7, S8). Energies in units of Ryd.

CPIMC (N = 14) Analytical approximations
0 Ts Uy Fiot FEiin Eloot Uy HF MW ed
0.5 0.01 37754.74(15) 37649.45(16) 37747.23(16) —97.779(4) 37569.14 37482.26 37480.82 37480.97
0.02 9438.68(4) 9386.07(14) 9435.18(14) —49.1027(7) 0391.883  9348.443  9346.659  9346.81
0.05 1510.189(6) 1489.029(26)  1508.803(26) —19.77446(29) 1502.658  1485.283  1483.893  1484.044
0.10 377.5473(15)  366.905(5) 376.900(5) —9.99501(13) 375.6689  366.9809  366.013 366.1639

0.20 94.3868(4)  89.0174(13)  94.1160(13)  —5.098 68(8) 93.91707 89.57311 88.91397 89.065 38
0.30 41.94971(17) 38.3371(6)  41.7986(6)  —3.46152(6) 41.74107 38.84509 38.31985 38.4714

040 23.59671(10) 20.86606(31) 23.50555(31) —2.63948(4) 23.4793  21.30732 20.86143 21.01351
0.50 15.10189(6)  12.90026(18) 15.04419(17) —2.14393(5) 15.02679 13.2892  12.80686 13.04851
0.60 10.48743(4) 8.63924(33)  10.45121(26) —1.81182(16) 10.43526 8.98727  8.633526  8.790 687
0.80 5.899177(24)  4.4947(4) 5.88789(29)  —1.39305(28) 5860834 4.783843 4.484474 4.636478
1.00  3.775474(16) 2.6387(4) 3.7782(15)  —1.1396(17) 3756692 2.8879  2.62194  2.77452
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