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The uniform electron gas at finite temperature is of key relevance for many applications in dense
plasmas, warm dense matter, laser excited solids, and much more. Accurate thermodynamic data for the
uniform electron gas are an essential ingredient for many-body theories, in particular, density-functional
theory. Recently, first-principles restricted path integral Monte Carlo results became available, which,
however, had to be restricted to moderate degeneracy, i.e., low to moderate densities with rs ¼ r̄=aB ≳ 1.
Here we present novel first-principles configuration path integral Monte Carlo results for electrons for
rs ≤ 4. We also present quantum statistical data within the e4 approximation that are in good agreement
with the simulations at small to moderate rs.
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Thermodynamic properties of quantum degenerate elec-
trons are vital for the description of matter at high densities
[1–3], such as dense plasmas in compact stars or planet
cores [4–6], as well as in laser fusion experiments at NIF
[7–9], Rochester [10], or Sandia [11,12]. Additionally, the
electron component is of crucial importance for under-
standing the properties of atoms, molecules, and existing
and novel materials. The most successful approach has
been density-functional theory (DFT) combined with an
approximation for the exchange-correlation potential. Its
success is based on the availability of accurate zero
temperature data for the uniform eledtron gas (UEG),
which is obtained from analytically known limiting cases
combined with first-principles quantum Monte Carlo
(QMC) data [13].
In recent years more and more applications have emerged

where the electrons are highly excited, e.g., by compression
of the material or by electromagnetic radiation. This has led
to an urgent need for accurate thermodynamic data of the
UEG at finite temperature. One known limiting case is the
highly degenerate ideal Fermi gas (IFG), and perturbation
theory results around the IFG, startingwith theHartree-Fock
and the first two correlation corrections (Montroll-Ward and
e4 approximation) [14–19], have long been known. They
break down when the Coulomb interaction energy among
the electrons becomes comparable to their kinetic energy,
requiring computer simulations such as path integral
Monte Carlo (PIMC) simulations [20]. While restricted
PIMC (RPIMC) results for dense multicomponent quantum
plasmas [21,22], as well as direct fermionic PIMC (DPIMC)
results [23–26], have been available for 15 years, only
recently finite-temperature RPIMC results for theUEGhave
been obtained [27]. It is well known that fermionic PIMC
simulations in continuous space are hampered by the
fermion sign problem (FSP), which is known to be NP
hard [28]. Thismeans, with increasing quantum degeneracy,
i.e., increasing parameter χ ¼ nλ3DB, which is the product

of density and thermal de Broglie wavelength cubed
(λ2DB ¼ h2½2πmkBT�−1), the simulations suffer an exponen-
tial loss of accuracy. The RPIMC method formally avoids
the FSP by an additional assumption on the nodes of the
density matrix; however, it also cannot access high densities
[29], rs < 1 (rs ¼ r̄=aB, where r̄ is the mean interparticle
distance,n−1 ¼ 4πr̄3=3, andaB is theBohr radius).Also, the
quality of the simulations around rs ¼ 1, at low temper-
atures Θ ¼ kBT=EF ≤ 1 (EF is the Fermi energy) is
unknown. However, this leaves out the high-density range
that is of high importance, e.g., for deuterium-tritium
implosions at NIF where mass densities of 400 g cm−3

were reported [9], corresponding to rs ≈ 0.24; see Fig. 1.

FIG. 1 (color online). Density-temperature plain in the warm
dense matter range. Typical inertial confinement fusion (ICF)
parameters [8]. Quantum (classical) behavior dominates below
(above) the line Θ ¼ 1. Γ ¼ e2=r̄kBT is the classical coupling
parameter. Red dots, available finite-temperature RPIMC [27]
andDPIMC[30] data for theUEG; blue dots, ground state data of
Ref. [31]; green crosses, CPIMC and analytical results of
this work.
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The authors of Ref. [27] also performed DPIMC sim-
ulations that confirmed that, for Θ < 0.5 and rs ≲ 4, these
simulations are practically not possible. We also mention
independent recent DPIMC simulations [30] that are over-
all in good agreement with the data of Ref. [27] but indicate
large deviations for the lowest temperatures and rs ≲ 2. To
bridge the gap between the known analytical result for the
IFG (rs ¼ 0) and previous simulations (rs ≳ 1) and to
provide comprehensive input data for finite-temperature
DFT, several fits have been proposed [32,33]. However,
they crucially depend on the quality of the underlying
simulation data.
In this Letter we present the first ab initio simulation

results that avoid a simplified treatment of fermionic
exchange for rs ≲ 1 and finite temperatures Θ≲ 1.0. We
apply the recently developed fermionic configuration path
integral Monte Carlo (CPIMC) approach to the UEG and
demonstrate its capabilities for 33 spin-polarized electrons
in a cubic box of side length L (as was studied in
Refs. [27,34]). Our simulations have no sign problem
for 0 ≤ rs ≤ 0.4 and are accurate up to rs ¼ 1;…; 4,
depending on temperature.
CPIMC approach for the UEG.—The Hamiltonian in

second quantization with respect to plane waves h~rj~ki ¼
ð1=L3=2Þei~k·~r, with ~k ¼ ð2π=LÞ ~m, ~m ∈ Z3, is (Rydberg
units)

Ĥ ¼
X

i

~k2i â
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i âi þ 2
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ijklâ

†
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with w−
ijkl ¼ wijkl − wijlk, wijkl ¼ ð4πe2=L3~k2ikÞδ~kiþ~kj;~kkþ~kl

,

where the first (second) term describes the kinetic (inter-

action) energy and ~kik ¼ ~ki − ~kk. The Madelung energy EM
accounts for the self-interaction of the Ewald summation in
periodic boundary conditions [35] for which we found
EM≈−2.837297ð3=4πÞ1=3N2=3r−1s . The operator â†i (âi)

creates (annihilates) a particle in the orbital j~kii. In the

interaction term, the ~ki ¼ ~kk and ~kj ¼ ~kl components cancel
with the interactions with the positive background. While

the complete (infinite) set of planewaves h~rj~kii forms a basis
in the single-particle Hilbert space, for simulations it has to
be truncated at a number NB of orbitals.
In conventional RPIMC and DPIMC simulations, the

system (1) is treated in the coordinate representation
allowing for a numerically exact description in the classical
strongly coupled limit and for weak degeneracy. The
CPIMC method [36], in contrast, is constructed in a way
that it allows for exact simulations in the opposite limit of
the ideal Fermi gas, rs ¼ 0 [37], and at weak to moderate
coupling and strong to moderate degeneracy. This is
achieved by representing the N-electron state in second
quantization [38] as a superposition of Slater determinants,
jfngi ¼ jn1; n2;…i, with the fermionic occupation

numbers, ni ¼ 0; 1, of the orbitals j~kii. In this way,
fermionic antisymmetry is “built in” exactly. The partition
function Z and quantum-statistical expectation values, such
as the internal energy U, are straightforwardly computed in
Fock space as

ZðΘ; rs;NÞ ¼ Trjfngie−βĤ; ð2Þ
UðΘ; rs;NÞ ¼ hĤi ¼ Z−1TrjfngiĤe−βĤ: ð3Þ

The trace is evaluated using the concept of the continuous
time PIMC method, which has been successfully applied
to bosonic lattice models [40–43]. We have generalized
this concept to continuous fermionic systems with long-
range interactions [36,44]. The main idea is to split the
Hamiltonian into a diagonal D̂ and an off-diagonal part Ŷ
and to sum up the entire perturbation series of the density
operator e−βĤ in terms of Ŷ. The final result, for the case of
the UEG, is [45]
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where si ¼ ðp; q; r; sÞ and p < q; r < s denotes a quad-
ruple of pairwise different orbital indices.
Thus, the partition function is represented as a sum over

β-periodic “paths” in Fock space, in imaginary time, which
we illustrate in Fig. 2: For an ideal Fermi system a path is
characterized by a single N-particle Slater determinant
jfngi. For a correlated Fermi system the original

FIG. 2. Typical closed path in Slater determinant (Fock) space.

The state with three occupied orbitals j~k0i; j~k1i; j~k3i undergoes a
two-particle excitation ðs1; τ1Þ that replaces the occupied orbitals

j~k0i; j~k3i by j~k2i; j~k5i. Two further excitations occur at τ2 and τ3.
The states at the “imaginary times” τ ¼ 0 and τ ¼ β coincide. All
possible paths contribute to the partition function Z, Eq. (4).
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determinant jfngi ¼ jfnð0Þgi (straight horizontal lines in
Fig. 2) is interrupted by excitations of the type ðs; τÞ: at
time τ, a pair of occupied orbitals j~kri; j~ksi is replaced by

the previously empty pair j~kpi; j~kqi. Paths differ by the
number K of excitations (“kinks”), their times τ1;…; τk on
the τ interval ½0; β�, and the involved quadruples of orbitals
s1;…; sK. The partition function clearly reflects this
summation over the different types of kinks, integration
over the kink times, and summation over K [cf. first line of
Eq. (4)]. The weight of each path [terms in the second line
of Eq. (4)] is determined by the Fock state matrix elements
of the Hamiltonian, where diagonal elements DfnðiÞg,
Eq. (5), arise from the kinetic energy and the mean-field
part of the Coulomb interaction, whereas off-diagonal
elements, ð−1Þαsi w−

si , are due to the remaining Coulomb
interaction (correlation part) [46]. Expression (4) is exact
for NB → ∞, allowing for ab initio thermodynamic sim-
ulations of the UEG.
Thermodynamic observables, such as the internal energy

(3) can be cast in a form similar to Eq. (4) [45] that can be
efficiently evaluated using the Metropolis Monte Carlo
algorithm. To this end, we developed an ergodic algorithm
that generates all possible paths in Slater determinant space.
For the UEG, a total of 6 different steps are required,
including addition and removal of a single kink and pairs of
kinks, modification of an existing kink, and excitation of
single orbitals; for details, see Ref. [45].
Numerical results.—Our CPIMC algorithm was exten-

sively tested for Coulomb interacting fermions in a 1D

harmonic trap [36]. A first test of the present algorithm for
the UEG for N ¼ 4 particles showed excellent agreement
with exact diagonalization data [45] and was exactly
reproduced by independent density matrix QMC calcula-
tions [47]. Here, we extend these simulations to N ¼ 33
particles. First, we check the convergence with respect to
the basis size NB and show a typical case in Fig. 3(a) for
rs ¼ 0.4. The scaling with respect to x ¼ 1=N−5=3

B [48]
allows for a reliable extrapolation to x → 0 and to set
NB to 2109 for all simulations, giving a relative basis
incompleteness error not exceeding the statistical error (1σ
standard deviation).
With these parameters, we have performed extensive

ab initio CPIMC simulations (the only approximation
being the choice of NB) for the ideal and weakly coupled
UEG, up to rs ∼ 0.4. For larger rs, we observe a rapid
decrease of the average sign, in analogy to the harmonic
oscillator case [36]. This gives rise to convergence prob-
lems of the MC algorithm in case a path with many kinks is
attempted. We, therefore, introduce an artificial kink
potential in Eq. (4), VκðKÞ¼½e−ðκþ0.5−KÞþ1�−1, for calcu-
lations with rs > 0.4, yielding the correct partition function
in the limit κ → ∞. Performing simulations for different κ,
we generally observe a rapid convergence of the total energy
allowing for an extrapolation to 1=κ → 0. This is demon-
strated for a particularly difficult case in Fig. 3(b). The
asymptotic value and the error estimate are computed from
the two extreme cases of a horizontal and linear extrapo-
lation. With this procedure the simulations could be
extended to rs ¼ 1, with the total error not exceeding 0.15%.
Our results for the exchange-correlation energy per

electron Exc are summarized in Fig. 4. The data cover
the whole range 0 ≤ rs ≤ 1 and include the ideal Fermi gas
where Excrs → const (Hartree-Fock limit). A detailed table

(a)

(b)

FIG. 3 (color online). Convergence of the CPIMC simulations.
(a) Convergence with the single-particle basis size NB for
rs ¼ 0.4. The expected scaling with N5=3

B [48] is well reproduced.
(b) Convergence with respect to the kink potential parameter κ
(see text) and extrapolation to 1=κ → 0, corresponding to
K → ∞, for rs ¼ 1.0 and θ ¼ 0.0625. The asymptotic value is
enclosed between the red line and the blue line.

FIG. 4 (color online). Exchange-correlation energy (times rs)
for 33 spin-polarized electrons and four temperatures. Compari-
son of our CPIMC results (full symbols with error bars [53]) and
RPIMC results of Ref. [27] (open symbols). The dotted line is an
interpolation between the CPIMC and RPIMC data for
Θ ¼ 0.0625. Also shown is the data point of DuBois et al.
[34] for Θ ¼ 0.125.
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of the various energy contributions as well as additional
data for larger values of Θ and rs are presented in the
Supplemental Material [49]. A nontrivial observation is
the nonmonotonic temperature dependence (cf. crossing of
the red and pink curves) that is in agreement with RPIMC
calculations and the macroscopic fit of Ref. [32].
Interestingly, all curves seem to cross over smoothly into
the RPIMC data [27,50], for rs ≳ 4, as indicated by the
dotted line. There is an obvious mismatch in the range
rs ∼ 1–4. Since our curves are accurate within the given
error, this discrepancy is expected to be due to the
(unknown) systematic error involved in the RPIMCmethod
[51]. Also, the energy obtained by DuBois et al. [34], for
rs ¼ 1 and Θ ¼ 0.125, is found to be too low.
Macroscopic results.—Predictions for a macroscopic

system, based on data for just 33 particles, will inevitably
lead to a loss of accuracy. Brown et al. published finite
size corrections (FSC) in the Supplemental Material of
Ref. [27], whereas a ground state formula [FSC(a)] has
been presented in Ref. [54]. We tested both FSCs, after
incorporating a twist-averaging procedure in our simula-
tions [55]. For the lowest temperature, Θ ¼ 0.0625 and
rs ¼ 1, FSC(a) leads to reasonable agreement with ana-
lytical approximations (see below), and smoothly connects
to the RPIMC data, for rs ≳ 5, cf. Fig. 5. For smaller rs and
higher Θ, the formula is not applicable. On the other hand,
the FSC of Brown produces energies that are systematically
too high [56]. Because of the lack of applicable high-
density FSC, we performed additional CPIMC simulations
for particle numbers up to Nmax ¼ 800, allowing for an
extrapolation to the macroscopic limit, for rs ¼ 0.1 and
Θ ¼ 0.0625;Θ ¼ 0.5 [49]. For Θ ¼ 0.0625, an additional
point at rs ¼ 0.3 could be obtained [57], cf. the crosses in
Fig. 5. These accurate data will be a suitable starting point

for the construction of FSC formulas that are applicable at
high densities.
To obtain independent analytical results for the macro-

scopic UEG, we now compute Exc including, in addition
to Hartree-Fock [15], the two second order diagrams
(Montroll Ward and e4) [49]. The two results (cf. Fig. 5)
converge for low rs, eventually reaching the Hartree-Fock
asymptote (horizontal line), whereas for rs ≳ 0.1 they start
to deviate from one another, and we expect the exact result
to be enclosed between the two [49]. Reliable predictions
are possible up to rs ∼ 0.8, for Θ ¼ 0.0625, and rs ∼ 0.55,
for Θ ¼ 0.5 [49]. In Fig. 5 we also include the fit of
Ref. [32] that shows, overall, a very good behavior, but is
too low at rs → 0, with the deviations growing with Θ [49].
To summarize, we have presented first-principles con-

figuration PIMC results for the UEG at finite temperature
that have no sign problem at high to moderate degeneracy,
rs ≲ 0.4, and allow for reliable predictions up to rs ¼ 4.
This makes CPIMC simulations a perfect complementary
approach to direct fermionic PIMC and to RPIMC simu-
lations that cannot access high densities, and our results
indicate that the previous RPIMC data are not reliable for
rs ≲ 4. The present results will be important for dense
quantum plasmas at finite temperatures that are relevant for
warm dense matter, in general, and for inertial confinement
fusion (ICF), in particular. Since here the electrons are
typically unpolarized, we tested our CPIMC approach for
this case. Although the sign problem is more severe than for
the polarized situation, the CPIMC approach is well capable
of producing very accurate ab initio finite-temperature
results that smoothly connect to available T ¼ 0 data [49].
Finally, the obtained accurate exchange-correlation

energies provide benchmarks for finite temperature DFT,
RPIMC [27], novel independent QMC simulations
[34,48,52] and analytical fits [32]. Even though the fermion
sign problem is not removed, the proposed combination of
the CPIMC approach with the DPIMC approach (or the
RPIMC approach) provides, for the UEG, a practical way
to avoid it.

We acknowledge stimulating discussions with T.
Dornheim, J. W. Dufty, V. Filinov, V. V. Karasiev, and S.
Trickey, and we acknowledge E. Brown for providing
information on the FSC(a) used in Ref. [27]. This work is
supported by the Deutsche Forschungsgemeinschaft via
Grant No. BO1366/10 and by Grant No. SHP006 for
supercomputing time at the HLRN.

[1] L. B. Fletcher et al., Observations of Continuum Depression
in Warm Dense Matter with X-Ray Thomson Scattering,
Phys. Rev. Lett. 112, 145004 (2014).

[2] D. Kraus et al., Probing the Complex Ion Structure in Liquid
Carbon at 100 GPa, Phys. Rev. Lett. 111, 255501 (2013).

[3] S. Regan et al., Inelastic X-Ray Scattering from Shocked
Liquid Deuterium, Phys. Rev. Lett. 109, 265003 (2012).

FIG. 5 (color online). Exchange correlation energy of the
macroscopic polarized UEG at Θ ¼ 0.0625 (blue) and Θ ¼
0.5 (red). Open symbols, RPIMC results [27]. CPIMC (a), our
results with FSC from Ref. [54]. CPIMC (b), our data (3 points)
with numerical extrapolation N → ∞ [57]. Dashes, analytical e4

approximation [49]; dots, fit of Ref. [32]. For better visibility, the
curves for Θ ¼ 0.5 are up-shifted by 0.2.

PRL 115, 130402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

130402-4

http://dx.doi.org/10.1103/PhysRevLett.112.145004
http://dx.doi.org/10.1103/PhysRevLett.111.255501
http://dx.doi.org/10.1103/PhysRevLett.109.265003


[4] M. D. Knudson, M. P. Desjarlais, R. W. Lemke, T. R.
Mattsson, M. French, N. Nettelmann, and R. Redmer,
Probing the Interiors of the Ice Giants: Shock Compression
of Water to 700 GPa and 3.8 g=cm3, Phys. Rev. Lett. 108,
091102 (2012).

[5] B. Militzer, W. B. Hubbard, J. Vorberger, I. Tamblyn, and
S. A. Bonev, A massive core in Jupiter predicted from first-
principles simulations, Astrophys. J., 688, L45 (2008).

[6] N. Nettelmann, A. Becker, B. Holst, and R. Redmer, Jupiter
models with improved ab initio hydrogen equation of state
(H-REOS.2), Astrophys. J. 750, 52 (2012).

[7] J. D. Lindl, P. Amendt, R. L. Berger, S. Gail Glendinning,
S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen,
and L. J. Suter, The physics basis for ignition using indirect-
drive targets on the National Ignition Facility, Phys. Plasmas
11, 339 (2004).

[8] S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky,
First-principles equation-of-state table of deuterium for
inertial confinement fusion applications, Phys. Rev. B 84,
224109 (2011).

[9] O. Hurricane et al., Fuel gain exceeding unity in an inertially
confined fusion implosion, Nature (London) 506, 343
(2014).

[10] R. Nora et al., Gigabar Spherical Shock Generation on the
OMEGA Laser, Phys. Rev. Lett. 114, 045001 (2015).

[11] M. R. Gomez et al., Experimental Demonstration of
Fusion-Relevant Conditions in Magnetized Liner Inertial
Fusion, Phys. Rev. Lett. 113, 155003 (2014).

[12] P. F. Schmidt et al., Understanding Fuel Magnetization and
Mix Using Secondary Nuclear Reactions in Magneto-
Inertial Fusion, Phys. Rev. Lett. 113, 155004 (2014).

[13] D. M. Ceperley and B. J. Alder, Ground State of the
Electron Gas by a Stochastic Method, Phys. Rev. Lett.
45, 566 (1980).

[14] M. Gell-Mann and K. A. Brueckner, Correlation Energy of
an Electron Gas at High Density, Phys. Rev. 106, 364 (1957).

[15] H. E. DeWitt, Thermodynamic functions of a partially
degenerate fully ionized gas, J. Nucl. Energy C 2, 27 (1961).

[16] W. D. Kraeft and W. Stolzmann, Thermodynamic functions
of Coulomb systems, Physica (Amsterdam) 97A, 306
(1979).

[17] W. D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke,
Quantum Statistics of Charged Particle Systems (Akademie-
Verlag, Berlin, 1986).

[18] D. Kremp, M. Schlanges, and W. D. Kraeft, Quantum
Statistics of Nonideal Plasmas (Springer, New York, 2005).

[19] J. Vorberger, M. Schlanges, and W.-D. Kraeft, Equation of
state for weakly coupled quantum plasmas, Phys. Rev. E 69,
046407 (2004).

[20] D. M. Ceperley, Path integrals in the theory of condensed
helium, Rev. Mod. Phys. 67, 279 (1995).

[21] B. Militzer and R. Pollock, Variational density matrix
method for warm, condensed matter: Application to dense
hydrogen, Phys. Rev. E 61, 3470 (2000).

[22] B. Militzer, First Principles Calculations of Shock Com-
pressed Fluid Helium, Phys. Rev. Lett. 97, 175501 (2006).

[23] V. S. Filinov, M. Bonitz, and V. E. Fortov, High density
phenomena in hydrogen plasma, JETP Lett. 72, 245 (2000).

[24] V. S. Filinov, M. Bonitz, W. Ebeling, and V. E. Fortov,
Thermodynamics of hot dense H-plasmas: Path integral

Monte Carlo simulations and analytical approximations,
Plasma Phys. Controlled Fusion 43, 743 (2001).

[25] A. Filinov, V. Golubnychiy, M. Bonitz, W. Ebeling, and
J. W. Dufty, Temperature-dependent quantum pair potentials
and their application to dense partially ionized hydrogen
plasmas, Phys. Rev. E 70, 046411 (2004).

[26] M. Bonitz, V. S. Filinov, V. E. Fortov, P. R. Levashov, and
H. Fehske, Crystallization in Two-Component Coulomb
Systems, Phys. Rev. Lett. 95, 235006 (2005).

[27] E.W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceper-
ley, Path-Integral Monte Carlo Simulation of the Warm
Dense Homogeneous Electron Gas, Phys. Rev. Lett. 110,
146405 (2013).

[28] M. Troyer and U.-J. Wiese, Computational Complexity and
Fundamental Limitations to Fermionic Quantum
Monte Carlo Simulations, Phys. Rev. Lett. 94, 170201
(2005).

[29] While RPIMC simulations avoid the fermion sign problem,
they fail to reproduce the ideal Fermi gas limit, as was
shown by V. Filinov, Cluster expansion for ideal Fermi
systems in the ‘fixed-node approximation’, J. Phys. A 34,
1665 (2001); Analytical contradictions of the fixed-node
density matrix, High Temp. 52, 615 (2014).

[30] V. S. Filinov, M. Bonitz, Zh. Moldabekov, and V. E. Fortov,
Fermionic path integral Monte Carlo results for the uniform
electron gas at finite temperature, Phys. Rev. E 91, 033108
(2015).

[31] J. J. Shepherd, G. H. Booth, A. Grüneis, and A. Alavi, Full
configuration interaction perspective on the homogeneous
electron gas, Phys. Rev. B 85, 081103(R) (2012).

[32] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey,
Accurate Homogeneous Electron Gas Exchange-Correlation
Free Energy for Local Spin-Density Calculations, Phys.
Rev. Lett. 112, 076403 (2014) and Supplemental Material
therein.

[33] E.W. Brown, J. L. DuBois, M. Holzmann, and D.M.
Ceperley, Exchange-correlation energy for the three-
dimensional homogeneous electron gas at arbitrary temper-
ature, Phys. Rev. B 88, 081102(R) (2013); 88, 199901(E)
(2013).

[34] J. L. DuBois, B. J. Alder, and E.W. Brown, Overcoming
the fermion sign problem in homogeneous systems,
arXiv:1409.3262.

[35] L. M. Fraser and W.M. C. Foulkes, Finite-size effects
and Coulomb interactions in quantum Monte Carlo calcu-
lations for homogeneous systems with periodic boundary
conditions, Phys. Rev. B 53, 1814 (1996).

[36] T. Schoof, M. Bonitz, A. Filinov, D. Hochstuhl, and J. W.
Dufty, Configuration path integral Monte Carlo, Contrib.
Plasma Phys. 51, 687 (2011).

[37] In this Letter we restrict ourselves to the nonrelativistic
jellium model.

[38] This concept is also used in zero temperature full configu-
ration Monte Carlo simulations [31,39].

[39] J. J. Shepherd, G. H. Booth, and A. Alavi, Investigation of
the full configuration interaction quantum Monte Carlo
method using homogeneous electron gas models, J. Chem.
Phys. 136, 244101 (2012).

[40] N. V. Prokofev, B. V. Svistunov, and I. S. Tupitsyn, Exact
quantum Monte Carlo process for the statistics of discrete

PRL 115, 130402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

130402-5

http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1086/594364
http://dx.doi.org/10.1088/0004-637X/750/1/52
http://dx.doi.org/10.1063/1.1578638
http://dx.doi.org/10.1063/1.1578638
http://dx.doi.org/10.1103/PhysRevB.84.224109
http://dx.doi.org/10.1103/PhysRevB.84.224109
http://dx.doi.org/10.1038/nature13008
http://dx.doi.org/10.1038/nature13008
http://dx.doi.org/10.1103/PhysRevLett.114.045001
http://dx.doi.org/10.1103/PhysRevLett.113.155003
http://dx.doi.org/10.1103/PhysRevLett.113.155004
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1088/0368-3281/2/1/304
http://dx.doi.org/10.1016/0378-4371(79)90109-2
http://dx.doi.org/10.1016/0378-4371(79)90109-2
http://dx.doi.org/10.1103/PhysRevE.69.046407
http://dx.doi.org/10.1103/PhysRevE.69.046407
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1103/PhysRevE.61.3470
http://dx.doi.org/10.1103/PhysRevLett.97.175501
http://dx.doi.org/10.1134/1.1324020
http://dx.doi.org/10.1088/0741-3335/43/6/301
http://dx.doi.org/10.1103/PhysRevE.70.046411
http://dx.doi.org/10.1103/PhysRevLett.95.235006
http://dx.doi.org/10.1103/PhysRevLett.110.146405
http://dx.doi.org/10.1103/PhysRevLett.110.146405
http://dx.doi.org/10.1103/PhysRevLett.94.170201
http://dx.doi.org/10.1103/PhysRevLett.94.170201
http://dx.doi.org/10.1088/0305-4470/34/8/312
http://dx.doi.org/10.1088/0305-4470/34/8/312
http://dx.doi.org/10.1134/S0018151X14040105
http://dx.doi.org/10.1103/PhysRevE.91.033108
http://dx.doi.org/10.1103/PhysRevE.91.033108
http://dx.doi.org/10.1103/PhysRevB.85.081103
http://dx.doi.org/10.1103/PhysRevLett.112.076403
http://dx.doi.org/10.1103/PhysRevLett.112.076403
http://dx.doi.org/10.1103/PhysRevB.88.081102
http://dx.doi.org/10.1103/PhysRevB.88.199901
http://dx.doi.org/10.1103/PhysRevB.88.199901
http://arXiv.org/abs/1409.3262
http://dx.doi.org/10.1103/PhysRevB.53.1814
http://dx.doi.org/10.1002/ctpp.201100012
http://dx.doi.org/10.1002/ctpp.201100012
http://dx.doi.org/10.1063/1.4720076
http://dx.doi.org/10.1063/1.4720076


systems, Pisma Zh. Exp. Teor. Fiz. 64, 853 (1996) [JETP
Lett. 64, 911 (1996)].

[41] N. V. Prokofev, B. V. Svistunov, and I. S. Tupitsyn,
Exact, complete and universal continuous-time worldline
Monte Carlo approach to the statistics of discrete quantum
systems, J. Exp. Theor. Phys. 87, 310 (1998).

[42] K. Van Houcke, S. M. A. Rombouts, and L. Pollet, Quantum
Monte Carlo simulation in the canonical ensemble at finite
temperature, Phys. Rev. E 73, 056703 (2006).

[43] S. M. A. Rombouts, K. Van Houcke, and L. Pollet,
Loop Updates for Quantum Monte Carlo Simulations in
the Canonical Ensemble, Phys. Rev. Lett. 96, 180603
(2006).

[44] S. Groth, T. Schoof, and M. Bonitz, in Complex Plasmas:
Scientific Challenges and Technological Opportunities,
edited by M. Bonitz, K. Becker, J. Lopez, and H. Thomsen
(Springer, New York, 2014).

[45] T. Schoof, S. Groth, and M. Bonitz, Towards ab initio
thermodynamics of the electron gas at strong degeneracy,
Contrib. Plasma Phys. 55, 136 (2015).

[46] Because of momentum conservation, only two-particle
excitations si are possible (for the general case, see
Ref. [44]), and the restriction to closed paths requiresK ≠ 1.

[47] Reference [48] reports exact agreement with our data for
N ¼ 4.

[48] F. D. Malone, N. S. Blunt, J. J. Shepherd, D. K. K. Lee, J. S.
Spencer, and W.M. C. Foulkes, Interaction picture density
matrix quantum Monte Carlo, J. Chem. Phys. 143, 044116
(2015).

[49] SeeSupplementalMaterialathttp://link.aps.org/supplemental/
10.1103/PhysRevLett.115.130402 for comprehensive tables

of CPIMC data, details on finite-size corrections, and analytic
approximations.

[50] The RPIMC data for N ¼ 33 were obtained by applying, to
the total energy of Ref. [27], the finite size corrections given
in the Supplemental Material of Ref. [27] and subtracting
the energy of the corresponding ideal system.

[51] This is confirmed by novel independent permutation block-
ing PIMC [52] results for the UEG of T. Dornheim, T.
Schoof, S. Groth, A. Filinov, and M. Bonitz, http://arxiv.org/
abs/1508.03221.

[52] T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, Permu-
tation blocking path integral Monte Carlo: A highly efficient
approach to the simulation of strongly degenerate non-ideal
fermions, New J. Phys. 17, 073017 (2015).

[53] The fluctuations of Exc at small rs arise from the vanishing
of Exc, compared to the total energy, for rs → 0. The latter is
always well converged.

[54] N. D. Drummond, R. J. Needs, A. Sorouri, and W.M. C.
Foulkes, Finite-size errors in continuum quantum
Monte Carlo calculations, Phys. Rev. B 78, 125106
(2008).

[55] C. Lin, F. H. Zong, and D. M. Ceperley, Twist-averaged
boundary conditions in continuum quantum Monte Carlo
algorithms, Phys. Rev. E 64, 016702 (2001).

[56] Since the FSC of Brown et al. was applied without twist
averaging, we used our original data for N ¼ 33 for
comparison.

[57] For rs ¼ 0.3 the extrapolation to N ¼ 150 was achieved
with an additional approximation that includes only
even kink numbers. It is found to be accurate for low
temperatures.

PRL 115, 130402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

130402-6

http://dx.doi.org/10.1134/1.567243
http://dx.doi.org/10.1134/1.567243
http://dx.doi.org/10.1134/1.558661
http://dx.doi.org/10.1103/PhysRevE.73.056703
http://dx.doi.org/10.1103/PhysRevLett.96.180603
http://dx.doi.org/10.1103/PhysRevLett.96.180603
http://dx.doi.org/10.1002/ctpp.201400072
http://dx.doi.org/10.1063/1.4927434
http://dx.doi.org/10.1063/1.4927434
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.130402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.130402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.130402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.130402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.130402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.130402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.130402
http://arxiv.org/abs/1508.03221
http://arxiv.org/abs/1508.03221
http://arxiv.org/abs/1508.03221
http://arxiv.org/abs/1508.03221
http://dx.doi.org/10.1088/1367-2630/17/7/073017
http://dx.doi.org/10.1103/PhysRevB.78.125106
http://dx.doi.org/10.1103/PhysRevB.78.125106
http://dx.doi.org/10.1103/PhysRevE.64.016702

