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Effect of correlations on heat transport in a magnetized strongly coupled plasma
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In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the
field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are
observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much
less and even enhances the parallel transport. These surprising observations are explained by the competition of
kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle
molecular dynamics simulations of a one-component plasma.
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I. INTRODUCTION

Strongly coupled plasmas have become a focal point of
plasma research in recent years as several experimental setups,
such as dusty plasmas [1,2], trapped ions [3], and ultracold
plasmas [4], have become available to study this unusual state
of ionized matter in which the potential energy exceeds the
kinetic energy. Similar plasma conditions are thought to exist,
e.g., in white dwarf stars or in the outer layers of neutron
stars [5,6]. Often, these plasmas are subject to strong magnetic
fields, as is the case in neutron stars [7]. Here, a crucial issue
is the cooling process [8] that may be strongly influenced by
the ionic heat conductivity perpendicular to the field lines [9].
Another example are laser fusion experiments at NIF and
Omega where strong ionic coupling occurs during the early
compression stage in the cold fuel surrounding the hot spot,
and strong self-generated magnetic fields arising from the
extreme temperature gradients were observed [10]. Further, in
magnetized liner inertial fusion (MagLif) experiments at San-
dia [11], very strong magnetic fields are generated, and strong
ionic coupling may occur due to highly charged ions and liner
mix into the fuel [12]. Finally, the “quasimagnetization” in
rotating dusty plasmas represents an experimentally accessible
system in which particle-level resolution of strongly coupled,
strongly magnetized dust particles is possible [13–15].

For all these systems, the capability of a strongly coupled
plasma to conduct and transport or, conversely, to retain heat
is crucial. For many applications, such as inertial fusion, an
effective thermal insulation of the heated and compressed
region plays a key role for the success of the device. Thus,
there is a high need for reliable theoretical predictions for the
heat conductivity of plasmas that are both strongly coupled
and magnetized [16–26].

The interplay between strong particle interaction and a
strong magnetic field gives rise to a rich dynamics [16],
including complex wave spectra [17–19], generation of higher
harmonics [20,21], and long-lived metastable states [22]. The
diffusive particle transport has been analyzed in two and
three dimensions [23–25] and in binary plasmas [26] with
the conclusion that the self-diffusion coefficient is strongly
reduced by both the strong coupling and the magnetic field. The
viscosity of strongly coupled plasmas has been investigated
only for unmagnetized systems [27–29].

Heat transport is well understood in magnetized weakly
coupled plasmas since the pioneering work of Braginskii [30]
and was studied in strongly coupled unmagnetized systems,
e.g., in dusty plasma experiments [31–33], by kinetic the-
ory [34], and by computer simulations [35–40]. However, until
now a systematic study of heat transport in magnetized strongly
coupled plasmas has not been carried out [41]. It is the goal of
this work to fill this gap. Since at the moment a self-consistent
accurate treatment of all plasma components is not feasible,
we concentrate on a one-component plasma (OCP), which is a
well-established model for the heavy plasma component in the
presence of strong correlations in thermal equilibrium [43–46].
The light component (electrons) enters via the screening length
κ̃−1 of the ion-ion interaction potential:

φ(r) = Q2/r × exp (−κ̃r). (1)

The limitations of this Yukawa OCP (YOCP) model and
the validity of our results will be discussed below. For
the YOCP, it is possible to perform a comprehensive first
principles molecular dynamics (MD) analysis. This allows
us to show that the heat conductivity λ in strongly coupled
plasmas radically differs from that in weakly correlated high-
temperature plasmas [30,47]: (a) the reduction of λ⊥ (the
component perpendicular to B) with increasing magnetic-field
strength B is much slower and λ⊥ approaches a nonzero
asymptotic value, and (b) the parallel component λ‖ increases
with B instead of remaining constant. An explanation of the
physical mechanisms is presented.

II. THEORY AND SIMULATION APPROACH

In a magnetized system, the energy flux j is related to the
temperature gradient via the thermal conductivity tensor as

jμ = −λμν(∇T )ν, (2)

where the latter has three independent components (we assume
B ‖ êz):

λ =
⎛
⎝ λ⊥ λ× 0

−λ× λ⊥ 0
0 0 λ‖

⎞
⎠. (3)
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The components λ‖ and λ⊥ describe field-parallel and cross-
field heat transport, respectively, and converge to the scalar
heat conductivity λ = λ0 as B → 0. The off-diagonal term
λ× is the analog of the Hall effect (the so-called Righi-Leduc
effect [48]) and vanishes for B → 0.

A microscopic approach to compute λμν is provided by the
Irving-Kirkwood expression [46,49] for the heat flux,

j =
N∑

i=1

vi

[
1

2
m|vi |2 + 1

2

N∑
j �=i

φ(rij )

]

+ 1

2

N∑
i=1

N∑
j �=i

(rij · vi)Fij , (4)

which consists of kinetic, potential, and collision contributions
(first, second, and last term, respectively). The Green-Kubo
formula [50] then yields the heat conductivity tensor as

λμν = lim
τ→∞

1

V kBT 2

∫ τ

0
〈jμ(t)jν(0)〉dt, (5)

where the integral is over the heat flux autocorrelation function.
According to Eq. (4), each component of λμν is the sum of three
direct and three cross-correlation terms.

We compute λμν for a typical strongly coupled YOCP,
and apply a homogeneous magnetic field. The results below
are for the value κ = aκ̃ = 2, where a = [3/(4nπ )]1/3 is the
Wigner-Seitz radius, and are representative (results for other
κ values are shown in Appendix A). The system is completely
characterized by three dimensionless parameters:

� = Q2/(kBT a), (6)

κ = aκ̃, (7)

β = ωc/ωp ∝ B, (8)

i.e., the coupling parameter �, the screening parameter κ ,
and the normalized magnetic-field strength β. Here, ωp =
[4πQ2n/m]1/2 is the plasma frequency, and ωc = qB/(mc)
is the cyclotron frequency (Q,T , and c are the charge,
temperature, and speed of light, respectively). For later use
we also define the dimensionless parameter

α = τcolωp (9)

as the product of the the collision time τcol and the plasma
frequency.

We performed extensive MD simulations optimized for
strong magnetic fields [51,52], using N = 8192 particles in a
cubic box with periodic boundary conditions. Data collection
begins after an equilibration period and takes place under
microcanonic conditions for a time of tωp = 2.5 × 105. Since
the evaluation of the integral Eq. (5) is limited to a finite time
τ in practice, its value is determined by averaging Eq. (5)
over ωpτ ∈ [1000,2000]. For each data point, 50 separate
simulations with different initial conditions are averaged for
a total measurement time of ωpt = 1.25 × 107. We report
the standard error of the mean of these simulations; unless
shown, the error bar for all values is (much) smaller than the
symbol size. Data for the heat conductivity are given in units
of nkBωpa2.

III. RESULTS

A. Unmagnetized system

We start with an isotropic, unmagnetized system where
λμν is diagonal. Figure 1 reveals an interesting nonmonotonic
dependence of λ on �, which is one of the hallmarks of strongly
coupled systems.

The present results represent a significant improvement in
terms of accuracy over previously available data and facilitate
a more detailed analysis. In particular, the decomposition
Eq. (4) uncovers the origin of this dependency: The kinetic
contribution to λ corresponds to the (material) transport of
kinetic energy associated with the movement of a particle
between collisions. It falls off, approximately as �−3/2, since
both the mean free path and the thermal energy per particle
decrease with � [53]. Likewise, the potential contribution is
associated with the material transport of potential energy and
increases with � as the average potential energy grows. In the
region of � = 30 . . . 200 this growth slows down, since the
mean free path decreases with �, and the system dynamics
transform into caged motion. Finally, the collisional part
increases with � up to the crystallization point (�c ≈ 420),
where heat transport is dominated by phonons [9].

We also compare the present results to those reported earlier
by Salin and Caillol [36] and Donkó and Hartmann [37];
see Fig. 2. The simulational results are in good agreement,
especially at smaller and higher coupling values. Around
the minimum of λ(�), there are larger deviations of the
order of 20%. Careful analysis suggests that this is due to
the better statistics of the present data and the considerably
larger integration limit τ employed in the present calculations,
whereas commonly, the integration is only carried out up to
the first zero-crossing of the integrand [36]. At intermediate
coupling values close to the minimum heat conductivity, we
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FIG. 1. (Color online) Heat conductivity in an unmagnetized
Yukawa system at κ = 2 as a function of �. Shown are the total
conductivity and its kinetic, potential, and collisional parts. “Cross”
denotes the sum of the three cross-correlation terms.
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FIG. 2. (Color online) Results for an unmagnetized Yukawa sys-
tem. Top: Comparison of the heat conductivity results with Salin and
Caillol (SC) [36] and Donkó and Hartmann (DH) [37]. Bottom: The
(normalized) integrand of Eq. (5) for systems at different values of
�. The insets show a magnification of the shaded areas.

find that the energy autocorrelation function has an oscillatory
time-dependence with negative and positive portions (see
bottom part of Fig. 2), which requires a larger integration
limit for accurate results.

B. Cross-field heat transport

In the presence of a magnetic field, the �-dependence of
λ changes drastically, as is shown in Fig. 3. Consider first the
field-perpendicular contribution, λ⊥. As in a weakly coupled
plasma, λ⊥ is reduced by the magnetic field; however, with
increasing � this reduction becomes less pronounced. This is
readily explained by the change of the governing heat transport
mechanisms in different coupling regimes: For small �, mate-
rial transport of kinetic energy dominates (see Fig. 1), which
is greatly reduced perpendicular to B by the cyclotron motion
of the particles. On the other hand, at large �, the thermal con-
ductivity is mainly due to collisions between particles (Fig. 1)
whose frequency and effectiveness are only weakly reduced
by the magnetic field. Figure 4(a) shows how these different
effects give rise to the observed �-dependence of λ⊥ at β = 1.

Let us now analyze the dependence of λ⊥ on the magnetic-
field strength. For weakly coupled systems, both classical
transport theory [30] and a hydrodynamic analysis [54,55]
predict a decay of λ⊥ scaling as λ⊥ ∼ β−2, whereas the parallel
conductivity is independent of the field strength, λ‖ ∼ β0.
The corresponding simulation results for strongly correlated
systems are shown in Fig. 5 for the cases � = 5 and � = 40.

As observed before, λ⊥ decreases with β; however, it does
not vanish, but approaches a finite value. The analysis shows
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FIG. 3. (Color online) Elements of the heat conductivity tensor
at different magnetic-field strengths as a function of � (top), and the
value at β = 1 relative to the field-free value λ0 (bottom).

that this is due to a residual heat transfer via collisions (see
Fig. 5): even if particles are unable to move perpendicular to
B, heat is still transferred by collective modes of the plasma,
in particular, the ordinary shear mode and the upper and lower
hybrid modes [18], a mechanism similar to heat transfer via
phonons in crystals.

C. Thermal Hall effect

The off-diagonal tensor component λ× [cf. Figs. 3, 4(b),
and 5] is a special case as it emerges only in the magnetic
field. However, an increase of B leads to smaller Larmor
radii, which decreases the efficiency of this transport mode.
These competing effects result in a nonmonotonic behavior
with a maximum around β = 0.1 . . . 0.5, cf. Fig. 5. With
increasing coupling λ× decreases but approaches a finite value,
cf. Fig. 4(b), which is explained by the decrease of the Larmor
radius with � (decrease of temperature) [56].

D. Field-parallel transport

Figure 3 shows a striking result: heat conduction parallel
to B is enhanced by the field. This result is surprising, since
it is in contrast to the behavior of weakly coupled plasmas.
But even for strongly coupled plasmas this is an unexpected
field effect as it contradicts the behavior of the diffusion
coefficient parallel to B, which has been found to decrease
monotonically with B [24]. To clarify the origins of this
enhancement, consider again the different contributions to
λ‖, Fig. 4(c). There is a drastic increase of the collisional
contribution compared to the unmagnetized case (Fig. 1),
which is easy to understand: collisions parallel to B are
becoming more effective with increasing field strength, since
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FIG. 4. (Color online) Contributions to the heat conductivities λ⊥, λ×, and λ‖ at β = 1. “Cross” denotes the sum of the three cross-correlation
terms.

particles are unable to avoid one another in lateral direction
after the initial approach. This leads to a growing interaction
time and, subsequently, an increased energy exchange. This is
particularly important for moderate coupling (� � 10), where
infrequent binary collisions dominate, and less so in highly
coupled systems, where caged motion already results in highly
efficient collisions.

The potential contribution to λ‖ is likewise enhanced by the
field. Here, a competition between two processes is observed:
On the one hand, the mobility of the particles (i.e., the diffusion
coefficient) along B is reduced by the field [24]. On the
other hand, the reduced interaction with neighboring particles
in the cross-field plane enables the particles to retain their
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FIG. 5. (Color online) Field dependence of the heat conductivi-
ties. Thick lines represent the total values of λ⊥, λ‖, and λ× and thin
lines of the same color and symbol shape show the respective kinetic,
potential, and collisional contributions.

energy for a longer time, resulting in a net increase of the
heat conductivity. Similar considerations apply to the kinetic
contribution.

The interplay of these processes, together with the varying
relative importance of the kinetic, potential, and collisional
contributions, work to increase λ‖ over λ0 for the whole range
of coupling strengths considered. Note that the enhancement
of λ‖ is weaker for smaller �, and λ‖ → λ0 for � � 1 (see
Fig. 3), confirming consistency of our simulations with the
weak coupling limit. Consider now the dependence λ‖(β). As
Fig. 5 shows, λ‖ approaches a maximum value as β increases.
This occurs regardless of whether transport is dominated by
material transport (� = 5) or by collisions (� = 40). The phys-
ical reasons for this is that both the increase of energy retention
and of the efficiency of collisions, which are the driving mecha-
nisms behind the growth in λ‖, have upper limits, i.e., complete
energy retention and complete collisional energy transfer.

E. Test of classical transport theory

Our simulation results allow us to determine the applicabil-
ity limits of the weak coupling theory of Braginskii [30,47],
which predicts the scalings λ⊥(β) ∼ α−2β−2 and λ×(β) ∼
α−1β−1 for large β (α = τcolωp is the normalized collision
time). A comparison with the strong coupling data at hand
shows semiquantitative agreement for λ⊥ and λ× for moder-
ately coupled plasmas, � � 5, when α(�) is regarded as a free
parameter. Figure 6 shows the best fit for � = 5 (α = 2.5)
and � = 40 (α = 1.24) [57], which indicates excellent (poor)
agreement in the former (latter) case. At the same time, this
extension of weak coupling theory neither captures the finite
asymptotics of λ⊥ for large β, nor can it reproduce the increase
of λ‖ with β [59].

F. Total heat current

Finally, to understand the implications of our results for
strongly coupled plasma applications we consider a heated
plasma cube of volume V . The total heat current JT (�,β)
through the surface (and, thus, the temperature change) will be
proportional to [cf. Eq. (3)] λeff = Trλ = λ‖ + 2λ⊥. At weak
coupling, JT can be reduced by increasing the magnetic-field
strength—a standard tool in many plasma applications—to one
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FIG. 6. (Color online) Relative heat conductivities (top) and ef-
fective total heat conductivity λeff = Trλ (bottom) compared to
classical transport theory for weak coupling, gray curves [47]. To
facilitate the comparison, values of α = 2.5 (a, c) and α = 1.24 (b)
were used (see text).

third of the field-free value (only λ‖ remains); see Fig. 6(c).
However, in strongly coupled plasmas, our results indicate
that using a magnetic field to reduce heat losses is much less
effective: for large coupling (cf. curve for � = 40) there is

almost no reduction, whereas for moderate coupling (cf. curve
� = 5) losses will be reduced for weak fields, but they will be
substantially enhanced in strong fields.

IV. SUMMARY

We have presented new high-precision data for the ther-
mal conductivity of unmagnetized and magnetized Yukawa
one-component plasmas. The decomposition of λ into the
different modes of transport (kinetic, potential, and collisional)
has enabled us to elucidate the origin of the well-known
nonmonotonic dependence of λ(�) at zero magnetic field for
the first time. At finite magnetic fields, the cross-field thermal
transport is reduced, as in weakly coupled plasmas; however,
the decay is close to 1/B at intermediate field strengths and
approaches a finite value at large fields, which is due to the
collisional mode. On the other hand and, contrary to what one
might expect by extrapolating from the weakly coupled case,
the field-parallel heat conductivity is enhanced by the field in
strongly coupled plasmas. This is due either to an enhanced
energy retention in systems where kinetic transport dominates
or due to a modification of the collision process in systems
dominated by this transport mode.

Our theoretical predictions can be directly verified in dusty
plasmas, using the idea of quasimagnetization in a rotating
setup [14,15]. On the other hand, applications to dense plasmas
rely on the validity of the OCP model, which is known to be
accurate in case of weak electron-ion coupling [43–46]—a
reasonable assumption when the electrons are either hot or
strongly degenerate. At the same time, the model neglects
B-field effects on the screening [60] as well as the electron
contribution λe to the heat conductivity. This is justified for
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the field-perpendicular component since λi
⊥/λe

⊥ ∼ √
mi/me,

at not too strong coupling [30], as is the case, e.g., in inertial
fusion applications. Thus, our results are directly applicable to
magnetized plasmas in which the perpendicular heat transport
dominates. This includes neutron stars and magnetars with
a toroidal field geometry [9] and inertial confinement setups
with elongated targets. In particular, for MagLIF our results
indicate that the heat insulation of the hot spot may be
substantially worse than computed from Braginskii’s theory.
At the same time these experiments may benefit from increased
longitudinal heat conduction, compared to the weakly coupled
case [61], as this helps to remove ion density and temperature
gradients from the laser preheat stage [12].
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APPENDIX A: ROLE OF THE SCREENING STRENGTH κ

In this Appendix, we investigate the role of the screening
strength κ for the heat conductivity in a magnetized YOCP.
It is well known that, in the unmagnetized case, the heat
conductivity λ does not change qualitatively in the range
κ = 0 . . . 2 [35,37], although the quantitative behavior will
be different. As Fig. 7 shows, this also holds in the magnetized
case. Particularly, all three components of the heat conductivity
tensor depend in the same qualitative way on the coupling
strength and the relative change from the unmagnetized case
is comparable across all values of κ considered.

APPENDIX B: ROLE OF MAGNETIC-FIELD
NORMALIZATION

Here, we investigate how the choice of the normalization
changes the magnetic-field dependence. There are three main

he
at

co
nd

uc
tiv

ity
λ

coupling Γ

β = 0
β = 1

βα = 4.9

3×101

10−2

10−1

100

101

5001 10 100

λ0

λ

λ×

λ⊥

FIG. 8. (Color online) Elements of the heat conductivity tensor
for a screening length of κ = 2 at different coupling strengths �.
Shown are the unmagnetized case (λ0) and the magnetized system
at constant value of β = ωc/ωp = 1 (full lines) and at constant
value of βα = ωcτcol = 4.9 (broken lines). For the latter, one has
βα = √

3π/2 × �−3/2/ ln � with the effective Coulomb logarithm
ln � proposed in Ref. [58].

frequencies in the system—the cyclotron frequency ωc, the
plasma frequency ωp, and the collision frequency νcol =
1/τcol, corresponding to two dimensionless ratios β = ωc/ωp

and α = ωp/νcol. In a strongly coupled plasma, β is used to de-
scribe magnetic-field strengths. According to Braginskii [30],
however, in a weakly coupled plasma, the magnetic-field effect
is captured by a single parameter ωc/νcol = βα. To test the
influence of this choice, we performed additional simulations
at fixed βα; see Fig. 8. Clearly, although the quantitative results
differ, the qualitative behavior and trends are not sensitive to
the choice of normalization.
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Magnetoplasmons in Rotating Dusty Plasmas, Phys. Rev. Lett.
111, 155002 (2013).
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