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We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional

dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts

of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular ve-

locity towards the center of the confinement potential is determined by a balance between internal

(viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a

fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics

simulations are used to demonstrate the feasibility of the method. We find good agreement of the

measured viscosity with previous results for macroscopic Yukawa plasmas. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930546]

I. INTRODUCTION

Dusty plasmas contain, in addition to the usual plasma

components (electrons, ions, and neutral particles), small

dust particles with a size on the order of a few micrometers.1

Negatively charged by the influx of electrons on their sur-

face, the dust particles interact with each other through

electrostatic forces that are screened by the plasma environ-

ment.2 For typical experimental parameters, the charges on

the dust particles are on the order of a few thousand. As a

result, the interactions become dominant, and the dust sub-

system can be considered a strongly coupled plasma. Dusty

plasmas can form ordered structures such as dust lattices,3

and shell4 or ring structures,5 depending on the experimental

geometry. In addition to their ability to crystallize, also the

liquid state is of high interest since many liquid properties

can be investigated by studying the movement of individual

particles. This includes diffusion processes,6 heat transport,7

or wave propagation.8

We concentrate here on two-dimensional systems,

where the particles are located at the same height above the

lower electrode in a rf discharge and form a layer, i.e., the

vertical confinement is much stronger than the horizontal

confinement. The interactions between the dust particles can

then be modeled by a simple Yukawa potential

/ rð Þ ¼ Q2

r
e�r=k; (1)

where k is the (effective) screening length, Q the particle

charge, and r their horizontal separation. The out-of-plane

interactions between particles at different heights can be signif-

icantly modified by ion flows towards the lower electrode,

which lead to oscillatory dust potentials in the streaming direc-

tion. However, the in-plane interactions are well described by

the Yukawa potential with an effective screening length that is

determined by the plasma parameters (ion flow speed, ion-

neutral damping, etc.).9 Since it can describe a variety of

different situations, the Yukawa potential is not only widely

used to study the properties of two-dimensional dust ensembles

but also highly relevant for colloidal systems.10

The transport properties of two- and three-dimensional

Yukawa liquids11,12 such as diffusion,6,13 heat conductiv-

ity,14,15 or viscosity16–25 are accessible via molecular dynam-

ics (MD) simulations and often allow for a direct

comparison with experiments. The Green-Kubo relations can

be exploited to calculate the viscosity g with equilibrium

MD simulations. In contrast, nonequilibrium MD simula-

tions often impose certain velocity profiles to determine g,

see Ref. 26 for an overview. Experimentally, laser beams

can be used to create a sheared flow of dust particles, which

carries information about the viscosity.22,27–30

In this work, we use a nonequilibrium method to deter-

mine the viscosity of isotropically confined two-dimensional

dust clusters, extending previous simulations for the heat trans-

port.14 The method requires an external force to manipulate the

dust particles, which can be realized experimentally with

lasers, as was already demonstrated.31–34 The force is directed

in the tangential direction and sets the outer part of the cluster

into rotation. Due to the interaction between the particles, some

of the angular momentum is transported to the inner part of the

cluster, which therefore also starts to rotate. However, at the

same time, friction with the neutral gas removes angular mo-

mentum. The result is a stationary nonequilibrium state with a

tangential velocity profile that is determined by a balance

between internal and external friction. The viscosity can be

inferred from a fit of experimental or, in the present case, simu-

lation data for the velocity profile to an analytical solution of

the Navier-Stokes equation, similar to previous work.22,27,29

We compare our Langevin dynamics simulation results for

confined Yukawa systems with simulations for extended 2D

Yukawa plasmas19,20 and find good agreement.

This paper is organized as follows. In Sec. II, we present

the details of our MD simulation method and the analytical

solution of the Navier-Stokes equation. The viscosity is

1070-664X/2015/22(9)/093703/6/$30.00 VC 2015 AIP Publishing LLC22, 093703-1
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calculated from a fit of the simulation data to the theoretical

velocity profile in Sec. III. The results are compared with

previous simulation data for 2D Yukawa plasmas.

Limitations of the model are discussed in Sec. IV. We con-

clude with a summary of the results in Sec. V.

II. METHODS

Our method for determining the viscosity is based on fit-

ting the results of MD simulations to a solution of the Navier-

Stokes equations. In the following, we first describe the simu-

lation technique and, in a second step, a practical way of

obtaining a fit function from the Navier-Stokes equations.

A. Molecular dynamics simulations

The simulations are performed for a medium-size cluster

with N¼ 149 particles. As was mentioned in the

Introduction, the particles interact via the Yukawa potential,

Eq. (1). The confinement potential is modeled as an isotropic

harmonic trap, VðrÞ ¼ mx2
0r2=2, where x0 is the trap fre-

quency and m the dust particle mass. This model was suc-

cessfully applied to describe the structure and dynamics of

dust clusters in experiments, e.g., Refs. 34 and 35. Neutral

gas damping is accounted for by including a friction and a

random force in the equation of motion (Langevin dynamics)

m _vi ¼ �riVðriÞ � ri

X
j 6¼i

/ðjri � rjjÞ � m�vi þ f i þ FL;

(2)

where � is the friction coefficient, f i the random force with

hf a
i ðtÞf

b
j ðt0Þi ¼ 2m�kBTdijd

abdðt� t0Þ (a; b ¼ x; y), and FL an

external driving force. The temperature of the neutral gas is

denoted by T. For the integration of the system, we use the

Symplectic Low-Order scheme by Mannella.36 The friction

coefficient is chosen to be � ¼ 1:1 x0 throughout all simula-

tions, corresponding to intermediate damping.

The simulations are performed in the following way.

After an initial equilibration phase without external driving

force, at x0t ¼ 30, a Gaussian-shaped force

FL rð Þ ¼ A
Q2=r0

r
ffiffiffiffiffiffi
2p
p exp½� r � RLð Þ2=2r2�e/; (3)

centered at r¼RL, with (dimensionless) amplitude A and var-

iance r, acts on the outer part of the cluster. We have also intro-

duced the characteristic length scale r0 ¼ ð2Q2=mx2
0Þ

1=3
. The

force is directed in the tangential direction and forces the outer

part of the cluster to perform a rotation. Angular momentum is

also transferred to the inner parts of the cluster, and a stationary

velocity profile develops. The measurement of the angular ve-

locity profile begins at x0t ¼ 36. Figure 1 depicts a cluster in

the stationary case for a screening parameter r0=k ¼ 3 and a

temperature ~T ¼ T=T0 ¼ 0:04, where T0 ¼ Q2=ðr0 kBÞ.

B. Analytical model

To extract the viscosity from the velocity profile, we

compare the simulation results with the solution of the

Navier-Stokes equations for our system. We obtain an

analytical fit function, where the ratio of the external (neutral

gas) and internal friction (viscosity) determines the decrease

of the tangential velocity from the boundary towards the cen-

ter of the cluster, see Refs. 22 and 27 for a closely related

method with a different geometry. The viscosity can be

determined from a fit to the simulation data.

The momentum equation for the dust fluid [described

by a density profile nðr; tÞ and velocity field vðr; tÞ] is

given by27

mn
@v

@t
þ v � rð Þv

� �
¼ �rp� nqrU� nrV

þ gDv� m�nvþ nFL: (4)

Here, p denotes the pressure, U the electrostatic potential,

and g the shear viscosity. We only require the stationary

limit of Eq. (4) with @v=@t ¼ 0, which describes the fluid af-

ter the relaxation phase, i.e., in the limit t!1. Due to the

symmetry of the trapping potential and the tangential driving

force, the resulting velocity profile is of the form

vðrÞ ¼ v/ðrÞ ê/, where ê/ is the unit vector in the tangential

direction. This implies r � v ¼ 0, which has already been

accounted for in Eq. (4).

We can now separate Eq. (4) into the radial and tangen-

tial components, which yields two coupled equations for the

density profile n(r) and the tangential velocity. While it

would, in principle, be possible to solve these equations self-

consistently with a given equation of state for the pressure,

Poisson’s equation for the potential, and the viscosity as a

free parameter, we chose a different method.

The tangential equation follows from Eq. (4) as

@2v/

@r2
þ 1

r

@v/

@r
� v/

r2

� �
g� m�nv/ ¼ 0: (5)

We have thereby exploited the symmetry of the problem,

namely, that the pressure, electrostatic potential, and the

confinement potential have only a radial dependence,

and, hence, give no contribution. The laser driving force

will be replaced by a suitable boundary condition at r¼R,

v/ðRÞ ¼ vR. A very simple way to obtain an analytical

FIG. 1. A cluster of 149 particles for r0=k ¼ 3 and ~T ¼ 0:04. The gray area

illustrates the region in which the tangential force acts. The arrows exem-

plify the direction of the force.
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solution for v/ðrÞ is to approximate the inhomogeneous clus-

ter with a constant density, i.e., we neglect the radial equa-

tion for n(r) and use the assumption nðrÞ ¼ n0 ¼ const: to

solve Eq. (5) for v/ðrÞ. Although this procedure is not fully

consistent, it yields a surprisingly accurate fit for the velocity

profile measured in the simulation, see Sec. III.

The solution of Eq. (5) for a constant density and the

boundary conditions v/ðRÞ ¼ vR and v/ð0Þ ¼ 0 is given by

v/ rð Þ ¼ vR

I1

ffiffiffiffiffiffiffiffiffiffiffi
m�n0

g

r
r

 !

I1

ffiffiffiffiffiffiffiffiffiffiffi
m�n0

g

r
R

 ! ; r < R; (6)

where I1ðzÞ is a modified Bessel function of the first kind.37

The parameters of this function are known (input parame-

ters) or can be measured in the simulation, except for g. This

makes it possible to use Eq. (6) as a fit function for the deter-

mination of the viscosity. We use the velocity vR at r¼R as

a fit parameter to allow the fit to match best with the simula-

tion data. The average particle density is estimated as

n0 ¼ N=ðpR2
cÞ, where Rc is the radius of the cluster. The ra-

dius is determined as the distance from the center at which

the particle density drops to 5% of its maximum value. In

general, we then have RL 6¼ Rc 6¼ R.

In experiments, a precise determination of the friction

coefficient � is important because the fit only yields the ratio

�=g. The friction coefficient can be estimated with the

Epstein formula38 based on the neutral gas pressure, see also

Ref. 27. A more direct measurement is possible, e.g., with a

phase-resolved resonance method,39 which could be used to

predetermine � for a single dust grain. It yields results that

are in good agreement with the Epstein relation.40 If the size

distribution of the dust particles is sufficiently narrow, the

obtained damping constant could also be employed for the

experiment with many particles.

III. DETERMINATION OF VISCOSITY

We will now present the results from the MD simula-

tions and use the measured velocity profile to calculate the

viscosity coefficient.

A. Velocity, density, and temperature profiles

Figure 2 shows typical simulation results for r0=k ¼ 3

and different temperatures. Also shown is the tangential driv-

ing force. The density profile shows a shell structure for the

outer parts of the cluster.41,42 The angular velocity,

xðrÞ ¼ v/ðrÞ=r, attains its maximum where the force is max-

imal and decreases in the direction of the cluster center. For

the lowest temperature, ~T ¼ 0:04, the influence of the shell

structure on the angular velocity profile becomes apparent.

Similar to the density profile, it also exhibits some minor

modulations. The noisy part of the velocity profile for

r=r0 > 3 is caused by particles leaving the cluster for short

times during which they can attain high velocities. As only

the inner part of the cluster is relevant for the calculations,

this does not pose a problem.

Since strong shear flows can lead to shear heating in

regions with high velocity gradients,43 which may affect our

results, we investigated the radial temperature profile T(r) of

the cluster. The temperature profile was determined by meas-

uring the average variance of the velocity of the dust par-

ticles in dependence of the radial distance from the center of

the cluster. Figure 3 shows the temperature profile for three

different neutral gas temperatures and a screening parameter

r0=k ¼ 2 for the stationary, rotating case. We observe con-

stant temperatures for ~T ¼ 0:7 and ~T ¼ 0:1, even in the

region with maximum shear (vertical dotted line). At
~T ¼ 0:04, the radially resolved temperature deviates only

slightly from the neutral gas temperature close to the loca-

tion of maximum shear. Thus, for the chosen simulation pa-

rameters, we observe no significant shear heating.

B. Fitting the data

Figure 4 shows a fit of Eq. (6) for three different temper-

atures and a screening parameter r0=k ¼ 2. The section close

to the origin is omitted because the numerical data are very

noisy. The good agreement of the fits with the numerically

obtained velocity profiles shows that the analytical model is

a good approximation for the system. The fit for ~T ¼ 0:2
[Fig. 4(b)] matches the numerical data best. The deviations

for ~T ¼ 0:04 are caused by the inhomogeneous density

FIG. 2. Angular velocity profile xðrÞ of a cluster with a screening parameter

r0=k ¼ 3 and various temperatures (as indicated by the arrows). The particle

density is shown for the case ~T ¼ 0:06. The dotted line represents the tan-

gential force.

FIG. 3. Temperature profile TðrÞ=T0 for r0=k ¼ 2 and three different neutral

gas temperatures ~T . The vertical dotted line marks the region of maximum

shear.
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profile, which shows a shell structure at this temperature. A

local maximum of the density causes the mismatch from

r=r0 ¼ 2:4 to r=r0 ¼ 2:7. A comparison of the density and

angular velocity of Fig. 2 for ~T ¼ 0:04 shows the same

effect.

The cluster expands as the temperature is increased. To

make sure that only the outer part of the cluster lies in the

range of the external force, it is necessary to shift the center

of the force further away from the center. This also shifts

the maximum of the velocity profile as can be seen by com-

parison of the graphs for ~T ¼ 0:04 and ~T ¼ 1 in Fig. 4. We

further observe a decrease of the maximum of the velocity

profile if the external force is kept constant. As a conse-

quence, the data get too noisy to be evaluated properly for

high temperatures, which makes it necessary to increase the

amplitude of the force. In our simulations, we use a range

A ¼ 0:45…0:75 from low to high temperatures. For the esti-

mation of a realistic error, it is most practicable to fit the

data for several slightly modified ranges and average den-

sities and use the maximum and minimum value as error

range.

C. Comparison with results for macroscopic 2D
Yukawa plasmas

A macroscopic two-dimensional Yukawa plasma with

(areal) density n and temperature T is fully characterized by

the coupling parameter C and the screening parameter j,

defined by44

C ¼ Q2

a kBT
; j ¼ a

k
: (7)

The Wigner-Seitz radius a follows from the relation

npa2 ¼ 1. To compare our results for the cluster with those

for a macroscopic system, we identify the average trap den-

sity n0 ¼ N=ðpR2
cÞ with the density n of the macroscopic sys-

tem. The transformation rules then become

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0r2

0 p
p

~T
; j ¼ r0=kffiffiffiffiffiffiffiffiffiffiffiffi

n0r2
0 p

p : (8)

The viscosity will be given in units of g0 ¼ mn0xpa2, where

xp ¼ ½2Q2=ðma3Þ�1=2
, see Ref. 20. We compare our results

to equilibrium19 and nonequilibrium20 molecular dynamics

simulation. For a fixed value of r0=k, the temperature ~T is

varied to study the viscosity as a function of the coupling pa-

rameter C. Since the average particle density is temperature

dependent, j also varies slightly, see Eq. (8). This makes it

somewhat difficult to compare the results for a wide temper-

ature range since the variations in j become too large.

Figure 5 shows the results from the equilibrium molecular

dynamics simulations of Ref. 19 for j ¼ 0:56 and the results

from our simulation45 for j � 0:54…0:65. We find good

agreement, especially for the position of the minimum of the

viscosity. As can be seen from the screening parameters given

in Fig. 5, j deviates from the desired value of j ¼ 0:56 as C
approaches low or high values, which is due to variations of

the average density. In addition, the simulations of Ref. 19

have been performed with a Nos�e-Hoover thermostat while

we use Langevin dynamics that includes friction with the neu-

tral gas, see Refs. 46–49. In 3D Yukawa liquids, friction was

shown to decrease (increase) the viscosity for low (high) cou-

pling.47 Figure 6 displays the viscosity obtained from none-

quilibrium molecular dynamics simulations20 for j¼ 1

FIG. 4. Comparison of the numerical results and the fit for the angular ve-

locity profile for a screening parameter r0=k ¼ 2. The points (red) show the

data from the simulations, the line (blue) is the corresponding fit. The black

dotted lines mark the area that was used for the fit.

FIG. 5. Comparison of the equilibrium MD simulations of Ref. 19 for

j ¼ 0:56 (black dots) with our simulations results (red squares, r0=k ¼ 2).

The variation of the screening parameter j in our simulations can be

inferred from the numbers given in the figure.
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(method 1 in Ref. 20 with N¼ 3960 particles) and the results

from our simulation for j � 0:96…1:14. Again, we find fair

agreement between the two methods, in particular, the loca-

tions of the minima differ only slightly. As in the previous

case, the deviations increase for very high or very low C.

To summarize, the general agreement of our results with

those for a macroscopic Yukawa plasma is surprisingly

good, given the small size of the cluster and the fact that the

trapped cluster is, in many aspects, different from a uniform

plasma. This includes the existence of an outer boundary, the

inhomogeneous density profile, and the confinement

potential.

IV. DISCUSSION

In this section, we discuss some of the limitations of the

model.

A natural restriction is that the dust cluster must be in

the liquid state. This excludes very high coupling strengths

where the particles would eventually crystallize. In this case,

a weak force was found to lead to a rigid rotation of the clus-

ter whereas an isolated rotation of the outer shell is observed

for a strong force. While there are no phase transition in a

small cluster in the thermodynamic sense, it is possible to

identify temperature ranges where the cluster shows proper-

ties of a liquid or more closely resembles a solid.50 Another

restriction arises from the density profile, which shows

strong modulations at high coupling. These shell structures

also appear in the radial velocity profile and restrict the use

of Eq. (6) as a fit function, since the shell structure is not

included in the analytical model. An accurate theoretical

description of the density profile for confined Yukawa sys-

tems must include correlation effects and is a challenging

problem.51,52

There is also a restriction for weak coupling. If the cou-

pling parameter is too low, the cluster radius is no longer

well defined, and the density becomes very inhomogeneous.

The analytical model, however, is based on a homogeneous

density profile. While it would be possible to use more real-

istic density profiles in the Navier-Stokes equation, e.g.,

from simulations, this would complicate the analysis and

make it more difficult to compare with the results for a

uniform system. Moreover, the viscosity coefficient in

Eq. (4) is constant, i.e., we assign a single (density independ-

ent) viscosity to the cluster. Considering also the restrictions

at strong coupling, this leads us to the conclusion that the

method is best applied for intermediate values of the cou-

pling parameter.

It was shown that 2D Yukawa plasmas exhibit shear

thinning,20 i.e., a decrease of the viscosity at high shear rates.

We investigated the dependence of the measured viscosity

on the shear rate for r0=k ¼ 2 and ~T ¼ 0:2. Varying the am-

plitude in the range A ¼ 0:4…0:85 revealed no systematic

influence on the results. In addition, the angular velocities

are well below the trap frequency x0, see Fig. 4. We may

thus conclude that the applied shear rates are sufficiently low

to minimize effects related to shear thinning.

V. CONCLUSION

In summary, we have presented a method to determine

the viscosity of confined, two-dimensional dust clusters. An

external force applied to the outer part of the cluster creates

a sheared velocity profile, which is determined by angular

momentum transfer to the inner parts through viscosity and

removal of angular momentum through friction with the neu-

tral gas. The viscosity can be measured by comparing the ve-

locity profile with a solution of the Navier-Stokes equation.

We performed molecular dynamics simulations to demon-

strate the feasibility of the method and found good agree-

ment of our results with previous simulations for

macroscopic 2D Yukawa plasmas.19,20 The simulated setup

could be directly realized experimentally with several laser

beams that act on the outer part of the cluster.31
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