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Superfluidity of strongly correlated bosons in two- and three-dimensional traps
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We analyze the superfluid crossover of harmonically confined bosons with long-range interaction in both two
and three dimensions in a broad parameter range from weak to strong coupling. We observe that the onset of
superfluidity occurs in three dimensions at significantly lower temperatures compared to that in two dimensions.
This is demonstrated to be a quantum degeneracy effect. In addition, the spatial distribution of superfluidity
across the shells of the clusters is investigated. It is found that superfluidity is substantially reduced in the outer
layers due to increased correlation effects.

DOI: 10.1103/PhysRevB.91.054503 PACS number(s): 67.25.dw, 67.90.+z, 61.25.Em

I. INTRODUCTION

Superfluidity (SF), i.e., the emergence of frictionless flow
below a critical temperature, is one of the most astonishing
manifestations of quantum coherence on a macroscopic scale.
It was first observed in 1938 in liquid 4-He. In bulk systems,
SF is known to being closely related to Bose-Einstein conden-
sation (BEC) and a consequence of off-diagonal long-range
order of the density matrix [1]. This concept, obviously, is not
directly applicable to finite size systems in traps. Moreover,
these systems are possibly strongly inhomogeneous as a result
of boundary or confinement effects. An alternative approach
to superfluidity is then to use the probability of realization
of exchange cycles involving a sufficiently large number of
particles.

A well-studied example for such mesoscopic quantum
systems are parahydrogen clusters where for a small number of
particles, N ∼ 10, the superfluid properties explicitly depend
on the precise particle number and the symmetry [2], and
the superfluidity is essentially uniformly distributed among
the system [3,4]. In addition, both solid-like order and SF
do coexist [4], thus qualifying as a supersolid (see, e.g.,
[5]) state of matter. Another interesting test case involves
harmonically confined two-dimensional Coulomb clusters,
whose behavior can be controlled by varying the confinement
field strength. There it has been found that not only the
global superfluid fraction but also the spatial distribution of
superfluidity crucially depends on N [6]. In particular, for
magic numbers, e.g., N = 12,19, . . . (closed shells), there is
a strong hexagonal symmetry at the center of the trap and the
superfluid density is pushed to the boundary of the system.

While the dependence of superfluidity on temperature,
system size, and coupling strength is well understood, the
effect of the system dimensionality in finite systems has not
been studied systematically. In this work, we try to (partly)
fill this gap by studying large spherically confined Coulomb
clusters in two and three dimensions (2D and 3D) and compare
results for both the global and spatial distribution of SF.
The selected system size N = 150 is representative and large
enough to eliminate the sensitivity of the properties to the
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precise particle number [7]. Furthermore, our simulations
cover the entire range from weak to strong coupling.

The analysis presented in this paper is primarily concerned
with fundamental properties of superfluidity in strongly
correlated spatially confined bosons in 2D and 3D traps.
Examples include finite molecular bosonic clusters [2–4,8,9],
e.g., hydrogen or helium droplets, doublons in strongly
correlated solids or ultracold lattice gases [10,11], as well as
dipole-interacting trapped gases [12,13]. In addition, there are
numerous theoretical studies of the fundamental properties
of the charged Bose gas (CBG) [14–16] and a variety of
applications of the model to condensed matter physics. Indirect
excitons [17–19] exhibit, despite their dipole-like interaction
at long range, a Coulomb-like repulsion at high density [20].
Furthermore, the 3D CBG of spatially bound electron pairs
(small bipolarons) is discussed in the context of high Tc

superconductivity in cuprates [21–24]. Finally, applications
also extend to macroscopic 3D bosonic Coulomb systems in
the inner regions of neutron stars (proton pairing) [25–27] and
the core of helium white dwarfs [28,29].

II. MODEL AND SIMULATION IDEA

We consider two- and three-dimensional systems of N

identical bosons in a harmonic confinement potential with
frequency � which are described by the dimensionless
Hamiltonian

Ĥ = −1

2

N∑
k=1

∇2
k + 1

2

N∑
k=1

r2
k + 1

2

N∑
k �=l

λ

|rk − rl| , (1)

and oscillator units (i.e., characteristic length l0 = √
�/m�

and energy scale E0 = ��) are used throughout this work.
The selected Coulomb repulsion in Eq. (1) serves as a test
case for a broad class of isotropic long-range interactions,
and the coupling constant λ = q2/(��l0) (with q being the
charge) can be controlled experimentally by the variation
of the trap frequency. To simulate the system of interest at
a particular inverse temperature β = E0/kBT in thermody-
namic equilibrium, we employ a realization of the widely
used worm algorithm path integral Monte Carlo method [30].
The latter delivers quasiexact results by performing a Trotter
decomposition of the density operator ρ̂ = exp(−βĤ ) and
each particle is represented by a path of P positions (often
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denoted as “beads” or “time slices”) in the imaginary time.
To achieve sufficiently well converged results, we typically
use P = 80 . . . 410 while performing NMC ∼ 107 independent
measurements.

III. RESULTS

A. Superfluid crossover in 2D and 3D

A convenient way to define superfluidity for finite sized,
trapped systems is the consideration of the change of the
moment of inertia due to quantum effects, also denoted as
the Hess-Fairbank effect. Within the Landau two-fluid model
the total density n is decomposed into a normal and a
superfluid component, n = nn + nsf. Of particular interest is
the superfluid fraction γsf, i.e., the fraction of particles that
does not participate in a rotation of the system. This quantity
can be expressed in terms of the moments of inertia, and within
the path integral picture, one can define an estimator as [31]

γsf = nsf

n
= Icl − I

Icl
= 4m2

〈
A2

z

〉
β�2Icl

, (2)

with the total and classical moment of inertia I and Icl,
respectively, and the area A which is enclosed by the particle
trajectories

A = 1

2

N∑
k=1

P∑
i=1

(rk,i × rk,i+1). (3)

In Eq. (2) the system is assumed to be set into rotation around
the z axis and, hence, only the area in the x-y plane Az is
relevant.

The results for the superfluid fraction, Eq. (2), are shown
in Fig. 1, where γsf is plotted versus the inverse temperature
β for N = 150 particles in 2D (red triangles) and 3D (blue
squares) and for the coupling parameters λ = 10, λ = 3, and
λ = 1. All curves exhibit the expected increase of superfluidity
with increasing β and saturate to unity, i.e., a completely
superfluid system. In addition, the crossover [32] is shifted
to lower temperature with increasing particle interaction. This
is a direct consequence of the increased interparticle distance,
which reduces the probability of the occurrence of exchange
cycles. However, it is interesting to note that for all λ, the
onset of the crossover occurs at lower temperature for the 3D
system.

This is a nontrivial observation and could be caused
by different effects: (i) The availability of the additional
dimension leads to a reduced degeneracy. This decreases
exchange effects and hence explains the observed shift of the
onset of superfluidity. (ii) The three-dimensional nature of the
particle exchange could lead to a reduction of the projection
of the area vector A from Eq. (3) onto a particular plane.
In this case, one would observe the onset of the crossover
at an increased degeneracy compared to the 2D system with
the same parameters. To decide which (if any) of the two
explanations is most likely we analyze the probability P (L)
for a single bead to be involved in an exchange cycle which
consists of L particles and, in addition, a degeneracy parameter
χ [cf. Eq. (4)]. For (i) to be correct, we expect similar values of
χ and P (L) for the same amount of superfluidity in the system.
For (ii), on the other hand, we would expect a significantly
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FIG. 1. (Color online) Superfluid crossover in 2D and 3D: The
superfluid fraction γsf is plotted versus the inverse temperature β for
N = 150 particles in 2D (red triangles) and 3D (blue squares) for the
coupling constants (a) λ = 10, (b) λ = 3, and (c) λ = 1.

increased χ and higher probabilities P (L) for L > 1 for equal
γsf in 3D.

In Fig. 2 the product P (L)L [with
∑

L P (L)L = 1] is
plotted versus L again for N = 150 particles and λ = 3 for
both 2D (red) and 3D (blue). The top image corresponds to
an equal inverse temperature β = 2, i.e., two systems with
a nonzero and nonunity superfluid fraction γsf(2D) ≈ 0.92
and γsf(3D) ≈ 0.34. Both curves exhibit a similar decay with
increasing L and a sharp bend for very large exchange cycles,
which occurs for smaller particle numbers in 3D. In the 3D
system both single- and two-particle trajectories are more
probable than in 2D and the two curves intersect at L = 3. All
larger exchange cycles are significantly more probable in 2D.
The bottom image of Fig. 2 shows the same information but for
a fixed superfluid fraction γsf ≈ 0.6. Here, the probability to be
involved in a particular exchange cycle is nearly equal for both
dimensionalities and the two curves intersect several times. In
addition, the sharp bend for large L occurs at the same position.
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FIG. 2. (Color online) Probability distribution of exchange cy-
cles in 2D and 3D. The probability for a single bead to be involved in
an exchange cycle of length L, P (L)L, is plotted versus the former for
N = 150 particles and λ = 3. The top image corresponds to β = 2
with γsf(2D) ≈ 0.92 and γsf(3D) ≈ 0.34, and for the bottom image
the inverse temperature has been adjusted such that γsf ≈ 0.6 in both
dimensionalities, i.e., β(2D) = 1.35 and β(3D) = 2.27.

This is a first hint towards explanation (i) because the same
amount of superfluidity requires comparable realization rates
of exchange cycles while, at the same inverse temperature,
exchange is suppressed in 3D which explains the later onset of
superfluidity compared to 2D. For completeness, we note that
both λ = 1 and λ = 10 exhibit the same behavior as shown for
λ = 3 in Fig. 2.

Next, we define the degeneracy parameter as

χ = nλd
β, (4)

with the dimensionality d, the thermal de Broglie wavelength
λβ = �

√
2πβ/m and the mean density n (in 2D and 3D, we

compute the radial density n by averaging over angular and
spherical segments, respectively, with a fixed distance from the
trap center), which has been averaged over the radial extension
of the particular system. Thus, Eq. (4) provides a measure
for the average number of particles within the approximate
extension of a single-particle wave function. It should be noted
that the strong inhomogeneity of the density of correlated
trapped quantum particles, cf. Fig. 5, makes the definition
in Eq. (4) arbitrary to some degree. However, we found that
using n gives reliable results even for different shell structures.

The results for Eq. (4) are shown in Fig. 3(a) where
χ is plotted versus β for the systems from Fig. 1. The
degeneracy increases with β for all simulated systems, as
expected. However, a comparison between 2D and 3D systems
with otherwise equal parameters reveals that at high T , the
three-dimensional system exhibits a smaller χ until the two
curves intersect. This is an immediate consequence of the
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FIG. 3. (Color online) Degeneracy parameter. The degeneracy
parameter χ is plotted versus the inverse temperature β for the
systems from Fig. 1. The critical value χcrit (orange triangles) marks
the superfluid crossover, i.e., γsf = 0.5. Image (a) covers the entire
inverse temperature range of our simulations, and (b) shows a
magnified segment around the superfluid crossover.

definition (4), where the de Broglie wavelength enters with
the power of the dimensionality d. This implies that for a
constant mean density n, which becomes valid with increasing
β, it is χ (d = 2) ∝ β and χ (d = 3) ∝ β3/2, i.e., a linear and
polynomial behavior with respect to the inverse temperature
in 2D and 3D, respectively. The connection between Fig. 3
and the superfluid crossover from Fig. 1 is given by the orange
triangles, which mark the critical degeneracy χcrit, i.e., the
degeneracy parameter at the inverse temperature for which
γsf = 0.5. Our simulations have revealed that despite the onset
of superfluidity at significantly lower temperature in 3D, χcrit

takes similar values for both dimensionalities. In fact, the
2D systems from Fig. 3 even exhibit a slightly higher χ for
the critical superfluid fraction than their 3D counterparts, cf.
Fig. 3(b), where a magnified segment around the crossover
is shown. However, this rather peculiar feature should not be
over interpreted due to the average character of the definition
of the degeneracy parameter itself. Thus, we conclude that the
behavior observed in Fig. 3 rules out explanation (ii), and the
different critical temperatures for the superfluid crossover in
2D and 3D appear to be a degeneracy effect.
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B. Local superfluid density

Another interesting question is how the superfluidity is
distributed across the system in the vicinity of the crossover.
To investigate this topic we use a spatially resolved superfluid
density estimator of Kwon et al. [8] that is consistent with the
two-fluid interpretation:

nsf(r) = 4m2

β�2Icl(r)
〈AzAz,loc(r)〉. (5)

Here, Az,loc(r) denotes a local contribution to the total area
enclosed by the particle paths. In 2D, the system is assumed
to rotate around the axis perpendicular to the trap, and the
quantity from Eq. (5) can be radially averaged without loosing
information. For a 3D trap, however, the axis of rotation
causes a break of the spherical symmetry and the definition
of a meaningful average is less obvious. In this work, we
average nsf over spherical segments with the distance r from
the center of the trap. This gives a quantity that approaches
the total radial density n for a completely superfluid system,
i.e., for γsf = 1. Nevertheless, one should keep in mind that,
in general, particles with the same distance from the center
|r| have different contributions to the classical moment of
inertia, depending on the orientation of their radius vector r
with respect to ez.

Figure 4 shows the local ratio γsf(r) = nsf(r)/n(r) for 2D
and 3D systems and an inverse temperature that has been
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FIG. 4. (Color online) Local superfluid fraction in 2D and 3D.
The spatially resolved ratio of the superfluid and total density γsf(r) =
nsf(r)/n(r) is plotted versus the distance to the center of the trap r

for N = 150 particles in 2D and 3D for a fixed superfluid fraction
γsf ≈ 0.6. The larger errors around the center of the trap are due to
the worse statistics in small angular and spherical segments in 2D
and 3D, respectively.

chosen in a way that γsf ≈ 0.6 [33]. For both dimensionalities
γsf(r) exhibits a decay with increasing distance from the center
of the trap, r , which is most distinct for smaller coupling. This
behavior can be understood by considering the normalization
of the local superfluid density∫

dr nsf(r)r2
⊥ = γsfIcl. (6)

Equation (6) implies that nsf integrates to the quantum cor-
rection to the moment of inertia, i.e., the missing contribution
due to the particles in the superfluid phase. However, this also
means that

1

N

∫
dr nsf(r) �= γsf, (7)

because for the global SF fraction, not only the ratio of
superfluid and total particle numbers but, in addition, the
position of a particular particle is relevant. According to
Eq. (6), particles near the center of the trap have a small
contribution to the total moment of inertia and so their
superfluidity only slightly influences γsf. At the boundary,
however, each particle has a significant contribution to I and
thus nsf(r) in this region crucially influences the global SF
fraction. With increasing λ, the interparticle repulsion grows
and the system extends radially (cf. Fig. 5), so this effect
becomes even more important. For a fixed γsf, as in Fig. 4,
the spatially resolved SF fraction in the outermost shell must
approach the global value, with increasing coupling strength.
A similar effect has recently been observed by Kulchytskyy
et al. [34] from path integral Monte Carlo (PIMC) simulation
of 4He in a cylindrical nanopore where the local superfluid
response has been obtained with both the area formula, Eq.
(5), and a winding number approach [35] for a rotation around
and the flow along the pore axis, respectively. Despite a very
similar spatial distribution for the two estimators, there occurs
a significant difference in the global SF fraction due to the
different normalizations.

The comparison between the 2D and the 3D results in Fig. 4
reveals that for d = 3 and equal λ, the local superfluid fraction
in the outer region exceeds its two-dimensional counterpart.
In fact, the uppermost (red) curve (λ = 10) in the bottom
image appears to be above the global value [33] almost
everywhere, which seems to violate Eq. (6). However, this
is a consequence of the symmetry break due to the external
rotation around ez and the applied averaging over spherical
segments in 3D. For this reason, all particles in the outermost
shell have different contributions to the moment of inertia.
The expected decrease of γsf(r) for the largest r⊥ is therefore
masked in Fig. 4 by contributions near ez from the same
shell.

The remaining open question is why γsf is distributed
inhomogeneously in the first place, in particular, why there
is more superfluidity around the center of the trap than in
the outer regions. In Fig. 5, both the total (red triangles) and
superfluid density (blue squares) are plotted with respect to r

for the systems from Fig. 4. The top row shows density profiles
for rather strong coupling, λ = 10, for both the two- and
three-dimensional system. In 2D, the total density n exhibits a
relatively smooth decay with increasing r until, at the boundary
of the system, two shell-like oscillations appear. In 3D, n stays
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FIG. 5. (Color online) Spatially resolved superfluidity. The radial density n (red triangles) and superfluid density nsf (blue circles) are
plotted with respect to the distance to the center of the trap r for a fixed total superfluid fraction γsf ≈ 0.6 for the systems from Figs. 1 and 3.
The black curves correspond to a constant local SF ratio γsf(r) = 0.6.

almost constant around the center and a very pronounced shell
appears at the boundary. The center and bottom rows show
the same information for medium (λ = 3) and weak (λ = 1)
coupling, respectively. One clearly sees that the shell-like
features disappear for both dimensionalities when the coupling
is reduced. A general feature for all couplings is that n always
decays in 2D, whereas in 3D, it is nearly constant in the
center. Also the peaks at the boundary are always significantly
stronger in three dimensions.

The local superfluid density, on the other hand, exhibits a
rather surprising behavior. For d = 2 and strong coupling, nsf

equals n around the center of the trap, whereas it is significantly
suppressed for larger r , in particular within the outermost
shell. The 3D counterpart exhibits a similar behavior. The two
innermost, weakly pronounced shells are nearly completely
superfluid, whereas the difference between n and nsf is the
largest in the outermost shell. This nonuniformity of the
superfluidity can be made more transparent by comparing to
the case of a constant local superfluid fraction γsf(r) = 0.6
which is depicted by the black curves in Fig. 5. Clearly, the
true superfluidity is always above (below) the black curve in
the center (at the edge).

Let us discuss the origin of this spatial variation of
the superfluid density. The first reason that comes to mind
is the spatial variation of the local degeneracy parameter
which is proportional to the local total density, χ (r) ∼ n(r).
However, the numerical results for nsf clearly deviate from this
suggestion. In particular, for λ = 1,3 the superfluid density
does not follow the local degeneracy (total density). Only
at λ = 10 when shells are formed, nsf increases around the
outermost shell. However, the absolute value of the superfluid
density does not reach a maximum despite the maximum of
the degeneracy parameter. From this we conclude that the
spatial distribution of superfluidity is not governed by the
spatial variation of degeneracy but by the local strength of
correlations.

In fact, it is well known that spatial order leads to a
reduction of superfluidity. In Coulomb systems, particles
mainly experience interaction with neighbors with smaller r ,
whereas most of the pair interactions with particles from the
outer parts of the system cancel. This is a pure screening effect
(Faraday cage effect), and cancellation would be complete in
mean field approximation. Hence, the investigated Coulomb
clusters clearly exhibit the strongest order around the boundary
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and are less correlated around the center of the trap. This is
also manifest in the shell formation at the outer boundary
(red curves in Fig. 5) which is observed in classical Coulomb
clusters as well [36]. Another mechanism that suppresses
superfluidity at the cluster boundary is a geometrical effect:
within the outermost shell there are fewer particles available
for the formation of exchange cycles due to the lack of
neighbors in radial direction.

The medium and weakly coupled systems in 2D exhibit the
same trend as for λ = 10. In 3D, the largest deviation between
n and nsf appears around the outermost shell as well, whereas
the superfluid density remains nearly constant over the rest
of the system. This is in contrast to 2D and arises from the
different behaviors of the total density n(r). At the same time,
the spatially resolved SF fraction (cf. Fig. 4) exhibits similar
trends in 2D and 3D.

IV. DISCUSSION

In summary, we have presented ab initio results for the
superfluid properties of Coulomb interacting bosons in both
2D and 3D harmonic traps. It was revealed that the availability
of an additional dimension causes a decrease of the critical
temperature of the superfluid crossover. To explain this non-
trivial feature, we have analyzed the probability distribution of
exchange cycles and the degeneracy parameter (4), and it was
revealed that the critical superfluid fraction, γsf = 0.5, occurs
for similar degeneracy for both dimensionalities, despite the
significantly higher β in 3D. In addition, we have investigated
the spatial distribution of superfluidity across the system by
using a local superfluid density estimator. In both 2D and 3D,
the largest difference between the total and superfluid density
n and nsf occurs near the boundary of the system. This is a
direct consequence of the increased order at large distances
from the center of the trap.

The onset of superfluidity at comparatively lower tempera-
ture in 3D systems is expected to be a general feature and not
specific for Coulomb interaction. For the investigated particle

number N = 150, superfluidity requires a collective response
of the entire system, in particular the frequent realization
of large exchange cycles in the path integral picture. The
probability for the latter crucially depends on the degeneracy.
The reported β dependence of the degeneracy parameter χ

is valid for other long-range interactions as well, because the
coupling only enters in the average density n which remains
constant with decreasing T .

The observed nonuniform distribution of superfluidity in
the vicinity of the crossover, on the other hand, depends on
several system properties. For small N and strong coupling, the
exact particle number plays an important role and, in the case
of strong hexagonal order at the center of the trap, the super-
fluidity is essentially located at the boundary [6]. The almost
complete screening of the interaction of a given particle with
particles located at a larger distance from the center is a
Coulomb specific effect. In the case of other pair interactions,
a force from the outer regions may exist, which leads to
different density profiles and spatial distributions of correlation
effects [36]. In addition, the explicit choice of the confinement
potential also influences these quantities. The application of,
e.g., a quartic trap is expected to enhance the behavior observed
in Sec. III B, whereas a weaker than harmonic confinement is
expected to reduce these trends.

While we expect that the observed trends are typical for
Bose systems in confinement potentials, we mention that for
unconfined finite systems with attractive interaction, different
behaviors have been predicted. Khairallah et al. reported that
for mesoscopic parahydrogen clusters, superfluidity could be
realized by loosely bound surface molecules [2], although
this is in disagreement with results by Mezzacapo and
Boninsegni [3].
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[6] A. Filinov, J. Böning, M. Bonitz, and Y. Lozovik, Controlling the
spatial distribution of superfluidity in radially ordered Coulomb
clusters, Phys. Rev. B 77, 214527 (2008).

[7] P. Ludwig, S. Kosse, and M. Bonitz, Structure of spherical three-
dimensional Coulomb crystals, Phys. Rev. E 71, 046403 (2005).

[8] Y. Kwon, F. Paesani, and K. B. Whaley, Local superfluidity
in inhomogeneous quantum fluids, Phys. Rev. B 74, 174522
(2006).

[9] F. Mezzacapo and M. Boninsegni, Structure, superfluidity, and
quantum melting of hydrogen clusters, Phys. Rev. A 75, 033201
(2007).
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