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Abstract
Correlated fermions are of high interest in condensedmatter (Fermi liquids,Wignermolecules), cold
atomic gases and dense plasmas. Herewe propose a novel approach to path integralMonteCarlo
(PIMC) simulations of strongly degenerate non-ideal fermions atfinite temperature by combining a
fourth-order factorization of the densitymatrix with antisymmetric propagators, i.e., determinants,
between all imaginary time slices. To efficiently run through themodified configuration space, we
introduce amodification of thewidely used continuous spaceworm algorithm, which allows for an
efficient sampling at arbitrary systemparameters.We demonstrate how the application of
determinants achieves an effective blocking of permutations with opposite signs, leading to a
significant relieve of the fermion sign problem. To benchmark the capability of ourmethod regarding
the simulation of degenerate fermions, we considermultiple electrons in a quantumdot and compare
our results with other ab initio techniques, where they are available. The present permutation blocking
PIMCapproach allows us to obtain accurate results even forN=20 electrons at low temperature and
arbitrary coupling, where no other ab initio results have been reported, so far.

1. Introduction

The ab initio simulation of strongly degenerate nonideal fermions atfinite temperature is of high current
importance formany fields. The numerous physical applications include electrons in a quantumdot [1–4],
fermionic bilayer systems [5–7], the homogeneous electron gas [8–10], dense two-component plasmas [11–13]
in stellar interiors andmodern laser compression experiments (warmdensematter) [14, 15] and inertial fusion
[16]. Despite remarkable recent progress, existing simulationmethods face serious problems.

Thewidely used path integralMonte Carlo (PIMC)method, e.g. [17], is a highly successful tool for the
ab initio simulation of both distinguishable particles (‘boltzmannons’, e.g. [18, 19]) and bosons [17] and allows
for the calculation of quasi-exact results for up to N 103∼ particles [20] atfinite temperature. However, the
application of PIMC to fermions is hampered by the notorious sign problem [21], which renders even small
systems unfeasible for state of the art techniques and has been revealed to beNP-complete for a given
representation [22].With increasing exchange effects, permutation cycles with opposite signs appear with nearly
equal frequency and the statistical error increases exponentially. For this reason, standard PIMC is applicable to
fermions only at weak degeneracy, that is, at relatively high temperature or low density.

The recently introduced configuration path integralMonte Carlo (CPIMC)method [9, 23, 24] exhibits a
complementary behavior. This conceptually different approach can be interpreted as aMonteCarlo simulation
on a perturbation expansion around the ideal quantum system and, therefore, CPIMC excells at weak
nonideality and strong degeneracy. Unfortunately, the physicallymost interesting region, where both fermionic
exchange and interactions are strong simultaneously, remains out of reach.
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Apopular approach to extend standard PIMC to higher degeneracy is Restricted PIMC (RPIMC) [25], also
known asfixed node approximation. This idea requires explicit knowledge of the nodal surfaces of the density
matrix, which are, in general, unknown and one has to rely on approximations, thereby introducing an
uncontrollable systematic error. In addition, it has been shown analytically [26, 27] that RPIMCdoes not
reproduce the exact densitymatrix in the limit of the ideal Fermi gas and, therefore, the results become
unreliable at increasing degeneracy [9].

Recently, DuBois et al [28] have suggested that, at least for homogeneous systems, the individual exchange
probabilities in PIMC are independent of the configuration of other permutations present and that permutation
frequencies of large exchange cycles can be extrapolated from few-particle permutations. This would allow for a
significant reduction of the configuration space and a drastic reduction of the sign problem.Whilefirst
simulation results with this approximation for the short-range interacting 3He are in good agreementwith
experimental data [28], the existing comparison [9] for long-range Coulomb interaction is insufficient to assess
the accuracy and, in addition, inhomogeneous systems remain out of reach.

Another possibility to relieve the sign problem in fermionic PIMCwithout introducing any approximations
is the usage of antisymmetric imaginary time propagators, i.e., determinants [10, 29–31]. It is well known that
the sign problembecomesmore severe with an increasing number of propagators arising from the Trotter-type
factorization of the density operator. Consequently, it has been proposed to combine the antisymmetric
propagators with a higher order factorization [32–35] of the densitymatrix. This has recently allowed to obtain
an accurate estimate of the ground state energy of degenerate, strongly nonideal electrons in a quantumdot [36].

In the present work, we extend this idea tofinite temperature. For this purpose, we combine a fourth-order
propagator derived in [37], which has already been succesfully applied to PIMCby Sakkos et al [38], with a full
antisymmetrization on all time slices to simulate fermions in the canonical ensemble.We demonstrate that the
introduction of determinants effectively allows for the combination of N! configurations fromusual PIMC into
a single configurationweight, thereby reducing the complexity of the problem and blocking both positive and
negative weights to drastically increase the sign. To efficiently exploit the resulting configuration spacewith the
Metropolis algorithm [39] at arbitrary parameters, we develop a set ofMonte Carlo updates similar to the usual
continuous spaceworm algorithm (WA) [20, 40].

To demonstrate the capability of our permutation blocking (PB-PIMC)method, we consider Coulomb
interacting fermions in a 2Dharmonic confinement, cf equation (30), which can be experimentally realized e.g.
by spin-polarized electrons in a quantumdot [1–4]. Figure 1(A) shows the average sign S forN=20 electrons,
plotted versus the coupling strength λ, cf equation (31). CPIMC is applicable in theweakly nonideal regime [I],
where the system is predominantly shaped by the Fermi statistics. In contrast, standard PIMC allows one to
accurately simulate systems in the strongly coupled regime [III], where exchange effects are not yet dominating,
and bosons and fermions exhibit a very similar behavior. The PB-PIMCmethod, as will be shown in this work, is
applicable over the entire coupling range yielding reasonably accurate results with acceptable computational
effort. Interestingly, this includes the physicallymost interesting transition region [II], where both theCoulomb
repulsion and quantum statistics govern the system.Here no ab initio results have been reported to this date,
except for very small particle numbers, since PIMCandCPIMC fail, due to the sign problem. In panel (B), we

Figure 1. Illustration of the capability of PB-PIMC—in panel (A), the average sign S fromdifferentmethods is plotted versus the
coupling parameter λ, equation (31), forN=20 electrons in a quantumdot at 3.0β = (oscillator units). Region [I] denotes theweakly
nonideal Fermi gas, [II] the transition region and [III] the strongly correlated regime. CPIMC (PIMC) is limited toweak (strong)
coupling, i.e. to the region left (right) of the blue (green) line. Panel (B) shows a comparison of density profiles n r( ), plotted versus the
distance to the center of the trap r, across the entire coupling range.
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showdensity profiles from all three regimes. Evidently, the transition from the strongly coupled systemwith a
pronounced shell structure ( 15λ = ) to the nearly ideal Fermi gaswith the characteristic weak density
modulations ( 0.1λ = ) can be resolved.

In the remainder of this work, we introduce the PB-PIMCmethod in detail.We show that the optimal choice
of two free parameters of the fourth-order factorization allows for a calculation of energies and densities with an
accuracy of the order of 0.1%with as few as two or three propagators, even in the low temperature regime.We
calculate energies and densities fromPB-PIMC forN= 20 electrons at low temperature over the entire coupling
range.Wefind excellent agreementwith both PIMCandCPIMC in the limitting cases of strong andweak
coupling, respectively, and perform simulations in the transition regime, where no other ab initio results are
available. Finally, we investigate the performance behavior of ourmethodwhen the system size is varied.

2. Theory

2.1. Idea of PB-PIMC
Weconsider the canonical ensemble (the particle numberN, volumeV and inverse temperature k T1 Bβ = are
fixed) andwrite the partition function in coordinate representation as

Z
N

R R R
1

!
sgn( ) d e ˆ , (1)

S

Ĥ

N

∫∑ σ π= 〈 ∣ ∣ 〉
σ

β
σ

∈

−

where R r r{ ,..., }N1= contains the coordinates of all particles and π̂σ denotes the exchange operator
corresponding to a particular element σ from the permutation group SN. TheHamiltonian is given by the sumof
the kinetic (K̂ ) and potential (V̂ ) energy, H K Vˆ ˆ ˆ= + . For the next step, we use the group property of the
density operator

ˆ e e , (2)H
P

Hˆ

0

1
ˆ∏ρ = =β

α

ϵ−

=

−
−

with Pϵ β= , and insert P 1− unities of the form R R R1̂ d∫= ∣ 〉〈 ∣α α α . This gives

Z
N

R R R Rd ... d
1

!
sgn( ) e ˆ . (3)P

P

S

H
0 1

0

1
ˆ

1

N

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∏ ∑ σ π= 〈 ∣ ∣ 〉

α σ
α

ϵ
σ α−

=

−

∈

−
+

Note that we have exploited the permutation operatorʼs idempotency property in equation (3) to introduce
antisymmetry on allP imaginary time slices. Following Sakkos et al [38], we introduce the factorization from
[37],

e e e e e e e , (4)H v W t K v W t K v W t Kˆ ˆ ˆ ˆ ˆ ˆ 2 ˆ
a a a1 1 1 2 1 2 1 1 1 1 0≈ϵ ϵ ϵ ϵ ϵ ϵ ϵ− − − − − − −−

for each of the exponential functions in equation (3). By including double commutator terms of the form

V K V
m

Fˆ , ˆ , ˆ , (5)
i

N

i

2

1

2⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ ∑= ℏ ∣ ∣
=

wehave to evaluate the total force on each particle, VF R( )i i= − , and equation (4) is accurate to fourth order
in ϵ. The explicit formof themodified potential terms Ŵ is given by

( )

W V
u

v
a

m

W V
u

v
a

m

F

F

ˆ ˆ and

ˆ ˆ 1 . (6)
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2
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2
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2
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⎞
⎠
⎟⎟

∑

∑

ϵ
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= + ℏ ∣ ∣

= + − ℏ ∣ ∣

=

−
=

There are two free parameters in equation (4), namely a0 11⩽ ⩽ , which controls the relative weight of the
forces on a particular slice, and t0 (1 1 3 ) 20⩽ ⩽ − , which determines the ratio of the, in general, non-
equidistant time steps between ‘daughter’ slices, cf figure 2. All other factors are calculated from these choices:
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The fourth-order approximation of the imaginary time propagator e Ĥϵ− is visualized infigure 2. The inverse
temperature β has been split into P=4 intervals of length ϵ, which are further divided into three, in general, non-
equidistant sub-intervals. Thus, for eachmain ‘bead’ τα, there exist two daughter beads, Aτα and Bτα .

Let us for amoment ignore the antisymmetry in equation (3) and evaluate the imaginary time propagator in
a straightforwardway [38]:

i i i i i i

R R R Re d d e e

( , ) ( , ) ( , ) , (8)
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with the definitions of the potential terms
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and the diffusionmatrices
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Figure 2. Illustration of the configuration space—in the left panel, the imaginary time is plotted versus the (arbitrary) spatial
coordiante x. Each time step of length ϵ is further divided into three non-equidistant subintervals, with two ‘daughter’ slicesA andB.
The right panel illustrates the combination of all PN3 !possible trajectories into a single configurationweight W X( ). Between each
two adjacent time slices, both the connection between beads from the same particle (diagonal elements of the diffusionmatrix, the
blue and red lines) and between beads fromdifferent particles (off-diagonal elements, the green lines) are efficiently grouped together
to improve the average sign.
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where λβ denotes the thermal wavelength m22 2λ π β= ℏβ andD is the dimensionality of the system. Thus, the
matrix elements of equation (10) are equal to the free particle densitymatrix, i j tr r( , ) ( , , )j A i0 , , 1ρ ρ ϵ=α α α .

The permutation operator commutes with both ρ̂ and Ĥ and we are, therefore, allowed to artificially
introduce the antisymmetrization between all P3 slices without changing the result. This transforms
equation (8) to

N

N

R R

R R

1

!
sgn( ) e ˆ

1

!
d d e e det( )det( )det( ) . (11)
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=

σ
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ϵ
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α α
ϵ ϵ

α α α

∈

−
+

− − ℏ
α α

Finally, this gives the partition function

Z
N

X
1

( !)
d e e det( )det( )det( ), (12)

P

P
V u m F

A B3
0

1
˜ ˜3

0
2∫ ∏ ρ ρ ρ=

α

ϵ ϵ
α α α

=

−
− − ℏ

α α

and the integration is carried out over all coordinates on all P3 slices:

X R R R R R Rd d ... d d ... d d ... d . (13)P A P A B P B0 1 0 1 0 1= − − −

The benefits of the partition function equation (12) are illustrated in the right panel of figure 2 where
the beads of two particles are plotted in the τ–x-plane. In the usual PIMC formulation (without the
determinants), each of the particles would correspond to a single closed trajectory as visualized by the
blue and red connections. To take into account the antisymmetry of fermions, one would also need to
sample all configurations with the same positions of the individual beads but different connections
between adjacent time slices, which have both positive and negative weights. By indroducing
determinants between all slices, we include all N! possible connections between beads on adjacent slices
(the green lines) into a single configuration weight and the usual interpretation of mapping a quantum
system onto an ensemble of interacting ringpolymers [41] is no longer appropriate. Therefore, a large
number of sign changes, due to different permutations, are grouped together resulting in an efficient
compensation of many terms (blocking), and the average sign (cf equation (22)) in our simulations is
significantly increased [31].

2.2. Energy estimator
The total energyE follows from the partition function via the familiar relation

E
Z

Z1
. (14)

β
= − ∂

∂

Substituting the expression from equation (12) into (14) and performing a lengthy but straightforward
calculation gives the final result for the thermodynamic (TD) estimator
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To split the total energy into a kinetic and a potential part, we evaluate

K
m

Z m
Z , (17)

β
= ∂

∂
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andfind theTD estimator of the kinetic energy
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Thus, the estimator of the potential energy is given by

V E K
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−

Wenotice that the forces contribute to both the kinetic and the potential energy. For completeness, wemention
that, for an increasing number of propagators, P → ∞, thefirst and second terms in equation (15) diverge,
which leads to a growing variance and, therefore, statistical uncertainty of bothE andK. To avoid this problem,
onemight derive a virial estimator, e.g. [42], which requires the evaluation of the derivative of the potential
terms instead.However, sincewe are explicitly interested in performing simulationswith fewpropagators to
relieve the fermion sign problem, the estimator from equation (15) is sufficient.

3.MonteCarlo algorithm

In section 2, we have derived an expression for the partition functionZ, equation (12), which incorporates
determinants of the diffusionmatrices between all P3 time slices, thereby combining PN3 ! different
configurations from the usual PIMC into a single weightW X( ). However, each determinant can still be either
positive or negative, depending on the relativemagnitude of diagonal and off-diagonal elements. Hence, we
apply theMetropolis algorithm [39] to themodified partition function

Z WX Xd ( ) , (20)∫′ = ∣ ∣

and calculate fermionic expectation values as

O
OS

S
, (21)f〈 〉 = 〈 〉′

〈 〉′

with the definition of the average sign

S
Z

W SX X X
1

d ( ) ( ), (22)∫〈 〉′ =
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∣ ∣

and the signumof the configuration X ,

( ) ( ) ( )S X( ) sgn det( ) sgn det( ) sgn det( ) . (23)
P

A B
0

1 ⎡⎣ ⎤⎦∏ ρ ρ ρ=
α

α α α
=

−

Let us summarize some important facts about the configuration space defined by equation (20):

(i) With increasing number of propagators P, the effect of the blocking decreases and, for P → ∞, the sign
converges to the sign of standard PIMC. Blocking ismaximal if t1

λ ϵ and t2 0
λ ϵ are comparable to the average

interparticle distance d, cf figure 3.Only in such a case, there can be both large diagonal and off-diagonal
elements in the diffusionmatrices.

(ii) Configuration weights W X( )∣ ∣ can only be large, when at least one element in each row of each diffusion
matrix is large. Therefore, we sample either large diagonal or large off-diagonal elements. Blocking happens
naturally as a by-product and does not have to be specifically included into the sampling. This alsomeans
that we have to implement amechanism to sample exchange, i.e., to switch between large diagonal and off-
diagonal diffusionmatrix elements.

(i) There are nofixed trajectories. Therefore, beads do not have a previous or a next bead, as in standard PIMC.
For an efficient andflexible sampling algorithm,we temporarily construct artificial trajectories and choose
the included beads randomly.

Themost efficientmechanism for the sampling of exchange cycles in standard PIMC is the so-calledworm
algorithm [20, 40], wheremacroscopic trajectories are naturally realized by a small set of local updates which
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enjoy a high acceptance probability. In the rest of the section, wemodify this algorithm to be applicable to the
new configuration spacewithout any fixed connections between individual beads.

3.1. Sampling scheme
To take advantage of themain benefits from the usual continuous spaceWA,wewill temporarily construct
artificial trajectories and sample new beads according to standard PIMC techniques, e.g. [43]. The initial
situation for our considerations is illustrated in the left panel of figure 4, where a pre-existing trajectory (pink
curve)with fourmissing beads in themiddle is shown in the τ–x-plane.We choose the sampling probability to
close the configuration as

T
r r

r r

( , , )

( , , )
, (24)i

M
i i i i

M M
sample

0

1
0 1 1

0 0 0
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which results in the consecutive generation of M 1− new coordinates ri, i M[1, 1]∈ − , according to
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which is aGaussian (cf the blue curves infigure 4)with the variance

m
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3.2. Artificial wormalgorithm
In the usualWA-PIMC, the configuration space is defined by theMatsubaraGreen function (e.g. [44]) which
implies that the algorithmdoes not only allow for the change of the particle numberN (grand canonical
ensemble) but, in addition, requires the generation of configurationswith a single open path, the so-called
worm.However, in the PB-PIMC configuration space defined by equation (12), there are no trajectories and,
therefore, no direct realization of aworm is possible. Instead, we consider an extended ensemble, which

Figure 3. Influence of the imaginary time step ϵ on the efficiency of the permutation blocking—two configurations ofN=2 particles
are visualized in the τ–x-plane. In the left and right panel, there areP=2 andP=5 time slices, respectively (daughter slices are
neglected for simplicity). Only with few propagators, the thermal wavelength λϵ of a single propagator is comparable to themean
interparticle distance d, which is crucial for an efficient grouping of permutations into a single configurationweight.With increasing
P, diagonal (red and blue lines) and off-diagonal (green lines) distances are no longer of the same order and the permutation blocking
is inefficient.
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combines closed configurationswith a total of NP3 beads and open configurations, where on some consecutive
time slices the number of beads is reduced by one, to N 1− . Such a configuration is illustrated in the right panel
offigure 4. There are two special beadswhich are denoted as ‘head’ and ‘tail’ and the triangles, circles and squares
symbolize beads from three different particles. There are eight beads fromdifferent particlesmissing (indicated
by the empty symbols at the right boundary) between Ahead 2τ τ= and Atail 1τ τ= , going forward in
imaginary time.

Formost slices, the computation of the diffusionmatrix allows for no degree of freedom in the extended
ensemble.We define the latter in away, that the head bead does not serve as a starting point for the elements but
is treated as if it wasmissing. This is justified because, otherwise, there does not necessarily exist a largematrix
element in this particular row because no artificial connection has been sampled on the next slice. For the
configuration from figure 4, the diffusionmatrix of the headʼs time slice is given by

( ) ( )

( ) ( )

( ) ( )
( ) ( )

t t

t t

t t

t t

r r r r

r r r r

r r r r

r r r r
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All diffusionmatrices with N 1− beads on their slices are computed in the sameway. The other degree of
freedom for which the extended ensemble allows is the choicewhether the tail will be included as thefinal
coordinate in the diffusionmatrix or not.Here, itmakes sense to allow for this possibility, because there does
exist at least a single large element in this particular row anyway. The correspondingmatrix for the configuration
fromfigure 4 looks like

( ) ( ) ( )
( ) ( ) ( )
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t t t

r r r r r r

r r r r r r
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However, we emphasize that the particular choice of the extended ensemble does not influence the extracted
canonical expectation values as long as detailed balance is fulfilled in all updates.We have developed a simulation
schemewhich consists of four different types ofmoves that ensure detailed balance and ergodicity. The updates
are presented in detail in the appendix.

Figure 4. Illustration of the sampling scheme (left) and the extended configuration space (right)—in the left panel, an artificial
trajectory (pink curve)with fourmissing beads is plotted in the τ–x-plane. The new coordinates (green circles) are sampled according
to aGaussian (blue curves) around the intersection of the connecting straight lines between the previous and last beadwith the current
time slice (black crosses). The right panel gives an example for an open configuration in the extended configuration spacewith two
special beadswhich are denoted as ‘head’ and ‘tail’. There are only N 1− beads on eight time slices, going forward in imaginary time
starting from Ahead 2τ τ= . The circles, triangles and squares distinguish beads from three different particles and the empty symbols at
the right boundary indicate themissing beads on a particular slice.
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4. Simulation results

As a test system to benchmark ourmethod, we considerN spin-polarized electrons in a quantumdot [1–4],
which can be described approximately by a harmonic confinementwith a frequencyΩ.We use oscillator units,
i.e., the characteristic energy scale E0 Ω= ℏ and oscillator length l mΩ= ℏ , and obtain the dimensionless
Hamiltonian

H r
r r

ˆ 1

2

1

2
, (30)

i

N

i

i

N

i

i j

N

i j1

2

1

2∑ ∑ ∑ λ= − + +
∣ − ∣= = <

with the coupling parameter

e

l
, (31)

2

0
λ

Ω
=

ℏ

being defined as the ratio of Coulomb and oscillator energy. For large λ, the electrons are strongly coupled and
exchange effects become negligible (region [III] infigure 1), while, for 1λ ≪ , the ideal Fermi gaswill be
approached and the system is governed by the fermionic exchange (region [I] infigure 1). To confirm the quality
of our simulations, we compare the results at weak and strong couplingwithCPIMCand standard PIMC,
respectively, where they are available.

4.1.Optimal choice of a1 and t0
We start the discussion of the simulation results by investigating the effects of the two free parameters a1 and t0
on the convergence of two different observables, namely the energyE and radial density n r( ).

Infigure 5, results are summarized forN= 4 electronswith 1.3λ = and 5β = , i.e., moderate coupling and
low temperature, and panel (A) shows the convergence of the total energy as a function of the inverse number of
propagators which is proportional to the imaginary time step, P1ϵ ∝ . The red diamonds [(a) t 0.040 = ,
a 0.01 = ] and blue circles [(b) t 0.130 = , a 0.331 = ] denote two different combinations of free parameters and
exhibit a clearly different convergence behavior towards the exact result known fromCPIMC, i.e., the black line.
ForP=2, the energywith parameter set (a) is too low by almost one percent.With increasing P,E increases and
reaches amaximumaround P=5, until the curves approach the exact energy fromabove. For parameter set (b),
the energy convergesmonotonically from above and, even forP= 2, the deviation from theCPIMC result is as
small as 0.2%. The selected energies which are listed in table 1 reveal that the total energy is converged forP=14
within the statistical uncertainty. For the panels (C) and (D), the energy has been split into a potential (V) and
kinetic (K) contribution. For both parameter combinations,V convergesmonotonically, although from
different directions. In addition, parameter set (b) gives amuch better result for small P. Panel (D) reveals, that
the kinetic energyK is responsible for the non-monotonous convergence ofE for parameter set (a), which again
delivers worse results forP=2, as compared to the blue circles. Finally, panel (B) shows the average sign S as a
function of P1 . Both curves exhibit a similar decrease with an increasing number of propagators, as it is
expected.However, parameter set (a) always allows for a better sign than (b). The reason for this behavior is the
free parameter t0, which controls the relative spacing between the three time slices of an imaginary time step ϵ.
For t 0.040 = , there are a single small and two large steps. The latter allow formore blocking, since the
corresponding decay length t1

λ ϵ in the diffusionmatrices is large aswell. For t 0.130 = , on the other hand, there
are three nearly equal steps, each of whichwith a smaller decay length than the two large ones for parameter set
(a). Therefore, less blocking is possible andmore determinants with a negative sign appear in theMarkov chain.

The different convergence behaviors of the two free parameter combinations for small P leads to the
question how to choose t0 and a1 for optimal results. To provide an answer, we consider the same system as in
figure 5, and investigate the accuracy of the total energy as a function of t0, for afixed a 0.331 = . The simulation
results are shown in the left panel offigure 6 forP=2 (red squares), P=3 (blue circles) andP=4 (green
diamonds). All three curves exhibit a similar decay towards the exact value starting from small t0, followed by a
minimumaround t 0.140 = andfinally an increasing error for larger values.We note that as few as two

propagators allow for an accuracy of E E 2 10 3Δ∣ ∣ < × − for the best choice of the free parameters. Figure 6(B)
shows the dependency of the average sign S on t0. Again, we observe that S decreases with increasing t0 as
explained during the discussion of figure 5. In addition, it is revealed that the combination ofP=4 and t 0.010 =
leads to a larger sign than P=3 and t 0.100 > . However, the optimum free parameters allow for a higher
accuracy even forP=2, compared to small t0 withmore propagators. Therefore, it turns out to be advantagous
to use the fourth order factorizationwith the two free parameters despite the smaller average sign for the sameP
compared to the factorizationwith only a single daughter slice for each propagator, i.e., t 0.00 = .

Finally, wemention that the optimal choice of a1 and t0 depends on the observable of interest. Infigure 7, we
investigate the effects of the free parameters on the convergence of the radial density distribution n r( ) for the

9

New J. Phys. 17 (2015) 073017 TDornheim et al



same system as infigures 5 and 6. The left panel shows n as a function of the distance to the center of the trap, r,
for four different P and the parameter combination a 0.331 = and t 0.130 = , which has been proven to allow for
nearly optimumenergy values atP=2, cf figure 6. The black curve corresponds toP=10 and is convergedwithin
statistical uncertainty. ForP=2 (red diamonds), there appear significant deviations to the latter, in particular n
is too large around themaximum r 1.25≈ and too small at the boundary of the system. TheP= 3 results (blue
squares) exhibit the same trends although the differences towards the black curve are reduced. Finally, the
density forP=4 (green circles) can hardly be distinguished from the converged data. The right panel compares
the density forP=2with two different combinations of free parameters. The red diamonds (parameter set (a))
correspond to the curve from the left panel and the green circles (parameter set (b)) to a 0.01 = and t 0.040 = .
The latter parameters clearly allow for a density distributionwhich ismuch closer to the exact results than the a1
and t0 values which provide the optimal energy.

Figure 5.Convergence of the energy forN=4, 1.3λ = and 5.0β = —panel (A) shows the convergence of the total energy versus the
inverse number of propagators P 1 ϵ∝− . Shown are the results for two different choices of the parameters, (a) t 0.040 = , a 0.01 = and
(b) t 0.130 = , a 0.331 = , and the correct energy fromCPIMCwith the corresponding confidence interval. Panel (B) shows the decay
of the average sign Swith increasing P and panels (C) and (D) display the potential and kinetic energyV andK, respectively, where
E V K= + .

Table 1.Convergence of the energy forN=4, 1.3λ = and 5.0β = for selected
parameter combinations shown infigure 5.

Simulation E V K S

P 2= a 12.1924(3) 9.0283(3) 3.1641(3) 0.4907(3)

P 2= b 12.3186(2) 9.0927(2) 3.2258(2) 0.3771(2)

P 14= a 12.293(4) 9.083(1) 3.210(4) 0.02664(1)

P 14= b 12.292(2) 9.0831(6) 3.209(2) 0.020600(7)

CPIMC 12.293(3) — — —

a t 0.040 = , a 0.01 =
b t 0.130 = , a 0.331 =

10

New J. Phys. 17 (2015) 073017 TDornheim et al



4.2. Temperature dependence
In the last section, we have demonstrated that the optimal choice of the free parameters a1 and t0 allows for the
calculation of energies with an accuracy of 0.1%with as few as two propagators, even at a relatively low
temperature, 5.0β = . However, with decreasingT (i.e., increasing β) the number of required propagatorsmust
be increased to keep the commutator errorfixed. Infigure 8, we investigate the effect of a decreasing temperature
on the accuracy provided by a fewpropagators P forN=4 electrons at indermediate coupling, 1.3λ = . The left
panel shows the total energy E as a function of the inverse temperature β.We compare results forP=2 (green
circles), P=3 (red diamonds) andP=4 (blue triangles) to exact results fromCPIMC (black stars). At larger
temperature, 7.0β ⩽ , all four datasets nearly coincide and exhibit the expected decrease towards the energy of
the ground state.With increasing β, theP=2 results exhibit an unphysical drop because two propagators are not
sufficient and the commutator errors becomemore significant. The red and blue curves exhibit a qualitatively
similar trend, however, the energy drop is weaker and shifted to lower temperature. Even at 10.0β = , which is
already very close to the ground state, three propagators allow for an accurate description of the system.

In the right panel offigure 8, the average sign S is plotted versus the inverse temperature. At small β, the
wavefunctions of the electrons do not overlap and, hence, the system is not degenerate.With decreasing
temperature, exchange effects become increasingly important which leads to a decrease of S. However, while for
standard PIMC the sign is expected to exponentially decrease with β, S seems to converge for PB-PIMCwith
P=3 and P=4 and exhibits an even slightly non-monotonous behavior forP=2. The application of
antisymmetric propagators leads to a competitionwith respect to S and β. On the one hand, with increasing
inverse temperature off-diagonalmatrix elements are increased, which leads tomore negative determinants and,
therefore,more negative weights in theMarkov chain. On the other hand, the thermal wavelengths t1

λ ϵ and t2 0
λ ϵ

Figure 6. Influence of the relative interslice spacing t0 forN=4, 1.3λ = and 5.0β = —in the left panel, the total energy is plotted
versus the free parameter t0 forP=2,P=3 andP=4. The right panel shows the behavior of the average sign.

Figure 7.Convergence of the radial density forN=4, 1.3λ = and 5.0β = —the radial density n is plotted versus the distance to the
center of the trap, r. In panel (A), the free parameters are chosen as t 0.130 = and a 0.331 = and the convergence withP is illustrated.
Panel (B) compares two different sets of free parameters, (a) t 0.130 = and a 0.331 = and (b) t 0.040 = and a 0.01 = , for P=2.
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are increasing with β, whichmakes the blocking of large diagonal and off-diagonal elementsmore effective.
Hence, the sign can even become larger with β once the systemhas reached the ground state, because the particle
distribution remains constant whilemore elements in the diffusionmatrix compensate each other in the
determinants.

We conclude that few propagators allow for the calculation of accurate results up to low temperature,
10.0β ⩽ . For higher β, the system is in its ground state and finite temperature PIMC is no longer themethod of

choice.

4.3.Dependence on the coupling strength
In the previous sections, we have restricted ourselves to the investigation of small systems to illustrate the
convergence and sign behavior depending on relevant parameters. In this section, we demonstrate that PB-
PIMCallows for the calculation of accurate results at parameters where no other ab initio results have been
reported, so far. Figure 9 shows results forN=8 andN= 20 electrons at 3.0β = over awide range of coupling
parameters, λ. In panel (A), the average sign S is plotted versus λ for standard PIMC (squares), CPIMC (circles)
and the present PB-PIMC (diamonds) withP=2 and the parameter sets t 0.140 = and a 0.331 = (N=8, blue
symbols) and t 0.100 = and a 0.331 = (N=20, red symbols), which are known to allow for accurate energies, cf
figure 6. It is well understood that PIMC allows for the simulation of strongly coupled fermions, where exchange
effects do not play a dominant role.With decreasing λ, the sign exhibits a sharp drop and the sign problem
prevents the simulationwithin feasible computation time for 2.0λ ⩽ and 5.0λ ⩽ , respectively. Evidently,
larger systems lead to amore severe decrease of S at larger coupling strength. CPIMC, on the other hand, can be
interpreted as aMonte Carlo simulation on a perturbation expansion around the ideal quantum system, i.e.,

0.0λ = . Hence, themethod efficiently provides exact results for small coupling, where the system is close to an
ideal one. ForN=20 around 0.3λ ≈ , the sign almost instantly drops from S 0.97≈ towards zero, andCPIMC
is no longer applicable, without further approximation. Thismeans that, in particular for larger systems, there
have only been results for systems that are (a) almost ideal or (b) so strongly coupled that fermions and bosons
lead to nearly equal physical properties. The physically particularly interesting regimewhere Coulomb
correlations and Fermi statistics are significant simultaneously, has remained out of reach.

However, the average sign fromPB-PIMC exhibits amuch less severe dropwith decreasing λ than standard
PIMCand saturates for 0.7λ ⩽ . ForN= 8, the average sign remains above S 0.08= , which allows for good
accuracywith relatively low effort. The small sign, S 10 3∼ − , forN=20 indicates that the simulations are
computationally involved but, in contrast to PIMCandCPIMC, still feasible. In panel (B) offigure 9, the total
energyE forN=20 is plotted versus λ over the entire coupling range and the statistical uncertainty from the PB-
PIMC results is smaller than the size of the data points. Both, at small and large λ, theP=2 results are in excellent
agreementwith the exact energy known from the othermethods and, in addition, results are obtained for the
particularly interesting transition region (region [II] infigure 1). In panel (C), we show the radial density for
N=20 and low coupling, 0.10λ = , calculatedwith the parameter set t 0.040 = and a 0.01 = , which has been
proven effective for accurate densities n r( ). The PB-PIMC results (red diamonds) are in excellent agreement
with the exact CPIMCdata (blue squares) over the entire r-range. For completeness, wemention that this
combination of parameters allows for an approximately three times as high sign as the choice frompanels (A)
and (B), whichwas choosen to allow for a good energy, and the results have been obtainedwithin t 10CPU

3∼

Figure 8.Temperature dependence forN=4 and 1.3λ = with t 0.140 = and a 0.331 = —in the left panel, the total energy is plotted
versus the inverse temperature β forP=2,P=3 andP=4 propagators and compared to exact CPIMC results. The right panel shows
the behavior of the sign.
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core hours. Panel (D) shows the density of a strongly coupled system, 15.0λ = , andN=20. Again, the two
propagators already provide very good agreementwith the exact curve. Infigure 1(B), we have shown density
profiles for coupling parameters over the entire coupling range. At 15λ = (red pluses), there are three distinct
shells and the physical behavior is dominated by the strongCoulomb repulsion. Decreasing the coupling to

5λ = (green bars) leads to a reduced extension of the system, and the three shells exhibit amuch larger overlap.
At indermediate coupling, 2λ = (blue crosses), both the interaction and fermionic exchange govern the system.
The density profile is still significantlymore extended than the ideal pendant, but n exhibitsmodulations instead
of aflat curve. Decreasing the repulsion further to 0.7λ = (pink circles) leads to a further reduction of the
extension.However, n does not approach aGaussian-like profile as for ideal boltzmannons or bosons, but
continues to exhibit the densitymodulationswhich are characteristic for fermions. For 0.1λ = , the system is
almost ideal and the density is completely dominated by the quantum statistics.

Finally, infigure 10we compare density profiles forN=20 particles at 3.0β = with Fermi-, Bose- and
Boltzmann statistics. Panel (A) shows results for intermediate coupling, 2.0λ = . The distinguishable
boltzmannons (blue diamonds) exhibit a nearlyflat profile without any shell structure, i.e., a liquid-like
behavior. The bosonic particles (green circles) lead to an even smoother curve, with a slightly reduced extension
of the system. For fermions (red squares), on the other hand, the exchange already plays a significant role, as the
particles exhibit an additional repulsion due to the Pauli principle, and n decays only at larger r. In addition, the
fermionic density profile exhibits distinctmodulations. In panel (B), we show a comparison for smaller
coupling, 0.7λ = . Again, the boltzmannons and bosons lead to smooth density profiles which are very similar,
despite a reduced extension of the Bose-system and an increased density around the center of the trap. The
fermions exhibit a different behavior as the system is significantlymore extended and the density profile again
features distinctmodulations.

In conclusion, we have presented ab initio results for the energy and the density for up to 20 electrons over
the entire coupling range. A comparisonwith standard PIMC andCPIMChas revealed excellent agreement in

Figure 9.Coupling dependence forN=8 andN=20 at 3.0β = —panel (A) shows the average sign as a function of λ for CPIMC,
PIMC andPB-PIMCwithN=8 (blue symbols, parameter set t 0.140 = and a 0.331 = ) andN=20 (red symbols, parameter set
t 0.100 = and a 0.331 = ) and panel (B) the corresponding total energies, E, for the latter. In panels (C) and (D), the radial density n is
plotted versus the distance to the center of the trap, r, forN=20with 0.1λ = and 15.0λ = , respectively, and the parameter set
a 0.01 = and t 0.040 = .
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both the limits of weak and strong coupling. Amore detailed investigation of the transition from the classical to
the degenerate regime, including systematic comparisons with bosons and boltzmannons, is beyond the scope of
this work andwill be published elsewhere.

4.4. Particle number dependence
In the last section, we have shown that the sign problem ismore severe for larger systems, cffigure 9(A).Here, we
provide amore detailed investigation of the performance of ourmethod in dependence on the particle number.
Infigure 11, the average sign S is plotted versusN for 0.1λ = and 3.0β = , i.e., a very degenerate system, with
two different combinations of free parameters. It is revealed that S exhibits an exponential decaywith the system
size and, as usual, the smaller t0 leads to amore effective blocking. Therefore, the PB-PIMCapproach still suffers
from the fermion sign problem, and feasible system sizes for 2Dquantumdots at weak coupling are limited to
N 30⩽ . This is a remarkable result since standard PIMC simulations for 0.1λ = and 3.0β = are possible only
for N 4⩽ .

5.Discussion

In summary, we have presented a novel approach to the PIMC simulation of degenerate fermions at finite
temperature by combining a fourth-order factorization of the densitymatrix with a full antisymmetrization
between all imaginary time slices. The latter allows tomerge PN3 ! configurations from the standard PIMC
formulation into a single configurationweight, thereby efficiently grouping together permutations of opposite

Figure 10. Influence of quantum statistics forN=20 and 3.0β = —we show the radial density n r( ) for Fermi-, Bose- and
Boltzmann-statistics in the transition region for 2.0λ = (A) and 0.7λ = (B).

Figure 11.Particle number dependence of the average sign for 0.1λ = and 3.0β = and two different combinations of the simulation
parameters.

14

New J. Phys. 17 (2015) 073017 TDornheim et al



signswhich leads to a significant relieve of the fermion sign problem. To efficiently run through the resulting
configuration space at arbitrary systemparameters, we havemodified thewidely used continuous spaceWAby
introducing an extended ensemble with open configurations and by temporarily constructing artificial
trajectories.We have demonstrated the capabilities of ourmethod by simulating up toN=20 electrons in a
quantumdot. It has been revealed that the (empirical) optimal choice of the free parameters a1 and t0 from the
fourth order factorization allows for the calculation of energies with an accuracy of 0.1% even for just two
propagators. For completeness, wemention that different observables lead to different optimal parameters.We
have concluded, that it appears to be favourable to use two instead of a single daughter time slice for each time
step ϵ, despite the reduced sign for the same number of propagators.

The investigation of the temperature dependence of the convergence with respect to the number of time
stepsPhas revealed, that as few as three propagators are sufficient to accurately simulate fermions, up to

10.0β ⩽ . For larger inverse temperatures, the system approaches its ground state and finite temperature PIMC
techniques are no longer themethods of choice.

To demonstrate that our PB-PIMC approach allows for the calculation of accurate results for systems
beyond the capability of any other quantumMonteCarlo technique, we have simulatedN=20 electrons at
relatively low temperature, 3.0β = , and arbitrary coupling strength. CPIMC excells at weak coupling and
provides exact results for 0.3λ < , i.e., in the regionwhere the systems are still close to the ideal case. Standard
PIMC, on the other hand, is applicable at strong coupling 5.0λ ⩾ where exchange effects are not yet
dominating, until the rapid decrease of the sign renders any simulation unfeasible. For PB-PIMC, the sign
converges for 0.7λ ⩽ and, hence, computations are possible at arbitrary degeneracy, in particular, in the
physicallymost interesting transition region between classical and ideal quantumbehavior.Wefind excellent
agreementwith both PIMC andCPIMC in both the limits of strong andweak coupling. Finally, we have
demonstrated that PB-PIMC still suffers from the fermion sign problem, since, as expected, S decreases
exponentially with the particle number.

A possible future application of PB-PIMC to the quantum dot system might include the investigation
of the transition from the classical to the degenerate quantum regime, in particular a systematic
comparison of fermions to bosons and boltzmannons. To describe realistic quantum dots, it will be
important to include the spin degrees of freedom into the simulation. In particular, this should allow us
to recover, for weak coupling, Hundʼs rules physics and also to address the spin contamination problem
[45, 46]. Furthermore, it could be interesting to extend the considerations to 3D confinements, e.g.
[47, 48], and study the impact of quantum statistics on structural transitions [49]. In addition, we expect
our method to be of interest for the future investigation of numerous Fermi systems, including the finite
temperature homogeneous electron gas [8–10], two-component plasmas [11–13] and fermionic bilayer
systems [5–7].
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Appendix.MonteCarlo updates

In this appendix, we present an ergodic set ofMonte Carlo updates which are based on the usual continuous
spaceWA [20, 40] from standard PIMC.

(i) Deform: this update is similar to standard PIMC techniques, e.g. [43], and deforms a randomly constructed
artificial trajectory.

• Select a start time sτ uniformly from all P3 slices.

• Select a ‘start’ bead on sτ .

• Select the number of beads to be changed, m M[1, ˜ ]∈ .
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• Select m 1+ beads on the next slices according to
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and totϵ denotes the imaginary time difference between the fixed endpoints.The constant M̃ is a free
parameter and can be optimized to enhance the performance. The update is self-balanced and theMetropolis
solution for the acceptance probability is given by

( )A X X̃ min 1, e
det

det
, (A.3)

i

m
i

i

i

i

Deform

0

old

new

new

old

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏ Σ

Σ
ρ

ρ
→ = ϵΔΦ−

=

withΦ containing both the change in the potential energy and all forces.Deform is illustrated in the left panel
of figure A1 .

(ii) Open/ Close: this update pair constitutes the only possibility to switch between open and closed
configurations. TheOpenmove is executed as follows:

• Select the time slice of the newhead, headτ , uniformly fromall P3 slices.

• Select the bead of the newhead, rhead.

• Select the total number of links to be erased as m M[1, ˜ ]∈ .

• Selectm beads on the next slices from

T
r r( , , )

, (A.4)
i

m
i i i

i
select

0

1
0 1∏

ρ ϵ
Σ

=
=

−
+

the last onewill be the new tail after the update.

• Delete m 1− beads between the newhead and tail.The reversemove closes an open configuration. Letm
denote the number ofmissing links between head and tail. If m M̃> , the update is rejected.

Figure A1. Illustration of the updatesDeform (left) and Swap (right)—in the left panel, theDeform update is executed in an open
configuration. The randomconstruction of an artificial trajectory (the beadsmarked by black arrows) is followed by the re-sampling
of all beads between its first (start) and last (end) bead. In the right panel, the Swapmove is demonstrated. The current head is
‘connected’ to a random target bead on the time slice of the tail.
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• Sample m 1− newbeads according to equation (24)with head and tail being thefixed endpoints:

T
r r

r r

( , , )

( , , )
. (A.5)i

m
i i i

sample
0

1
0 1

0 head tail tot

∏ ρ ϵ

ρ ϵ
= =

−
+

The acceptance ratios are computed as

( )

( )

A

A

X X

X X

˜ min 1, e e
det

det

˜ min 1,
e e 1 det

det
, (A.6)

i

m

i
i

i

i

m

i

i

i

Open

0

1 new

old

Close

0

1 new

old

tot

tot

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∏

∏

Γ Σ
ρ

ρ

Γ Σ
ρ

ρ

→ =

→ =

ϵΔΦ ϵ μ

ϵΔΦ ϵ μ

− −

=

−

−

=

−

with the definition

CPMN

r r

3 ˜

( , , )
. (A.7)

0 tail head tot
Γ

ρ ϵ
=

The parameter μ is another degree of freedomof the algorithm and plays the same role as the chemical
potential in the usualWA-PIMC scheme.

(iii) Swap: the Swapmove very efficiently generates exchange, i.e., allows for a switch between large off-diagonal
or diagonal diffusionmatrix elements as it is illustrated in the right panel offigure A1. Letm denote the
number ofmissing beads between head and tail.

• Choose a target bead on the slice tailτ according to

T
r r( , , )

, (A.8)
t

target
0 head tot

forward

ρ ϵ
Σ

=

with forwardΣ being the normalization. The tail itself cannot be chosen.

• Choose backwards m 1+ beads according to

( )
T

r r, ,
. (A.9)

i

m
i i i

i
select

0

0 1
old old

old∏
ρ ϵ

Σ
=

=

+

The head itself cannot be selected on the last slice and the last beadwill be the newhead after the update.

• ‘Connect’ the old headwith the target bead by re-sampling them beads between the slices of head and tail
according to

( )
T

r r

r r

, ,

( , , )
. (A.10)i

m
i i i

sample
0 0

new
1

new

0 head target tot

∏ ρ ϵ

ρ ϵ
= = +

The update is self-balanced and the acceptance ratio is calculated as

( )A X X̃ min 1,
det

det
, (A.11)

i

m
i

i

i

i

Swap

0

old

new

new

old

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏η

Σ
Σ

ρ

ρ
→ =

=

with the abbreviation

e , (A.12)forward

reverse
η

Σ
Σ

= ϵΔΦ−

and reverseΣ being the normalization of the selection of the target bead from the reversemove.

(iv) Advance/ Recede: these updates move the head forward (backward) in the imaginary time. However, they
are optional and, in principle, not needed for ergodicity. TheAdvancemove is executed as follows:

• Calculate the number ofmissing beads between head and tail,α. If 0α = , the update is rejected.

• Select the number of newbeads to be sampled, m [1, ]α∈ .

• Sample the position of the new head from r r( , , )0 head head
new

totρ ϵ .
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• Sample the m 1− beads between old and newhead according to equation (24)

( )
( )

T
r r

r r

, ,

, ,
. (A.13)i

m
i i i

sample
0

1
0

new
1

new

0 head head
new

tot

∏ ρ ϵ

ρ ϵ
= =

−
+

The reversemove is given byRecede. Let κdenote the total number of beadswhich can be removed. If 0κ = , the
update is rejected.

• Select the total number of beads to be removed as m [1, ]κ∈ .

• Selectm beads backwards starting from the old head from

( )
T

r r, ,
, (A.14)

i

m
i i i

i
select

0

1
0

new
1

new

new∏
ρ ϵ

Σ
=

=

−
+

with i
newΣ being the normalization. The last onewill be the newhead after the update. Here ‘new’ denotes

newwith respect toAdvance, since the coordinates are pre-existing for theRecedemove. Delete them beads
between the newhead and tail.

This gives the acceptance ratios

( )

( )

A

A

X X

X X

˜ min 1, e
1 det

det

˜ min 1,
e det

det
, (A.15)
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⎛
⎝
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ρ

ρ

θ
Σ

ρ

ρ
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ϵΔΦ

ϵΔΦ

−

=

−

−

=

−

with the definition

e . (A.16)totθ α
κ

= ϵ μ

The presented list ofMonte Carlomoves constitutes an ergodic set of local updates, which allows for an
efficient sampling of both the extended configuration space and a canonicalMarkov chain.
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